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EUCLIDEAN SKELETONS OF 3D DATA SETS IN
LINEAR TIME BY THE INTEGER MEDIAL AXIS
TRANSFORM

Wim H. Hesselink, Menno Visser and Jos B.T.M. Roerdink®

nstitute for Mathematics and Computing Science, University of Groningen, the Netherlands

{wim,menno,roe} @cs.rug.nl

Abstract A general algorithm for computing Euclidean skeletons of 3D data sets in lin-
ear time is presented. These skeletons are defined in terms of a new concept,
called the integer medial axis (IMA) transform. The algorithm is based upon the
computation of 3D feature transforms, using a modification of an algorithm for
Euclidean distance transforms. The skeletonization algorithm has a time com-
plexity which is linear in the amount of voxels, and can be easily parallelized.
The relation of the IMA skeleton to the usual definition in terms of centers of
maximal disks is discussed.

Keywords:  Feature transform, integer medial axis, 3-D Euclidean skeletonization.

1. Introduction

In computer vision, skeleton generation is often one of the first steps in im-
age description and analysis. Intuitively, a skeleton consists of the center lines
of an object, and therefore skeletons provide important structural information
about image objects by a relatively small number of pixels.

There are four main approaches to skeletonization: 1) thinning, i.e. iterative
removal of points from the boundary; 2) wave propagation from the boundary;
3) detection of crest points in the distance transformed image; 4) analytical
methods. A large number of skeletonization algorithms exist, see e.g. [15],
many of them based upon mathematical morphology [2, 10, 14, 17, 19, 20].
For a parallel 3D skeletonization algorithm based on thinning, see [9].

We note that in algorithms of type 3) one often restricts oneself to local
maxima of the distance transform [18], but the resulting skeleton is far from the
Euclidean one. The approach we present here is a variant of the third approach,
using a definition of skeletons based on Blum’s medial axis transform [3].

Often, one is satisfied with approximations to the Euclidean metric (e.g.,
using chamfer metrics). In 1980, Danielsson [6] gave two good approximating
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Euclidean distance transform algorithms, and applied them to obtain the cen-
ters of maximal (integer) disks (CMD), see below. He notes (p. 243) that appli-
cation of skeletons has been hampered by the lack of true Euclidean distance
maps. Especially in the 3D case where data size can be very large, many exist-
ing algorithms for computing 3D Euclidean skeletons are computationally too
expensive [4]. Ge and Fitzpatrick [7] clearly identified the problem to deter-
mine the CMD: “The problems with existing methods lie in the discrepancies
between continuous and discrete image maps”. The paper [7] also mentions
the goal of linking the centers of maximal disks into connected skeletons.

The main contribution of the present work is that we present a simple and
easily parallelizable linear time algorithm which computes a skeleton defined
in terms of a new concept, called the integer medial axis (IMA) transform. The
algorithm works in arbitrary dimensions, and is based upon the general lin-
ear time Euclidean distance transform (EDT) algorithm of Hirata [8], which
has been rediscovered several times, i.e., by ourselves, see Meijster et al. [13],
and later by Maurer et al. [11, 12]. The skeletonization algorithm has two
phases. First, a feature transform is computed, which uses essentially the same
algorithm as for the distance transform, the difference being that not only dis-
tances are computed, but also the boundary points which realize the closest
distance. The actual skeletonization is performed in a second pass through
the data, where the integer medial axis is computed by assigning points to the
skeleton depending on their feature transform.

Our method does not aim at a minimal skeleton useful for image compres-
sion with exact reconstruction, but at a computation of connected skeletons
directly from the Euclidean feature transform, thus avoiding the costly and
complicated phase of removing centers of not-quite-maximal disks by the tech-
niques of [16]. We establish a number of mathematical properties of the IMA
and point out some relations to Blum’s real medial axis (RMA) and to the CMD
skeleton. More work is needed to establish the topological characteristics of
the IMA skeleton.

