7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

What's in an Agreement? A Formal Analysis and an extension of WS-Agreement
Aiello, Marco; Frankova, Ganna; Malfatti, Daniela

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Aiello, M., Frankova, G., & Malfatti, D. (2005). What’s in an Agreement? A Formal Analysis and an
extension of WS-Agreement. University of Groningen, Johann Bernoulli Institute for Mathematics and
Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/e1378dc9-6e73-48e7-826b-8951d7dd6f13

What’s in an Agreement?
A Formal Analysis and an extension of
WS-Agreement

Marco Aiello," Ganna Frankova! and Daniela Malfatti?

! Dept. of Information and Communication Technologies
University of Trento
Via Sommarive, 14
38100 Trento
Italy
email: {marco.aiello, ganna.frankova}@unitn.it
2 Corso di Laurea in Informatica
University of Trento
Via Sommarive, 14
38100 Trento
Italy
email: daniela.malfatti@studenti.unitn.it

Abstract. Non-functional properties of services and service composi-
tions are of paramount importance for the success of web services. The
negotiation of non-functional properties between web service provider
and consumer can be agreed on a priori, by specifying an agreement.
WS-Agreement is a recently proposed and emerging protocol for the
specification of agreements in the context of web services. Though, WS-
Agreement only specifies the XML syntax and the intended meaning of
each tag, which naturally leads to posing the question of “What’s in an
Agreement?” We answer this question by providing a formal definition
of an agreement and analyzing the possible evolution of agreements and
their terms. From our analysis it turns out that agreements can be made
more robust and longer-lived by a simple extension, which we present.

WS-FM topic: Performance Evaluation and Quality of Service of WS

1 Introduction

Web Services (WS) are a set of technologies that allow the construction of mas-
sively distributed and loosely coupled applications. The main characteristics of
a distributed system based on WS resides in the asynchronicity of the message
exchange, the absence of a unique owner of the application, and the openness
of the XML based protocols used for the interaction. The present attention to
web services is due to the potentials of the technology. WS are proving to enable

the creation of virtual enterprises, to create the possibility for inter-company
and intracompany interoperation, to allow the creation of open electronic mar-
ketplaces. Not only, web services can be used also to allow for spontaneous
networking and interoperation between different appliances in the context of
ambient intelligence [2].

One of the most thought provoking issues in web services is that of auto-
matic composing individual operations of services in order to build complex
added-value services. The research on composition is well under way, but most
of the focus is on functional properties of the composition, that is, how does
one automatically compose? How does one enrich the services with semantic
self-describing information? How does one discover the available services to use
for the composition? If, on the one hand, this is crucial, on the other one, it is
not enough. Non-functional properties of the composition are also of paramount
importance in defining the usability and success of a composed service. Think for
instance of desiring a service that performs a biological computation composing
the services offered by a number of web service enabled machines. If the user
knows that the composition is correct with respect to his goal, he will be satisfied
with the answer he receives, but if the answer takes 3 years to be delivered to
the user, the correctness is of little use. Therefore, the quality of a composed
service is very important when interacting with an asynchronous system built
out of independent components.

With the term Quality of Service (QoS) we refer to the non-functional pro-
perties of an individual service, or a composition of services. The term is widely
used in the field of networking. Usually it refers to the properties of availability
and performance. In the field of web services, the term has a wider meaning.
Any non-functional property which affects the definition and execution of a web
service falls into the category of QoS, most notably, accessibility, integrity, reli-
ability, regulatory, and security [15]. Dealing with QoS requires the study of a
number of problems. One, the design of quality aware systems. Two, the pro-
vision of quality of service information at the level of the individual service.
Three, ensuring that a promised quality of service is actually provided during
execution. In [1], we addressed the first issue by using the Tropos design metho-
dology, and the second one by resorting to WS-Policy to describe QoS properties.
In this paper, we consider the second and third issues; in particular, we show
how to provide a framework to negotiate the provision of a service according
to a predefined QoS, and how to handle changes during the interactions of web
services.

WS-Agreement is a XML based language and protocol designed for adverti-
sing the capabilities of providers and creating agreements based on initial offers,
and for monitoring agreement compliance at runtime. The motivations for the
design of WS-Agreement stem out of QoS concerns, especially in the context of
load balancing heavy loads on a grid of web service enabled hosts [9]. However,
the definition of the protocol is totally general and allows for the negotiation
of QoS in any web service enabled distributed system. If, on the one hand, the
proposal of WS-Agreement is a step forward for obtaining web service based

systems with QoS guarantees, on the other hand, the protocol proposal is pre-
liminary. The current specification [3] defines a XML syntax for the language
and protocol and it gives a vague textual overview of the intended semantics,
without defining a set of formal mathematical rules. Furthermore, a reference
architecture is proposed to show how WS-Agreement are to be handled, [13].
Nevertheless, a formal analysis of what an agreement is is still missing.

