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Abstract

In this paper we construct an overlapping generations modelfor the small open

economy incorporating a realistic description of the mortality process. With age-

dependent mortality, the typical life-cycle pattern of consumption and saving re-

sults from the maximizing behaviour of individual households. Our “Blanchard-

Yaari-Modigliani” model is used to analytically study a number of typical shocks

affecting the small open economy, namely a balanced-budgetpublic spending

shock, a temporary Ricardian tax cut, and an interest rate shock. The demo-

graphic details matter a lot—both the impulse-response functions and the wel-

fare profiles (associated with the different shocks) are critically affected by them.

These demographic details furthermore do not wash out in theaggregate. The

model is flexible and can be applied to a wide variety of theoretical and policy

issues.
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1 Introduction

It is possible that death may be the consequence of two generally co-

existing causes; the one, chance, without previous disposition to death or

deterioration; the other, a deterioration or an increased inability to with-

stand destruction. (Gompertz, 1825)

The opening quotation is a verbal introduction to a phenomenon that is now often

called Gompertz’ Law of mortality. In his path-breaking paper, Benjamin Gompertz1

(1825) identified two main causes of death, namely one due to pure chance and another

depending on the person’s age. He pointed out that if only thefirst cause were relevant,

then “the intensity of mortality” would be constant and the surviving fraction of a given

cohort would decline in geometric progression. In contrast, if only the second cause

would be relevant, and “if mankind be continually gaining seeds of indisposition, or in

other words, an increased liability to death” then the forceof mortality would increase

with age. Gompertz’ Law was subsequently generalized by Makeham (1860) who

argued that the instantaneous mortality rate depends both on a constant term (first

cause) and on a term that is exponential in the person’s age (second cause).2

The microeconomic implications for consumption behaviourof lifetime uncer-

tainty—resulting from a positive death probability—were first studied in the seminal

paper by Yaari (1965). He showed that, faced with a positive mortality rate, individ-

ual agents will discount future felicity more heavily due tothe uncertainty of survival.

Furthermore, with lifetime uncertainty the consumer facesnot only the usual solvency

condition but also a constraint prohibiting negative net wealth at any time—the agent

is simply not allowed by capital markets to expire indebted.Yaari assumes that the

household can purchase (annuity) or sell (life insurance) actuarial notes at an actuari-

ally fair interest rate. In the absence of a bequest motive, the household will use such

notes to fully insure against the adverse effect of lifetimeuncertainty.

The Yaari insights were embedded in a general equilibrium growth model by Blan-

chard (1985). In order to allow for exact aggregation of individual decision rules,

Blanchard simplified the Yaari model by assuming a constant death probability, i.e.

only the first cause of death is introduced into the model and households enjoy a

1As Hooker (1965) points out, Benjamin Gompertz can be seen asone of the founding fathers of

modern demographic and actuarial theory. See also Preston et al. (2001, p. 192). Blanchard (1985, p.

225) and Faruqee (2003, p. 301) incorrectly refer to the non-existing “Gomperty’s Law.”
2The continuous-time version of the Gompertz-Makeham Law ofmortality takes the formm (u) =

µ0 + (µ1/µ2) [eµ2u
− 1], wherem (u) is the instantaneous mortality rate of a person with ageu and the

µ′

is are non-negative. This form is estimated below using US demographic data.
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perpetual youth. Because of its flexibility, the Blanchard-Yaari model has achieved

workhorse status in the last two decades.3 As Blanchard himself points out, his mod-

elling approach has the disadvantage that it cannot capturethe life-cycle aspects of

consumption and saving behaviour—the age-independent mortality rate ensures that

the propensity to consume out of total wealth is the same for all households.4

Blanchard’s modelling dilemma is clear: exact aggregationis “bought” at the ex-

pense of a rather unrealistic description of the demographic process.5 Of course, in

a closed-economy context, the aggregation step is indispensable because equilibrium

factor prices are determined in the aggregate factor markets. However, in the context

of a small open economy, factor prices are typically determined in world markets so

that the aggregation step is not necessary and life-cycle effects can be modelled. The

main objective of this paper is to elaborate on exactly this point. As we demonstrate

below, it is quite feasible to construct andanalyticallyanalyze a Blanchard-Yaari type

overlapping-generations model incorporating a realisticdescription of demography. In

addition we show that such a model gives rise to drastically different impulse-response

functions associated with various macroeconomic shocks—the demographic realism

matters.

The remainder of this paper is organized as follows. Section2 sets out the model.

Following Calvo and Obstfeld (1988) and Faruqee (2003), we assume that the mor-

tality rate is age-dependent and solve for the optimal decision rules of the individual

households.6 We establish that the propensity to consume out of total wealth is an in-

creasing function of the individual’s age provided the mortality rate is non-decreasing

in age. Next, we postulate a constant birth rate and characterize both the population

composition and the implied aggregate population growth rate associated with the de-

3For the purpose of this paper, the most important extension is due to Buiter (1988) who allows

for non-zero population growth by using the insights of Weil(1989). For a textbook treatment of the

Blanchard-Yaari model, see Blanchard and Fischer (1989, ch. 3) or Heijdra and van der Ploeg (2002, ch.

16).
4Blanchard shows that a “saving-for-retirement” effect canbe mimicked by assuming that labour

income declines wih age. Faruqee and Laxton (2000) use this approach in a calibrated simulation model.
5Blanchard suggests that a constant mortality rate may be more reasonable if the model is applied

to dynastic familiesrather than to individual agents (1985, p. 225, fn.1). Underthis interpretation the

mortality rate refers to the probability that the dynasty becomes extinct.
6The relationship between these papers and ours is as follows. Calvo and Obstfeld (1988) recognize

age-dependent mortality but do not solve the decentralizedmodel. Instead, they characterize the dynam-

ically consistent social optimum in the presence of time- and age-dependent lump-sum taxes. Faruqee

(2003) models age-specific mortality in a decentralized setting but is ultimately unsuccessful. Indeed, he

confuses the cumulative density function with the mortality rate (by requiring the death rate to go to unity

in the limit; see (2003, p. 302)). Furthermore, he is unable to solve the transitional dynamics.
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mographic process. Still using the general demographic process we characterize the

steady-state age-profiles for consumption, human wealth, and asset holdings.

In Section 3 we employ (projected) US demographic data to estimate a number

of parametric mortality models. In addition to the Blanchard model, we also estimate

three additional models that allow for age-dependent mortality. Not surprisingly, the

Gompertz-Makeham model provides by far the best fit with the data. Interestingly,

however, the key aspects of the Gompertz-Makeham Law are also captured quite well

by our so-called piece-wise linear model which distinguishes two “phases” of life,

namely youth and old-age. During youth, the mortality rate is constant and quite low,

but during old-age it rises linearly with age. In our view, the piece-wise linear model

is interesting in itself for two reasons. First, it presentsa continuous-time generaliza-

tion of the Diamond (1965) model, allowing for individuals to differ even within each

“phase” of life. Second, it gives rise to relatively simple analytical expressions for

the propensity to consume and the steady-state age profiles for consumption, human

wealth, and financial assets. In the remainder of the sectionwe show that the piece-

wise linear and Gompertz-Makeham models both give rise to bell-shaped age profiles

of financial assets (Modigliani’s life-cycle pattern).

In Section 4 we compute and visualize the effects on the key variables of three

typical macroeconomic shocks affecting the small open economy, namely a balanced-

budget spending shock, a temporary tax cut (Ricardian equivalence experiment), and

an interest rate shock. We compare and contrast the results obtained for the Blanchard

and piece-wise linear models. In the second part of Section 4we also present the

welfare effects associated with the shocks and demonstratethat the piece-wise linear

model may give rise to non-monotonic welfare effects on existing generations, some-

thing which is impossible in the Blanchard case. We concludeSection 4 by showing

that the two models also give rise to significantly differentimpulse-response functions

for theaggregatevariables (especially for asset holdings)—the heterogeneity does not

“wash out” in the aggregate.

Finally, in Section 5 we mention a number of possible applications of and exten-

sions to the model and draw some conclusions. The paper is concluded with a brief

Appendix containing the main derivations and proofs.
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2 The model

2.1 Households

2.1.1 Individual consumption

From the perspective of birth, the expected lifetime utility of a household is given by:

Λ(v, v) ≡
∫ ∞

v
[1 − Φ(τ − v)] ln c̄(v, τ)eθ(v−τ)dτ, (2.1)

wherev is the birth date,̄c (v, τ) is consumption of a vintage-v agent at timeτ (≥ v),

andθ is the constant pure rate of time preference (θ > 0). Intuitively, 1 − Φ(τ − v)

is the probability that an agent born at timev is still alive at timeτ (at which time

the agent’s age isτ − v). The instantaneousmortality rate(or death probability) of a

household of ages is given by the hazard rate of the stochastic distribution ofthe date

of death:

m (s) ≡
φ (s)

1 − Φ (s)
, (2.2)

whereφ (s) andΦ (s) denote, respectively, the density and distribution (or cumulative

density) functions. These functions exhibit the usual properties, i.e.φ (s) ≥ 0 and

0 < Φ (s) < 1 for s ≥ 0. Since, by definition,Φ′ (s) = φ (s) andΦ (0) = 0, it

follows that the first term on the right-hand side of (2.1) canbe simplified to:7

1 − Φ (τ − v) = e−M(τ−v), (2.3)

whereM (τ − v) is related to the mortality rate according to:8

M (τ − v) ≡
∫ τ−v

0
m (s) ds. (2.4)

By using (2.3) in (2.1) we find that the utility function of a newborn agent can be

written as:

Λ(v, v) ≡
∫ ∞

v
ln c̄(v, τ)e−[θ(τ−v)+M(τ−v)]dτ. (2.5)

As was pointed out by Yaari (1965), future felicity is discounted both because of pure

time preference (asθ > 0) and because of life-time uncertainty (asM (τ − v) > 0).9

7All derivations are documented in a separate Mathematical Appendix (see Heijdra and Romp, 2005).

