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Practical encoders for controlling nonlinear systems under
communication constraints

Claudio De Persis and Dragan Nešić

Abstract— We introduce a new class of dynamic encoders
for continuous-time nonlinear control systems which update
their parameters only at discrete times. We prove that the
information reconstructed from the encoded feedback can
be used to deliver a piece-wise constant control law which
yields semi-global practical stability. The result is achieved by
assuming a property weaker than asymptotic stabilizability.

I. INTRODUCTION

Controlling (nonlinear) systems via encoded feedback is
of paramount importance in distributed control systems. For
systems of the form

ẋ = f(x, u) , x ∈ R
n , u ∈ R

m (1)

it has been very recently illustrated in the literature ([30],
[18], [5]) how to design dynamic encoders which incorporate
the model of the system,

˙̄x(t) = f(x̄(t), u(t)) (2)

for t ∈ [kT, (k + 1)T ) and k ∈ Z+, with a discrete reset of
the state, that is

x̄(kT ) = x̂(kT ) , (3)

and a discrete update of another fundamental parameter,
namely the range of the quantization region (see below)

�((k + 1)T ) = Λ�(kT ) . (4)

These encoders are able to guarantee (semi-)global asymp-
totic stabilization via encoded feedback by assuming stan-
dard stabilizability. The result relies on – among other things
- showing that the encoded feedback x̄(·) is actually an
asymptotic estimate of the state x(·). We will not explain
in detail the functioning of (2)-(4), for which the reader is
referred to [30], [18], [5] (for other contributions on control
via encoded or quantized feedback, the reader is referred to
the important papers [20], [29], [2], [6], [25], [11], [7], [17],
[21], [16], [19], [15], [14], [8], [26], [10], to name a few).
Nevertheless, a brief description of the quantities in (2)-(4)
will be useful later on.
The two equations (2), (3) define a nonlinear jump system
used to compute the evolution of the center of the quantiza-
tion region (which here, for the sake of simplicity, is chosen
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to coincide with a cube). At time kT , k ∈ Z+, the center is
taken equal to ([30], [18]) x̄(kT−) := limt→kT− x̄(t), with
x̄(0−) := 0. Each edge of the quantization region at time kT
has length 2�(kT ). Under the assumption that |x(0)|∞ ≤ X ,
for some X > 0, setting �(0) = X , the initial state is
guaranteed to belong to the quantization region. Suppose this
is true for all the times, that is

|x(kT ) − x̄(kT−)|∞ ≤ �(kT ) (5)

for each k ∈ Z+. Then, denoted by B the integer represent-
ing the number of quantization levels used per each state
component, and by x̂(kT ) the quantized version of x(kT )
(see [30], [18], [5]), we have

|x(kT ) − x̂(kT )|∞ ≤ �(kT )/B (6)

for each k ∈ Z+.
The actual adoption of devices such as those described above
in distributed control systems very much depends on the
possibility of easing the computational burden involved in
the solution of (2). In this note, we address such issues by
proposing encoders which do not require a continuous update
of their state and which are able to reconstruct an asymptot-
ically practically correct estimate of the state starting from
encoded information. We also illustrate the possibility of
using this estimate to the purpose of stabilizing the system. In
particular, we discuss here an approach to achieve practical
stabilizability under an assumption weaker than asymptotic
stabilizability. The approach discussed in this paper can also
be viewed as a general framework in which many of the
results available for quantized discrete-time systems can be
interpreted or even translated for continuous-time systems,
although this is not discussed here in detail. Other approaches
are possible [22]. We mention dwell-time switching control
laws to cope with the stabilization problem under limited data
rate constraints [11], [10]. They represent a durable solution
to the problem, due to the simplicity of its implementation.
In the next section, we consider an approximate discrete-time
version of the system (1) and design a simplified version of
the encoder (2)-(4). Two solutions are proposed, each one
with its distinguishing features. In both cases, we prove that
the estimate of the state x(·) generated by the encoder is
asymptotically practically correct at the sampling times. In
Section III, we extend these results to the case in which
only partial-state measurements are available. In Section IV,
basically under the asymptotic controllability assumption,
we study the evolution of system (1) in closed-loop with
a piece-wise constant control law designed on the basis of
the feedback generated by the encoders examined in Sections
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II and III.
Most of the proofs are omitted for lack of space.

II. A CONSISTENT DISCRETIZED ENCODER

Under piece-wise constant control laws, let us introduce
as in [1] the exact discrete-time model of (1), that is

x((k + 1)T ) = fe
T (x(kT ), u(kT )) (7)

with

fe
T (x(kT ), u(kT )) = x(kT ) +

∫ (k+1)T

kT

f(x(s), u(kT ))ds .