In this paper, we address the question What’s in an Agreement? In parti-
cular, we provide a formal analysis of WS-Agreement by resorting to finite state
automata, we provide a set of formal rules that tie together agreement terms
and the life-cycle of an agreement. From the analysis, some shortcomings of the
protocol become evident. Most notably, breaking one single term of the agree-
ment results in breaking the agreement, while a more graceful degradation is
desirable. Therefore, we propose an extension of the protocol for which we pro-
vide appropriate semantics, that allows the renegotiation of running agreements
by tolerating the break of a term.

Web service QoS issues are gaining attention and have been addressed in a
number of recent works. Some approaches are based on the extension of the
Web Service Description Language (WSDL) to define not only functional, but
also non-functional properties of the service, e.g., [10]. The main idea of the
approach is simple: provide syntax to define terms which refer to non-functional
properties of operations. The problem with this kind of approach is that the QoS
definition is tied to the individual operation, rather than with the service as a
whole; furthermore, there is no run-time support. Once a quality is defined, it
can not be changed at execution time.

In [18], the authors propose to define WS QoS by using XML schemata that
both service consumers and service providers apply to define the agreed QoS
parameters. The approach allows for the dynamic selection of WS depending
on various QoS requirements. On the negative side, the life-cycle of agreements
is not taken into account, and it is not possible to define an expiration for
a negotiation. The feasibility of using constraint programming to improve the
automation of web services procurement is shown in [16]. A semantic web ap-
proach, in which services are searched on the basis of the quality of semantically
tagged service attributes is presented in [17]. A predictive QoS model for work-
flows involving QoS properties is proposed in [5]. In [8], the authors propose
a model and architecture to let the consumer rate the qualities of a service.
In addition, the industry has proposed a number of standards to address the
issue of QoS: IBM Web Service Level Agreement (WSLA) and HP’s Web Ser-
vice Management Language (WSML) are examples of languages used to describe
quality metrics of services, [12]. A recent proposal is the specification of a new
WS protocol, called Web Services Agreement Specification [3]. In [6], it is pre-
sented the Agreement-Based Open Grid Service Management (OGSI-A) model.
Its aim is to integrate Grid technologies with Web Service mechanisms and to
manage dinamically negotiable applications and services, using WS-Agreement.
The WS-Agreement protocol proposal is supported by the definition of a ma-
naging architecture: CREMONA—-An Architecture and Library for Creating and

Monitoring of WS-Agreement [13]. The Web Services Agreement Specification
defines the interaction between a service provider and a consumer, and a proto-
col for creating an agreement using agreement templates. The above approaches
show that frameworks for QoS definition and management are essential to the
success of the web service technology, but there are a number of shortcomings
that still need to be addressed. First, no one has worked out a formal definition
of what the semantics of a QoS negotiation should be. Second, the frameworks
should be more flexible at execution time because actual qualities of services
may change over time during execution.

The remainder of the paper is organized as follows. In Section 2, we present the
WS-Agreement protocol defined in [3] and provide an example. In Section 3,
we propose a formal definition of an agreement and of its life-cycle. Section 4
is devoted to the presentation of an extension of WS-Agreement with the goal
of improving the duration and tolerance of an agreement in execution. It also
contains an example using the extension. Some concluding remarks and hints
for future work are presented in Section 5.

2 WS-Agreement

In order to be successful, web service providers have to offer and meet guaran-
tees related to the services they develop. Taking into account that a guaran-
tee depends on actual resource usage, the service consumer must request state-
dependent guarantees from the service provider. Additionally, the guarantees on
service quality must be monitored and service consumers must be notified in case
of failure of meeting the guarantees. An agreement between a service consumer
and a service provider specifies the associated guarantees.

The agreement can be formally specified using WS-Agreement Specifica-
tion [3]. The WS-Agreement specification was developed by the GRAAP Work-
ing Group (Grid Resource Allocation and Agreement Protocol WG) of the
Scheduling and Resource Management (SRM) Area of the GGF to standardize
means for agreements creation processes.

A WS-Agreement is a XML-based document containing descriptions of the
functional and non-functional properties of a service oriented application. It con-
sists of two main components that are the agreement Context and the Agreement
Terms. Figure 1 illustrates the main structure of WS-Agreement as defined in
[3]. The agreement Context includes the description of the parties involved in
the agreement process, and various metadata about the agreement. One of the
most relevant components is the duration of the agreement, that is, the time at
which the agreement is no longer valid.