Some key results are derived in a brief Appendix to the paper.
8The functionM (s) is aprimitive of m (s) if M ′ (s) = m (s) for everys in the relevant interval.

The indefinite integral is then
R

m (s) = M (s) + C, whereC is some constant which drops out when

the integral is evaluated for a particular interval,s0 ≤ s ≤ s1.
9Yaari (1965, p. 143) attributes the latter insight to Fisher(1930, pp. 216-217).
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From the perspective of some later time periodt, the utility function of the agent

born at timev takes the following form:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t
ln c̄ (v, τ) e−[θ(τ−t)+M(τ−v)]dτ, (2.6)

where the discounting factor due to life-time uncertainty (M (τ − v)) depends on the

ageof the household at timeτ .10 The household budget identity is given by:

˙̄a (v, τ) = [r + m (τ − v)] ā (v, τ) + w̄ (τ) − z̄ (τ) − c̄ (v, τ) , (2.7)

whereā (v, τ) is real financial wealth,r is the exogenously given (constant) world rate

of interest,w̄ (τ) is the wage rate, and̄z (τ) is the lump-sum tax (the latter two vari-

ables are assumed to be independent of age). Labour supply isexogenous and each

household supplies a single unit of labour. As usual, a dot above a variable denotes that

variable’s time rate of change, e.g.˙̄a (v, τ) ≡ dā(v, τ)/dτ . Following Yaari (1965)

and Blanchard (1985), we postulate the existence of a perfectly competitive life in-

surance sector which offers actuarially fair annuity contracts to the households. Since

household age is directly observable, the annuity rate of interest faced by a house-

hold of ageτ − v is equal to the sum of the world interest rate and the instantaneous

mortality rate of that household.

Abstracting from physical capital, financial wealth can be held in the form of do-

mestic government bonds (d̄ (v, τ)) or foreign bonds (̄f (v, τ)).

ā (v, τ) ≡ d̄ (v, τ) + f̄ (v, τ) . (2.8)

The two assets are perfect substitutes in the households’ portfolios and thus attract the

same rate of return.

In the planning periodt, the household chooses paths for consumption and finan-

cial assets in order to maximize lifetime utility (2.6) subject to the flow budget identity

(2.7) and a solvency condition, taking as given its initial level of financial assets̄a(v, t).

10The appearance of the termeM(t−v) in front of the integral is a consequence of the fact that

the distribution of expected remaining lifetimes is not memoryless in general. Blanchard (1985) uses

the memoryless exponential distribution for whichM (s) = µ0s (whereµ0 is a constant) and thus

M (t − v) − M (τ − v) = −M (τ − t). Equation (2.6) can then be written in a more familiar format

as:

Λ(v, t) ≡

Z
∞

t

ln c̄ (v, τ ) e−(θ+µ0)(τ−t)dτ.
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The household optimum is fully characterized by:

˙̄c (v, τ)

c̄ (v, τ)
= r − θ, (2.9)

∆ (u, θ) c̄ (v, t) = ā (v, t) + h̄ (v, t) , (2.10)

h̄ (v, t) ≡ eru+M(u)

∫ ∞

u
[w̄ (s + v) − z̄ (s + v)] e−[rs+M(s)]ds (2.11)

whereu ≡ t − v is theageof the household in the planning period and∆ (u, λ) is

defined in general terms as:

∆ (u, λ) ≡ eλu+M(u)

∫ ∞

u
e−[λs+M(s)]ds, (for u ≥ 0, λ > 0). (2.12)

Equation (2.9) is the consumption Euler equation, relatingthe optimal time profile

of consumption to the difference between the interest rate and the pure rate of time

preference. The instantaneous mortality rate does not feature in this expression be-

cause households fully insure against the adverse effects of lifetime uncertainty (Yaari,

1965). In order to avoid having to deal with a taxonomy of different cases, we restrict

attention in the remainder of this paper to the case of a nation populated by patient

agents, i.e.r > θ.11 Equation (2.10) shows that consumption in the planning period is

proportional to total wealth, consisting of financial wealth (ā (v, t)) and human wealth

(h̄ (v, t)). The proportionality factor is obtained by evaluating (2.12) for λ = θ.12

Clearly,∆ (u, θ) depends only on the household’s age in the planning period and not

on time itself. For future reference, Lemma 1 establishes some important properties

of the ∆ (u, λ) function. Finally, human wealth is defined in (2.11) and represents

the market value of the unit time endowment, i.e. the presentvalue of after-tax wage

income, using the annuity rate of interest for discounting purposes. Unless after-tax

wage income is time-invariant, human wealth depends on bothtime and on the house-

hold’s age in the planning period.

Lemma 1 Let ∆ (u, λ) be defined as in (2.12) and assume that the mortality rate is

non-decreasing, i.e.m′ (s) ≥ 0 for all s ≥ 0. Then the following properties can be

established for∆ (u, λ): (i) decreasing inλ, ∂∆ (u, λ) /∂λ < 0; (ii) non-increasing

in household age,∂∆ (u, λ) /∂u ≤ 0; (iii) upper bound,∆ (u, λ) ≤ 1/ [λ + m (u)];

(iv) ∆ (u, λ) > 0 for u < ∞; (v) for λ → ∞, ∆ (u, λ) → 0.

Proof: see Appendix.

11The results for the other cases (withr < θ or r = θ) are easily deduced from our mathematical

expressions.
12As we demonstrate below,∆ (u, λ) plays a very important role in the model. Evaluated forλ = θ,

1/∆ (u, θ) represents the marginal (and average) propensity to consume out of total wealth.
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2.1.2 Demography

In order to allow for non-zero population growth, we employ the analytical framework

developed by Buiter (1988) which distinguishes the instantaneous mortality ratem (s)

and the birth rateb (> 0) and thus allows for net population growth or decline. The

population size at timet is denoted byL(t) and the size of a newborn generation is

assumed to be proportional to the current population:

L(v, v) = bL(v). (2.13)

The size of cohortv at some later timeτ is:

L (v, τ) = L (v, v) [1 − Φ (τ − v)] = bL (v) e−M(τ−v), (2.14)

where we have used (2.3) and (2.13). The aggregate mortalityrate,m̄, is defined as:

m̄L (t) =

∫ t

−∞
m (t − v) L (v, t) dv, (2.15)

and it is assumed that̄m is constant (see also below). Despite the fact that the expected

remaining lifetime of each individual is stochastic, thereis no aggregate uncertainty in

the economy. In the absence of international migration, thegrowth rate of the aggre-

gate population,n, is equal to the difference between the birth rate and the aggregate

mortality rate, i.e.n ≡ b − m̄. It follows thatL (v) = A0e
nv, L (t) = A0e

nt and

thusL (v) = L (t) e−n(t−v). Using this result in (2.14) we obtain the generational

population weights:

l (v, t) ≡
L (v, t)

L (t)
= be−[n(t−v)+M(t−v)], t ≥ v. (2.16)

The key thing to note about (2.16) is that the population proportion of generationv at

time t only depends on the age of that generation and not on time itself.

2.1.3 Per capita household sector

Per capita variables are calculated as the integral of the generation-specific values

weighted by the corresponding generation weights. For example, per capita consump-

tion, c(t), is defined as:

c(t) ≡
∫ t

−∞
l(v, t)c̄(v, t)dv, (2.17)

wherel (v, t) and c̄(v, t) are defined in, respectively, (2.16) and (2.10) above. Exact

aggregation of (2.10) is impossible because both∆ (u, θ) and the wealth components,
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ā (v, t) andh̄ (v, t), depend on the generations indexv. The “Euler equation” for per

capita consumption can nevertheless be obtained by differentiating (2.17) with respect

to time and noting (2.9) and (2.16):

ċ (t) = bc̄ (t, t) + (r − θ) c (t) −
∫ t

−∞
[n + m (t − v)] l (v, t) c̄ (v, t) dv.

(2.18)

Per capita consumption growth is boosted by the arrival of new generations who start

to consume out of human wealth (first term on the right-hand side) and by individual

consumption growth (second term). The third term on the right-hand side of (2.18)

corrects for population growth and (age-dependent) mortality.13

Per capita financial wealth is defined asa(t) ≡
∫ t
−∞ l(v, t)ā(v, t)dv. By differen-

tiating this expression with respect tot we obtain:

ȧ (t) = (r − n) a (t) + w (t) − z (t) − c (t) , (2.19)

wherew (t) = w̄ (t), z (t) = z̄ (t), and we have used equation (2.7) and noted the fact

that newborns are born without financial assets (ā (t, t) = 0). The interest rate net of

population growth is assumed to be positive, i.e.r > n. As in the standard Blanchard

model, annuity payments drop out of the expression for per capita asset accumulation

because they constitute transfers (via the life insurance companies) from those who die

to agents who stay alive.

Finally, per capita human wealth is defined ash(t) ≡
∫ t
−∞ l(v, t)h̄(v, t)dv so that

ḣ (t) can be written as:

ḣ (t) = (r − n)h (t) + bh̄ (t, t) − w (t) + z (t) . (2.20)

In the standard Buiter model per capita human wealth is the same for all generations

and accumulates at the constant annuity rate of interest (r + m). In contrast, in the

present model the effects of the net interest rate (r − n) and the birth rate (b) are

separate, with the former applying to per capita human wealth and the latter applying

to the human wealth of newborn generations.

13If the mortality rate were constant, as in Blanchard (1985) and Buiter (1988), thenn ≡ b − m and

equation (2.18) would simplify to:

ċ (t) = (r − θ) c (t) − b [c (t) − c (t, t)] .
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2.2 Firms, government, and foreign sector

Following Buiter (1988) we keep the production side of the model as simple as possible

by abstracting from physical capital altogether.14 Competitive firms face the technol-

ogyY (t) = k (t) L (t) wherek (t) is an exogenous productivity index andL (t) is the

aggregate supply of labour. The real wage rate is then given by w (t) = k (t).