(8)
This model is in general not available, and an approximate
discrete-time model 1

xa((k + 1)T ) = fa
T (xa(kT ), u(kT )) , (9)

must instead be taken into account. Following [23], [1], we
consider approximate models (9) which are consistent with
the exact model (7):

Assumption 1: The model fa
T (x, u) is consistent with

fe
T (x, u), that is for each compact set Ω ⊂ R

n × R
m, there

exists a class-K function �(·) and a constant T0 > 0 such
that for all (x, u) ∈ Ω and all T ∈ (0, T0],

|fe
T (x, u) − fa

T (x, u)|∞ ≤ T�(T ) .

Remark. Conditions under which model consistency holds
are thoroughly discussed in [22], [1].
Inspired by [30], [18] and [3], we propose the following
discrete-time implementation of the encoder (2)-(4):

x̄((k + 1)T ) = fa
T (x̂(kT ), u(kT ))

�((k + 1)T ) = Λ�(kT ) + T�(T ) ,
(10)

with Λ > 0 a constant to design. As recalled in the previous
section, vector x̂(kT ) is such that |x̂(kT ) − x(kT )|∞ ≤
�(kT )/B, whenever |x̄(kT ) − x(kT )|∞ ≤ �(kT ).
Assume the following ([3]):

Assumption 2: For any pair of constants X > 0 and U >
0, there exists a number Y > 0 such that, if |x(0)|∞ ≤ X
and |u(kT )|∞ ≤ U for each k ∈ Z+, then |x(kT )|∞ ≤ Y
for each k ∈ Z+, where x(kT ) is the solution of (1) at time
kT .
The result below shows a clear relation between the degree
of accuracy achievable by the “asymptotic estimate” x̂(·)
of x(·), the parameter B and the sampling period T . It
relies on the concept of consistency ([23], [1]) recalled above
and employs arguments inspired by those in [3], proof of
Proposition 1. In the statement, the symbol Cr(s), with r > 0
an integer and s > 0 a real number, denotes the cube in R

r

centered around the origin and with edges of length 2s.

1For the sake of conciseness, we do not consider in this note the presence
of the “modelling parameter” δ [22], [1], but the conclusions we draw hold
analogously for the case in which δ is present. The parameter δ plays a
fundamental role for further developments of our approach to the design of
encoders, for it allows to improve the accuracy of the approximate discrete-
time model without affecting the data rate.

Proposition 1: Let Assumptions 1 and 2 hold. Then for
any X > 0 and for any U > 0 we can find T ∗ > 0 with the
property that, for all T ∈ (0, T ∗], |x(0)|∞ ≤ X implies

|x(kT ) − x̂(kT )|∞ ≤ Λk X

B
+

1
B − F a

T�(T ) ,

provided that x̄(0) = 0, �(0) = X , Λ := F a/B, and B >
F a + 1, with F a > 0 the Lipschitz constant for which

|fa
T (x, u) − fa

T (x̂, u)|∞ ≤ F a|x − x̂|∞
for all (x, u), (x̂, u) ∈ Cn(X + Y + T�(T )) × Cm(U).

Proof: In Assumption 1, let Ω be Cn(Y ) × Cm(U)
and fix �(·) and T0 accordingly. Set T ∗ = T0 and fix T ∈
(0, T ∗]. Note that |x(0)|∞ ≤ X , x̄(0) = 0 and �(0) = X
imply |x̂(0)|∞ ≤ X and |x(0) − x̂(0)|∞ ≤ X/B. Assume
that, for some k ∈ Z+, |x(jT ) − x̄(jT )|∞ ≤ �(jT ) and
|x(jT ) − x̂(jT )|∞ ≤ �(jT )/B for each j = 0, 1, . . . , k.
In particular, (5) (with x̄(kT−) replaced by x̄(kT )) and (6)
hold. The evolution of �(·) as given by the second equation
in (10) is described by the relation

�(kT ) = Λk�(0) +
k−1∑
j=0

Λk−1−jT�(T )

= ΛkX +
1 − Λk

1 − Λ
T�(T ) .

Hence,
�(kT )

B
≤ Λk X

B
+

1
B − F a

T�(T ) .

As |x(kT )|∞ ≤ Y for all k ∈ Z+, relation (6) guarantees
that |x̂(kT )|∞ ≤ �(kT )/B+Y ≤ X +Y +T�(T ). Consider
now the following chain of relations:

|x((k + 1)T ) − x̄((k + 1)T )|∞ =

|fe
T (x(kT ), u(kT )) − fa

T (x̂(kT ), u(kT ))|∞ =

|fe
T (x(kT ), u(kT )) − fa

T (x(kT ), u(kT ))+

fa
T (x(kT ), u(kT )) − fa

T (x̂(kT ), u(kT ))|∞ ≤
T�(T ) + F a|x(kT ) − x̂(kT )|∞ ≤ T�(T ) + F a�(kT )/B =

Λ�(kT ) + T�(T ) = �((k + 1)T ) .