Functional and non-functional requirements are specified in the Terms sec-
tion, that is divided into Service Description Terms (SDTs) and Guarantee
Terms. The first provides information to define the services functionalities that
will be delivered under the agreement. An agreement may contain any num-
ber of SDTs. An agreement can refer to multiple components of functionalities

Agreement

Context

Terms
Service Description Terms

Guarantee Terms

Fig.1. WS-Agreement structure

within one service, and can refer to several services. Guarantee Terms define an
assurance on service quality associated with the service described by the Service
Description Terms. An agreement may contain zero or more Guarantee Terms.
The main parts of a Guarantee Term are:

/GuaranteeTerm/ServiceScope is the list of service names a guarantee ap-
plies to;

/GuaranteeTerm /QualifyingCondition is an optional condition that ex-
presses a precondition under which a guarantee holds;

/GuaranteeTerm /ServiceLevelObjective is a condition that must be met
to satisfy the guarantee; and

/GuaranteeTerm /BusinessValueList is a list of business value elements as-
sociated with a service level objective.

[7] specifies a definition for guarantee terms in WS-Agreement and provides
mechanisms for defining guarantees. An agreement creation process starts when
an agreement initiator sends an agreement template to the consumer. The struc-
ture of the template is the same as that of an agreement, but an agreement
template may also contain a Creation Constraint section, i.e., a section with
constraints on possible values of terms for creating an agreement. [4] enables
customizations of terms and attributes for the agreement creation. After the
consumer fills in the template, he sends it to the initiator as an offer. The initia-
tor decides to accept or reject the offer depending on the availability of resource,
the service cost, and other requirements monitored by the service provider. The
reply of the initiator is a confirmation or a rejection.

An agreement life-cycle includes the creation, termination and monitoring
of agreement states. Figure 2 shows a representation of the life-cycle. When an
agreement is created, it does not imply that it is monitored. It remains in an
not_observed state until a service starts its execution. The semantics of the
states is as follows:

- NOTOBSERVED OBSERVED @

Fig. 2. The life-cycle of a WS-Agreement

— not_observed: the agreement is created and is in execution, but no service
involved in the agreement is running; and

— observed: at least one service of the agreement is running;

— finished: the agreement has terminated either successfully or not.

We illustrate a simple example in order to explain the WS-Agreement specifica-
tion and its features. A possible application scenario is the request of executing
fidelity-card operations®. Two parties act in this scenario: a shopping center

Fig. 3. Fidelity-card scenario

with several Point of Sale (POS) devices, and an IT enterprise with a server
farm managing the operations and fidelity database. This scenario is depicted
in Figure 3. A store of a shopping center sends a request to the server farm,
asking the execution of a typical fidelity-card operation, e.g., fidelity-points, car

3 Example based on a project of the IT company DeltaDator http://www.
deltadator.it

park payment, etc. The server farm executes the request and sends a reply to
the store, eventually interacting with the bank circuit for payments.

In this scenario, the agreement defines a list of operations to be executed,
and an optional set of guarantees for providing a quality of service, i.e., number
of operation request for a minute, number of processing operation for a minute,
service cost, etc. Let us consider, for instance, the QoS related to the speed of
execution: it is necessary to process many operations in a short time. Therefore,
provider and consumer assume that the number of requests for minute should
be less that 5, the number of processing operations for minute should be more
than 12, and the service cost for a single operation should be less that 1 USD.

According to the established agreement between the server farm, the shop-
ping centers, and the stores, fidelity-card operations will be executed taking into
account the services required and the guarantees defined in the agreement.

3 What’s in an Agreement?

The WS-Agreement specification provides a XML syntax and a textual expla-
nation of what the various XML tags mean and how they should be interpreted.
Thank to the syntax, it is possible to prepare machine readable agreements, but
a formal notion of agreement is missing. In this section, we formalize the notion
of agreement, by defining its main components.

Definition 1 (Term). A term ¢ is a couple (s,g) with s € S and g € G, where
S is a set of n services and G is a set of m guarantees. T C S x G is the set of
the terms t.

In words, a term involves the relationship between a service s and a guarantee g,
not simply a specific tag of the agreement structure. If the service s appears in
the list of services, which the guarantee g is applied to, it means that the couple
(s,g) is a term. The number of terms varies between 0 and n - m, where 0 means
that there is no association between services and guarantees, and n - m indicates
the case where each guarantee is associated with all services.

Definition 2 (Agreement). An agreement A is a tuple (S,G,T), where S is
a set of n services, G is a set of m guarantees, and T is the set of the terms t.