Often, simplification or pruning of the skeleton is used as a postprocessing
step to remove unwanted points, which arise especially in noisy data [1]. In
our approach, skeleton pruning can be handled in the algorithm itself, by a
single adjustable parameter through which one can prune the skeleton during
the second pass of the algorithm.

In order to derive our algorithm, we first modify the EDT algorithm of
Meijster et al. to calculate 3D feature transforms, from which the IMA skele-
tons are derived. For all program parts, explicit and compact pseudocode is
given.
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2. Feature transform computation

We briefly describe extension of the Euclidean distance transform algorithm
to the computation of feature transforms, closely adhering to the notation and
approach given in [13]. The algorithm can deal with several types of distances
(Manhattan, chessboard, or chamfer distances), but we will limit ourselves to
the case of the Euclidean distance here, since we focus on Euclidean skeletons
in this paper.

The length of a vector r € R? is denoted by ||r|| = />, r?. We regard Z¢

as a grid embeddded in RY. The elements of Z are called grid points.

Let B be the background, which is a given nonempty set of grid points. The
Euclidean distance transform dt of B is the function that assigns to every grid
point r the distance to the nearest background point, so dt(r, B) = min{||r —
yl| | y € B}. The feature transform FT is defined as the set-valued function
that assigns to r the set of closest boundary points. So we have FT(r, B) =
{y € B | |[r —y|| = dt(r, B)}. The parameter B is omitted from df and FT
when it is clear from the context.

It is possible to compute FT, but it is computationally cheaper and sufficient
for our purposes to compute, for every point r, just a single feature transform
point f#(r). So, the function f is incompletely specified by ft(r) € FT(r). In
fact, we compute fi(r) as the first element of FT'(r) with respect to a lexical
ordering.

The computation of ft proceeds in d phases. We specify the results of these
phases as follows. For 0 < ¢ < d, let L; be the i-dimensional subspace spanned
by the first i standard basis vectors of R%. The i-th phase computes the i-
dimensional feature transform f; which is characterized by ft;(r) € FT(r, BN
(r + L;)). The result of the last phase is ft = ft;. Since the components of
ft,(r) orthogonal to L; are always equal to the corresponding components of r,
we only compute and use the orthogonal projection of ft; on L;.

In Figures 1 and 2, we present the computation for the case d = 3 in a box
of size (m, n,p). Since ft, is a vector-valued function, the three components of
ft;(r) are written ft;[r].z, ft,[r].y, and ft;[r].z.

The first phase is the computation of ft; given in Fig. 1. For every pair
(y, z), it consists of two scans over the line (0,y, z) + L;. The boundary B is
represented here by a 3D boolean array b. In the first scan, g[z] becomes the
distance to the next boundary point along the line. The second scan collects
1.

The second and third phases are given in Fig. 2. In the body of the outer
loop, the value of ft; is computed from f#;_; for a given scan line, again by
two scans. The results of the forward scan are collected on stacks s and ¢,
with common stack pointer ¢. The backward scan reaps f#; as harvest. The
auxiliary functions f and Sep are given by f(i,u) = (i — u)?> + g(u) and
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Sep(i,u) = (u? —i? +g(u) — g(i)) div (2(u — 7)), where the function g is the
squared Euclidean distance transform of the previous phase. So, ¢(i) = (z —
flz,4, 2].x)% in phase 2, and (i) = (z — fty[2, y, i].2)° + (y = fio[, y,1].y)?
in phase 3. Note that, in the body of the outer loop, we regard x and z as
constants for phase 2, and x and y as constants for phase 3.

Since the algorithm is completely analogous to our algorithm for the Eu-
clidean distance transform, we refer to paper [13] for further details.

forally € [0.n — 1],z € [0..p — 1] do

(s scan 1 %)

ifblm —1,y, 2] then glm —1]:=0
else glm —1]:=oc

endif

for z := m — 2 downto 0 do
if bz, y, z] then g[z]:=0
else glz] =1+ gz + 1]
endif
end for
( scan 2 )
ftl [07 Y, Z].I = Q[O]
forz:=1tom — 1do
ifz — fti[z — 1,y, z].x < g[z] then
ft [CE’ Y, z].w = ft [l‘ -1y, Z].l’
else
ftl [xa Y, Z].$ =z + q[.’L‘]
endif
end forall

Figure 1. Program fragment for the first phase - one dimensional feature transform in 3D.

