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1 Introduction

It is possible that death may be the consequence of two dbnem

existing causes; the one, chance, without previous dispoegd death or
deterioration; the other, a deterioration or an increasadility to with-

stand destruction. (Gompertz, 1825)

The opening quotation is a verbal introduction to a phenamethat is now often
called Gompertz’ Law of mortality. In his path-breaking papBenjamin Gompertz
(1825) identified two main causes of death, namely one duertoghance and another
depending on the person’s age. He pointed out that if onlfitstecause were relevant,
then “the intensity of mortality” would be constant and thevsving fraction of a given
cohort would decline in geometric progression. In contréisinly the second cause
would be relevant, and “if mankind be continually gainingd® of indisposition, or in
other words, an increased liability to death” then the fatmortality would increase
with age. Gompertz’ Law was subsequently generalized bydilain (1860) who
argued that the instantaneous mortality rate depends both aonstant term (first
cause) and on a term that is exponential in the person’s ager(d causé).

The microeconomic implications for consumption behaviotilifetime uncer-
tainty—resulting from a positive death probability—weresfiistudied in the seminal
paper by Yaari (1965). He showed that, faced with a positieetatity rate, individ-
ual agents will discount future felicity more heavily dugthe uncertainty of survival.
Furthermore, with lifetime uncertainty the consumer fawatsonly the usual solvency
condition but also a constraint prohibiting negative nealifeat any time—the agent
is simply not allowed by capital markets to expire indebt&@ari assumes that the
household can purchase (annuity) or sell (life insuranct)aaial notes at an actuari-
ally fair interest rate. In the absence of a bequest motiveehbusehold will use such
notes to fully insure against the adverse effect of lifetimeertainty.

The Yaari insights were embedded in a general equilibriuswtir model by Blan-
chard (1985). In order to allow for exact aggregation of widlial decision rules,
Blanchard simplified the Yaari model by assuming a constaattdprobability, i.e.
only the first cause of death is introduced into the model amaséholds enjoy a

1As Hooker (1965) points out, Benjamin Gompertz can be seemnasof the founding fathers of
modern demographic and actuarial theory. See also Prestdn @001, p. 192). Blanchard (1985, p.

225) and Farugee (2003, p. 301) incorrectly refer to theaasting “Gomperty’s Law.”
The continuous-time version of the Gompertz-Makeham Lawmoiftality takes the formmn (u) =

po + (p1/p2) [e#2* — 1], wherem (u) is the instantaneous mortality rate of a person withaged the
;s are non-negative. This form is estimated below using US dgaphic data.



perpetual youth. Because of its flexibility, the Blanchaahri model has achieved
workhorse status in the last two decade&s Blanchard himself points out, his mod-
elling approach has the disadvantage that it cannot cafiteréfe-cycle aspects of
consumption and saving behaviour—the age-independentlitpirate ensures that
the propensity to consume out of total wealth is the samelftwaseholds

Blanchard’s modelling dilemma is clear: exact aggregaisdiibought” at the ex-
pense of a rather unrealistic description of the demogcaptocess. Of course, in
a closed-economy context, the aggregation step is indispda because equilibrium
factor prices are determined in the aggregate factor markéwever, in the context
of a small open economy, factor prices are typically deteeaiin world markets so
that the aggregation step is not necessary and life-cyfdetefcan be modelled. The
main objective of this paper is to elaborate on exactly toigipp As we demonstrate
below, it is quite feasible to construct amdalytically analyze a Blanchard-Yaari type
overlapping-generations model incorporating a realdgiscription of demography. In
addition we show that such a model gives rise to drasticéfigrént impulse-response
functions associated with various macroeconomic shocks-demographic realism
matters.

The remainder of this paper is organized as follows. Se&isets out the model.
Following Calvo and Obstfeld (1988) and Farugee (2003), ssme that the mor-
tality rate is age-dependent and solve for the optimal detigiles of the individual
household$. We establish that the propensity to consume out of total tvésian in-
creasing function of the individual’'s age provided the ralityt rate is non-decreasing
in age. Next, we postulate a constant birth rate and chaiaeteoth the population
composition and the implied aggregate population growts agsociated with the de-

3For the purpose of this paper, the most important extensiatue to Buiter (1988) who allows
for non-zero population growth by using the insights of W&B89). For a textbook treatment of the
Blanchard-Yaari model, see Blanchard and Fischer (198%)otr Heijdra and van der Ploeg (2002, ch.
16).

“Blanchard shows that a “saving-for-retirement” effect ¢@nmimicked by assuming that labour

income declines wih age. Farugee and Laxton (2000) useppi®ach in a calibrated simulation model.
SBlanchard suggests that a constant mortality rate may be neasonable if the model is applied

to dynastic familiegather than to individual agents (1985, p. 225, fn.1). Urnties interpretation the

mortality rate refers to the probability that the dynastgdimaes extinct.
The relationship between these papers and ours is as foll@also and Obstfeld (1988) recognize

age-dependent mortality but do not solve the decentratizede!. Instead, they characterize the dynam-
ically consistent social optimum in the presence of timet age-dependent lump-sum taxes. Farugee
(2003) models age-specific mortality in a decentralizetirgebut is ultimately unsuccessful. Indeed, he
confuses the cumulative density function with the moryatite (by requiring the death rate to go to unity
in the limit; see (2003, p. 302)). Furthermore, he is unablksotve the transitional dynamics.



mographic process. Still using the general demographicgsowe characterize the
steady-state age-profiles for consumption, human weaithaaset holdings.

In Section 3 we employ (projected) US demographic data tionagt a number
of parametric mortality models. In addition to the Blancharodel, we also estimate
three additional models that allow for age-dependent rtityttaNot surprisingly, the
Gompertz-Makeham model provides by far the best fit with tAgad Interestingly,
however, the key aspects of the Gompertz-Makeham Law avecafgtured quite well
by our so-called piece-wise linear model which distingashwo “phases” of life,
namely youth and old-age. During youth, the mortality rateanstant and quite low,
but during old-age it rises linearly with age. In our viewe thiece-wise linear model
is interesting in itself for two reasons. First, it preseatsontinuous-time generaliza-
tion of the Diamond (1965) model, allowing for individuatsdiffer even within each
“phase” of life. Second, it gives rise to relatively simpleadytical expressions for
the propensity to consume and the steady-state age prafile®fisumption, human
wealth, and financial assets. In the remainder of the seat@show that the piece-
wise linear and Gompertz-Makeham models both give rise lteshaped age profiles
of financial assets (Modigliani’s life-cycle pattern).

In Section 4 we compute and visualize the effects on the kephlas of three
typical macroeconomic shocks affecting the small open @rgnnamely a balanced-
budget spending shock, a temporary tax cut (Ricardian atgrge experiment), and
an interest rate shock. We compare and contrast the resutdtsmed for the Blanchard
and piece-wise linear models. In the second part of Sectiore 4lso present the
welfare effects associated with the shocks and demongtratehe piece-wise linear
model may give rise to non-monotonic welfare effects ontedsgenerations, some-
thing which is impossible in the Blanchard case. We concladetion 4 by showing
that the two models also give rise to significantly differienpulse-response functions
for theaggregatevariables (especially for asset holdings)—the heteradgedees not
“wash out” in the aggregate.

Finally, in Section 5 we mention a number of possible apfitices of and exten-
sions to the model and draw some conclusions. The paper Guctad with a brief
Appendix containing the main derivations and proofs.



2 The model

2.1 Households
2.1.1 Individual consumption

From the perspective of birth, the expected lifetime wtitif a household is given by:
A(v,v) = / [1—&(r —v)] Iné(v, 7)e? @ dr, (2.1)

whereuw is the birth date¢ (v, 7) is consumption of a vintage-agent at time- (> v),
andd is the constant pure rate of time preferenéex( 0). Intuitively, 1 — ®(7 — v)
is the probability that an agent born at timas still alive at timer (at which time
the agent’s age is — v). The instantaneoumortality rate (or death probability) of a
household of age is given by the hazard rate of the stochastic distributiothefdate
of death:

m(s) = %, (2.2)

whereg (s) and® (s) denote, respectively, the density and distribution (or alative
density) functions. These functions exhibit the usual proes, i.e.¢ (s) > 0 and
0 < ®(s) < 1fors > 0. Since, by definition®’ (s) = ¢ (s) and® (0) = 0, it
follows that the first term on the right-hand side of (2.1) barsimplified to

1—-®(r—v)=e M), (2.3)

whereM (1 — v) is related to the mortality rate according®o:

M(r—v)= / m(s)ds. (2.4)
0
By using (2.3) in (2.1) we find that the utility function of awleorn agent can be
written as:
A(v,v) = / Iné(v, 7)e 0= +ME=0)lgr (2.5)

As was pointed out by Yaari (1965), future felicity is disoted both because of pure
time preference (a8 > 0) and because of life-time uncertainty @5(r — v) > 0).°

"All derivations are documented in a separate Mathematipalefdix (see Heijdra and Romp, 2005).