In the following analysis, it is more convenient to consider the agreement as
a set of Terms rather than a set of related services and guarantees. From the
definition of WS-Agreement, we say that an agreement can be in one and only
one of three states: not_observed, observed and finished.

Definition 3 (External state). The external state A.s of an agreement A is
an element of the set {not_observed, observed or finished}.

We call the above state external, as it is the observable one. We also define an
internal state of an agreement, which captures the state of the individual terms.

Definition 4 (Internal state). The internal state A;5 of an agreement A is
a sequence of terms’ states tsi,...,ts, of marimum size n - m, where ts; =
(ss;,gsk) represents the state of gi guarantee with respect to the state of the s;
service. Service and guarantee states range over the following sets, respectively:

— ssj €{not_ready, ready, running, finished}, and
— gsi €{not_determined, fulfilled, violated}.

From the definition of Term, we see that services and guarantees are related
and we can define the internal state of an agreement, but it is necessary to
distinguish between terms that have the same service and terms that have the
same guarantee.

Proceeding in our goal of answering the question of what is in an agreement,
we define the relationship between the internal and external state of an agree-
ment A. First, we note that not all state combinations make sense. For instance,
it has no meaning to say that a guarantee is violated, when a service is in a
not_ready state. The only admissible combinations are the following ones.

(1) (not_ready, not_determined) (2) (ready, not_determined)
(3) (running, fulfilled) (4) (running, violated)
(5) (finished, fulfilled) (6) (finished, violated)

In theory, there are 63 possible combinations of states in which terms can be.

hat is,
6 (6)
Z i
i=1

all terms could be in state (1), or in state (2),...or in state (6); there could be
terms in states (1) and (2), (1) and (3), and so on. But again, considering the
definition of WS-Agreement in [3], one concludes that not all 63 combinations
make sense. Furthermore, it is possible to extract the possible evolutions of these
aggregated internal states.

‘terms are in state‘state of the agreement‘ transitions ‘

(A) (1) not_observed (B)

(B) (1)(2) not_observed (C) (E)
© O observed |(D)(E)(F)(G)
D) 1)(2)13)(5) observed F)N(G)
(E) (1)(2)(4) observed (F)(H)
)Y ()(2)(B3)4)(5) observed (H)

(G) (5) finished
(H)|(1)(2)(3)(4)(5)(6) finished

Fig. 4. Transition table for the relation between internal and external states

When an agreement is created its external state is not_observed, while all
services are not_ready and all guarantees are not_determined, i.e., state (1). In

the next stage some services will be ready while others will still be not_ready,
i.e., there will be terms in state (1) and (2). In this case, the external state is
also not_observed. Proceeding in this analysis, one can conclude that there are
8 situations in which terms can be. We summarize these in the table in Figure 4.
In the table, we also present the relation between the internal states and the
external states, and the set of transitions to go from one set of states to another.
The latter transitions are best viewed as an automaton.

K Gos s @
T iE Cirz-s-izs—G 2-3-4-3-0-@

Fig. 5. Automaton representation of the table in Figure 4

Referring to Figure 5, at the beginning all the terms are tied to services which
are not running (A). At some point, some services will be ready to start (B).
Services which are ready will start execution. This may result in an immediate
violation of a term (E), or in executions fulfilling the term (C). If the latter is the
case, more and more services will execute. This may result in violations, which
bring us to states (E) or (F), or in no violation. Some services may successfully
terminate execution, case (D). If all services terminate with no violation, we end
successfully in state (G). If any service has a violation at any time, we end in
state (E) or (F) and from there, unavoidably, in state (H), which is a failure
state.

4 Extension of WS-Agreement

From the semantics and formal analysis just presented, we note that if the agree-
ment arrives into state (E) or (F) there is a failure, and consequently an agree-
ment abortion. To reduce the occurrence of these failures, following the initial
proposal in [14], we propose an extension of WS-Agreement specification. Next,
we provide syntax and semantics for the extended version of agreements.

4.1 Goals and requirements

The WS-Agreement specification does not contemplate the possibility of chang-
ing an agreement at runtime. If a guarantee is not fulfilled because of resource
overload or faults in assigning availability to consumers, the agreement must

terminate. For maintaining the service and related supplied guarantees, it is
necessary to create another agreement and negotiate the QoS again. This ap-
proach wastes resources and computational time, and increases network traffic.

When a service is running, it is much simpler to know the following features:

— if a resource is available or not,
— if a provider can satisfy more requests or not, and
— if more guarantees can be satisfied or not.

At agreement’s creation time, indeed, it is more complex to assume the QoS that
can be provided to the consumers. For this reason, it is important to change an
agreement already created and running: this allows robust and efficient services
in terms of satisfying guarantees and QoS.

