

 University of Groningen

Selecting the roots of a small system of polynomial equations by tolerance based matching
Bekker, H.; Braad, E.P.; Goldengorin, B.

Published in:
EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bekker, H., Braad, E. P., & Goldengorin, B. (2005). Selecting the roots of a small system of polynomial
equations by tolerance based matching. In SE. Nikoletseas (Ed.), EXPERIMENTAL AND EFFICIENT
ALGORITHMS, PROCEEDINGS (pp. 610-613). (LECTURE NOTES IN COMPUTER SCIENCE; Vol. 3503).
Springer.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/da9086a9-989c-45ce-a259-eec47288ffb2

Selecting the Roots of a Small System of
Polynomial Equations by Tolerance Based

Matching

H. Bekker∗, E.P. Braad∗, and B. Goldengorin∗∗

∗Department of Mathematics and Computing Science,∗∗Faculty of Economic Sciences,
University of Groningen, P.O.Box 800,
9700 AV Groningen, The Netherlands

bekker@cs.rug.nl, e.p.braad@wing.rug.nl, b.goldengorin@eco.rug.nl

Abstract. The roots of a system of two bivariate polynomial equations
are calculated using a two-step method. First all x-roots and y-roots are
determined independently. Then tolerance based weighted matching is
used to form (x, y)-pairs that together form a minimum-error solution to
the system.

Keywords: combinatorial optimization, tolerance based bipartite match-
ing, solving polynomial equations.

1 Introduction

Consider a system of two polynomial equations

f(x, y) = 0 g(x, y) = 0 (1)

with symbolic constants and of low degree. By assigning numerical values to the
constants we obtain a problem instance. Assuming that it is known that (1) has
a finite number of solutions the conventional method to calculate the solutions is
as follows. From (1) a univariate polynomial, say p(x), is derived by eliminating
y. For every problem instance the symbolic constants in p(x) = 0, f(x, y) = 0 and
g(x, y) = 0 are replaced by numerical values and p(x) = 0 is solved numerically
giving the roots x1, . . . , xn. Subsequently, for every root xi the corresponding
root yi has to be determined. To that end, xi is backsubstituted in f(x, y) = 0
and g(x, y) = 0, giving the univariate polynomial equations f(xi, y) = 0 and
g(xi, y) = 0. Solving f(xi, y) = 0 for y gives the solutions yf1 , . . . , yfl

, and
solving g(xi, y) = 0 for y gives the solutions yg1 , . . . , ygm . The value yi occurring
both in yf1 , . . . , yfm and yg1 , . . . , ygm is the desired value, i.e., the pair xi, yi is a
root of (1). During this process, a number of complications may occur:

1. The equation f(xi, y) = 0 may be degenerate, i.e. may be 0 = 0, or even
worse, may be near degenerate within the noise margin. The case of exact

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 610–613, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Selecting the Roots of a Small System of Polynomial Equations 611

degeneracy is easily detected but it is not trivial to detect near degeneracy.
In both cases every solution of the other equation, that is, of g(xi, y) = 0 is
a correct root. Analogously, g(xi, y) = 0 may be degenerate, giving the same
problems. As we know that (1) has a finite number of solutions the situation
that f(xi, y) = 0 and g(xi, y) = 0 are both degenerate will not occur.

2. It is sometimes hard to select from yf1 , . . . , yfl
and yg1 , . . . , ygm

the collective
value yi because, by numerical errors, the actual value of yi will be different
in the two sets.

3. p(x) = 0 may have multiple roots, that is, the roots x1, . . . , xn may contain
(near) identical values. Let us assume that there is a double root, given by
the the identical values xi and xi′ . Then there will be two matching roots yj

and yj′ , not necessarily with the same value. When yj is matched to xi, in
a later stage yj′ should be matched to xi′ and not to xi.

When solving a problem of computational geometry we ran into these problems,
first using our own multivariate polynomial solver and later using methods from
packages. As a result a small but significant part of the roots, notably multiple
roots, were missed or were completely wrong.