The government budget identity is given by:

ḋ(t) = (r − n) d(t) + g (t) − z (t) , (2.21)

whered (t) ≡
∫ t
−∞ l(v, t)d̄(v, t)dv is the per capita stock of domestic bonds, andg (t)

is per capita government goods consumption. The governmentsolvency condition is

lim
τ→∞

d(τ) e(r−n)(t−τ) = 0, so that the intertemporal budget constraint of the govern-

ment can be written as:

d(t) =

∫ ∞

t
[z (τ) − g (τ)] e(r−n)(t−τ)dτ. (2.22)

To the extent that there is outstanding debt (positive left-hand side), it must be exactly

matched by the present value of current and future primary surpluses (positive right-

hand side), using the net interest rate (r − n) for discounting purposes.

Finally, the evolution of the per capita stock of net foreignassets is explained by

the current account:

ḟ(t) = (r − n) f(t) + w(t) − c(t) − g(t), (2.23)

where we have usedy (t) ≡ Y (t) /L (t) = w (t) and wheref(t) ≡
∫ t
−∞ l(v, t)f(v, t)dv

denotes the per capita stock of foreign bonds in the hands of domestic households.

2.3 Steady-state equilibrium

It is relatively straightforward to characterize the steady state of the model. The steady-

state values for all variables are designated by means of a hat overstrike, e.g. ĉ is

steady-state per capita consumption. Where no confusion can arise, the time index is

also suppressed. For a constant level of technology,k (t) = k̂, the steady-state wage

rate is time-invariant, i.e.w (t) = ŵ = k̂. If the government variables are also held

constant, so thatz (t) = ẑ, g (t) = ĝ, andd (t) = d̂ ≡ (ẑ − ĝ) / (r − n), then the

14In the context of a small open economy with firms facing convexinvestment adjustment costs, our

approach does not entail much loss of generality because theinvestment and savings systems decouple

in that case. See Matsuyama (1987), Bovenberg (1993, 1994),Heijdra and Meijdam (2002), and Heijdra

and van der Ploeg (2002, pp. 571-581).
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economy settles into a unique saddle-point stable steady-state equilibrium in which

c (t) = ĉ, h (t) = ĥ, a (t) = â, andf (t) = f̂ .15

In the steady-state equilibrium, all individual householdvariables can be rewritten

solely in terms of their age,u ≡ t − v (as is also the case outside the steady state for

∆ (u, θ)—see equation (2.12) above). By substitutingw (t) = ŵ andz (t) = ẑ into

(2.11) we find the expression for age-dependent human wealth:

ˆ̄h (u) ≡ ˆ̄h (v, t) = [ŵ − ẑ]∆ (u, r) , (2.24)

where∆ (u, r) is obtained from (2.12) by settingλ = r. Since a newborn has no

financial wealth, it follows from (2.10) that̄̂c (v, v) = ˆ̄h (0) /∆ (0, θ). The Euler

equation (2.9) shows that̄̂c (v, t) = ˆ̄c (v, v) e(r−θ)u so that, by combining the two

results, we obtain:

ˆ̄c (u) ≡ ˆ̄c (v, t) =
ˆ̄h (0)

∆ (0, θ)
e(r−θ)u. (2.25)

Steady-state asset holdings can be computed by using (2.10):

ˆ̄a (u) = ∆ (u, θ) ˆ̄c (u) − ˆ̄h (u) . (2.26)

The steady-state per capita variables can be expressed in terms of individual vari-

ables. Using equation (2.16), (2.17) and (2.25) we write steady-state per capita con-

sumption as:

ĉ =
ˆ̄h (0)

∆ (0, θ)

∫ ∞

0
be−[(θ+n−r)u+M(u)]du

=
ˆ̄h (0)

∆ (0, θ)
b∆ (0, θ + n − r) . (2.27)

From (2.20) we find the expression for steady-state per capita human capital:

ĥ =
ŵ − ẑ − bˆ̄h (0)

r − n
=

ŵ − ẑ

r − n
[1 − b∆ (0, r)] , (2.28)

where we have used equation (2.24) (forv = 0) to get to the second expression. Fi-

nally, from equation (2.19) and the per capita version of (2.8) we obtain the expressions

for steady-state per capita financial assets:

â ≡ d̂ + f̂ =
ĉ + ẑ − ŵ

r − n
. (2.29)

15Saddle-point stability follows trivially from the fact that all agents in the economy satisfy their re-

spective solvency conditions. Consumption and human wealth are forward-looking (jumping) variables

whilst total financial assets and net foreign assets are predetermined (sticky) variables.
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Armed with these expressions it is straightforward to derive the long-run effects of

various shocks impacting the economy.16 A balanced-budget increase in government

consumption (dẑ = dĝ > 0) leads to a decrease in steady-state human wealth and

consumption for all cohorts:

dˆ̄h (u)

dẑ
= −∆ (u, r) < 0, (2.30)

dˆ̄c (u)

dẑ
=

dˆ̄h (0)

dẑ

e(r−θ)u

∆ (0, θ)
< 0. (2.31)

Obviously, per capita steady-state consumption and human wealth also fall (see equa-

tions (2.27) and (2.28)). It follows from (2.29) that per capita steady-state financial

assets decline because consumption is crowded out more thanone for one:

dâ

dẑ
=

1

r − n

[
1 +

dĉ

dẑ

]
< 0. (2.32)

Finally, since government debt is unchanged (by design) it follows from the first equal-

ity in (2.29) thatdf̂/dẑ = dâ/dẑ. The balanced-budget increase in government con-

sumption thus leads to a long-run reduction in financial assets and a reduction in net

imports, just as in the standard open-economy Blanchard (1985, p. 230-231) model

with r > θ. (An decrease in steady-state productivity (dŵ < 0) has the same effects

on ˆ̄h (u), ˆ̄c (u), ĉ, â, andf̂ as a balanced-budget increase in government consumption.)

A long-run tax-financed increase in public debt ((r − n) dd̂ = dẑ > 0) leads to

a decrease in generation-specific and per capita steady-state consumption and human

wealth (see (2.30)-(2.31)). It follows from (2.29) that:

(r − n)
df̂

dẑ
≡ − (r − n)

dd̂

dẑ
+

dĉ

dẑ
+ 1 =

dĉ

dẑ
< −1. (2.33)

As in the standard Blanchard model (withr > θ), government debt more than displaces

foreign assets in the households’ portfolios (1985, p. 242).

An increase in the world interest rate leads to higher discounting of after-tax wages

and a reduction in both individual and aggregate human wealth:

dˆ̄h (u)

dr
= [ŵ − ẑ]

∂∆ (u, r)

∂r
< 0, (2.34)

dĥ

dr
=

∫ ∞

0
l(u)

dˆ̄h(u)

dr
du < 0, (2.35)

where we have used Lemma 1(i) to establish the sign in (2.34).By using (2.25) we

find for the interest elasticity of individual consumption:

r

ˆ̄c (u)

dˆ̄c (u)

dr
= ru +

dˆ̄h (0)

dr

r

ˆ̄h (0)
= ru +

d∆ (0, r)

dr

r

∆ (0, r)
, (2.36)

16The impact and transitional effects of these shocks are studied in Section 4 of the paper.
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where we have used (2.24) to get to the second expression. Theeffect on consumption

depends on the age of the household. Clearly, for newborns (u = 0) consumption

falls because of the drop in the level of human wealth. Since the interest elasticity of

∆ (0, r) is finite, however, it follows from (2.36) that for sufficiently old households

consumption will rise. The negative level effect on consumption (operating via human

wealth) is dominated by the positive growth effect (operating via the Euler equation

(2.9)).

The effect on aggregate consumption is thus also ambiguous in general. If the

hazard rate is very high around and after the point where the effect on individual con-

sumption becomes positive, there will be very few people forwhom consumption ac-

tually rises. The effect on aggregate consumption is negative for such demographies.

In contrast, if a lot of people are still alive after the positive growth effect dominates

the initial negative wealth effect, then the weight of this positive effect dominates and

the aggregate effect is positive.

The effect on individual financial asset holdings can be deduced from (2.26):

dˆ̄a (u)

dr
= ∆ (u, θ)

dˆ̄c (u)

dr
−

dˆ̄h (u)

dr
> 0, (for u > 0), (2.37)

anddˆ̄a (0) /dr = 0 (newborns possess no assets). Despite the ambiguity of the sign

of dˆ̄c (u) /dr, individual assets must increase for all generations.17 As a result, per

capita financial assets also increase unambiguously. In theabsence of pre-existing

government debt (̂z = ĝ and d̂ = 0), per capita net foreign assets increases by the

same amount as total financial assets, i.e.dâ/dr = df̂/dr > 0).

3 Demography

As was stressed by Blanchard (1985, p. 223), exact aggregation of the consump-

tion function is generally impossible because both the propensity to consume (our

1/∆ (u, θ)) and the wealth components (ourā (v, t) and h̄ (v, t)) are age dependent.

Blanchard cuts this Gordian knot by assuming the mortality rate to be constant, i.e.

m (s) = µ0 > 0 andM (u) = µ0u. The advantages of his approach are its simplicity

and its undoubted flexibility—the expected remaining planning horizon is1/µ0 so, by

letting µ0 → 0, the infinite-horizon Ramsey model is obtained as a special case. The

main disadvantage of the Blanchard approach is that it cannot capture the life-cycle

17This result follows from the fact thatdˆ̄c (u) /dr is smallest foru = 0 at which pointdˆ̄a (u) /dr = 0.

As u rises,dˆ̄c (u) /dr increases. Sincedˆ̄h (u) /dr is negative for allu, the inequality in (2.37) follows

readily.
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aspect of consumption behaviour. In addition, the perpetual youth assumption is of

course easily refuted empirically as it runs foul of the Gompertz-Makeham Law of

mortality (see Preston et al. (2001) and below).