3. Skeletonization

The feature transform of a data set can be used to compute its skeleton. We
first examine the definition of the medial axis [3], see also [5-7, 16]. Actually,
we present three possible formalizations: CMD, RMA, and IMA. Since RMA is
not restricted to grid points, whereas CMD and IMA are, the latter two are the
main contenders.

The real medial axis and CMD skeleton. For the moment we assume that
the boundary B is a closed subset of RY. For every point z € R?, we can form
the largest open disk D(z,7) = {y € R? | ||z — y|| < r} that is disjoint
with B. This is called the inscribed disk of x. If an inscribed disk at point
p is not contained in any other inscribed disk of B, we call it a maximal disk
with center p. We define the real medial axis RMA to consist of the points
z € R%\ B which are centers of maximal disks.
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forall z € [0..m — 1],z € [0..p — 1] do forall z € [0.m — 1],y € [0.n — 1] do
q :=0; s[0] := 0;¢[0] :=0 q :=0;s[0] := 0;¢[0] :=0
for u := 1ton — 1do (xscan 1 %) for u := 1top — 1 do (* scan 1 %)
while g > 0 A f(t[q], s[q]) > f(t[g],u) do while g > 0 A f(t[q], s[q]) > f(t[g],u) do
qg:=q—1 qg:=q—1
if ¢ < O then if ¢ < O then
q:=0;s[0] :=u q:=0;s[0] :=u
else else
w =1+ Sep(slg], u) w =1+ Sep(sld), v)
if w < n then if w < p then
q:=q+ 1:s[q] == uit[q] :=w q:=q+1;s[q] == uit[q] :=w
endif endif
endif endif
end for end for
for u :=n — 1 downto 0 do (* scan 2 ) for u := p — 1 downto 0 do (x scan 2 %)
ft2 [Iv u, z].m:: ftl [I, S[QL Z}.ﬁ ft3 [mv Y, ’LL}.[L‘:: ft2 [CL’, Y, S[q“x
ftalz, u, 2].y:=s[q] ftalz, y,ul.y:= ftalz, y, slall.y
if u = t[g| then ¢ := g — 1 endif ftalz,y, u].z:= s[q]
end for if u = t[g] then ¢ := q — 1 endif
end forall end for
end forall
(a) Second phase (b) Third phase

Figure 2. Program fragments for the second and third phase.

For x € 74, the inscribed integer disk M (x) is the intersection D(z,7)NZ,
where D(x,r) is its inscribed disk. The set CMD (centers of maximal disks)
consists of the points 2z € Z% for which M (z) is not contained in any M (y)
with y # z, see also [7, 16]. As is presumably well known, it is not true that
CMD C RMA N Z4.

EXAMPLE 1 Let B consist of the four points (0,0), (3,0), (0,3), and (3, 3).
The intersection RMANZ? is empty, but CMD contains the points (1, 1), (1,2),
(2,1), and (2,2).

)

Our aim is to define a skeleton that looks like the real medial axis of a
smoothing of the boundary and tends to be connected when the complement of
the boundary is connected, while still being computable in linear time.

Recall that df(z) = min{||z —y|| | v € B} and FT(z) = {y € B |
||z — y|| = dt(x)}. Clearly, df(x) is the radius of the inscribed disk of « (for
x € B, we regard the empty set as an open disk with radius 0). The function
ft : RY — B is incompletely specified by ft(z) € FT(x).

The next lemma may not be surprising, but it seems to be new.

LEMMA 2 Assume B is a discrete (i.e., locally finite) subset of R%. Let x €
RY. Then = € RMA if and only if FT(x) has more than one element.
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This lemma is not true when B is not discrete. For example, in the case of
an ellipse, the real medial axis is a segment of the long axis strictly inside of
the ellipse; the two extremal points of the segment belong to RMA and yet have
only one element in the feature transform set.