Some key results are derived in a brief Appendix to the paper.
8The functionM (s) is aprimitive of m (s) if M’ (s) = m (s) for everys in the relevant interval.

The indefinite integral is theif m (s) = M (s) + C, whereC' is some constant which drops out when

the integral is evaluated for a particular interval,< s < s;.
®Yaari (1965, p. 143) attributes the latter insight to Fi&30, pp. 216-217).



From the perspective of some later time peripthe utility function of the agent
born at timev takes the following form:

Aw, 1) = M=) / I (v, 7) e~ OE—D+M(r—v)] g (2.6)
t

where the discounting factor due to life-time uncertainty (- — v)) depends on the
ageof the household at time.1° The household budget identity is given by:

a(v,7)=[r+m(r—v)]a(v,7)+w(r)—z(t)—¢c(v,7), (2.7)

wherea (v, 7) is real financial wealthy; is the exogenously given (constant) world rate
of interest,w () is the wage rate, ang(7) is the lump-sum tax (the latter two vari-
ables are assumed to be independent of age). Labour supptpgenous and each
household supplies a single unit of labour. As usual, a doé@hb variable denotes that
variable’s time rate of change, e.@.(v,7) = da(v,7)/dr. Following Yaari (1965)
and Blanchard (1985), we postulate the existence of a ghrfeampetitive life in-
surance sector which offers actuarially fair annuity cacts to the households. Since
household age is directly observable, the annuity rate tefést faced by a house-
hold of ager — v is equal to the sum of the world interest rate and the insteoias
mortality rate of that household.

Abstracting from physical capital, financial wealth can leédhin the form of do-
mestic government bonds (v, 7)) or foreign bonds £ (v, 7)).

a(v,7)=d(v,7)+ f(v,7). (2.8)
The two assets are perfect substitutes in the household$olms and thus attract the
same rate of return.
In the planning period, the household chooses paths for consumption and finan-
cial assets in order to maximize lifetime utility (2.6) seddij to the flow budget identity
(2.7) and a solvency condition, taking as given its initadl of financial asset§v, t).

%The appearance of the teral’*~*) in front of the integral is a consequence of the fact that
the distribution of expected remaining lifetimes is not noeytess in general. Blanchard (1985) uses
the memoryless exponential distribution for whidli (s) = pos (where o is a constant) and thus
M (t —v) — M (1t —v) = —M (7 — t). Equation (2.6) can then be written in a more familiar format
as:

Av, t) = / Iné (v, ) e~ (OFrno)(T—t) g
t



The household optimum is fully characterized by:

EEZ 3 —r—0, (2.9)
A (u,0)é(v,t) = a(v,t) + h(v,t), (2.10)

h(v,t) = etMw / [@(s4v) —z(s+v)] e THMElgs (2.11)
whereu = ¢ — v is theageof the household in the planning period adu, A) is
defined in general terms as:

A (u, \) = MM / e~ P M) g (foruw >0, A > 0). (2.12)

u

Equation (2.9) is the consumption Euler equation, relatheg optimal time profile
of consumption to the difference between the interest natethe pure rate of time
preference. The instantaneous mortality rate does natrfeé this expression be-
cause households fully insure against the adverse effelifistine uncertainty (Yaari,
1965). In order to avoid having to deal with a taxonomy ofefiint cases, we restrict
attention in the remainder of this paper to the case of a mgtapulated by patient
agents, i.er > 6.1 Equation (2.10) shows that consumption in the planningopes
proportional to total wealth, consisting of financial weaf (v, t)) and human wealth
(h (v,t)). The proportionality factor is obtained by evaluatingl@. for A\ = 6.%?
Clearly, A (u, §) depends only on the household’s age in the planning peridchan
on time itself. For future reference, Lemma 1 establishesesmnportant properties
of the A (u, A) function. Finally, human wealth is defined in (2.11) and espnts
the market value of the unit time endowment, i.e. the pregalue of after-tax wage
income, using the annuity rate of interest for discountingppses. Unless after-tax
wage income is time-invariant, human wealth depends ontimathand on the house-
hold’s age in the planning period.

Lemmal Let A (u, ) be defined as in (2.12) and assume that the mortality rate is
non-decreasing, i.em’ (s) > 0 for all s > 0. Then the following properties can be
established forA (u, A): (i) decreasing in\, OA (u, \) /OX < 0; (ii) non-increasing

in household age)A (u, \) /Ou < 0; (i) upper bound,A (u, \) < 1/[A+m (u)];

(iv) A (u, \) > 0for u < oo; (V) for A — oo, A (u, A) — 0.

Proof: see Appendix.

"The results for the other cases (with< 6 or » = ) are easily deduced from our mathematical

expressions.
2As we demonstrate belowh (u, ) plays a very important role in the model. Evaluated Xo& 6,

1/A (u, 0) represents the marginal (and average) propensity to cansubrof total wealth.

7



2.1.2 Demography

In order to allow for non-zero population growth, we emplbg ainalytical framework
developed by Buiter (1988) which distinguishes the insta@bus mortality rate (s)
and the birth raté (> 0) and thus allows for net population growth or decline. The
population size at time is denoted byL(¢) and the size of a newborn generation is
assumed to be proportional to the current population:

L(v,v) = bL(v). (2.13)
The size of cohort at some later time: is:

L(v,7)=L(v,0)[1 = ® (7 —v)] = bL (v) e M=), (2.14)
where we have used (2.3) and (2.13). The aggregate momaléyn, is defined as:

mL(t) = /t m (t —v) L (v,t) dv, (2.15)

—00
and it is assumed that is constant (see also below). Despite the fact that the éagbec
remaining lifetime of each individual is stochastic, therao aggregate uncertainty in
the economy. In the absence of international migrationgtiogvth rate of the aggre-
gate populationp, is equal to the difference between the birth rate and thecgate
mortality rate, i.e.n = b — m. It follows that L (v) = Age™, L (t) = Age™ and
thus L (v) = L (t)e ™), Using this result in (2.14) we obtain the generational
population weights:

L(v,t
l(v,t) = 151();)) = pe~ M-V +M(t=v)] t>w. (2.16)

The key thing to note about (2.16) is that the population prispn of generatiornv at
time ¢ only depends on the age of that generation and not on tinié itse

2.1.3 Per capita household sector

Per capita variables are calculated as the integral of tnergdon-specific values
weighted by the corresponding generation weights. For gl@mer capita consump-
tion, ¢(t), is defined as:

oft) = / (v, 4)E(v, t)dv, 2.17)

—0o0

wherel (v, t) andc(v, t) are defined in, respectively, (2.16) and (2.10) above. Exact
aggregation of (2.10) is impossible because bth, #) and the wealth components,

8



a(v,t) andh (v,t), depend on the generations indexThe “Euler equation” for per
capita consumption can nevertheless be obtained by diffatimg (2.17) with respect
to time and noting (2.9) and (2.16):

E(t) =be(t,t) + (r—0)c(t) —/ [n+m(t —v)]l(v,t)&(v,t)dv.

—00

(2.18)

Per capita consumption growth is boosted by the arrival of generations who start
to consume out of human wealth (first term on the right-hadd)sand by individual
consumption growth (second term). The third term on thetsigind side of (2.18)
corrects for population growth and (age-dependent) mityfal

Per capita financial wealth is defined®) = [*__ (v, t)a(v, t)dv. By differen-
tiating this expression with respect#tove obtain:

a(t)=(r—n)a(t)+w(t)—z(t)—c(t), (2.19)

wherew (t) = w (t), z (t) = z (t), and we have used equation (2.7) and noted the fact
that newborns are born without financial asset& (¢t) = 0). The interest rate net of
population growth is assumed to be positive, i.ex n. As in the standard Blanchard
model, annuity payments drop out of the expression for peitaasset accumulation
because they constitute transfers (via the life insuranoganies) from those who die
to agents who stay alive.