2 The CORS Method

To avoid the aforementioned complications we propose and test a two-step
method, called the CORS method (Combinatorial Optimization Root Selection).
First from (1) two univariate polynomials p(x) and q(y) are derived by elimi-
nating y and x respectively. Whether this is done by calculating resultants or a
Groebner basis is irrelevant. Now for every problem instance the symbolic con-
stants in p(x), q(y), f(x, y) and g(x, y) are replaced by numerical values and the
roots in C of p(x) and q(y) are calculated numerically. Both p(x) and q(y) have
n roots represented by x1, . . . , xn and y1, . . . , yn, respectively. These roots are
used to calculate n2 weights, where wi,j is defined as

w(i, j) =
√

(f(xi, yj))2 + (g(xi, yj))2. (2)

Subsequently a complete weighted bipartite graph G(V, E) is constructed with
V = X ∪ Y and |X| = |Y | = n. The nodes in X consist of the values x1, . . . , xn,
and the nodes in Y consist of the values y1, . . . , yn. The arc between nodes xi and
yj is assigned the weight w(i, j). On G the minimum-weight perfect matching
π0 is calculated. The n arcs in π0 represent the optimal solutions of (1). Here,
optimal means that the sum of the errors is minimal. In the following this method
of roots selection is called CORS1.

Instead of minimizing the sum of the errors it is more natural to minimize the
maximum error. This is done as follows. All n2 arcs and their weights are stored
in a linear list L. Subsequently, L is sorted in increasing order of weights. Now the
weight in the first entry in L is set to 1, and the weight of item i is equal to the sum of
the weights in previous items plus one, i.e. weight[i] = (

∑i−1
j=1 weight[j])+1. Thus

the weights are 1, 2, 4, 8, 16, A new graph G′ is constructed, identical to G but

612 H. Bekker, E.P. Braad, and B. Goldengorin

with the newweights.OfG′ theminimum-weight perfectmatchingπ0 is calculated.
The n arcs in π0 represent the optimal solutions of (1). Here, optimal means that
the maximum error of π0 is minimal. We call this method CORS2.

We here outline the three steps of a proof that this procedure minimizes the
maximum weight when no identical weights in G occur, without this assumption
the proof is similar but more complex.

1: π0 is unique because the total weight of π0 can be constructed only in one
way from the weights in G′.

2: In π0 there is only one element em with the maximum weight.
3: There is no matching of G′ without em, with a lower weight. q.e.d.

The weights in G′ become very large causing overflow on standard integer
arithmetic. Therefore the infinite precision integer type should be used. The
weights in G′ have the nice property that none of the weights can be constructed
from other weights. This makes G′ very suitable for tolerance based matching.

3 Tolerance Based Matching

A Feasible Assignment (matching, permutation) (FA) π on the bipartite graph
G′ is a mapping π of X onto Y with w(π) =

∑
(i,j)∈π w(i, j) < ∞ and the set of

all FAs is Π. The Linear Assignment Problem (LAP) is the problem of finding a
FA π0 ∈ arg min{w(π) : π ∈ Π}, and all algorithms are based on shortest paths
and the König-Egervary’s theorem with O(n3) time complexity when applied
to dense instances [1]. We sketch the idea of algorithms which are based only
on tolerances for the Relaxed LAP (RLAP) without using the König-Egervary’s
theorem. A Relaxed FA (RFA) θ is defined on the same graph G′ as a mapping
θ of X into Y with w(θ) =

∑
(i,j)∈θ w(i, j) < ∞. The RLAP is the problem of

finding min{w(θ) : θ ∈ Θ} =
∑

i∈X min{w(i, j) : j ∈ Y } = w(θ0) ≤ w(π0)
on the set of RFA Θ ⊃ Π. A FA π on G′ is a set of n arcs (i, j) such that the
out-degree od(i) = 1 for all i ∈ X and the in-degree id(j) = 1 for all j ∈ Y , and
a RFA θ is a set of n arcs (i, j) with od(i) = 1 for all i ∈ X and

∑
j∈Y id(j) = n.