Henceforth, we assume that the boundary consists of grid points only, i.e.
that B C Z% Tt follows that B is discrete, so that Lemma 2 applies. The
following result is almost trivial to verify, but it is quite useful.

LEMMA 3 Let z € R% and let y, = be two different elements of FT(z). Then
ly — z|| > 1. If moreover x € 74, then ||y — z|| > 1.

The integer medial axis.  Since we assume the boundary now to consist
of grid points only, RMA contains many points that would disappear when the
boundary is smoothed to the curved (hyper)surface in RY it is supposed to rep-
resent. For example, in the case of a boundary that consists of the grid points
of a horizontal line in R2, the real medial axis consists of the vertical lines
with odd-half-integer x coordinates. The following definition avoids these un-
wanted points.

DEFINITION 4 Let E = {e € Z% | ||e|| = 1}. The integer medial axis IMA
consists of the points p € 72 such that for some ¢ € E we have ||ft(p + €) —
)l > 1 and |im — filp + e)|| < |[m — fi(p)|| where m = p+ ke is the
midpoint of the line segment from p to p + e.

The second condition on the pair (p, p+e¢) in the definition of IMA is introduced
to get one point, rather than two, and specifically the point that is closest to the
perpendicular bisector of the line segment from f#(p) to ft(p+e). f pand p+e
have equal claims, both are included. The reason to use ft rather than FT is
that ff is computationally cheaper, but also that the restriction of FT to Z% may
well be everywhere single-valued, so that consideration of neighbouring points
is needed in any case.

We prefer IMA over CMD since it is easier to compute and seems to give
more image information when the boundary is a discretization of a continuous
boundary.

The following lemma is easy to prove.

LEMMA 5 IMAN B = 0.

The definition of /MA is primarily motivated by the next result that shows that
IMA has “enough” elements.

THEOREM 6 Let p and q be points of the boundary B. Every Manhattan-
shortest path from p to q that is not contained in B, contains a point of IMA.

Proof: Letr(i), 0 < i < k be a Manhattan-shortest path from p to ¢ that is
not contained in B. Since it is a Manhattan-shortest path from p to g, we have
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r(0) = p, (k) = ¢, and ||r(i + 1) — r(¢)|| = 1 for all 0 < ¢ < k. Since the
path is not contained in B, there is an index j with 0 < j < k and r(j) ¢ B.
Without loss of generality, we may assume (1) ¢ B.

Let 2(i) = ft(r(i)) for all i. Then 2(0) = p and z(k) = g and z(1) # r(1).
We have ||p — r(1)|| = 1 and hence dz(r(1)) = 1. By Lemma 3, this implies
that (1) = z(0) or ||z(1) — z(0)|| > 1. It follows that function z represents a
path from p to ¢ in k steps that is not a Manhattan-shortest path. This implies
that there is an index j with 0 < j < k and ||z(j + 1) — z(j)|| > 1. Put
m=g(r(j+1)+7r(j)). flm—z(j+ D|| < [jm —x(j)| thenr(j) € IMA.
Otherwise 7(j + 1) € IMA. In that case j + 1 < k because of Lemma 5. [

While the previous result can be interpreted as saying that /MA has enough
elements, the next result shows that IMA has not too many elements, in the
sense that every one of them is close to RMA.

THEOREM 7 Foreveryp € IMA, thereise € Eandt € Rwith() <t < %
and p + te € RMA.

Proof: Let p € IMA. Then there is e € E with ||[fi(p) — ft(p + e)|| > 1
and |[m — ft(p)|| > ||m — ft(p + €)|| where m = p + 3e. First, assume that
ft(p) € FT(m). Then ft(p) is a closest point on B to m. So ||m — ft(p)|| <
[|lm — ft(p + e)||. Since ||m — ft(p)|| > |/m — ft(p + €)||, it follows that
[|m — ft(p)|| = ||m — ft(p + €)|| and that both f#(p) and ft(p + e) are elements
of FT(m). In view of lemma 2, this implies that m € RMA is a point as looked
for. It remains to treat the case with ft(p) ¢ FT(m). Let point z be the last
point of the line segment from p to m with fi(p) € FT(z). By continuity, this
point exists. Since ft(p) ¢ FT(z') for points 2’ arbitrary close to z, the set
FT(z) consists of more than one element. So z € RMA. [

As illustrated by Theorem 6, IMA has some good connectivity properties.
In that respect, it is better than CMD.