Finally, per capita human wealth is definedids) = ffoo I(v,t)h(v,t)dv so that

h (t) can be written as:
h(t)=(r—mn)h(t)+bh(t,t)—w(t)+ 2 (t). (2.20)

In the standard Buiter model per capita human wealth is threedar all generations
and accumulates at the constant annuity rate of interests). In contrast, in the
present model the effects of the net interest rate- (n) and the birth rated] are
separate, with the former applying to per capita human Wweald the latter applying
to the human wealth of newborn generations.

13If the mortality rate were constant, as in Blanchard (198%) Buiter (1988), them = b — m and
equation (2.18) would simplify to:

cty=(r—0)c(t) —blc(t) —c(t,t)].



2.2 Firms, government, and foreign sector

Following Buiter (1988) we keep the production side of thedel@s simple as possible
by abstracting from physical capital altogeth&iCompetitive firms face the technol-
ogyY (t) = k (t) L (t) wherek (t) is an exogenous productivity index ahdt) is the
aggregate supply of labour. The real wage rate is then giyen([®) = & (¢).

The government budget identity is given by:

dt) = (r—mn)dt)+gt)—z(t), (2.21)

whered (t) = ffoo l(v,t)d(v,t)dv is the per capita stock of domestic bonds, arit)
is per capita government goods consumption. The governsadvency condition is
lim d(7) e("~™{=7) = 0, so that the intertemporal budget constraint of the govern-

T—00

ment can be written as:

d(t) = /t - [z (1) — g (7)] ") dr, (2.22)

To the extent that there is outstanding debt (positiveHaftd side), it must be exactly
matched by the present value of current and future primamylisses (positive right-
hand side), using the net interest rate(n) for discounting purposes.

Finally, the evolution of the per capita stock of net fore@gsets is explained by
the current account:

f(t) = (r=mn) f(£) +w(t) = (t) — g(t), (2.23)

where we have used(t) = Y (t) /L (t) = w (t) and wheref (t) = [*__1(v,t) f(v,t)dv
denotes the per capita stock of foreign bonds in the handsroédtic households.

2.3 Steady-state equilibrium

Itis relatively straightforward to characterize the steathte of the model. The steady-
state values for all variables are designated by means of aveastrike, e.g.¢ is
steady-state per capita consumption. Where no confusiomise, the time index is
also suppressed. For a constant level of technolbgs) = k, the steady-state wage
rate is time-invariant, i.ew (t) = @ = k. If the government variables are also held
constant, so that (t) = 2, g (t) = g, andd (t) = d = (2 — §) / (r — n), then the

¥In the context of a small open economy with firms facing coriveestment adjustment costs, our
approach does not entail much loss of generality becausiextbstment and savings systems decouple
in that case. See Matsuyama (1987), Bovenberg (1993, 18@4)ira and Meijdam (2002), and Heijdra
and van der Ploeg (2002, pp. 571-581).

10



economy settles into a unique saddle-point stable steatly-equilibrium in which
c(t)=¢h(t)=ha(t)=a,andf (t) = f.15

In the steady-state equilibrium, all individual househeddiables can be rewritten
solely in terms of their age; = t — v (as is also the case outside the steady state for
A (u,§)—see equation (2.12) above). By substitutingt) = @ andz (¢) = 2 into
(2.11) we find the expression for age-dependent human wealth

ISl

(u) = h(v,t) = [ — 5 A (u,r), (2.24)

where A (u,r) is obtained from (2.12) by settiny = r. Since a newborn has no
financial wealth, it follows from (2.10) that(v,v) = 3(0) /A (0,0). The Euler
equation (2.9) shows that(v,t) = &(v,v) "9 so that, by combining the two
results, we obtain:

ISl

WG (2.25)

(u) =¢c(v,t) = A(0.6)

Qb

Steady-state asset holdings can be computed by using:(2.10)

(u) = A (u,0) & (u) — h(u). (2.26)

Qb

The steady-state per capita variables can be expresseuhis ¢€ individual vari-
ables. Using equation (2.16), (2.17) and (2.25) we writadtestate per capita con-
sumption as:

. h(0) [ —[(6-n—rYut+ M (w)]
¢ = N (0’0) /0 be du
h (0)

h (0
=3 0.0) bA (0,0 +n —r). (2.27)

From (2.20) we find the expression for steady-state peraépimnan capital:

. w—2-bh(0) 2
o 2O =2y o), (2.28)

r—n r—nm

where we have used equation (2.24) (fox= 0) to get to the second expression. Fi-
nally, from equation (2.19) and the per capita version &)(@.e obtain the expressions
for steady-state per capita financial assets:

dyf=trz-w (2.29)

T—n

a

15saddle-point stability follows trivially from the fact thall agents in the economy satisfy their re-
spective solvency conditions. Consumption and human tvea# forward-looking (jumping) variables
whilst total financial assets and net foreign assets aresfgadined (sticky) variables.

11



Armed with these expressions it is straightforward to detiwe long-run effects of
various shocks impacting the econotiyA balanced-budget increase in government
consumption {2 = dg > 0) leads to a decrease in steady-state human wealth and
consumption for all cohorts:

dh (u)
D = A <0, (2.30)
dé(u)  dh(0) elr—0u
- . 231
iz iz A0.0) " (2.31)

Obviously, per capita steady-state consumption and huneattlwvalso fall (see equa-
tions (2.27) and (2.28)). It follows from (2.29) that per itapsteady-state financial
assets decline because consumption is crowded out moretiegior one:

da 1 dé
¢ [1 + —C] <0. (2.32)

dz
Finally, since government debt is unchanged (by design)lds from the first equal-

dzZ2 r—n

ity in (2.29) thatdf/dz = da/d%. The balanced-budget increase in government con-
sumption thus leads to a long-run reduction in financialtassed a reduction in net
imports, just as in the standard open-economy Blanchar@5(19. 230-231) model
with » > 6. (An decrease in steady-state productivifyi(< 0) has the same effects
onh (u), ¢ (u), ¢, a, and/f as a balanced-budget increase in government consumption.)
A long-run tax-financed increase in public debt ¢ n) dd = dz > 0) leads to
a decrease in generation-specific and per capita steagyestasumption and human
wealth (see (2.30)-(2.31)). It follows from (2.29) that:
(T—n)%z—(r—n)%+%+1:%<—1. (2.33)
As in the standard Blanchard model (with> ), government debt more than displaces
foreign assets in the households’ portfolios (1985, p. 242)
An increase in the world interest rate leads to higher disting of after-tax wages
and a reduction in both individual and aggregate human tvealt

dii(u) . o O0A(u,r)

= [ — Z] —5 <0, (2.34)
dh [ dh
= [ w5 <o (2.35)

where we have used Lemma 1(i) to establish the sign in (2.B¢)using (2.25) we
find for the interest elasticity of individual consumption:

rdé(u) dh(0) r dA(0,7) 7
=ru+ ————=ru , 2.36
(u) dr N> h (0) A A(0,7) (2.36)

Qb

1%The impact and transitional effects of these shocks aréestiid Section 4 of the paper.
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where we have used (2.24) to get to the second expressioreffElseon consumption
depends on the age of the household. Clearly, for newbarns ()) consumption
falls because of the drop in the level of human wealth. Sihedriterest elasticity of
A (0,r) is finite, however, it follows from (2.36) that for sufficiéytold households
consumption will rise. The negative level effect on constiamp(operating via human
wealth) is dominated by the positive growth effect (op@@tvia the Euler equation
(2.9)).

The effect on aggregate consumption is thus also ambiguogerneral. If the
hazard rate is very high around and after the point whereffeet®n individual con-
sumption becomes positive, there will be very few peopleshbom consumption ac-
tually rises. The effect on aggregate consumption is negy&dir such demographies.
In contrast, if a lot of people are still alive after the postgrowth effect dominates
the initial negative wealth effect, then the weight of thissitive effect dominates and
the aggregate effect is positive.

The effect on individual financial asset holdings can be deddrom (2.26):

dé(v)  dh(u)

dr dr

da (u)
dr

= A (u,0) > 0, (for u > 0), (2.37)

andda (0) /dr = 0 (newborns possess no assets). Despite the ambiguity ofgihe s
of dé (u) /dr, individual assets must increase for all generatidnés a result, per
capita financial assets also increase unambiguously. Imakkence of pre-existing
government debti(= § andd = 0), per capita net foreign assets increases by the
same amount as total financial assets,dagdr = df /dr > 0).

