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Unanimous Voting using Support Vector Machines

E.N. Smirnova I.G. Sprinkhuizen-Kuypera G.I. Nalbantovb

a IKAT, Universiteit Maastricht
b ERIM, Erasmus University Rotterdam

Abstract

This paper proposes a new approach to classification reliability. The key
idea is to maintain version spaces containing (close approximations of) the
target classifiers. In this way the unanimous-voting rule applied on these
version spaces outputs reliable instance classifications.

Version spaces are defined in a hypothesis space of oriented hyperplanes.
The unanimous-voting rule is implemented by testing whether version spaces
are empty. Testing is done by support vector machines. Hence, the approach
is called version space support vector machines.

Experiments with the approach show a 100% accuracy on the classified
instances at the cost of not classifying all instances.

1 Introduction

In the last ten years machine-learning classifiers have been applied to various
classification problems [5]. Nevertheless, almost no classifiers have been employed
in real applications, especially in critical domains. The main reason is that it is
difficult to determine whether a classification assigned to a particular instance is
reliable or not.

There are several approaches to classification reliability. They first estimate
some parameter(s) that are related to classification reliability. Then, the ap-
proaches learn a threshold on that parameter(s) to decide whether an instance
classification is reliable. The oldest approach used the posterior probability of the
predicted class as a reliability parameter [3]. Unfortunately, this rather simple ap-
proach assumes an underlying distribution of the data, which is generally unknown
[6]. Newer approaches are based on the theory of randomness (cf. [5, 8, 10]). The
key idea is to classify a new instance so that when the instance is added to the
training data, the data show a level of randomness that is close to the level of ran-
domness of the same data before the instance was added. The reliability parameter
is inversely proportional to the difference between the two levels of randomness.

In this paper we propose a new approach to classification reliability. In contrast
to the previous approaches, ours is not based on classification-reliability parame-
ter(s) and thus does not require learning any thresholds.

The approach is applicable for binary classifiers. The key idea assumes that
we can maintain version spaces [7, 11] containing (close approximations of) the
target classifiers. If the assumption is correct for the training data under consid-
eration, the classification rule of unanimous voting applied on these version spaces
guarantees that the classification assigned to each instance is reliable.
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We consider version spaces in a hypothesis space of oriented hyperplanes defin-
ing decision functions. Version spaces are represented by the training data [4, 11].
Our implementation of the unanimous-voting rule tests whether version spaces
are empty in the hypothesis space. Testing is realized via support vector machines
(SVM) [12]. Therefore, our approach is a combination of the two learning schemes
and it is called version space support vector machines (VSSVM).

We conducted experiments on datasets from the UCI ML repository [1]. Our
results are promising: 100% accuracy and an acceptable coverage.

The remainder of the paper is organized as follows. Section 2 formalizes the
classification task. Version spaces and SVM are briefly sketched in section 3, and
in section 4 we introduce VSSVM. Our initial experiments with VSSVM are given
in section 5. Section 6 concludes the paper.

2 Classification Task

Assume that we have l training instances xi in an n-dimensional Euclidian space
Rn. Each training instance has a class label yi ∈ Y , where Y = {−1,+1}. The
class labels separate the training instances into two sets I+ and I− (xi ∈ I+

iff yi = +1; xi ∈ I− iff yi = −1). Given a hypothesis space H of all possible
functions h (h : Rn → Y ), the classification task is to find a function (classifier) h
that accurately classifies future, unseen data.

3 Approaches to the Classification Task

There exist a number of approaches to the classification task. In this paper we
combine two of them: version spaces and SVM.

3.1 Version Spaces

Version spaces are an established approach to the classification task [7, 11]. They
are sets of functions h ∈ H consistent with training sets I+ and I−:

VS (I+, I−) = {h ∈ H|cons(h, 〈I+, I−〉)},
where cons(h, 〈I+, I−〉) is the consistency predicate defined as:

cons(h, 〈I+, I−〉) ↔ (∀xi ∈ I+ ∪ I−)(yi = h(xi)).

The version-space classification rule is the unanimous voting. Given a version
space VS (I+, I−), an instance x ∈ Rn gets a classification y ∈ Y ∪ {0} as follows:

y =





+1 if (VS (I+, I−) 6= ∅) ∧ (∀h ∈ VS (I+, I−))(h(x) = +1)
−1 if (VS (I+, I−) 6= ∅) ∧ (∀h ∈ VS (I+, I−))(h(x) = −1)
0 otherwise.