To allow a renegotiation at runtime, it is necessary to add some elements
to an agreement that specify how the agreement can be modified according to
execution circumstances. That is, to add a structure to the agreement proto-
col syntax for defining renegotiation possibilities. When consumer and provider
come to an agreement about the services, they also can define some terms of
renegotiation that are referred to specific services and guarantees.

By adding appropriate terms, both positive and negative renegotiations can
be specified and used to modify a guarantee (both if it has been violated, but
also if it is fulfilled and a party wants to change it). It is possible to reduce
the value of a currently violated guarantee by increasing another one. It is also
possible to increase a currently satisfied guarantee if resources and agreements
between the two parties allow it.

The goal of negotiation terms is to have the chance to modify the agreement
applying the negotiation terms rather than respecting the original agreement.
Applying the negotiation terms means that the services included in the agree-
ment will be performed according to the new guarantees. This feature is allowed
only if there is a good monitoring system that interacts with the agreement and
service architecture, e.g., as in [13].

4.2 Life-cycle and semantics for the extended agreement

With the extension of the protocol, the agreement life-cycle changes according
to the new features. In particular, there are more chances to define the agree-
ment services and guarantees: at the beginning, using the template and filling
in the agreement according to agreement Creation Constraints and, during the
execution, applying a negotiation term.

The definition of an agreement does not change with respect to Definition 2,
the difference lies in the fact that the set of terms T is now extended with
special renegotiation terms. These terms are defined as in Definition 1, but have
a different role, i.e., they specify new conditions that enable modification of
guarantees at run-time.

To account for the new type of terms, we need to extend the definition of
external and internal state of an agreement. The external states of an extended

agreement are enriched by the checked state, the revisited state and the
denied state. We say that an agreement can be in one of six states. not_observed,
observed and finished have the same meaning as in WS-Agreement, Figure 2.
An agreement is in state checked when the monitoring system is checking its
services and guarantees. From the checked state the agreement can go the three
different states: back to observed if the agreement is fulfilled, to revisited or
to denied, if the agreement is violated. In the first case, the guarantee can be
changed thanks to the negotiation terms and the agreement is fulfilled again;
in the second case, it is not possible to renegotiate and the agreement must
terminate.

Definition 5 (Extended External state). The extended agreement external
state Ages of an agreement A is an element of the set {not_observed, observed,
checked, revisited, denied or finished}.

[fulfilled]

R e = e s ST S
N\iiolated]

Fig. 6. The life-cylce of the WS-Agreement extension

The transitions between states are illustrated by the automaton in Figure 6,
which is an extension of the one presented in Figure 2. The automaton represents
the new evolution of an agreement where a guarantee can be modified during the
processing of a service. When a guarantee is violated, it can be modified if there
is a negotiation term suitable for it, otherwise the agreement must terminate.
Also, when a guarantee is fulfilled, it is possible to change the current agreement
configuration, applying a negotiation term that increases the QoS.

The internal state definition for the extended agreement is similar to the
internal state definition stated before, but a new state for the services is added.
It is stopped and is needed to define a state of a service where its associated
guarantee is violated and the service must terminate or the guarantee can be
revisited. It is an intermediate state.

Definition 6 (Extended Internal state). The extended internal state A.;s
of an agreement A is a sequence of terms’ states tsi,...,ts, of mazimum size
n - m, where ts; = (ssj7gsk) represents the state of gr guarantee with respect
to the s; service. Service and guarantee states range over the following sets,
respectively:

— 88; €{not_ready, ready, running, stopped, finished}, and
— gs; €{not_determined, fulfilled, violated, non recoverably violated}.

As for Definition 4, one notes that not all the state combinations make sense. The
only possible ones are the combinations itemized in Section 3 plus the following
three:

(7) (stopped, fulfilled)
(8) (stopped, violated)
(9) (stopped, non_recoverably violated)

The state combinations (7), (8) and (9) determine the states when a service
is stopped because a guarantee is violated or is being modified. In state (7) a
guarantee is fulfilled and we try to improve it applying a positive negotiation
term. In (8) and (9) a guarantee is currently violated: in (8) the service is stopped
and the guarantee is violated but it is possible to apply a negotiation term and
to preserve the agreement again. In (9), instead, the guarantee is irrecoverably
violated and the agreement must terminate, there are not any suitable negotia-
tion terms. The relation between internal and external states of an extended