In the context of a small open economy, however, it is quite feasible to incorporate

a realistic demographic structure because the aggregationstep is not necessary. The

interest rate is determined in world capital markets and is exogenous to the small open

economy. Conditional on the world interest rate, the factorprice frontier pins down

the real wage rate (which may also depend on an exogenous productivity index). With

factor prices determined, the macroeconomic equilibrium can be studied directly at the

level of individual households.

3.1 Estimates

In this paper we estimate the survival function (1 − Φ(τ − v)) by using actual US

projections on expected survival rates for people born in 2001 (Arias et al., 2003,

p. 26, Table 6, Column 3). Surviving fractions are reported for 5-year intervals and at

birth. Denoting the actual expected surviving fraction up until ageui of the people born

in 2001 byS(ui), we can estimate the parameters of a given parametric distribution

function by means of non-linear least squares. Denoting theparameter vector byµ,

the model to be estimated is:

S(ui) = 1 − Φ(ui, µ) + εi = e−M(ui,µ) + εi, (3.1)

whereM(ui) =
∫ ui

0 m(s, µ)ds andεi is the stochastic error term. The estimates are

reported in Table 1 for various specifications of the mortality process. In that table,

σ̂ is the estimated standard error of the regression, the t-statistics are given in round

brackets below the estimates, and ̂1 − Φ (100) represents the estimated proportion of

centenarians. Finally,̂n (b) is the estimated population growth rate (in percent per

annum), conditional on a given birth rateb (which is held constant at1.5% per annum).

The growth rate of the population depends on the form of the mortality process and is

computed by combining (2.15) and (2.16) and simplifying:

b =
1

∆ (0, n)
. (3.2)

For a given birth rateb, equation (3.2) implicitly defines the coherent solution for n

and thus for the aggregate mortality rate,m̄ ≡ b − n.18

18For a constant mortality ratem, we have1/∆ (0, n) = n + m so that (3.2) impliesn = b − m.

Blanchard (1985) setsb = m so thatn = 0 (constant population).
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We consider four different functional forms for the instantaneous mortality rate and

the associatedM (ui) functions. The Blanchard model based on aconstantmortality

rate (model 1) yields an estimated mortality rate of 0.7% perannum and displays the

worst fit of all cases considered–the estimated standard error is 0.23 which far exceeds

the standard errors for the other models. Model 2 is based on the notion that the

mortality rate increases with age. Thislinear-in-agemodel fits a little better than the

constant model but it predicts anegativemortality rate for newborns. Constraining

the constant to zero, the fit deteriorates somewhat though itis still better than that of

the constant model. Models 1 and 2 both spectacularly overestimate the proportion of

centenarians (almost 50% and 34% for models 1 and 2 respectively).

Model 3 postulates that the mortality rate is constant up to acertain agēu, after

which it increases linearly with age. The so-calledpiece-wise linear(PWL hereafter)

model fits much better than the first two models. The estimatedstandard error is 0.03

and the parameters are highly significant. Interestingly, the model predicts quite realis-

tically that mortality starts to increase with age only after households reach the critical

age of about 61 years. Finally, for model 4 the mortality ratefollows the Gompertz-

Makeham (GM hereafter) process. The GM model clearly displays the best fit of all

cases considered–the estimated standard error is only one-sixteenth that of the next-

best (PWL) model and all coefficients are highly significant.19 Both models 3 and 4

yield reasonable predictions for the proportion of centenarians.

In the top panel of Figure 1 we illustrate the data points (stars) as well as the es-

timated survival functions for the different models. The poor fit of models 1 and 2 is

confirmed–the surviving fraction is underestimated up to about age 80 and overesti-

mated thereafter. Models 3 and 4 both track the data quite well. The key difference

between these models lies in their predicted mortality rates and expected remaining

lifetimes that are plotted in, respectively, the middle andbottom top panels of Figure

1. After about age 88, the mortality rate is steepest for the GM model. It is this non-

linear feature of the mortality process that the PWL model fails to capture adequately.

The expected remaining lifetimes for the GM and PWL models are, however, quite

similar.

3.2 Steady-state profiles

In Figure 2 we visualize (for all estimated models) the steady-state age profiles for

the propensity to consume (1/∆ (u, θ)), human wealth (̄̂h (u)), consumption (̄̂c (u)),

19This good fit may be a consequence of the fact that demographers often use the GM model to generate

demographic predictions especially at high ages. See Preston et al. (2001, p. 192) on this point.
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and financial assets (ˆ̄a (u)). The analytical expressions for these variables are given

in, respectively, equations (2.12), (2.24), (2.25), and (2.26). Especially the∆ (u, λ)

function (defined in (2.12)) plays a key role in the model. Formodels 1-3, closed-

form solutions for∆ (u, θ) can be derived. Indeed, for model 1 (the Blanchard case) it

reduces to∆ (u, θ) = 1/ (θ + µ0) and is thus independent of the age of the household.

For model 2, the solution is:

∆ (u, θ) ≡
√

π

2µ1
erfcx

(
µ1u +

θ + µ0

2µ1

)
, (3.3)

whereerfcx(x) is the so-called scaled complementary error function (Kreyszig, 1988,

p. A 78). The properties of this function and its close relatives are covered in Lemma

2. Sinceerfcx (u) is a downward sloping function of the household’s age, it follows

from (3.3) that the marginal propensity to consume,1/∆ (u, θ), increases with age.

This is confirmed in the top left-hand panel of Figure 2.

For the PWL model the expression for∆ (u, θ) features two branches, depending

on whether the household is still “young” (0 < u < ū) or has entered “old age”

(u > ū):

∆ (u, θ) =





1 − e−(θ+µ0)(ū−u)

θ + µ0

+ e−(θ+µ0)(ū−u)

√
π

2µ1
erfcx

(
θ + µ0

2µ1

) for 0 < u < ū

√
π

2µ1
erfcx

(
µ1 (u − ū) + θ+µ0

2µ1

)
for u ≥ ū

(3.4)

Young households are still on the flat part of the mortality curve and for them∆ (u, θ)

can be written as a weighed average of1/ (θ + µ0) and∆ (ū, θ), with respective ex-

ponential weights1 − e−(θ+µ0)(ū−u) ande−(θ+µ0)(ū−u). Intuitively, ū − u measures

how youngsuch households are, i.e. how far away they are from enteringold age.20

For old households, whoseu exceeds̄u, the lower branch of (3.4) is relevant. For such

households, it mattershow oldthey are, i.e. how far along in old age they are as mea-

sured byu − ū. It follows readily from (3.4) that∆ (u, θ) declines with age, i.e. the

marginal propensity to consume increases with age. This pattern is confirmed in the

top left-hand panel of Figure 2.

20Obviously, if old age were to set in only after a very long time(ū → ∞), then one is back in the

standard Blanchard case with∆ (u, θ) = 1/ (θ + µ0) indefinitely.
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Lemma 2 The error function (erf (x)), complementary error function (erfc (x)), and

scaled complementary error function (erfcx (x)) are defined as follows.

erf(x) =
2
√

π

∫ x

0
e−t2dt,

erfc (x) ≡
2
√

π

∫ ∞

x
e−t2dt = 1 − erf(x),

erfcx (x) ≡ ex2
erfc(x).

For non-negative values ofx, these functions have the following properties:

(i) 0 < erf(x), erfc(x), erfcx < 1 for 0 < x ≪ ∞.

(ii) erf(0) = 1 − erfc(0) = 1 − erfcx(0) = 0.

(iii) limx→∞ erf(x) = 1, limx→∞ erfc(x) = limx→∞ erfcx(x) = 0.

(iv) erf ′(x) > 0, erfc′(x) < 0, erfcx′(x) < 0.

(v) erfcx (x) ≈ 1/ (x
√

π) for largex.

For the GM model no closed-form solutions for∆ (u, θ) can be obtained, and

numerical integration techniques must be used. As is shown in the top left-hand panel

of Figure 2, the marginal propensity to consume for these models closely tracks the

solution for the PWL model up to about ageu = 80. Thereafter the non-linearity of

the mortality rate starts to cut in and1/∆ (u, θ) increases more rapidly than is implied

by the PWL model.

In the top right-hand panel of Figure 2 the age profile for steady-state human wealth

(ˆ̄h (u), defined in (2.24) above) is plotted for the different mortality models.21 For the

standard Blanchard model the annuity rate of interest is age-independent because the

mortality rate is constant. As a result, human wealth is age-independent also. For the

linear model the annuity rate of interest rises with age so that discounting of after-tax

wage income is heavier the older the household is. Human wealth gradually falls with

age as a result. Indeed, it follows from (2.24) thatˆ̄h (u) is proportional to∆ (u, r)

which is downward sloping inu for any demography with a non-decreasing mortality

rate (see Lemma 1).

21As parameter values we usedb = 0.015, θ = 0.035, r = 0.04, w = 5, andz = 0. The implied

values for the population growth rate (n) are reported in Table 1. The simulation results are quite robust

for different parameter values.
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The pattern for human wealth looks rather similar for the remaining models 3 and

4. Exploiting the proportionality between̄̂h (u) and∆ (u, r), we find that the slope of

the human wealth profile is given by:

dˆ̄h (u)

du
= [ŵ − ẑ]

[
(r + m (u)) ∆ (u, r) − 1

]
< 0, (3.5)

where the term in square brackets on the right-hand side is equal to ∂∆ (u, r) /∂u.

During the early phase of life, the annuity rater + m (u) is relatively low,∆ (u, r) is

relatively high, and human wealth falls only slightly as young agents are still on the

flat part of the mortality curve. At high ages,r + m (u) is high,∆ (u, r) is low, and

dˆ̄h (u) /du is again relatively low. The PWL and GM models both give rise to inverse-

S-shaped profiles for human wealth with a point of inflexion located at the approximate

age of 60. Only after about age 80 do the paths implied by the two models diverge

somewhat, with the GM model showing the sharpest decline.