3 Demography

As was stressed by Blanchard (1985, p. 223), exact aggoegafithe consump-
tion function is generally impossible because both the @mejty to consume (our
1/A (u,0)) and the wealth components (aufv,t) andh (v, t)) are age dependent.
Blanchard cuts this Gordian knot by assuming the mortaditg to be constant, i.e.
m(s) = up > 0andM (u) = pou. The advantages of his approach are its simplicity
and its undoubted flexibility—the expected remaining piagrhorizon isl /g so, by
letting 120 — 0, the infinite-horizon Ramsey model is obtained as a speai#.cThe
main disadvantage of the Blanchard approach is that it ¢acapdure the life-cycle

HMThis result follows from the fact thalz (u) /dr is smallest for, = 0 at which pointda (v) /dr = 0.
As u rises,dc (u) /dr increases. Sincéh (u) /dr is negative for alk, the inequality in (2.37) follows
readily.
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aspect of consumption behaviour. In addition, the perpstoath assumption is of
course easily refuted empirically as it runs foul of the GenippMakeham Law of
mortality (see Preston et al. (2001) and below).

In the context of a small open economy, however, it is quigsitde to incorporate
a realistic demographic structure because the aggregstignis not necessary. The
interest rate is determined in world capital markets anddagenous to the small open
economy. Conditional on the world interest rate, the fapiice frontier pins down
the real wage rate (which may also depend on an exogenousqgbinoty index). With
factor prices determined, the macroeconomic equilibriamtee studied directly at the
level of individual households.

3.1 Estimates

In this paper we estimate the survival function ®(7 — v)) by using actual US
projections on expected survival rates for people born i@12(Arias et al., 2003,
p. 26, Table 6, Column 3). Surviving fractions are reportadbfyear intervals and at
birth. Denoting the actual expected surviving fraction nplageu; of the people born
in 2001 byS(u;), we can estimate the parameters of a given parametrichdison
function by means of non-linear least squares. Denotingpélnameter vector by,
the model to be estimated is:

S(ui) =1 — ®(uz, p) + & = e M) g, (3.1)

whereM (u;) = [;" m(s, p)ds ande; is the stochastic error term. The estimates are
reported in Table 1 for various specifications of the mdstgbrocess. In that table,
¢ is the estimated standard error of the regression, thdistgta are given in round
brackets below the estimates, ahe 5\(100) represents the estimated proportion of
centenarians. Finallyi (b) is the estimated population growth rate (in percent per
annum), conditional on a given birth radtéwhich is held constant at5% per annum).
The growth rate of the population depends on the form of theatity process and is

computed by combining (2.15) and (2.16) and simplifying:

1

For a given birth raté, equation (3.2) implicitly defines the coherent solution /o
and thus for the aggregate mortality rate= b — n.'®

18For a constant mortality rate, we havel /A (0,n) = n + m so that (3.2) impliess = b — m.
Blanchard (1985) sets= m so thatn = 0 (constant population).
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We consider four different functional forms for the insemtous mortality rate and
the associated/ (u;) functions. The Blanchard model based ocoastantmortality
rate (model 1) yields an estimated mortality rate of 0.7%gmerum and displays the
worst fit of all cases considered-the estimated standandisr®.23 which far exceeds
the standard errors for the other models. Model 2 is basec@mation that the
mortality rate increases with age. THiisear-in-agemodel fits a little better than the
constant model but it predicts reegativemortality rate for newborns. Constraining
the constant to zero, the fit deteriorates somewhat thougkhsiill better than that of
the constant model. Models 1 and 2 both spectacularly owerae the proportion of
centenarians (almost 50% and 34% for models 1 and 2 resplggtiv

Model 3 postulates that the mortality rate is constant up ¢eréain ageu, after
which it increases linearly with age. The so-calf@dce-wise linea{PWL hereafter)
model fits much better than the first two models. The estimstiodard error is 0.03
and the parameters are highly significant. Interestinglynbodel predicts quite realis-
tically that mortality starts to increase with age only afieuseholds reach the critical
age of about 61 years. Finally, for model 4 the mortality fateows the Gompertz-
Makeham (GM hereafter) process. The GM model clearly dispthe best fit of all
cases considered—the estimated standard error is onlgixteenth that of the next-
best (PWL) model and all coefficients are highly significhBoth models 3 and 4
yield reasonable predictions for the proportion of centiams.

In the top panel of Figure 1 we illustrate the data pointsr¢3tas well as the es-
timated survival functions for the different models. Thepét of models 1 and 2 is
confirmed-the surviving fraction is underestimated up toualage 80 and overesti-
mated thereafter. Models 3 and 4 both track the data quite WhE key difference
between these models lies in their predicted mortalitysraied expected remaining
lifetimes that are plotted in, respectively, the middle &aottom top panels of Figure
1. After about age 88, the mortality rate is steepest for ther@odel. It is this non-
linear feature of the mortality process that the PWL modid ta capture adequately.
The expected remaining lifetimes for the GM and PWL modeés however, quite
similar.

3.2 Steady-state profiles

In Figure 2 we visualize (for all estimated models) the syestdte age profiles for
the propensity to consume (A (u, #)), human wealth{ (u)), consumption & (v)),

19This good fit may be a consequence of the fact that demogmpften use the GM model to generate
demographic predictions especially at high ages. Seedpresal. (2001, p. 192) on this point.
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and financial assetsi (u)). The analytical expressions for these variables are given
in, respectively, equations (2.12), (2.24), (2.25), an@qR Especially the\ (u, \)
function (defined in (2.12)) plays a key role in the model. Radels 1-3, closed-
form solutions forA (u, #) can be derived. Indeed, for model 1 (the Blanchard case) it
reduces ta\ (u,0) = 1/ (0 + up) and is thus independent of the age of the household.
For model 2, the solution is:

0
A (u,0) = Qﬁ erfex <,u1u + %) , (3.3)
231 H1

whereerfcx () is the so-called scaled complementary error function (Kz&y 1988,
p. A 78). The properties of this function and its close rekgiare covered in Lemma
2. Sinceerfcx (u) is a downward sloping function of the household’s age, iofes
from (3.3) that the marginal propensity to consumgA (u, 0), increases with age.
This is confirmed in the top left-hand panel of Figure 2.

For the PWL model the expression far(u, #) features two branches, depending
on whether the household is still “youngd (< u < @) or has entered “old age”

(u > a):
1 — e~ (0+no)(a—u)
0+ 1o for0 < u < @
Aw,0) =4 4 e~ Eru)a-w YT e ( 0 + HO) (3.4)
2 2p
% erfcx (Ml (u—1u)+ 9;#) foru > u

Young households are still on the flat part of the mortalitgvetand for themA (u, )

can be written as a weighed averagel p{6 + o) and A (@, #), with respective ex-
ponential weightd — e~ (¢+#0)(@—u) gnde—(@+ro)(@—u) |ntuitively, @ — u measures
how youngsuch households are, i.e. how far away they are from entetthgge?°

For old households, whoseexceeds:, the lower branch of (3.4) is relevant. For such
households, it mattetsow oldthey are, i.e. how far along in old age they are as mea-
sured byu — «. It follows readily from (3.4) thatA (u, §) declines with age, i.e. the
marginal propensity to consume increases with age. Thtenpaits confirmed in the
top left-hand panel of Figure 2.

D0bviously, if old age were to set in only after a very long tifie— oc), then one is back in the
standard Blanchard case with(u, ) = 1/ (6 + wo) indefinitely.
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Lemma 2 The error function §f (x)), complementary error functiorelfc (z)), and
scaled complementary error functioer{cx (x)) are defined as follows.

2 xT

erf(z) = \/_E/o e dt,
2 oo

= 7=/ e Pdt=1-— erf(z),

erfex (x) = e erfe(z).

erfc (x)

For non-negative values af, these functions have the following properties:

(i) 0 < erf(x), erfc(x),erfex < 1for0 < x < oc.

(i) erf(0) =1 — erfc(0) =1 — erfex(0) = 0.
(i) limg o erf(z) = 1, limy_, oo erfe(x) = lim, o erfex(z) = 0.
(iv) erf’(z) > 0, erfc’(z) < 0, erfex’(z) < 0.

(v) erfex (x) =~ 1/ (x+/m) for large z.

For the GM model no closed-form solutions fdr(u,6) can be obtained, and
numerical integration techniques must be used. As is showhmeitop left-hand panel
of Figure 2, the marginal propensity to consume for theseaisodosely tracks the
solution for the PWL model up to about age= 80. Thereafter the non-linearity of
the mortality rate starts to cut in andA (u, ) increases more rapidly than is implied
by the PWL model.