The unanimous-voting rule assigns class +1 (−1) to the instance x if VS (I+, I−)
is nonempty and all functions h in VS (I+, I−) assign the same class +1 (−1) to
the instance. In all other cases, the class is unknown which is denoted by 0.
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In this paper we apply the unanimous-voting rule for the training-data repre-
sentation of version spaces [4, 11]. The implementation of the rule in this case
requires testing whether the version space is empty. The whole process can be
explained by theorem 1 [4, 11]. Assume that we have a nonempty version space
VS (I+, I−) and an instance x to be classified. Then, theorem 1 states that all
the functions in VS (I+, I−) assign class +1 (−1) to x if and only if the subset
VS (I+, I− ∪{x}) (VS (I+ ∪{x}, I−)) of VS (I+, I−) of which the functions assign
class −1 (+1) is empty. In all other cases, the class of x is unknown.

Theorem 1 If VS (I+, I−) is nonempty, then:

(∀x ∈ Rn)((∀h ∈ VS (I+, I−))(h(x) = +1) ↔ VS (I+, I− ∪ {x}) = ∅),
(∀x ∈ Rn)((∀h ∈ VS (I+, I−))(h(x) = −1) ↔ VS (I+ ∪ {x}, I−) = ∅).

3.2 Support Vector Machines

Support vector machines (SVM) are rooted in statistical learning theory [2, 12].
We consider SVM for the classification task formalized in section 2. The space
H of all possible functions for SVM is the set generated by all possible oriented
hyperplanes in an n-dimensional Euclidian space Rn or in a higher dimensional
feature space F obtained by a mapping φ(x) on the instances x from Rn. SVM
search for an oriented hyperplane that results in a maximal margin between the
two classes, while minimizing the penalty term for the training instances at the
wrong side of the margin.

Given l training instances xi, SVM solve the following primal problem:

min
w, b, ξ

1
2
wT w + C

l∑

i=1

ξi such that (1)

yi(wT φ(xi) + b) ≥ 1− ξi, and
ξi ≥ 0, i = 1, 2, · · · , l

The term 1
2w

T w is proportional to the inverse of the margin, the term
∑l

i=1 ξi

is the sum of errors, and the parameter C determines the trade-off between the
margin and the sum of errors. The dual of this minimization problem is:

max
α

l∑

i=1

αi − 1
2

l∑

i,j=1

αiαjyiyjk(xi,xj) such that (2)

0 ≤ αi ≤ C, i = 1, 2, · · · , l, and
l∑

i=1

yiαi = 0

Here k(xi,xj) = φ(xi)T ·φ(xj) is a kernel function that calculates dot products
of instances that are mapped into a higher dimensional space F via the mapping
φ. The alphas are the weights associated with the training instances. All instances
with nonzero weights are “support vectors”. They determine the position of the
optimal SVM hyperplane, h(C, 〈I+, I−〉), which is given by:
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l∑

i=1

yiαik(xi,x) + b = 0.

The classification of a new instance x is found by:

h(C, 〈I+, I−〉)(x) = sign(
l∑

i=1

yiαik(xi,x) + b)

If ξi > 0 for a training instance xi, then xi is a training error since xi is not
on the right side of the margin; however, as long as ξi < 1, xi will be classified
correctly. If the training data 〈I+, I−〉 are (linearly) separable in the feature space,
the SVM will classify correctly all training instances for a value of the parameter
C that is sufficiently large.

4 Version Space Support Vector Machines

Version space support vector machines (VSSVM) are version spaces defined in
the hypothesis spaces H of SVM (see subsection 3.2). They are defined by the
training-data representation of version spaces [4, 11]. The classification algorithm
of VSSVM employs SVM. VSSVM are introduced in detail in the next subsections.
In subsection 4.1 we define the space of training-data representations of nonempty
version spaces in the hypothesis spaces H. In subsections 4.2 and 4.3 we provide
the classification algorithm of VSSVM and an example.

4.1 Space of Training-Data Representations

SVM deal with the hypothesis space H consisting of oriented hyperplanes h. In
this context, the predicate cons holds for a hyperplane h and data sets I+ and I−

if and only if the sets I+ and I− are separated by h:

cons(h, 〈I+, I−〉) ↔ (∀xi ∈ I+ ∪ I−)(yi = h(x)).

Given the hypothesis space H and a value of the parameter C, we denote by
SVS (H, C) the set of all pairs of data sets 〈I+, I−〉 in Rn for which there exists a
SVM hyperplane h(C, 〈I+, I−〉) that separates I+ and I−:

SVS (H, C) = {〈I+, I−〉|(∃h ∈ H)((h = h(C, 〈I+, I−〉))∧ cons(h, 〈I+, I−〉))}.