In the bottom left-hand panel of Figure 2 the age profile of steady-state consump-

tion (ˆ̄c (u)) is visualized. As follows readily from (2.25), the slope ofthe consumption

age profile is the same for all models. Interestingly, the estimated mortality models all

predict very similar steady-state consumption paths (in level terms).

Finally, in the bottom right-hand panel of Figure 2 the age profile of steady-state

financial assets (̄̂a (u) as defined in (2.26) above) is visualized. For both models 1

and 2, financial assets rise with age. Matters are vastly different for models 3 and 4.

For these models financial asset holdings follow the classiclife-cycle pattern stressed

by Modigliani and co-workers. i.e. households save up untilmiddle age after which

dissaving takes place. Again the most pronounced dissavingeffect takes place for the

GM model. Despite the fact that very old agents have hardly any financial assets left,

the annuity rate of interest is so high that a high consumption level can nevertheless be

maintained.

The upshot of the discussion so far is as follows. The constant and linear mod-

els track the demographic data very poorly and predict unrealistic age patterns for the

consumption propensity, human wealth, and financial wealth. In contrast, the PWL

and GM models track the data rather well and predict the relevant life-cycle patterns.

While the GM model slightly outperforms the PWL model, it carries a (minor) dis-

advantage in that it can only be analyzed numerically, whereas the PWL model can

be solved analytically in terms of well-known functions. Indeed, the salient features

of the Gompertz-Makeham Law seem to be approximated rather well by means of a

piece-wise linear mortality rate. A further theoretical advantage of the PWL model is

that it enables a conceptual distinction between youth and old age (just as is possible
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in the two-period Diamond (1965) model).

In Figure 3 we visualize the age profiles for the different variables at the cohort

level. Cohort-level variables are obtained by multiplyingindividual outcomes for

members of a given cohort by the relative population size of that cohort, e.g. for

human wealth we have:

Ĥ (u) ≡ l (v, t) ˆ̄h (u) = [ŵ − ẑ] Ω (u, r) , (3.6)

wherel (v, t) is defined in (2.16) andΩ (u, λ) is given by:

Ω(u, λ) = be−nu−M(u)∆(u, λ)

= be(λ−n)u

∫ ∞

u
e−λτ−M(τ)dτ. (3.7)

Like ∆ (u, λ), theΩ (u, λ)-term depends critically on the parameters of the mortality

process. In addition, however,Ω (u, λ) also depends on the birth rateb and the rate of

population growthn because these parameters affect the population proportions of the

cohorts.

The cohort-level values for consumption and financial wealth are defined as fol-

lows:

Ĉ(u) ≡ l (v, t) ˆ̄c (u) =
Ĥ(0)

∆(0, θ)
e(r−θ−n)u−M(u), (3.8)

Â(u) ≡ l (v, t) ˆ̄a (u) = ∆(u, θ)Ĉ(u) − Ĥ(u). (3.9)

In the top right-hand panel of Figure 3 cohort-level human wealth is visualized for the

different mortality models. For all models, cohort-level human wealth falls with the

age of the cohort. This is not surprising since individual human wealth either stays

the same (model 1) or falls (models 2-4) with age, and the population proportion falls

with age (see top left-hand panel). As was the case for individual human wealth, the

results for models 3-4 are very similar. This similarity also holds for the cohort-level

results for consumption (bottom left-hand panel) and financial assets (bottom right-

hand panel). Note that even for models 1 and 2,Â (u) ultimately goes to zero for very

old household as the decline in the population share starts to dominate the increase in

individual asset holdings.

4 Visualizing Shocks with Realistic Demography

In this section we compute and visualize the effects on the different variables of a

number of prototypical shocks affecting a small open economy.22 The analytical ex-
22These shocks do not have to be infinitesimal as no linearization techniques have been used.
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pressions for the general demographic model are reported inthe Appendix to this pa-

per. To cut down on the number of illustrations, however, we restrict attention in this

section to the visualization of the main contrasts between the standard Blanchard case

and the PWL model. As was demonstrated above, the latter model captures the actual

(expected) demography for the United States rather well.

4.1 Shocks

4.1.1 Balanced-budget fiscal policy

The first shock consists of an unanticipated and (believed tobe) permanent increase in

government consumption which is financed by means of lump-sum taxes (i.e.dĝ =

dẑ > 0). The effects of this shock on individual human wealth (h̄ (v, t)) and financial

assets (̄a (v, t)) are illustrated in Figure 4. In that figure, the left-hand panels depict the

Blanchard case whilst the right-hand panels illustrate theresults for the PWL model.

In the Blanchard case, the increase in the lump-sum tax causes a once-off decrease

in human wealth which is the same for all existing and future generations. In stark

contrast, in the PWL model the fall in human wealth depends both on time and on

the generations index. The top right-hand panel of Figure 4 shows the effects for two

existing households (aged, respectively, 40 and 20 at the time of the shock) and two

future households (born respectively one second and 40 years after the shock). As

a result of the shock there is aonce-off change in the age profile of human wealth.

This profile itself does not depend on time because there is notransitional dynamics in

after-tax wages.

In the bottom two panels of Figure 4 the paths for financial assets are illustrated. In

the Blanchard case these assets rise monotonically over time for each household. The

shock induces a slight kink (at timet = 0) in the profile for each generation. For the

PWL model in the right-hand panel, the crowding-out effect due to the tax increase is

much more visible. The peak in financial asset holdings is higher, the older the existing

household is (compare, for example, the 40 and 20 year old households). The profiles

for the future households born, respectively, in 0 and 40 years time are identical in

shape (Again, this is because of the lack of transitional dynamics in after-tax wages).

4.1.2 Temporary tax cut

The second shock consists of a typical Ricardian equivalence experiment. At impact

the lump-sum tax is reduced and deficit financing is used to balance the budget. As

a result, the stock of government debt gradually increases over time. In order to en-
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sure that government solvency is maintained, the tax is gradually increased over time

and ultimately rises to a level higher than in the initial situation. The shock that is

administered thus takes the following form (fort ≥ 0):

dz (t) = −dz0e
−χt + dẑ[1 − e−χt], (4.1)

where0 < χ ≪ ∞, dz0 > 0, anddẑ = [(r − n) /χ] dz0 > 0. At impact, the lump-

sum taxfalls by dz0 but in the long run itrisesby dẑ. (The long-run effect on public

debt equalsdd̂ = dz0/χ > 0.) In the simulations, the persistence parameter is set

at χ = 0.1 implying that the tax reaches its pre-shock level only afterabout 13 to 14

years.23

The effects on human and financial wealth are illustrated forthe two cases in Figure

5. In the Blanchard case, human wealth is age-independent. It nevertheless features

transitional dynamics because the path of lump-sum taxes istime dependent. Human

wealth increases at impact (because of the tax cut), but during transition it gradually

falls again (because of the gradual tax increase). In the long run, the permanently

higher taxes (needed to finance interest payments on accumulated debt) ensure that

human wealth is less than before the shock.

In the PWL model, the effect on human wealth is both time- and age-dependent. At

impact, all existing households experience an increase in their human wealth because

of the tax cut. For each household, human wealth declines during transition both

because of ageing (gradual increase in the annuity rate of interest) and because the tax

rises over time. For the future household born 40 years afterthe shock, the human

wealth profile is virtually in the steady state again as most of the shock has worn out

by then.

In the bottom panels of Figure 5 the profiles for financial assets are illustrated. In

the Blanchard case the tax cut causes a slight acceleration in asset accumulation at

impact. This kink also occurs for the PWL model in the bottom right-hand right panel.

The PWL case illustrates quite clearly that the Ricardian equivalence experiment re-

distributes resources from distant future generations toward near future and existing

generations. Especially members of the generation born at the time of the shock react

strongly to the tax cut as far as their savings behaviour is concerned. Indeed, their

maximum asset holding peaks at a much higher level than that of 40 year old existing

23We compute time periodt0 such thatdz (t0) = 0. Using (4.1) we find:

t0 = −
1

χ
ln

�
r − n

r − n + χ

�
.

For the piece-wise linear caset0 = 13.2 years whilst for the Blanchard case we findt0 = 14.2 years.
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generations and generations born 40 years after the shock.24

4.1.3 Interest rate shock

The final shock analyzed in this paper consists of an unanticipated and permanent

increase in the world interest rate (i.e.dr > 0 for t ≥ 0). The effects of this shock on

human and financial wealth are illustrated in Figure 6. In theBlanchard case the shock

causes a once-off decrease in age-independent human wealth. The higher annuity rate

of interest leads to stronger discounting of future after-tax wages. For the PWL model

there is a once-off downward shift in the age profile of human wealth. Like the shock

itself, this age profile displays no further transitional dynamics over time.

The bottom panels of Figure 6 illustrate the effects on financial assets. Whilst the

effects for the Blanchard case speak for themselves, those for the PWL model warrant

some further comment. Forfuturegenerations, the age profile of financial assets fea-

tures a once-off upward shift at impact and displays no further transitional dynamics

thereafter. In contrast, forexistinggenerations the time path of assets depends both on

their age and on time. This transitional dynamics is caused by the fact that the con-

sumption path for such generations depends on botht andv separately (see Appendix).

Existing generations are affected by the interest rate hikeboth via their human wealth

and via their accumulated financial assets which attract a higher rate of return after the

shock.25

24The following temporary productivity shock features results that are very simular to those of the

Ricardian tax cut:

dw (t) = dw0e
−ξt, ( for t ≥ 0),

where0 < ξ ≪ ∞ anddw0 > 0. In the simulations (not shown), the persistence parameteris set

at ξ = 0.1, implying a half-life of the adjustment of about(1/ξ) ln 2 = 6.93 years. The equivalency

between the two shocks is not surprising, of course, becausethe temporary wage increases boosts human

wealth just as a temporary tax cut does.
25The bottom right-hand panel of Figure 6 also shows a slightlyunattractive feature of the piece-wise

linear model, namely thatindividual assets start to rise again after about age 100. This is due to the fact

that the mortality rate does not rise sufficiently quickly after about age 85 for that model–see Figure 1.