In the top right-hand panel of Figure 2 the age profile fordyestate human wealth
(h (u), defined in (2.24) above) is plotted for the different matganodels?! For the
standard Blanchard model the annuity rate of interest isradgpendent because the
mortality rate is constant. As a result, human wealth isiagependent also. For the
linear model the annuity rate of interest rises with age ad discounting of after-tax
wage income is heavier the older the household is. Humarthvgaddually falls with
age as a result. Indeed, it follows from (2.24) tﬁa(m) is proportional toA (u,r)
which is downward sloping im for any demography with a non-decreasing mortality

rate (see Lemmal).

ZLAs parameter values we uséd= 0.015, = 0.035, r = 0.04, w = 5, andz = 0. The implied
values for the population growth rate)(are reported in Table 1. The simulation results are quibeisb

for different parameter values.
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The pattern for human wealth looks rather similar for theagmmg models 3 and
4. Exploiting the proportionality betweefn(u) andA (u,r), we find that the slope of
the human wealth profile is given by:

(w)
du

>

d

= [ — 2] [(r+m(u) A(u,r) = 1] <0, (3.5)

where the term in square brackets on the right-hand sideual éq 0A (u,r) /Ou.
During the early phase of life, the annuity rate- m (u) is relatively low,A (u,r) is
relatively high, and human wealth falls only slightly as pguagents are still on the
flat part of the mortality curve. At high ages+ m (u) is high, A (u,r) is low, and
dh (u) /du is again relatively low. The PWL and GM models both give riséverse-
S-shaped profiles for human wealth with a point of inflexiczaled at the approximate
age of 60. Only after about age 80 do the paths implied by tleentwdels diverge
somewhat, with the GM model showing the sharpest decline.

In the bottom left-hand panel of Figure 2 the age profile chdyestate consump-
tion (¢ (u)) is visualized. As follows readily from (2.25), the slopetb&é consumption
age profile is the same for all models. Interestingly, themeged mortality models all
predict very similar steady-state consumption paths gialleerms).

Finally, in the bottom right-hand panel of Figure 2 the agefite of steady-state
financial assetsa((u) as defined in (2.26) above) is visualized. For both models 1
and 2, financial assets rise with age. Matters are vastlgrdift for models 3 and 4.
For these models financial asset holdings follow the cldésicycle pattern stressed
by Modigliani and co-workers. i.e. households save up umiildle age after which
dissaving takes place. Again the most pronounced diss&ffagt takes place for the
GM model. Despite the fact that very old agents have hardifimancial assets left,
the annuity rate of interest is so high that a high consumpgéeel can nevertheless be
maintained.

The upshot of the discussion so far is as follows. The cohstad linear mod-
els track the demographic data very poorly and predict listieaage patterns for the
consumption propensity, human wealth, and financial wedlthcontrast, the PWL
and GM models track the data rather well and predict the aelefe-cycle patterns.
While the GM model slightly outperforms the PWL model, itas a (minor) dis-
advantage in that it can only be analyzed numerically, wdsethe PWL model can
be solved analytically in terms of well-known functions.déed, the salient features
of the Gompertz-Makeham Law seem to be approximated rate#ryw means of a
piece-wise linear mortality rate. A further theoreticaladtage of the PWL model is
that it enables a conceptual distinction between youth dhdge (just as is possible
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in the two-period Diamond (1965) model).

In Figure 3 we visualize the age profiles for the differentialales at the cohort
level. Cohort-level variables are obtained by multiplyimglividual outcomes for
members of a given cohort by the relative population sizehaf tohort, e.g. for
human wealth we have:

A~

Hw) =1(v,t)h(u)=[d— 2 Q(ur), (3.6)
wherel (v, t) is defined in (2.16) an€ (u, \) is given by:
Qu, A) = be ™MW A (4, \)
— bl [ ey (3.7)
Like A (u, ), the2 (u, \)-term depends critically on the parameters of the mortality
process. In addition, howeve, (u, \) also depends on the birth rdt@nd the rate of
population growth because these parameters affect the population propodidhe

cohorts.
The cohort-level values for consumption and financial weate defined as fol-

lows:
Clu) =1 (v,t)¢(u) = Aﬁ(r(()og) glr—f-mu-Mu), (3.8)
A(u) =1 (v,t) @ (u) = Au, 0)C(u) — H(u). (3.9)

In the top right-hand panel of Figure 3 cohort-level humasmbibeis visualized for the
different mortality models. For all models, cohort-leveinman wealth falls with the
age of the cohort. This is not surprising since individuaiiam wealth either stays
the same (model 1) or falls (models 2-4) with age, and the lptipn proportion falls
with age (see top left-hand panel). As was the case for iddalihuman wealth, the
results for models 3-4 are very similar. This similarityalsolds for the cohort-level
results for consumption (bottom left-hand panel) and firdressets (bottom right-
hand panel). Note that even for models 1 andzu) ultimately goes to zero for very
old household as the decline in the population share stadsrinate the increase in
individual asset holdings.

4 Visualizing Shocks with Realistic Demography

In this section we compute and visualize the effects on tfferdnt variables of a
number of prototypical shocks affecting a small open econgnirhe analytical ex-

22These shocks do not have to be infinitesimal as no lineasizégichniques have been used.
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pressions for the general demographic model are reporttek iAppendix to this pa-
per. To cut down on the number of illustrations, however, asdrict attention in this
section to the visualization of the main contrasts betwherstandard Blanchard case
and the PWL model. As was demonstrated above, the latterlmagwires the actual
(expected) demography for the United States rather well.

4.1 Shocks
4.1.1 Balanced-budget fiscal policy

The first shock consists of an unanticipated and (believée@ermanent increase in
government consumption which is financed by means of lunmpisixes (i.e.dg =
dz > 0). The effects of this shock on individual human wealit{«{, ¢)) and financial
assetsd (v, t)) are illustrated in Figure 4. In that figure, the left-hand@la depict the
Blanchard case whilst the right-hand panels illustrate-¢isealts for the PWL model.

In the Blanchard case, the increase in the lump-sum tax sausece-off decrease
in human wealth which is the same for all existing and futueeagations. In stark
contrast, in the PWL model the fall in human wealth depends bo time and on
the generations index. The top right-hand panel of Figurdeotvs the effects for two
existing households (aged, respectively, 40 and 20 at e oif the shock) and two
future households (born respectively one second and 4@ ydtar the shock). As
a result of the shock there isance-off change in the age profile of human wealth.
This profile itself does not depend on time because theretiansitional dynamics in
after-tax wages.

In the bottom two panels of Figure 4 the paths for financiadtssare illustrated. In
the Blanchard case these assets rise monotonically overféineach household. The
shock induces a slight kink (at tinte= 0) in the profile for each generation. For the
PWL model in the right-hand panel, the crowding-out effag tb the tax increase is
much more visible. The peak in financial asset holdings ikdrighe older the existing
household is (compare, for example, the 40 and 20 year olggimids). The profiles
for the future households born, respectively, in 0 and 40syéme are identical in
shape (Again, this is because of the lack of transitionabdyias in after-tax wages).

4.1.2 Temporary tax cut

The second shock consists of a typical Ricardian equivalesperiment. At impact
the lump-sum tax is reduced and deficit financing is used tangal the budget. As
a result, the stock of government debt gradually increagestame. In order to en-
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sure that government solvency is maintained, the tax isugddincreased over time
and ultimately rises to a level higher than in the initialation. The shock that is
administered thus takes the following form (for 0):

dz (t) = —dzoe X' + d2[1 — e X, (4.2)

where0 < x < oo, dzg > 0, anddz = [(r —n) /x] dzp > 0. Atimpact, the lump-
sum taxfalls by dzy but in the long run itisesby dz. (The long-run effect on public
debt equalsid = dzp/x > 0.) In the simulations, the persistence parameter is set
atx = 0.1 implying that the tax reaches its pre-shock level only afteout 13 to 14
years?®

The effects on human and financial wealth are illustratethitwo cases in Figure
5. In the Blanchard case, human wealth is age-independenevértheless features
transitional dynamics because the path of lump-sum tax@mésdependent. Human
wealth increases at impact (because of the tax cut), bubglairdnsition it gradually
falls again (because of the gradual tax increase). In the fan, the permanently
higher taxes (needed to finance interest payments on acateduliebt) ensure that
human wealth is less than before the shock.