Since the ordered pair 〈I+, I−〉 is a training-data representation [4], the set
SVS (H, C) is the space of the training-data representations of all nonempty version
spaces in the hypothesis space H for a particular value of the parameter C. Thus,
a version space VS (I+, I−) is nonempty in H for a particular value of C if and
only if 〈I+, I−〉 ∈ SVS(H,C), i.e. the SVM hyperplane h(C, 〈I+, I−〉) is consistent
with the training data 〈I+, I−〉.
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Input: An instance x to be classified;
Training data sets I+ and I−;
The parameter C of SVM;

Output: classification of x;

Build a hyperplane h(C, 〈I+, I−〉);
if ¬cons(h(C, 〈I+, I−〉), 〈I+, I−〉) then return 0;
Build a hyperplane h(C, 〈I+, I− ∪ {x}〉);
Build a hyperplane h(C, 〈I+ ∪ {x}, I−〉);
if ¬cons(h(C, 〈I+, I− ∪ {x}〉), 〈I+, I− ∪ {x}〉) and

cons(h(C, 〈I+ ∪ {x}, I−〉), 〈I+ ∪ {x}, I−〉) then return +1;
if cons(h(C, 〈I+, I− ∪ {x}〉), 〈I+, I− ∪ {x}〉) and
¬cons(h(C, 〈I+ ∪ {x}, I−〉), 〈I+ ∪ {x}, I−〉) then return −1;

return 0.

Figure 1: The Classification Algorithm of VSSVM.

4.2 Classification Algorithm

The classification algorithm of VSSVM implements the unanimous-voting rule on
version spaces in the hypothesis space H. It is based on theorem 1. To test
whether version spaces are empty SVM are employed.

The classification algorithm is given in figure 1. The algorithm input is: train-
ing data sets I+ and I−; an instance x to be classified; and the parameter C of
SVM. The algorithm outputs the classification of x: +1, −1, or 0.

The classification algorithm starts by building a hyperplane h(C, 〈I+, I−〉). If
h(C, 〈I+, I−〉) is inconsistent with 〈I+, I−〉, then the version space VS (I+, I−) is
empty in the hypothesis space H for the value of the parameter C and according
to the unanimous-voting rule the algorithm returns 0; i.e., the classification of x
is unknown. If the hyperplane h(C, 〈I+, I−〉) is consistent with 〈I+, I−〉, then the
version space VS (I+, I−) is nonempty in H for the value of the parameter C.
In this case the algorithm builds hyperplanes h(C, 〈I+, I− ∪ {x}〉) and h(C, 〈I+ ∪
{x}, I−〉). If h(C, 〈I+, I−∪{x}〉) is inconsistent with 〈I+, I−∪{x}〉 and h(C, 〈I+∪
{x}, I−〉) is consistent with 〈I+ ∪ {x}, I−〉, then VS (I+, I− ∪ {x}) is empty and
VS (I+∪{x}, I−) is nonempty in H for the value of the parameter C. This means
that all the hyperplanes in VS (I+, I−) assign class +1 to x. Thus, by theorem
1 the algorithm assigns class +1 to x. If the class +1 cannot be assigned, the
algorithm checks analogously if it can assign class −1. If both classes cannot be
assigned, the algorithms returns 0; i.e., the classification of x is unknown.

4.3 Example

We illustrate our classification algorithm on a classification task: the space H
is the set of all oriented lines in R2, and training data consist of the sets I+ =
{(1, 0), (2, 0), (1, 1), (2, 1)} and I− = {(−1, 0), (−2, 0), (−1, 1), (−2, 1)} (see figure
2). For large C (C = +∞) only the points to the right of the three line segments
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Figure 2: Illustration of the version spaces for C = +∞ (bounded by the lines) and
C = 30 (I+ marked by 4, I− marked by ∇, positively classified: +, negatively
classified: ∗, and not classified: 2).

through the training points (1, 0) and (1, 1) will be classified as positive and the
corresponding region to the left of the three line segments through the training
points (−1, 0) and (−1, 1) will be classified as negative. The version space in this
case consists of all the lines not intersecting the line segments shown. Running our
algorithm with C = 30 results in the classifications in figure 2: positively classified:
+, negatively classified: ∗, and not classified: 2. It is clear from the figure that
for C = 30 the version space is smaller and thus the coverage is larger, than
for C = +∞. In the figure some unclassified points (e.g., the point (−1,−0.1))
are expected to be classified. Such points can correspond to solutions of the SVM
where all αi’s are equal either to 0 or to C. In that case b is not uniquely determined
and some solutions will result in separation while other solutions will not.

5 Experiments

We implemented VSSVM in WEKA [13] using the SMO implementation of SVM
[9]. We experimented with VSSVM using polynomial function kernels (P) and
radial-basis function kernels (RBF). The method for evaluation was the leave-one-
out method. We searched for values of the parameters (E (exponent) and C for
P and G (gamma) and C for RBF) resulting in the highest coverage for the leave-
one-out method. Below we provide the best results we obtained for 7 datasets
(from the UCI ML repository [1]) with VSSVM together with the results of SVM.