As a result, human wealth does not fall quickly enough (see Figure 2) and assets start to rise again at high

ages. Figure 3 confims, however, that assets of the oldcohortsapproach zero for the piece-wise linear

model. There are very few centenarians in the piece-wise linear model.
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4.2 Welfare effects

The Blanchard model is often used to investigate the intergenerational welfare effects

of various policy measures.26 In this section we visualize the intergenerational welfare

effects associated with the three shocks studied above. Forexisting households, the

change in welfare from the perspective of the shock periodt = 0 is evaluated (dΛ (v, 0)

for v ≤ 0) whereas for future agents the welfare change from the perspective of their

birth date is computed (dΛ (v, v) for v > 0). As is shown in the Appendix, the welfare

effect for existing agents (v ≤ 0) can be written as:

dΛ(v, 0) = dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ

+ ∆(−v, θ) ln ΓE(v), (for v ≤ 0), (4.2)

where∆ (−v, θ) is defined in equation (2.12) above and whereΓE(v) is defined as:

ΓE(v) ≡
ˆ̄a(−v) + h̄(v, 0)

ˆ̄a(−v) + ˆ̄h(−v)
, (for v ≤ 0). (4.3)

Intuitively, ΓE(v) captures the effect of the impact change in human wealth for existing

generations. The welfare effect consists of two separate components. The first term

on the right-hand side of (4.2) represents theconsumption growth effectand is only

relevant for the world interest rate shock (i.e., ifdr > 0). Individual consumption

growth is equal tor−θ and an increase inr leads to a steeper consumption time profile.

The mortality process exerts a non-trivial influence on the consumption growth effect

via the utility function. The second term on the right-hand side of (4.2) summarizes the

welfare effect of the change in thelevelof consumption caused by the impact change

in human wealth. Thishuman wealth effectis relevant for all shocks and is equal

to the product ofln ΓE(v) (defined in (4.3)) and the inverse propensity to consume

∆ (−v, θ).

The welfare effect for future generations can be written as:

dΛ(v, v) = dr

∫ ∞

0
se−[θs+M(s)]ds + ∆(0, θ) ln ΓF (v), (for v > 0), (4.4)

where∆ (0, θ) is the inverse propensity to consume of a newborn andΓF (v) is defined

as:

ΓF (v) ≡
h̄(v, v)

ˆ̄h(0)
, (for v > 0). (4.5)

26See, for example, Bovenberg (1993, 1994) on capital taxation and investment subsidies, Bettendorf

and Heijdra (2001a, 2001b) on product subsidies and tariffsunder monopolistic competition, and Heijdra

and Meijdam (2002) on government infrastructure. All thesestudies are set in the context of a small open

economy.
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Here,ΓF (v) represents the effect on the human wealth of a future newborn. Just as for

existing generations, the welfare effect for future generations consists of a consump-

tion growth effect (first term on the right-hand side of (4.5)) and a human wealth effect

(second term).

The welfare effects of the different shocks are illustratedin Figure 7. The left-hand

panels present the results for the Blanchard case whilst theright-hand panels visualize

those for the PWL model. The welfare effects of balanced-budget fiscal policy are

illustrated in the top panels. All present and future generations experience a reduction

in human wealth and as a result the welfare effect is negativefor all generations. The

effect is the same for all future generations because there is no transitional dynamics

in human wealth (see above). For existing generations the welfare loss declines with

the age of the generation. The human wealth effect decreaseswith age because both

the inverse propensity to consume (∆(−v, θ)) and the relative importance of human

wealth (ln ΓE(v) in (4.2) above) decline with age. The Blanchard and PWL models

thus givequalitativelysimilar welfare results for the spending shock. A key difference

between the two models concerns the slope of the welfare profile for existing gener-

ations. In the PWL model (right-hand panel) the welfare effect is practically zero for

all generations older than 100 years. In contrast, for the Blanchard case (left-hand

panel) there is still a noticeable welfare effect for 200 year old generations. This low

“generational adjustment speed” of the Blanchard model is also observed for the other

shocks. Intuitively, in the Blanchard case, old generations are not killed off rapidly

enough (see also the top panel of Figure 1).

The middle two panels of Figure 7 illustrate the welfare effects for the Ricardian

tax cut experiment. All existing generations as well as future generations born close

to the time of shock benefit at the expense of more distant future generations. For

future generations the welfare loss is larger the later theyare born. For existing gener-

ations the welfare profile is monotonically decreasing in age for the Blanchard case but

non-monotonic for the PWL model. In the Blanchard case,∆ (−v, θ) = ∆ (0, θ) =

1/ (θ + µ0) is constant andln ΓE (v) declines monotonically with age. In contrast, for

the PWL model,∆ (−v, θ) decreases with age butln ΓE (v) is non-monotonic. In-

deed,ln ΓE (v) is increasing in age for all generations up to about 120 yearsand only

decreases in age thereafter.27 As a result, the welfare profile for existing generations

27Of course, there are virtually no centenarians predicted bythe PWL model so the downward sloping

part of theln ΓE (v) function is practically irrelevant. In contrast, the estimated Blanchard demography

predicts that about 50 percent of newborns will still be alive at age 100. See the bottom panel of Figure

1.
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displays a bump around the age of 60 in the middle right-hand panel of Figure 7. At

that point, the drop in∆ (−v, θ) just matches the increase inln ΓE (v).

In the bottom two panels of Figure 7 the welfare effects for the interest rate shock

are illustrated. Since the shock induces no transitional dynamics in the age profile

of human wealth for future generations, the welfare effect is the same for all future

generations in both models. For existing generations the welfare effect increases with

age in the Blanchard model, but is non-monotonic for the PWL model. For an interest

shock both the consumption growth effect and the human wealth effect are relevant.

The shock induces a decrease inln ΓE (v) which falls with age in both models. In

the Blanchard case, the consumption growth effect is constant (and positive) for all

generations. In contrast, for the PWL model, the consumption growth effect is positive

and constant for future generations, but falling in age for existing generations. As a

result, the total effect on welfare displays a bump around the age of 25 for the PWL

model (see the bottom right-hand panel of Figure 7).

4.3 Aggregate effects

As was pointed out above, Blanchard (1985) assumes a constant mortality rate in order

to allow for exact aggregation of the consumption function.With the more general

mortality processes considered in this paper, only numerical aggregation is possible.

This subsection visualizes theaggregateeffects on the key variables of the three shocks

considered above. To what extent do the aggregate results predicted by the Blanchard

and PWL models differ?

In Figure 8 we illustrate the effects on human wealth (first row), consumption

(second row), and financial assets (third row) for the spending shock (first column),

the Ricardian tax cut (second column), and the interest rateshock (third column). To

facilitate the comparisons between the two models, we report the percentage deviations

from the steady state for all variables, i.e.(h (t) − ĥ)/ĥ, (c (t) − ĉ)/ĉ, are plotted

(a (t) − â)/â in Figure 8.

For the spending shock, the results for human wealth are identical and those for

consumption and financial assets are qualitatively very similar but differ in terms of

the speed of adjustment towards the new steady state. The slow speed of convergence

is also a feature of the Blanchard results for the other two shocks.

For the Ricardian tax cut, the effects on human wealth are again similar but those

on consumption and financial wealth are not. For the PWL model, the impact effect

on consumption is much larger, and the slope of the aggregateEuler equation is much

steeper during transition, than for the Blanchard model. Similarly, the savings response
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is much more pronounced for the PWL model.

Finally, for the interest rate shock the effect on human wealth is qualitatively the

same for the two models, though the Blanchard model overestimates the fall in human

wealth. The impact reduction in consumption is virtually the same for the two models

but transition is much faster for the PWL model. Again, the savings response at impact

is stronger for the PWL model.

4.4 Discussion

The key findings of this section are as follows. Incorporating a realistic demographic

structure is quite feasible in the context of a small open economy facing a constant

world interest rate. At the level of individual households,a realistic description of

the mortality process reinstates the classic life-cycle consumption-saving insights of

Modigliani and co-workers.

The welfare effects associated with the different shocks are also potentially af-

fected in a non-trivial manner by the incorporation of a morerealistic demography.

Two key difference stand out between the Blanchard and PWL models. First, the

PWL model predicts a much faster (and in our view more realistic) “generational con-

vergence speed” of the welfare effects than the Blanchard model. Second, the PWL

model incorporates more extensive age-dependency and as a result may give rise to

non-monotonic welfare effect on existing generations—something which is impossi-

ble in the Blanchard case (for the shocks studied).

Finally, we have demonstrated that the demographic detailsdo not “wash out”

at the aggregate level. The impulse-response functions forthe different shocks are

quite different for the Blanchard and PWL models, especially the ones for per capita

consumption and financial assets.

In some applications of our model, it may the case that individual behaviour de-

pends in part on aggregate variables so that knowledge of thelatter is crucial. For

example, if the revenue of a consumption tax (tC) is recycled in a lump-sum fashion

to households (i.e.̄z (t) = z (t) = −tCc (t)) then individual consumption, human

wealth, and financial assets will all depend on theaggregatetax revenue. This com-

plication can be easily dealt with by using an iterative procedure in the simulations.

In the first step the initial tax revenue and implied lump-sumtransfer are guessed and

individual and aggregate consumption levels are computed.In subsequent steps, the

aggregate information is used to update the guess for transfers until convergence is

achieved.
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5 Extensions and Conclusion

The framework developed in this paper can be extended in a number of directions,

all of which we plan to pursue in the near future. First, in order to investigate the

effects of demographic change, it is necessary to generalize the stochastic distribution

for expected remaining lifetimes. Two possibilities can bedistinguished.Embodied

demographic change can be studied by writing the density function asφ (v, s), so

that both the cumulative distribution,Φ (v, s), and the instantaneous mortality rate,

m (v, s), are generation specific. In contrast,disembodieddemographic change can be

modelled by writing the functions asφ (t, s), Φ (t, s), andm (t, s), i.e. by postulating

a time-dependent mortality process.