In the PWL model, the effect on human wealth is both time- ayed@ependent. At
impact, all existing households experience an increadeein human wealth because
of the tax cut. For each household, human wealth declinemglaransition both
because of ageing (gradual increase in the annuity ratdeyest) and because the tax
rises over time. For the future household born 40 years #fteshock, the human
wealth profile is virtually in the steady state again as mbshe shock has worn out
by then.

In the bottom panels of Figure 5 the profiles for financial tssaee illustrated. In
the Blanchard case the tax cut causes a slight acceleratianset accumulation at
impact. This kink also occurs for the PWL model in the bottaght-hand right panel.
The PWL case illustrates quite clearly that the Ricardiamv&dence experiment re-
distributes resources from distant future generationsatdwear future and existing
generations. Especially members of the generation boiredirhe of the shock react
strongly to the tax cut as far as their savings behaviour icemed. Indeed, their
maximum asset holding peaks at a much higher level than i gear old existing

ZWe compute time perioth such thatlz (to) = 0. Using (4.1) we find:

1 ( r—n >
to=——In[ —— ).
X r—n-+x

For the piece-wise linear cage = 13.2 years whilst for the Blanchard case we find= 14.2 years.
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generations and generations born 40 years after the $Aock.

4.1.3 Interest rate shock

The final shock analyzed in this paper consists of an ungatied and permanent
increase in the world interest rate (id®: > 0 for ¢t > 0). The effects of this shock on
human and financial wealth are illustrated in Figure 6. InBle@nchard case the shock
causes a once-off decrease in age-independent human wiathigher annuity rate
of interest leads to stronger discounting of future afterwages. For the PWL model
there is a once-off downward shift in the age profile of humaafth. Like the shock
itself, this age profile displays no further transitionahéynics over time.

The bottom panels of Figure 6 illustrate the effects on firdrassets. Whilst the
effects for the Blanchard case speak for themselves, tlooskbd PWL model warrant
some further comment. Féuture generations, the age profile of financial assets fea-
tures a once-off upward shift at impact and displays no @&srthansitional dynamics
thereafter. In contrast, faxistinggenerations the time path of assets depends both on
their age and on time. This transitional dynamics is causethé fact that the con-
sumption path for such generations depends ontatitlv separately (see Appendix).
Existing generations are affected by the interest rate Itk via their human wealth
and via their accumulated financial assets which attradjtaehirate of return after the
shock?®

%4The following temporary productivity shock features résuhat are very simular to those of the
Ricardian tax cut:

dw (t) = dwoe %", (fort > 0),

where0 < ¢ < oo anddwo > 0. In the simulations (not shown), the persistence paranigtset
at¢ = 0.1, implying a half-life of the adjustment of abo(t/¢) In2 = 6.93 years. The equivalency
between the two shocks is not surprising, of course, bedhesemporary wage increases boosts human

wealth just as a temporary tax cut does.
The bottom right-hand panel of Figure 6 also shows a sligintigttractive feature of the piece-wise

linear model, namely thahdividual assets start to rise again after about age 100. This is dhe fadt
that the mortality rate does not rise sufficiently quicklyeafabout age 85 for that model-see Figure 1.
As a result, human wealth does not fall quickly enough (sgar€i2) and assets start to rise again at high
ages. Figure 3 confims, however, that assets of theahdrtsapproach zero for the piece-wise linear
model. There are very few centenarians in the piece-wigatimodel.
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4.2 \Welfare effects

The Blanchard model is often used to investigate the intenggional welfare effects
of various policy measurés.In this section we visualize the intergenerational welfare
effects associated with the three shocks studied aboveexsting households, the
change in welfare from the perspective of the shock peried) is evaluateddA (v, 0)

for v < 0) whereas for future agents the welfare change from the petigp of their
birth date is computedi{\ (v, v) for v > 0). As is shown in the Appendix, the welfare
effect for existing agent(< 0) can be written as:

dA(v,0) = dr/ re I Mr—v)+M(=v) g
0

+ A(=v,0)InTg(v), (forv <0), (4.2)

whereA (—v, #) is defined in equation (2.12) above and whEfgv) is defined as:

Tp(v) = a(-v) + B(”’O), (for v < 0). (4.3)

a(—v) + h(—v)
Intuitively, Iz (v) captures the effect of the impact change in human wealthxfstieg

generations. The welfare effect consists of two separatgoaents. The first term
on the right-hand side of (4.2) represents tomsumption growth effeend is only
relevant for the world interest rate shock (i.e.dif > 0). Individual consumption
growth is equal te— 6 and an increase inleads to a steeper consumption time profile.
The mortality process exerts a non-trivial influence on thiesamption growth effect
via the utility function. The second term on the right-haiteof (4.2) summarizes the
welfare effect of the change in thevel of consumption caused by the impact change
in human wealth. Thi©iuman wealth effeds relevant for all shocks and is equal
to the product ofin ' (v) (defined in (4.3)) and the inverse propensity to consume
A (—v,0).

The welfare effect for future generations can be written as:

dA(v,v) = dr/ se 05t MB) s + A0,0) InTp(v), (forv>0), (4.4)
0

whereA (0, 0) is the inverse propensity to consume of a newbornlgn@v) is defined
as:

Ir(v) = —= , (forv > 0). (4.5)

%see, for example, Bovenberg (1993, 1994) on capital taxatial investment subsidies, Bettendorf
and Heijdra (2001a, 2001b) on product subsidies and tamiifier monopolistic competition, and Heijdra
and Meijdam (2002) on government infrastructure. All theselies are set in the context of a small open
economy.
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Here,I'»(v) represents the effect on the human wealth of a future newkost as for
existing generations, the welfare effect for future geti@na consists of a consump-
tion growth effect (first term on the right-hand side of (3 &)d a human wealth effect
(second term).

The welfare effects of the different shocks are illustratedigure 7. The left-hand
panels present the results for the Blanchard case whilsighehand panels visualize
those for the PWL model. The welfare effects of balancedybudiscal policy are
illustrated in the top panels. All present and future geti@ma experience a reduction
in human wealth and as a result the welfare effect is negéiivall generations. The
effect is the same for all future generations because tlkane transitional dynamics
in human wealth (see above). For existing generations thianedoss declines with
the age of the generation. The human wealth effect decredtiesge because both
the inverse propensity to consum& (v, #)) and the relative importance of human
wealth (nIT'z(v) in (4.2) above) decline with age. The Blanchard and PWL nmedel
thus givequalitativelysimilar welfare results for the spending shock. A key défese
between the two models concerns the slope of the welfardefofi existing gener-
ations. In the PWL model (right-hand panel) the welfarectffe practically zero for
all generations older than 100 years. In contrast, for tren@&iard case (left-hand
panel) there is still a noticeable welfare effect for 200ry&ld generations. This low
“generational adjustment speed” of the Blanchard moddss @bserved for the other
shocks. Intuitively, in the Blanchard case, old generatiare not killed off rapidly
enough (see also the top panel of Figure 1).

The middle two panels of Figure 7 illustrate the welfare @feor the Ricardian
tax cut experiment. All existing generations as well asritgenerations born close
to the time of shock benefit at the expense of more distantdugenerations. For
future generations the welfare loss is larger the later #reyoborn. For existing gener-
ations the welfare profile is monotonically decreasing ia fiog the Blanchard case but
non-monotonic for the PWL model. In the Blanchard casé,—v,0) = A (0,0) =
1/ (0 + uop) is constant anth I'; (v) declines monotonically with age. In contrast, for
the PWL model, A (—v, §) decreases with age bt I'z (v) is non-monotonic. In-
deedInT'g (v) is increasing in age for all generations up to about 120 yasdsonly
decreases in age thereaftérAs a result, the welfare profile for existing generations

70f course, there are virtually no centenarians predicteth®PWL model so the downward sloping
part of theln ' (v) function is practically irrelevant. In contrast, the esibed Blanchard demography
predicts that about 50 percent of newborns will still beal age 100. See the bottom panel of Figure
1.
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displays a bump around the age of 60 in the middle right-hamlpof Figure 7. At
that point, the drop i\ (—v, #) just matches the increaselinl'g (v).