Table 1 shows the most important result: the accuracy of VSSVM is 100% on
the data they are able to classify. Below we explain this result.

When the datasets are noise-free and the hypothesis space H contains the
target hyperplane, the hyperplane is consistent with the training data; i.e., it
belongs to the version space [7, 11]. Thus, the unanimous-voting classification
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Data Set Parameters Cvssvm Avssvm Asvm I

Heart-Statlog P, E=2.0, C=1730 56.3% 100% 73.0% 0.42
Heart-Statlog RBF, G=0.2 , C=2182 40.7% 100% 73.7 % 0.24
Hepatitis P, E=1.4, C=11.7 80.0% 100% 80.0 % 0.72
Hepatitis RBF, G=0.02 , C=2140 69.7% 100% 81.9 % 0.39
Horse Colic P, E=1.3, C=154.5 50.8% 100% 78.3% 0.26
Horse Colic RBF, G=0.015 , C=12030 54.9% 100% 79.1% 0.29
Ionosphere P, E=1.1, C=5200 77.8% 100% 89.2% 0.27
Ionosphere RBF, G=0.05, C=4030 77.2% 100% 90.3% 0.24
Labor P, E=1.25, C=1.17 84.2% 100% 87.7% 0.42
Labor RBF, G=0.02, C=61 84.2% 100% 93.0% 0.21
Sonar P, E=1.0, C=3340 70.7% 100% 74.0% 0.68
Sonar RBF, G=0.65, C=0.664 62.5% 100% 85.6% 0.23
W. Breast Cancer P, E=3, C=58.6 85.0% 100% 93.6% 0.19
W. Breast Cancer RBF, G=0.8 , C=70.9 82.5% 100% 94.3 % 0.16

Table 1: Coverage and Accuracy of VSSVM and SVM. Cvssvm is the coverage of
VSSVM. Avssvm is the accuracy of VSSVM on instances it can classify. Asvm is
the accuracy of SVM. The coverage of SVM is not given since it is always 100%. P
is a polynomial kernel with the exponent E. RBF is a radial-basis function kernel
with the parameter G. I is the information gain of VSSVM w.r.t. SVM.

rule produces reliable instance classifications.
When the datasets are noise-free and the hypothesis space H does not contain

the target hyperplane, the version space consists of hyperplanes that approximate
without mistakes the target function on the training data. Thus, the unanimous-
voting classification rule produces reliable instance classifications depending how
well the hyperplanes approximate the target function individually and together.

When the datasets are noisy, the situation is different. Assume that the
training set I+ (I−) is a union of a noise-free set I+

f (I−f ) and a noisy set I+
n

(I−n ). The noisy sets I+
n and I−n cause removal of the version space NVS =

{h ∈ VS (I+
f , I−f )|¬cons(h, 〈I+

n , I−n 〉)} from VS (I+
f , I−f ). The resulting version

space VS (I+, I−)1 will continue to classify reliably instances that are classified
by V S(I+

f , I−f ), but it will err on instances in the volume of NVS. It seems that
for our datasets this volume is small and does not influence the final results.

From the explanations above we may conclude that VSSVM are successfully
applicable if it is possible to maintain version spaces containing the target hyper-
plane or its close approximations and the level of noise is low.

To measure the performance of VSSVM we computed the information gain
of VSSVM w.r.t. to SVM in Table 1 [7]. The gain was computed using the
proportions of correctly and incorrectly classified instances of SVM and VSSVM.
All the cases in Table 1 resulted in a considerable information gain. We especially
mention the Hepatitis dataset (polynomial kernel) for which the gain is 0.72 and
the Sonar dataset (polynomial kernel) for which the gain is 0.68.

1Note VS(I+, I−) = VS(I+
f , I−f ) ∩VS(I+

n , I−n ) and VS(I+, I−) = VS(I+
f , I−f )\NVS.
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6 Conclusion

This paper proposes a new approach to classification reliability called version space
support vector machines (VSSVM). Their main advantage compared with previous
approaches to classification reliability is that they are not based on classification-
reliability parameter(s) and thus do not require learning any thresholds. The
experiments show that VSSVM achieve accuracy of 100% on the instances they
are able to classify when it is possible to maintain version spaces containing the
target hyperplane or its close approximations and the level of noise is low.

We foresee two future directions of research. The first one is to extend VSSVM
for classification tasks with more than two classes. The second direction is to apply
VSSVM when it is not possible to find consistent hyperplanes w.r.t. the training
data. In this context we consider to apply the generalized version spaces [7].
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