[terms are in state[state of the agreement[transitions ‘

(A) (1) not_observed (B)
(B) (H)(2) not_observed (C) (E)
© WEE checked |(D)(E)(F)(G)
D) HERE)G) checked (F)(G) (D)
(E) (1)(2)(4) checked (F)(H)
®)| ()E)E)1)6) checked (H)(3) (K)
(G) (5) finished
(H)|(1)(2)(3)(4)(5)(6) finished

| @)(G)7)| observed (D)
(D](M(2)(3)(4)(5)(8) revisited (D)
()| (1)) (3 (6)) denied)

Fig. 7. Extension of the transition table for the relation between internal and external
states

agreement is an extension of the one presented in the table in Figure 4, and it is
presented in Figure 7. The table respects the original agreement evolution and
presents some new transitions. Referring to the automaton in Figure 8, when
an agreement is checked it is possible to change its terms if a negotiation term
allows it. From the state (D), it is possible to improve the current guarantee
and apply a positive negotiation term through (I) if a guarantee is fulfilled. If a
guarantee is violated, instead, we are in (J) if the guarantee can be recovered or
in (K), if the guarantee can not be changed and the agreement is unavoidably
violated.

Fig. 8. Automaton representation of the table in Figure 7

4.3 Extended Agreement structure

The proposed extension is reflected in a new component of a WS-Agreement, as
shown in Figure 9, and in an appropriate XML syntax.

Extended Agreement

Context

Terms
Service Description Terms

Guarantee Terms

Negotiation Terms

Fig. 9. Extended WS-Agreement structure

The section Terms is extended with a new subsection called Negotiation
Terms that makes references to the services defined in Service Description Terms
and to the guarantees of Guarantee Terms.

The following XML code illustrates the Negotiation Terms structure.

<NegotiationTerm wsag:Name="xs:NCName"

10

11

12

13

14

15

16

17

Counter="xsd:integer"
Monitored="xs:boolean">
<GuaranteeScope>

</GuaranteeScope> *
<NegotiationRange>
<GuaranteeName>. ..</GuaranteeName>
<Minimum>...</Minimum>
<Maximum>. . .</Maximum>
</NegotiationRange> *
<ServicelevelObjective>

</ServiceLevelObjective>*
<BusinessValueNegList>

</BusinessValueNegList>
</NegotiationTerm>

/NegotiationTerm encloses a description of a negotiation term that can be
applied under specific circumstances;

/NegotiationTerm/@wsag:Name represents the name given to a term;

/NegotiationTerm/@Counter represents the maximum number of renego-
tiations that are allowed with the current term. The attribute is necessary
to avoid circumstances where an agreement is fulfilled for too long because it
respects the negotiation term instead of the original guarantee. The default
value is 1;

/NegotiationTerm/@Monitored is a boolean variable, that identifies across
multiple negotiation terms and guarantee terms which one is currently moni-
tored and checked. In other words, the attribute Monitored defines if the
guarantee g; is checked under the values of the Guarantee Term or the values
of the Negotiation Term:;

/NegotiationTerm/GuaranteeScope is a list of guarantee names referring
to the respective wsag:GuaranteeName attributes of one or more of the guar-
antee terms in the agreement. The negotiation terms can apply to every
guarantee in the list and refer to the parameters defined in the respective
guarantee terms;

/NegotiationTerms/NegotiationRange represents the range of variable va-
lues. It presents a minimum and a maximum value of the corresponding varia-
ble that the negotiation term is applied to. If the current value is included
in the range, it is possible to negotiate it applying the term;

/NegotiationTerm/ServiceLevelObjective is a list of conditions that must
be met to satisfy the negotiation term. The ServiceLevelObjetive is very
similar to the homonym term of the guarantees section: it identifies the new
conditions that must apply to the renegotiated agreement. They refer to the
variables defined in the ServiceDescriptionTerm and used in the Guaran-
teeTerm defined in the scope; and

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

/NegotiationTerm/BusinessValueList contains a list of business value pa-
rameters associated with a service level objective, each expressing a different
feature of the objective.

4.4 Example

Referring to the POS scenario introduced in Section 2, we can see how the
extended version of WS-Agreement behaves. We assume that the shopping center
and the IT enterprise establish an agreement in order to define interactions and
the qualities of the service provided. In the agreement they specify some service
terms and guarantee terms for fidelity-card operations. Following the operation
and the interaction’s model stated in the WS-Agreement specification, consumer
and provider negotiate resources and qualities of the services.

For instance, besides the agreement about services and guarantees, with the
extension it is possible to add some negotiation terms that give the freedom to
change the agreement at runtime.