In the bottom two panels of Figure 7 the welfare effects ferititerest rate shock
are illustrated. Since the shock induces no transitionabdycs in the age profile
of human wealth for future generations, the welfare effedhe same for all future
generations in both models. For existing generations thfakeeeffect increases with
age in the Blanchard model, but is non-monotonic for the PVildeh For an interest
shock both the consumption growth effect and the human tvedfiect are relevant.
The shock induces a decreaselii'r (v) which falls with age in both models. In
the Blanchard case, the consumption growth effect is cohgtand positive) for all
generations. In contrast, for the PWL model, the consumpiowth effect is positive
and constant for future generations, but falling in age fasteng generations. As a
result, the total effect on welfare displays a bump aroumdatipe of 25 for the PWL
model (see the bottom right-hand panel of Figure 7).

4.3 Aggregate effects

As was pointed out above, Blanchard (1985) assumes a constatality rate in order
to allow for exact aggregation of the consumption functidiith the more general
mortality processes considered in this paper, only nurakaggregation is possible.
This subsection visualizes thggregateeffects on the key variables of the three shocks
considered above. To what extent do the aggregate resatigtwd by the Blanchard
and PWL models differ?

In Figure 8 we illustrate the effects on human wealth (first)roconsumption
(second row), and financial assets (third row) for the spendhock (first column),
the Ricardian tax cut (second column), and the intereststadek (third column). To
facilitate the comparisons between the two models, we téipepercentage deviations
from the steady state for all variables, i.6: (t) — h)/h, (c(t) — ¢)/¢, are plotted
(a(t) —a)/ain Figure 8.

For the spending shock, the results for human wealth ardiodémnd those for
consumption and financial assets are qualitatively verylairbut differ in terms of
the speed of adjustment towards the new steady state. Twesgled of convergence
is also a feature of the Blanchard results for the other tvoclsh

For the Ricardian tax cut, the effects on human wealth arenagailar but those
on consumption and financial wealth are not. For the PWL madtelimpact effect
on consumption is much larger, and the slope of the aggr&gdés equation is much
steeper during transition, than for the Blanchard modehil&rly, the savings response
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is much more pronounced for the PWL model.

Finally, for the interest rate shock the effect on human theial qualitatively the
same for the two models, though the Blanchard model overats the fall in human
wealth. The impact reduction in consumption is virtuallg game for the two models
but transition is much faster for the PWL model. Again, thérsgs response at impact
is stronger for the PWL model.

4.4 Discussion

The key findings of this section are as follows. Incorpogtinrealistic demographic
structure is quite feasible in the context of a small opemenw facing a constant
world interest rate. At the level of individual householdsrealistic description of
the mortality process reinstates the classic life-cyclesomption-saving insights of
Modigliani and co-workers.

The welfare effects associated with the different shocksago potentially af-
fected in a non-trivial manner by the incorporation of a magalistic demography.
Two key difference stand out between the Blanchard and PWdetso First, the
PWL model predicts a much faster (and in our view more regjisgjenerational con-
vergence speed” of the welfare effects than the Blanchameimd&econd, the PWL
model incorporates more extensive age-dependency andessilamay give rise to
non-monotonic welfare effect on existing generations—eiting which is impossi-
ble in the Blanchard case (for the shocks studied).

Finally, we have demonstrated that the demographic dedailsot “wash out”
at the aggregate level. The impulse-response functionthéodifferent shocks are
quite different for the Blanchard and PWL models, especitile ones for per capita
consumption and financial assets.

In some applications of our model, it may the case that iddi&i behaviour de-
pends in part on aggregate variables so that knowledge dittes is crucial. For
example, if the revenue of a consumption téx)(is recycled in a lump-sum fashion
to households (i.ez (t) = z (t) = —tcc(t)) thenindividual consumption, human
wealth, and financial assets will all depend on #ggregatetax revenue. This com-
plication can be easily dealt with by using an iterative pore in the simulations.
In the first step the initial tax revenue and implied lump-doamsfer are guessed and
individual and aggregate consumption levels are computedubsequent steps, the
aggregate information is used to update the guess for &enshtil convergence is
achieved.
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5 Extensions and Conclusion

The framework developed in this paper can be extended in auof directions,
all of which we plan to pursue in the near future. First, inasrtb investigate the
effects of demographic change, it is necessary to genertiezstochastic distribution
for expected remaining lifetimes. Two possibilities candiginguished.Embodied
demographic change can be studied by writing the densitgtifum as¢ (v, s), so
that both the cumulative distributior® (v, s), and the instantaneous mortality rate,
m (v, s), are generation specific. In contradgisembodiedlemographic change can be
modelled by writing the functions as(t, s), ® (¢, s), andm (¢, s), i.e. by postulating
a time-dependent mortality process.

Second, the age profile for individual consumption could &eegalized by intro-
ducing shift factors in the utility function. In the curremtodel (withr» > 6) con-
sumption is increasing in the age of the household. Thereeas®ns to believe that in
reality consumption is hump-shaped, i€, t) features a rising time profile early on
in life followed by a falling profile later on. A simple way tapture this effect is to
assume that a household’s “needs” get smaller the oldergieyin the diminishing-
needs model, lifetime utility is given by:

7 0 6(0,7)171/” —1| _
A(v,t) = M) e~ W=D+ M(r=v)] g7 (5.1)
’ ’ 1-1/o ’
wheres > 0 is the intertemporal substitution elasticity aafv, 7) is effectivecon-
sumption:
_ _ (o (T —v)'*9
,T) = ; —_— ), 5.2
e(v,T)=¢c(v T)exp{ e (5.2)

with ¢, > 0 and¢; > 0. According to (5.2), a given amount attual consumption,
¢ (v, 1), yields more effective consumption (featuring in the fig§iéunction), the older
the household is. Using this specification of preferendes,straightforward to show
that the individual consumption Euler equation (2.9) isagalized to:

¢ (v, )

E(U T):U(T_Q)_(I_U)CO(T_'U)Q- (5.3)

For the empirically relevant case (with< o < 1), consumption rises during the early
phase of life £ — v low) and falls during the later stages of life ¢ v high).

A third extension endogenizes the household’s labour gugmd retirement deci-
sions. The introduction of a leisure choice decision isighitforward. Focusing on a
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unitary intertemporal substitution elasticity, lifetimélity is written as:

A(v,t) = M) / U e(v,7),1—7(v,7)] e PT—D+M=vlgr (5 4)
t

whereU [-] is subfelicity depending on consumptiar(y, 7), and labour supply; (v, 7).
The time endowment equals 1. Of course, labour supply featilre restrictior) <
n (v, 7) < 1, with the lower bound reflecting the retirement decisi®with endoge-
nous labour supply, the household budget identity (2.7)adified to:

a(v,7)=[r+m(r—v)]a(v,7)+w(r)n(v,7) —z(v,7) —c(v,7). (5.5)

wherew (1) (v, T) is wage income and (v, 7) represents an age-dependent lump-
sum tax (e.g. a pay-as-you-go pension system). For a smatl eponomy facing a
constant world interest rate it is straightforward to cobeghe optimaltetirement age
implied by the model and to study how it is affected by varishecks?® The most
interesting shocks that can be studied with this extendedkiare ageing shocks and
pension reform.

Whereas the first three extensions are relatively straightfrd, the fourth and fi-
nal one is not. The introduction of a realistic mortality gees in a closed economy is
complicated by the fact that exact aggregation of the copsiomfunction is impossi-
ble (see above). Of course, the steady state can still baatieaized analytically quite
easily (see Subsection 2.3 above). The transitional angtion effects of various
shocks are, however, much more difficult to compute due tdabiethat equilibrium
factor prices will generally change. In the near future wehato investigate whether
approximateaggregation of the key behavioral relationships is feadibt particular
shock parameterizations. If that fails, numerical metheillsbe employed to charac-
terize transitional dynamics.

In conclusion, we express the sincere hope that the BladeYeari-Modigliani
model constructed in this paper will prove to be a useful tatdito the toolbox of
both theoretical economists and policy practitionersealilt least in the context of
a small open economy, there is no justification whatsoeverstomodels based on
a blatantly unrealistic description of demography. Had tality not caught up with
him, Benjamin Gompertz would probably support that corioluis

2Under the twin assumptions that (i) consumption and leisuesboth normal goods and (ii) that

7 (v,v) < 1 (newborns consume some leisure), the upper bound can bedas it is always satisfied.
*The retirementateis that time period¢*, for which 7 (v, t") just becomes equal to zero. The
retirementageis then defined as™ — v. Provideds (v, t) is decreasing in — v, all agents older that

t® — v are retired also.

28



Appendix

In this brief appendix we derive some key results used in tqgep More detailed
derivations are presented in Heijdra and Romp (2005).