EXAMPLE 8 Let B be the intersection of 7> with the union of the x-axis and
the y-axis. Then IMA consists of the points (z, £x) for all x € 7 \ {0}, and
CMD is a subset of IMA that contains (£3, £3) and (+4, £4) but misses at
least the points (£1,+1), (£2,+2), (£5, +5).

In general, it seems that, if the complement of B is bounded and connected,
then IMA is connected (with respect to 8-connectivity in Z2, or more generally,
Loo-connectivity for Zd).

A disadvantage of IMA is that it can (weakly) depend on the choice of func-
tion f¢ within FT.
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Implementation. The code for the skeletonization step is shown in Fig. 3.
One may work with squared distances instead of distances, which avoids the
computation of square roots and thus saves time.

When the medial axis is used for image analysis, it is often useful to prune
it of disturbing details in some postprocessing phase. Our construction of the
integer medial axis yields some information that is very useful for this purpose.
The easiest pruning is to strengthen the condition ||ft(p) —ft(p+e)|| > 1 in the
definition of IMA by replacing ‘> 1’ by ‘> ~’ for some pruning parameter +.
This removes some points of IMA that are due to irregularities of the boundary.

With the tunable parameter -y, skeletons may be computed according to a
user’s need. Unwanted skeleton points which still remain can be removed in a
postprocessing step, if desired.

procedure IMA skeleton procedure compare(i,j,k,p,q,r)
fori:=0tom — 1do = [i,5,k];y := [p,q,7]
for j:=0ton — 1do xzy = ftalz]:yp = ftaly]
fork:=0top —1do if [z —yg|| > v then
if ¢ > 0 then compare(i,j,k,i-1,j,k) endif crit ;= inprod(zy — ys,zr +yy —a — ¥y)
if 7 > 0 then compare(i,j,k.i,j-1,k) endif if crit > O then skel [z]:= 1
if £ > 0 then compare(i,j,k,i,j,k-1) endif endif
end for if crit < 0 then skel [y]:= 1
end for endif
end for endif

Figure 3. Program fragment for computing the IMA skeleton from the feature transform.

Table 1. Timing results (in seconds) for several data sets.

Data Size Feature transform  Skeleton  Total

angio 256x256x128 3 4 7

engine  256x256x128 4 4 8

tooth 256x256x256 7 7 14

vessels  256x256x256 10 6 16

head 256x256x256 9 7 16
4. Results

We have run the skeletonization algorithm on several 3D data sets. Timing
results are given for three 3D data sets, i.e. CT scans of a head, a tooth and
a number of blood vessels. The size of these sets and their timing results
are given in Table 1. These results were obtained on an 1.7 GHz Pentium M
processor with 1024 Mb internal memory.
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Since the 3D skeletons form surfaces, they are somewhat hard to visualize.
Therefore, to get an idea of the quality of our skeletonization algorithm, we
first give a number of examples of 2D skeletons, see Fig. 4. For the 3D case,
some insight into the structure of the skeleton surfaces can be gained by using
volume rendering techniques. An example for the tooth data set is given in
Fig. 5. For a better impression a sequence of views from different viewpoints
is desired, which can be played as a movie.

vy=1 v =12

Figure 4. 2D images with their skeletons. Left: original images. Middle: IMA skeleton.
Right: pruned IMA skeleton.

(a) top (b) side (c) front (d) slice

Figure 5. (a)-(c): Volume renderings of skeletons (white) inside the original data volumes.
(d): Slice of the original tooth data combined with the skeleton.
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