The main and exclusive service defined in the agreement is the execution
of fidelity-card operation. Associated with this service we specify two variables
that are bandwidth and memory, which can be checked on the service provider
side by a monitoring system. Depending on this variable, it is simple to identify
some service’s properties like the number of operation’s execution per minute,
the number of request per minute and the service cost. We specify the metric of
the variable and in the section dedicated to the guarantee statement we assign
ranges of values that should be met to fulfill the current agreement.

Let us consider an agreement example adapting the WS-Agreement structure
to our example.

<wsrp:GetResourcePropertyResponse>
<wsag:Name>AgreementExample</wsag:Name>
<wsag:Context/>
<wsag:Terms>
<wsag:All>
<wsag:All>
<wsag:ServiceDescriptionTerm wsag:Name="bandWidth"
wsag:ServiceName="0Operation">
</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm wsag:Name="memorySize"
wsag:ServiceName="0Operation">
</wsag:ServiceDescriptionTerm>
</wsag:All>

<wsag:ServiceProperties wsag:ServiceName="0Operation">
<wsag:VariableSet>
<wsag:Variable wsag:Name="requestMinute"
wsag:Metric="time:duration">

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

<wsag:Location>

</wsag:Location>
</wsag:Variable>
<wsag:Variable wsag:Name="numberOfOperationMin"
wsag:Metric="time:duration">
<wsag:Location>

</wsag:Location>
</wsag:Variable>
<wsag:Variable wsag:Name="serviceCost"
wsag:Metric="float">
<wsag:Location>

</wsag:Location>
</wsag:Variable>
</wsag:VariableSet>
</wsag:ServiceProperties>

<wsag:GuaranteeTerm wsag:Name="operationRequestMinute"
Monitored="True" Negotiability="True">

<wsag:ServicelLevelObjective>
requestMinute IS_LESS_INCLUSIVE 5
</wsag:ServicelLevelObjective>

</wsag:GuaranteeTerm>

<wsag:GuaranteeTerm wsag:Name="operationMinuteCount"
Monitored="True" Negotiability="True">

<wsag:ServicelLevelObjective>
numberOfOperationMinute IS_MORE_INCLUSIVE 12
</wsag:ServiceLevelObjective>

</wsag:GuaranteeTerm>

<wsag:GuaranteeTerm wsag:Name="operationCost"
Monitored="True" Negotiability="True">

<wsag:ServicelevelObjective>
serviceCost IS_LESS_INCLUSIVE 1

</wsag:ServicelevelObjective>

</wsag:GuaranteeTerm>

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

<wsag:NegotiationTerm wsag:Name="Negl"
Counter="2" Monitored="False">
<wsag:GuaranteeScope>
<wsag:GuaranteeName>
operationMinuteCount
</wsag:GuaranteeName>
<wsag:GuaranteeName>
operationCost
</wsag:GuaranteeName>
<wsag:GuaranteeName>
operationRequestMinute
</wsag:GuaranteeName>
</wsag:GuaranteeScope>
<NegotiationRange>
<wsag:GuaranteeName>
operationRequestMinute
</wsag:GuaranteeName>
<--! requestMinute values-->
<Minimum>4</Minimum>
<Maximun>6</Maximun>
</NegotiationRange>
<wsag:ServicelLevelObjective>
<ServicelevelObjectiveAssertion>
numberOfOperationMin IS_MORE_INCLUSIVE 24
</ServiceLevelObjectiveAssertion>
<ServicelLevelObjectiveAssertion>
serviceCost IS_LESS_INCLUSIVE 2
</ServiceLevelObjectiveAssertion>
</wsag:ServicelLevelObjective>
<wsag:BusinessValueList>

</wsag:BusinessValueList>
</wsag:NegotiationTerm>
</wsag:All>
</wsag:Terms>
<wsrp:GetResourcePropertyResponse>

Service consumer and service provider start their interactions taking into account
the established agreement described above. In this scenario it is possible that
the monitoring system at provider side notices that the consumer sends more
requests per minute than the number stated in the agreement, exceeding the
maximum value, 4 (defined in the guarantee at line 43). For instance, the provider
can not fulfill all the requests from the consumer as previously agreed. Thanks
to the proposed extension, it is possible to renegotiate the current guarantee. In
the NegotiationTerms (lines 84 to 107), there is a term referring to the current

guarantee that gives the freedom to increase the number of requests per minute
up to 24, if service cost is increased of 2 USD. Applying this negotiation term,
defined and agreed on by both service consumer and provider at agreement
creation’s time, the consumer will pay more, but can ask more executions per
minute: in this case an increase of performance means an increase of service cost.

In this simple execution on the running example, we see that using the exten-
sion it is possible to maintain the current agreement, mediating guarantees that
are currently violated and guarantee that are widely fulfilled. Instead, using the
original version the agreement must terminate as soon as a guarantee is violated.