Proof of Lemma 1

By definition, M (u) = [, m (s) ds so thatM (0) = 0, M’ (u) = m (u) > 0, and
M" (u) = m/(u) > 0. SinceM (s) is a convex function ok we haveM (s) >
M (u) +m (u) [s — u] and thus:

A(u,\) < A (1, ) = XM / % o= Dhatm(u) (s—u) 4 M(w)] g

1

“Nim() (A-6)
This establishes part (iii). Part (i) follows by straighté@rd differentiation:
0A(u,\) _eAquM(u)/ s — e MGl gs < . (A7)
o\ u
Similarly, part (i) is obtained by differentiatind. (u, A) with respect tau:
A
% — D m W] A ) — 1 <0, (A8)

where the sign follows from (A.6). Parts (iv)-(v) are obvio@.E.D.

Macroeconomic shocks

All the shocks studied (or mentioned) in Section 4 of the paja; be expressed in
terms of the following functions:

W fort <0
w(t) = , (A.9)
W+ dwpe™$t fort >0

T fort <0

r(t) = , (A.10)
ry=r+dr fort>0
0 fort<O

g(t) = : (A.11)
dg fort>0
0 fort <0

z(t) = . (A.12)
—dzpe X'+ d2[1 — e Xt fort >0
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Government consumptiodyy and the path of government debt are related to the other
parameters according to:

dj = xdz  (r—n) dzo7 (A13)
r—-n+x r—nm+x
dg+d
d(t) = %[1 p—l (A.14)

The time at which the shock occurs is normalized to zero.
The three shocks explicitly studied in the text are:

¢ Unanticipated and permanent balanced-budget increass@ngment consump-
tion: g (¢) setasin (A.11); (¢) set according to (A.12) and (A.13) with— oo,
i.e. dg = dz. No debt financing occurs, i.€.(t) = 0 forall t > 0.

¢ Ricardian equivalence experiment, temporary tax gutt) = 0, z (¢) set ac-
cording to (A.12) and (A.13) witll < y < oo, and the (stable) path of debt is
set according to (A.14).

e Unanticipated and permanent increase in the world intesget dr > 0 for
t>0.

A fourth shock is only mentioned because its effects are samylar to those of
the temporary tax cut:

e Temporary productivity shocks (t) = z (t) = d (t) = 0, w (¢) set according to

(A.9) with 0 < ¢ < co.

Post-Shock Profiles

The steady-state age profiles for the different variablésrbehe shock occurg  0)
are defined for individual households in (2.24)-(2.26) amddohort-level variables
in (3.6) and (3.8)-(3.9). After the shock occutsX 0), the paths for individual and
cohort-level human wealth are, respectively,
h(v,t) = WA (t —v,7x5) + dwoe S A(t — v, 7y + €)
— d2A(t —v,rN) + [dzo + d2le XAt —v,ry +X), (A.15)

and:

H(v,t) = 0Q(t — v,7n5) + dwoe S Q(t — v, x5 + €)
—d2Q(t —v,rN) + [dzo + d2le Xt — v, vy +X). (A.16)
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For households who were born before the shack (0), the age index at the time
of the shock is—v > 0. For such households, the paths for consumption and asset
holdings (at individual and cohort level) after the shotk-(0) are given by:

B _a(=v) +h(©,0) 0

cp(v,t) = A(0.0) e ¢ (A.17)

ag(v,t) = A(t —v,0)ég(v,t) — h(v,t), (A.18)
o t) — e (o) A(=0) +H©,0) (ry—g-nmyt—n(t—v)

Cp(v,t) =M A 0.0) t=M(t=v) (A.19)

Ag(v,t) = A(t —v)Cg(v,t) — H(v,t), (A.20)

where the subscriptE” denotesexistinghouseholds (at the time of the shock).

For households that are born after the shack (0), the relevant age index at time
t (> v) is defined ag — v. For such households the paths for consumption and asset
holdings (at individual and cohort level) at timé> 0) are given by:

ep(v,t) = i((%”?) elrv=0)(i=v), (A.21)
ar(v,t) = A(t —v,0)ep(v,t) — h(v, 1), (A.22)
Crp(v,t) = %dw—@—”xt—”)—wt—v), (A.23)
Ap(v,t) = A(t —v,0)Cp(v,t) — H(v, 1), (A.24)

where the subscriptF” denotesfuture households.

Welfare Effects

The welfare effects of the different shocks are illustrateéigure 7 in the text. For
existing agents the change in welfare from the perspecfitteecshock period = 0 is
evaluated A (v, 0) for v < 0) whereas for future agents the welfare change from the
perspective of their birth date is computet\ (v, v) for v > 0).

Existing generations

Equation (4.2) is derived as follows. The effect on welfarexasting agents at = 0
can be written as a function of their age at that moment)(

dA(v,0) = / [Inég (v, 7) — Iné(v, 7))e 0T MT—v)+M(=v) g7 (A.25)
0
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Consumption after the shock can be written in terms of poslsitonsumption:

SN
_ J(rny—r)T a(_v) +_(_U) (r—0)r }_'L(’U,O) — _( ’U) (r=0)r
‘ A—00) ¢ T ACwe ¢
— 6(7’1\7—7’)7’ —é(—U) + a(_v) + }_'L(’U,O) — ?"( ’U) 6(7‘—49)’r
A(—v,0) A(—v,0)
—elrn=r)T ] 4 _(Uv 0) — :(_U)] é(—v)e(r_G)T
| a(—v) + h(—v)
— e(T’N—T’)T &(_U) + }z(v7 O)] é(’U, 7_). (A26)
| a(—v) + h(-v)
By taking logarithms of (A.26) and rewriting we obtain:
Inég(v,7) —Inc(v,7) = (ry — )7+ InTg(v), (A.27)

whereI'g(v) is defined in (4.3). By substituting (A.27) into (A.25) anditjmg the

integral we get:

dA(v,0) = dr/ re 0T M{r—)+M(=v) g
0

+ [eM(”)/ eGTM(Tv)dT] InT'g(v)
0
= dr /OO Te 0T Mr—v)FM(=v) 4r
0
N [erJrM(U) / ~ e[es+M<s>}ds} In T (0)
—ar / re 0T M@+ M(=) g L A(—y, @) InTp(v).  (A.28)
0
Equation (A.28) coincides with (4.2) in the text.

Future generations

Equation (4.4) is derived as follows. For future househtitdswelfare effect at birth

is defined as:

dA(v,v) = / [Inép(v,7) — Iné(v, 7)]e =M= gr, (A.29)
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Next we express the post-shock consumption path in terntseqgire-shock path as:

— }_'L’U,U ry—0)(T—v
er(v,7) = A((O (9))6( N—6)(r—)

:e(TN—T)(T—U)h(U7’U) h(O) e(r—@)(’r—v)
0) A(0,0)
X

-
_ - oY)
h

)
c(v, 7). (A.30)
(0)
By taking logarithms of (A.30) and rewriting we obtain:
Incp(v,7) —Inc(v,7) = (ry —r) (1t —v) + InTp(v), (A.31)

wherel'y(v) is defined in (4.5). By substituting (A.31) into (A.29) anditimg the
integral we get:

dA(v,v) = dr / h (1 —v) e 0= M—v) gr
+ [ / ” ee<rv>M<fv>dT} InTr(v)
=dr /000 se”0sHME) g 4 [/000 e_[95+M(5)}ds} InTr(v)
= dr /0 " e M@ gg 4 A0,0) InT p(v). (A.32)

Equation (A.32) coincides with (4.4) in the text.
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Table 1: Estimated Survival Functions

—

flo i1 fi2 u o n(b) | 1—®(100)
1. Constant 0.7026x1072 | — - - 0.2277/| 0.80 | 49.53
M (u) = pou (4.92)
2. Linear —0.8970x102 | 0.0152 - - 0.1199]| — -
M (u) = pou + p3u? (—3.83) (12.29)
- 0.0104 - - 0.1595| 0.49 | 34.05
(13.66)
3. Piece-wise linear (PWL) 0.1544x10°2 | 0.0410 - 60.85 | 0.0294| 0.37 | 6.57
M (u) = pou+ 6 (u) p? (u — ) | (6.41) (16.12) (43.08)
0 forO<u<u
5 (u) = s
1 foru>u
4. Gompertz-Makeham (GM) 0.5834x 1073 | 0.3419x10% | 0.0928 | — 0.0018| 0.37 | 1.69
M (u) = pou + (p1/p2) [e*2* — 1] | (24.76) (27.01) (193.71)
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