Second, the age profile for individual consumption could be generalized by intro-

ducing shift factors in the utility function. In the currentmodel (withr > θ) con-

sumption is increasing in the age of the household. There arereasons to believe that in

reality consumption is hump-shaped, i.e.c̄ (v, t) features a rising time profile early on

in life followed by a falling profile later on. A simple way to capture this effect is to

assume that a household’s “needs” get smaller the older theyget. In the diminishing-

needs model, lifetime utility is given by:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t

[
ē (v, τ)1−1/σ − 1

1 − 1/σ

]
e−[θ(τ−t)+M(τ−v)]dτ, (5.1)

whereσ > 0 is the intertemporal substitution elasticity andē (v, τ) is effectivecon-

sumption:

ē (v, τ) ≡ c̄ (v, τ) exp

{
ζ0 (τ − v)1+ζ1

1 + ζ1

}
, (5.2)

with ζ0 > 0 andζ1 > 0. According to (5.2), a given amount ofactual consumption,

c̄ (v, τ), yields more effective consumption (featuring in the felicity function), the older

the household is. Using this specification of preferences, it is straightforward to show

that the individual consumption Euler equation (2.9) is generalized to:

˙̄c (v, τ)

c̄ (v, τ)
= σ (r − θ)− (1 − σ) ζ0 (τ − v)ζ1 . (5.3)

For the empirically relevant case (with0 < σ < 1), consumption rises during the early

phase of life (τ − v low) and falls during the later stages of life (τ − v high).

A third extension endogenizes the household’s labour supply and retirement deci-

sions. The introduction of a leisure choice decision is straightforward. Focusing on a
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unitary intertemporal substitution elasticity, lifetimeutility is written as:

Λ(v, t) ≡ eM(t−v)

∫ ∞

t
ln U [c̄ (v, τ) , 1 − n̄ (v, τ)] e−[θ(τ−t)+M(τ−v)]dτ, (5.4)

whereU [·] is subfelicity depending on consumption,c̄ (v, τ), and labour supply,̄n (v, τ).

The time endowment equals 1. Of course, labour supply features the restriction0 ≤

n̄ (v, τ) ≤ 1, with the lower bound reflecting the retirement decision.28 With endoge-

nous labour supply, the household budget identity (2.7) is modified to:

˙̄a (v, τ) = [r + m (τ − v)] ā (v, τ) + w̄ (τ) n̄ (v, τ) − z̄ (v, τ) − c̄ (v, τ) . (5.5)

wherew̄ (τ) n̄ (v, τ) is wage income and̄z (v, τ) represents an age-dependent lump-

sum tax (e.g. a pay-as-you-go pension system). For a small open economy facing a

constant world interest rate it is straightforward to compute the optimalretirement age

implied by the model and to study how it is affected by variousshocks.29 The most

interesting shocks that can be studied with this extended model are ageing shocks and

pension reform.

Whereas the first three extensions are relatively straightforward, the fourth and fi-

nal one is not. The introduction of a realistic mortality process in a closed economy is

complicated by the fact that exact aggregation of the consumption function is impossi-

ble (see above). Of course, the steady state can still be characterized analytically quite

easily (see Subsection 2.3 above). The transitional and long-run effects of various

shocks are, however, much more difficult to compute due to thefact that equilibrium

factor prices will generally change. In the near future we wish to investigate whether

approximateaggregation of the key behavioral relationships is feasible for particular

shock parameterizations. If that fails, numerical methodswill be employed to charac-

terize transitional dynamics.

In conclusion, we express the sincere hope that the Blanchard-Yaari-Modigliani

model constructed in this paper will prove to be a useful addition to the toolbox of

both theoretical economists and policy practitioners alike. At least in the context of

a small open economy, there is no justification whatsoever touse models based on

a blatantly unrealistic description of demography. Had mortality not caught up with

him, Benjamin Gompertz would probably support that conclusion!

28Under the twin assumptions that (i) consumption and leisureare both normal goods and (ii) that

n̄ (v, v) < 1 (newborns consume some leisure), the upper bound can be ignored as it is always satisfied.
29The retirementdate is that time period,tR, for which n̄

�
v, tR

�
just becomes equal to zero. The

retirementage is then defined astR
− v. Providedn̄ (v, t) is decreasing int − v, all agents older that

tR
− v are retired also.
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Appendix

In this brief appendix we derive some key results used in the paper. More detailed

derivations are presented in Heijdra and Romp (2005).

Proof of Lemma 1

By definition, M (u) ≡
∫ u
0 m (s) ds so thatM (0) = 0, M ′ (u) = m (u) ≥ 0, and

M ′′ (u) = m′ (u) ≥ 0. SinceM (s) is a convex function ofs we haveM (s) ≥

M (u) + m (u) [s − u] and thus:

∆ (u, λ) ≤ ∆̃ (u, λ) ≡ eλu+M(u)

∫ ∞

u
e−[λs+m(u)(s−u)+M(u)]ds

=
1

λ + m (u)
. (A.6)

This establishes part (iii). Part (i) follows by straightforward differentiation:

∂∆(u, λ)

∂λ
= −eλu+M(u)

∫ ∞

u
[s − u]e−[λs+M(s)]ds < 0. (A.7)

Similarly, part (ii) is obtained by differentiating∆ (u, λ) with respect tou:

∂∆(u, λ)

∂u
= [λ + m (u)]∆(u, λ) − 1 < 0, (A.8)

where the sign follows from (A.6). Parts (iv)-(v) are obvious. Q.E.D.

Macroeconomic shocks

All the shocks studied (or mentioned) in Section 4 of the paper can be expressed in

terms of the following functions:

w(t) =





ŵ for t < 0

ŵ + dw0e
−ξt for t ≥ 0

, (A.9)

r(t) =





r for t < 0

rN ≡ r + dr for t ≥ 0
, (A.10)

g(t) =





0 for t < 0

dĝ for t ≥ 0
, (A.11)

z(t) =





0 for t < 0

−dz0e
−χt + dẑ[1 − e−χt] for t ≥ 0

. (A.12)
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Government consumptiondĝ and the path of government debt are related to the other

parameters according to:

dĝ =
χdẑ

r − n + χ
−

(r − n) dz0

r − n + χ
, (A.13)

d(t) =
dĝ + dz0

χ
[1 − e−χt]. (A.14)

The time at which the shock occurs is normalized to zero.

The three shocks explicitly studied in the text are:

• Unanticipated and permanent balanced-budget increase in government consump-

tion: g (t) set as in (A.11),z (t) set according to (A.12) and (A.13) withχ → ∞,

i.e. dĝ = dẑ. No debt financing occurs, i.e.d (t) = 0 for all t ≥ 0.

• Ricardian equivalence experiment, temporary tax cut:g (t) = 0, z (t) set ac-

cording to (A.12) and (A.13) with0 < χ ≪ ∞, and the (stable) path of debt is

set according to (A.14).

• Unanticipated and permanent increase in the world interestrate: dr > 0 for

t ≥ 0.

A fourth shock is only mentioned because its effects are verysimilar to those of

the temporary tax cut:

• Temporary productivity shock:g (t) = z (t) = d (t) = 0, w (t) set according to

(A.9) with 0 < ξ ≪ ∞.

Post-Shock Profiles

The steady-state age profiles for the different variables before the shock occurs (t < 0)

are defined for individual households in (2.24)-(2.26) and for cohort-level variables

in (3.6) and (3.8)-(3.9). After the shock occurs (t ≥ 0), the paths for individual and

cohort-level human wealth are, respectively,

h̄(v, t) = ŵ∆ (t − v, rN ) + dw0e
−ξt∆(t − v, rN + ξ)

− dẑ∆(t − v, rN ) + [dz0 + dẑ]e−χt∆(t − v, rN + χ), (A.15)

and:

H(v, t) = ŵΩ(t − v, rN ) + dw0e
−ξtΩ(t − v, rN + ξ)

− dẑΩ(t − v, rN ) + [dz0 + dẑ]e−χtΩ(t − v, rN + χ). (A.16)
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For households who were born before the shock (v < 0), the age index at the time

of the shock is−v > 0. For such households, the paths for consumption and asset

holdings (at individual and cohort level) after the shock (t ≥ 0) are given by:

c̄E(v, t) =
ˆ̄a(−v) + h̄(v, 0)

∆(−v, θ)
e(rN−θ)t, (A.17)

āE(v, t) = ∆(t − v, θ)c̄E(v, t) − h̄(v, t), (A.18)

CE(v, t) = eM(−v) Â(−v) + H(v, 0)

∆(−v, θ)
e(rN−θ−n)t−M(t−v), (A.19)

AE(v, t) = ∆(t − v)CE(v, t) − H(v, t), (A.20)

where the subscript “E” denotesexistinghouseholds (at the time of the shock).

For households that are born after the shock (v ≥ 0), the relevant age index at time

t (≥ v) is defined ast − v. For such households the paths for consumption and asset

holdings (at individual and cohort level) at timet (≥ 0) are given by:

c̄F (v, t) =
h̄(v, v)

∆(0, θ)
e(rN−θ)(t−v), (A.21)

āF (v, t) = ∆(t − v, θ)c̄F (v, t) − h̄(v, t), (A.22)

CF (v, t) =
H(v, v)

∆(0, θ)
e(rN−θ−n)(t−v)−M(t−v), (A.23)

AF (v, t) = ∆(t − v, θ)CF (v, t) − H(v, t), (A.24)

where the subscript “F” denotesfuturehouseholds.

Welfare Effects

The welfare effects of the different shocks are illustratedin Figure 7 in the text. For

existing agents the change in welfare from the perspective of the shock periodt = 0 is

evaluated (dΛ (v, 0) for v ≤ 0) whereas for future agents the welfare change from the

perspective of their birth date is computed (dΛ (v, v) for v > 0).