5 Concluding Remarks

Describing and invoking an individual functionality of a web service is becoming
more and more common practice. Most of the major players on the Web already
offer their functionalities via web services (e.g., Google, Amazon, and eBay).
One of the next steps is moving from functional properties of basic services to
non-functional properties of composed services. The non-functional properties
need to be specified by the services, but also to be negotiated among services.

WS-Agreement is a protocol that defines a syntax to specify a number of
guarantee terms within an agreement. We looked into the protocol specification
with the goal of providing a formalization of the notion of an agreement and
proposing a formal representation for the internal and external states in which
an agreement can be. From this analysis we discovered that an agreement can
be made more long-lived, if we extend the protocol by tolerating some guarantee
violations. We presented the details of the proposed extension in formal terms
and provided a simple example showing the potentials of the extension.

This work prods for more investigation of agreements and of their manage-
ment. First, one may consider further properties of the agreement protocol by
resorting to a formal specification language (in the spirit of [11] which have used
TLA+ for the WS-Transaction protocol). Second, one can consider guarantee
terms to be in more states than simply not determined, fulfilled or violated. One
could introduce states that specify a guarantee term to be fulfilled but close to
being violated, for instance. Finally, one may want to experiment with a refe-
rence implementation of the extended version—in the spirit of [13]—and check
quantitatively the advantages of such an extension.

Acknowledgments
Marco thanks Asit Dan and Heiko Ludwig for useful discussion on WS-Agreement

while visiting IBM T.J Watson.

References

1. M. Aiello and P. Giorgini. Applying the Tropos methodology for analysing web
services requirements and reasoning about Qualities of Services. CEPIS Upgrade
- The European journal of the informatics professional, 5(4), 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. M. Aiello, M. Zanoni, and A. Zolet. Exploring web-service notification: Build-

ing a scalable domotic infrastructure. DrDobbs Journal: Software Tools for the
Professional Developer, 371:48-51, 2005.

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement).
Technical report, Grid Resource allocation Agreement Protocol (GRAAP) WG,
2004.

A. Andrieux, A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Negotiability con-
straints in WS-Agreement. Technical report, Grid Resource Allocation Agreement
Protocol (GRAAP) Working Group Meetings, 2004.

J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Journal of Web Semantics, 2004. To appear.
K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Agreement-based Grid
Service Management (OGSI-Agreement). Technical report, Global Grid Forum,
GRAAP-WG Author Contribution, 2003.

A. Dan, K. Keahey, H. Ludwig, and J. Rofrano. Guarantee Terms in WS-
Agreement. Technical report, Grid Resource Allocation Agreement Protocol
(GRAAP) Working Group Meetings, 2004.

V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. A quality of service management
framework based on user expectations. In Service-Oriented Computing (ICSOC),
pages 104-114. LNCS 2910, Springer, 2003.

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed
system integration. IEEE Computer, 35(6), 2002.

D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling web service
QoS and provision price. In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

J. Johnson, D. Langworthy, L. Lamport, and F. Vogt. Formal specification of a web
services protocol. In Proc. of 1st Int. Ws. Web Services and Formal Methods (WS-
FM 2004), volume 105 of ENTCS, Pisa, Italy, 2004. Elsevier Science Publishers.
H. Ludwig. Web services QoS: External SLAs and internal policies or: How do we
deliver what we promise? In Ist Web Services Quality Workshop (WQW2003) at
WISE, 2003.

H. Ludwig, A. Dan, and R. Kearney. CREMONA: an architecture and library for
creation and monitoring of ws-agreements. In M. Aiello, M. Aoyama, F. Curbera,
and M. Papazoglou, editors, ICSOC, pages 65—-74. ACM, 2004.

D. Malfatti. A framework for the monitoring of the QoS by extending WS-
Agreement. Master’s thesis, Corso di Laurea in Informatica, Universita degli Studi
di Trento, 2005. In Italian.

A. Mani and A. Nagarajan. Understanding quality of service for web services,
2002. http://www-106.ibm.com/developerworks/library/ws-quality.html.

O. Martn-Daz, A. Ruiz Corts, A. Durn, D. Benavides, and M. Toro. Automating
the procurement of web services. In Service-Oriented Computing (ICSOC), pages
91-103. LNCS 2910, Springer, 2003.

M. P. Singh and A. Soydan Bilgin. A DAML-based repository for QoS-aware
semantic web service selection. In IEEFE International Conference on Web Services
(ICWS 2004), 2004.

M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for QoS
integration in web services. In 1st Web Services Quality Workshop (WQW2003)
at WISE, 2003.