Note that θ is a FA if the id(j) = 1 for all j ∈ Y . For each fixed row i of the matrix
W = ||w(i, j)|| let w[i, j1(i)] ≤ w[i, j2(i)] ≤ . . . ≤ w[i, jn(i)] be the ordered set of
entries in a non-decreasing order. We define the reduced matrix W r = ||wr(i, j)||
with wr(i, j) = w(i, j) − w[i, j1(i)] for all i ∈ X and j ∈ Y . The tolerance
problem for the RLAP is the problem of finding for each arc (i, j) ∈ X × Y the
maximum decrease l(i, j) and the maximum increase u(i, j) of the arc weight
w(i, j) preserving the optimality of θ0 under the assumption that the weights of
all other arcs remain unchanged. Now for an arc [i, j1(i)] ∈ θ0 the upper tolerance
u[i, j1(i)] = w[i, j2(i)], and the lower tolerance l[i, j1(i)] = ∞. Similarly, for an
arc (i, j) /∈ θ0 the lower tolerance l(i, j) = wr(i, j) and the upper tolerance
u(i, j) = ∞. Let us show that the bottleneck tolerance b(θ0) = max{u(θ0), l(θ0)}
is a tightness measure between known value of w(θ0) and the unknown value of
w(π0). For a fixed θ0 we partition the set Y into three subsets of vertices: the
unassigned set Y0 = {j ∈ Y : id(j) = 0}, assigned set Y1 = {j ∈ Y : id(j) = 1},

Selecting the Roots of a Small System of Polynomial Equations 613

and overassigned set Y2 = {j ∈ Y : id(j) > 1}. For each fixed j ∈ Y2 we order the
corresponding upper tolerances in non-decreasing order u[i1(j), j] ≤ u[i2(j), j] ≤
... ≤ u[ipj (j), j] and compute u(θ0) =

∑
j∈Y2

u(j) with u(j) =
∑pj−1

t=1 u[it(j), j].
Similarly, for each fixed j ∈ V0, l[i(j), j] = min{l(i, j) : i ∈ X}, l[Y0(j)] =
max{l[i(t), t] : t ∈ Y0(j)} and l(θ0) =

∑k
j=1 l[Y0(j)] with Y0(j) = {t ∈ Y0 :

i(t) = i(j)}. Here, Y0(1), . . . , Y0(k) is a partition of Y0. Further we treat each
π, and each θ as the sets of corresponding arcs such that |π| = |θ| = n. Note
that if either Y0 = ∅ or Y2 = ∅ then |Y1| = n and θ0 is a FA. Hence, for each
θ0 /∈ Π we may use the number of unassigned columns |Y0| =

∑
j∈Y2

|id(j) − 1|
in the reduced matrix W r as a measure of structural infeasibility of θ0 to the
LAP, for which the bottleneck tolerance b(θ0) ≤ w(π0) − w(θ0). Our algorithm
for solving the LAP recursively fixes the arc (i, j) ∈ θ0 with the largest tolerance
and replaces all other arcs from Y2 by the arcs representing the tolerances ordered
in a non-increasing order, regardless of either upper or lower tolerance will be
the next tolerance induced by that order. Therefore, the first obtained θ ∈ Π is
θ = π0, and hence the time complexity of LAP for CORS2 is O(n2).

4 Implementation, Tests and Results

Implementation We tested CORS on our computational geometry problem.
Of this class of problems it is known that every instance has eight solutions. The
univariate polynomials p(u) and q(w) are derived with MAPLE. The numerical
calculations are implemented in C++ in double precision. Laguerre’s method [2]
is used to compute the roots of the polynomials p(u) and q(w). The LEDA [3]
implementation of the minimum weight bipartite matching algorithm is used.
Tests We tested the CORS1 and CORS2 method. Every problem instance is
solved in two ways: with the CORS method and with SYNAPS, a C++ pack-
age for solving polynomial equations [4]. We solved 104 problem instances with
CORS and SYNAPS, and ≈ 400 with MAPLE. The latter problem instances
were solved correctly by CORS and were missed by SYNAPS, i.e. we use MAPLE
to decide whether CORS or SYNAPS gave the correct result.
Results In general the results of CORS1 and CORS2 are identical. In the tests
approximately 2.4% of the solutions is missed by SYNAPS and are found by
CORS. No solutions were missed by CORS. The average error of the solutions
found by SYNAPS is 1.3 10−10 and of CORS 6.5 10−11. Running 105 problem
instances with CORS takes 14 sec. and with SYNAPS 475 sec.

References

1. Burkard, R. E. Selected topics on assignment problems. Discrete Applied Mathe-
matics 123, 257–302, 2002.

2. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. Numerical
Recipes in C++. Cambr. Univ. Press, New York.

3. K. Melhorn, Näher, S. LEDA A Platform for Combinatorial and Geometric Com-
puting. Cambridge University press,Cambridge. 1999

4. Synaps. Available at: http://www.inria.fr/galaad/logiciels/synaps/inex.html

	Introduction
	The CORS Method
	Tolerance Based Matching
	Implementation, Tests and Results
	References