Existing generations

Equation (4.2) is derived as follows. The effect on welfare of existing agents att = 0

can be written as a function of their age at that moment (−v):

dΛ(v, 0) =

∫ ∞

0
[ln c̄E(v, τ) − ln ˆ̄c(v, τ)]e−θτ−M(τ−v)+M(−v)dτ. (A.25)
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Consumption after the shock can be written in terms of pre-shock consumption:

c̄E(v, τ) =
ˆ̄a(−v) + h̄(v, 0)

∆(−v, θ)
e(rN−θ)τ

= e(rN−r)τ

[
ˆ̄a(−v) + ˆ̄h(−v)

∆(−v, θ)
e(r−θ)τ +

h̄(v, 0) − ˆ̄h(−v)

∆(−v, θ)
e(r−θ)τ

]

= e(rN−r)τ

[
ˆ̄a(−v) + ˆ̄h(−v)

∆(−v, θ)
+

h̄(v, 0) − ˆ̄h(−v)

∆(−v, θ)

]
e(r−θ)τ

= e(rN−r)τ

[
1 +

h̄(v, 0) − ˆ̄h(−v)

ˆ̄a(−v) + ˆ̄h(−v)

]
ˆ̄c(−v)e(r−θ)τ

= e(rN−r)τ

[
ˆ̄a(−v) + h̄(v, 0)

ˆ̄a(−v) + ˆ̄h(−v)

]
ˆ̄c(v, τ). (A.26)

By taking logarithms of (A.26) and rewriting we obtain:

ln c̄E(v, τ) − ln ˆ̄c(v, τ) = (rN − r) τ + lnΓE(v), (A.27)

whereΓE(v) is defined in (4.3). By substituting (A.27) into (A.25) and splitting the

integral we get:

dΛ(v, 0) = dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ

+

[
eM(−v)

∫ ∞

0
e−θτ−M(τ−v)dτ

]
ln ΓE(v)

= dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ

+

[
e−θv+M(−v)

∫ ∞

−v
e−[θs+M(s)]ds

]
ln ΓE(v)

= dr

∫ ∞

0
τe−θτ−M(τ−v)+M(−v)dτ + ∆(−v, θ) ln ΓE(v). (A.28)

Equation (A.28) coincides with (4.2) in the text.

Future generations

Equation (4.4) is derived as follows. For future householdsthe welfare effect at birth

is defined as:

dΛ(v, v) =

∫ ∞

v
[ln c̄F (v, τ) − ln ˆ̄c(v, τ)]e−θ[τ−v]−M(τ−v)dτ. (A.29)
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Next we express the post-shock consumption path in terms of the pre-shock path as:

c̄F (v, τ) =
h̄(v, v)

∆(0, θ)
e(rN−θ)(τ−v)

= e(rN−r)(τ−v) ĥ(v, v)

ˆ̄h(0)

ˆ̄h(0)

∆(0, θ)
e(r−θ)(τ−v)

= e(rN−r)(τ−v) h̄(v, v)

ˆ̄h(0)
ˆ̄c(v, τ). (A.30)

By taking logarithms of (A.30) and rewriting we obtain:

ln c̄F (v, τ) − ln ˆ̄c(v, τ) = (rN − r) (τ − v) + ln ΓF (v), (A.31)

whereΓN (v) is defined in (4.5). By substituting (A.31) into (A.29) and splitting the

integral we get:

dΛ(v, v) = dr

∫ ∞

v
(τ − v) e−θ(τ−v)−M(τ−v)dτ

+

[∫ ∞

v
e−θ(τ−v)−M(τ−v)dτ

]
ln ΓF (v)

= dr

∫ ∞

0
se−[θs+M(s)]ds +

[∫ ∞

0
e−[θs+M(s)]ds

]
ln ΓF (v)

= dr

∫ ∞

0
se−[θs+M(s)]ds + ∆(0, θ) ln ΓF (v). (A.32)

Equation (A.32) coincides with (4.4) in the text.
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Table 1: Estimated Survival Functions

µ̂0 µ̂1 µ̂2 ˆ̄u σ̂ n̂ (b) ̂1 − Φ (100)

1. Constant 0.7026×10−2 – – – 0.2277 0.80 49.53

M (u) = µ0u (4.92)

2. Linear −0.8970×10−2 0.0152 – – 0.1199 – –

M (u) = µ0u + µ2
1u

2 (−3.83) (12.29)

– 0.0104 – – 0.1595 0.49 34.05

(13.66)

3. Piece-wise linear (PWL) 0.1544×10−2 0.0410 – 60.85 0.0294 0.37 6.57

M (u) = µ0u + δ (u)µ2
1 (u − ū)2 (6.41) (16.12) (43.08)

δ (u) =

{
0 for 0 < u < ū

1 for u ≥ ū

4. Gompertz-Makeham (GM) 0.5834×10−3 0.3419×10−4 0.0928 – 0.0018 0.37 1.69

M (u) = µ0u + (µ1/µ2) [eµ2u − 1] (24.76) (27.01) (193.71)
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Figure 1: Actual and Estimated Survival Rates
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Propensity to consume (1/∆) Human wealth (̄̂h)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

age

Constant
Linear
PWL
GM

0 20 40 60 80 100 120
0

50

100

150

age

Consumption (̄̂c) Financial assets (ˆ̄a)

0 20 40 60 80 100 120
4

5

6

7

8

9

age
0 20 40 60 80 100 120

0

20

40

60

80

100

age

Figure 2: Steady-State Profiles for Individuals
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Figure 3: Steady-State Profiles for Cohorts
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Figure 4: Balanced-Budget Fiscal Policy
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Human wealth, constant (h̄) Human wealth, piecewise linear (h̄)
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Figure 5: Ricardian Equivalence Experiment: Temporary TaxCut

39



Human wealth, constant (h̄) Human wealth, piecewise linear (h̄)
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Figure 6: Increase in the World Interest Rate
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Figure 7: Welfare Effects
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Figure 8: Aggregate Effect of the Shocks

42



References

Arias, E., Anderson, R., Hsiang-Ching, K., Murphy, S., & Kochanek, K. (2003).

Deaths: Final data for 2001. Hyattsville, MD: National Center for Health Sta-

tistics. ((National Vital Statistics Report, Vol. 52, No. 3))

Bettendorf, L. J. H., & Heijdra, B. J. (2001a). Intergenerational and international

welfare leakages of a product subsidy in a small open economy. International

Tax and Public Finance, 8, 705-729.

Bettendorf, L. J. H., & Heijdra, B. J. (2001b). Intergenerational welfare effects of a

tariff under monopolistic competition.Journal of Economics, 73, 313-346.

Blanchard, O.-J. (1985, April). Debts, deficits, and finite horizons.Journal of Political

Economy, 93, 223-247.

Blanchard, O. J., & Fischer, S. (1989).Lectures on macroeconomics. Cambridge,

MA: MIT Press.

Bovenberg, A. L. (1993, May). Investment promoting policies in open economies: The

importance of intergenerational and international distributional effects.Journal

of Public Economics, 51, 3-54.

Bovenberg, A. L. (1994). Capital taxation in the world economy. In F. van der Ploeg

(Ed.),Handbook of international macroeconomics.Oxford: Basil Blackwell.

Buiter, W. H. (1988, June). Death, birth, productivity growth and debt neutrality.

Economic Journal, 98, 279-293.

Calvo, G. A., & Obstfeld, M. (1988, March). Optimal time-consistent fiscal policy

with finite lifetimes.Econometrica, 56, 411-432.

Couperus, L. (1918).Old people and the things that pass. New York: Dodd, Mead,

and Co. (Translated from the 1906 Dutch original by Alexander Teixeira de

Mattos. Reissued in 1963 by Sijthoff, Leiden and Heinemann,London)

Diamond, P. A. (1965). National debt in a neoclassical growth model. American

Economic Review, 55, 1126-1150.

Faruqee, H. (2003). Debt, deficits, and age-specific mortality. Review of Economic

Dynamics, 6, 300-312.

Faruqee, H., & Laxton, D. (2000).Life cycles, dynasties, saving: Implications for

closed and small, open economies(IMF Working Paper No. WP/00/126). Inter-

national Monetary Fund, Washington, D.C.

Fisher, I. (1930). The theory of interest. New York: Macmillan. (Reprinted by

Augustus M. Kelley, Fairfield, NJ, 1986)

Gompertz, B. (1825). On the nature of the function expressive of the law of human

43



mortality. Philosophical Transactions of the Royal Society of London,Series A,

115, 513-580.

Heijdra, B. J., & Meijdam, A. C. (2002, May). Public investment and intergenerational

distribution. Journal of Economic Dynamics and Control, 26, 707-735.

Heijdra, B. J., & Romp, W. E. (2005).Old people and the things that pass: Mathe-

matical appendix.(Mimeo, University of Groningen)

Heijdra, B. J., & van der Ploeg, F. (2002).Foundations of modern macroeconomics.

Oxford: Oxford University Press.

Hooker, P. F. (1965). Benjamin Gompertz: 5 March 1779-14 July 1865. Journal of

the Institute of Actuaries, 91, 203-212.

Kreyszig, E. (1988).Advanced engineering mathematics(Sixth ed.). New York: John

Wiley.

Makeham, W. M. (1860). On the law of mortality and the construction of annuity

tables.Assurance Magazine, 8, 301-310.

Matsuyama, K. (1987, November). Current account dynamics in a finite horizon

model.Journal of International Economics, 23, 299-313.

Preston, S. H., Heuveline, P., & Guillot, M. (2001).Demography: Measuring and

modelling population processes. Oxford: Blackwell.

Weil, P. (1989). Overlapping families of infinite-lived agents. Journal of Public

Economics, 38, 183-198.

Yaari, M. E. (1965). Uncertain lifetime, life insurance, and the theory of the consumer.

Review of Economic Studies, 32, 137-150.

44