This implies that x((k + 1)T ) belongs to the quantization
region at time (k + 1)T , and hence |x((k + 1)T ) − x̂((k +
1)T )|∞ ≤ �((k + 1)T )/B. By induction we conclude that
both (5) and (6) hold for each k ∈ Z+. Bearing in mind that
Λ < 1 and (6), we obtain

|x(kT ) − x̂(kT )|∞ ≤ Λk X

B
+

1
B − F a

T�(T ) ,

that is the thesis.
Allowing a more complex dynamics for the encoder, it is

possible to remove the presence of the term T�(T ). This can
be done under the following assumption [23]:

Assumption 3: For each compact set Ω ⊂ R
n×R

m, there
exist K > 0 and T ∗ > 0 such that, for all (x, u) and (z, u)
in Ω, and all T ∈ (0, T ∗],

|FT (x, u) − FT (z, u)| ≤ (1 + KT )|x − z| ,
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where FT is either fa
T or fe

T .
We recall the following result (cf. Lemma 2, Lemma 3

and Remark 2 in [23]), which states that model consistency
propagates through arbitrarily large intervals of time:

Lemma 1: Let Assumptions 1, 2, and 3 hold. Then, for
any X > 0, U > 0, L > 0 and η > 0, there exists T̂ > 0
such that T ∈ (0, T̂ ] and x(0) = xa(0) imply

|x(kT ) − xa(kT )| ≤ η , ∀k : kT ∈ [0, L] .

The proposed modified encoder is as follows:

xa((k + 1)T ) = fa
T (xa(kT ), u(kT ))

x̄((k + 1)T ) = fa
T (x̂(kT ), u(kT ))

�((k + 1)T ) = Λ�(kT ) ,
(11)

Remark. The decoder will implement only the last two
equations of (11).

The main difference lies in the fact that it also implements
the equations describing the evolution of the approximate
model. Hence, in the present case, x̂(kT ) is a vector for
which (6), with x(kT ) replaced by xa(kT ), holds, provided
that (5), again with x(kT ) replaced by xa(kT ), holds as
well. Then the following result is true:

Proposition 2: Let Assumptions 1, 2, and 3 hold. Then for
any X > 0, U > 0, L > 0 and η > 0 we can find a T ∗ > 0
with the property that, for all T ∈ (0, T ∗], |x(0)|∞ ≤ X
implies

|x(kT ) − x̂(kT )|∞ ≤ Λk X

B
+ η ∀k : kT ∈ [0, L] ,

provided that xa(0) = x(0), x̄(0) = 0, �(0) = X and Λ :=
F a/B < 1, with F a > 0 the Lipschitz constant for which

|fa
T (x, u) − fa

T (x̂, u)|∞ ≤ F a|x − x̂|∞
for all (x, u), (x̂, u) ∈ Cn(X + Y + η) × Cn(U).

Proof: The proof is omitted for lack of space.
Remark. A modification of the structure of the practical
encoders described in this section may lead to encoders
which employ lower data rates. See [30], [19] and [4] for
details.

III. OBSERVER-BASED PRACTICAL ENCODERS

The previous section has focused on the case in which full
state was available for measurements. Here we consider the
case in which the system (1) is endowed with a readout map
which is different from the identity, namely

y = h(x) ∈ R
p . (12)

In this scenario, the design of the encoders is based on
observers ([1]). A common approach to the design of
sampled-data observer lies on a suitable discretization of
a continuous-time observer. This is examined in the next
subsection. Another approach, which typically exhibits a
better performance in simulations, consists of designing the
discrete-time observer directly. This approach is studied in
Subsection III.B.

A. Encoder design by emulation

In this subsection, we assume that a continuous-time
observer

σ̇(t) = g(σ(t), y(t), u(t)) (13)

is actually available, and consider its zero order hold equiv-
alent ([13]):

σ((k + 1)T ) = ga
T (σ(kT ), y(kT ), u(kT )) . (14)

Namely, we assume the following ([1]):
Assumption 4: System (14) is a semi-global practical ob-

server, i.e. there exists a class-KL function ω(·, ·) such that,
for any X > χ > 0 and any Y > 0 and U > 0, we can find
a T ∗ > 0 such that, for all T ∈ (0, T ∗],

|x(0)|∞ ≤ X , |σ(0) − x(0)|∞ ≤ 2X ,

and
|x(k)|∞ ≤ Y , |u(k)|∞ ≤ U ,

for each k ∈ Z+, imply

|σ(kT ) − x(kT )| ≤ ω(|σ(0) − x(0)|, kT ) + χ , (15)

for each k ∈ Z+.
Remark. There are precise conditions under which the
assumption above is fulfilled, and these are investigated in
[1]. Suppose the following hypotheses hold true:
(i) The model ga

T (·, ·, ·) is consistent with the model g(·, ·, ·).
(ii) There exist a continuously differentiable function V (x, σ)
and class-K∞ functions α1(·), α2(·), α3(·) such that

α1(|x − σ|) ≤ V (x, σ) ≤ α2(|x − σ|)
∂V

∂x
f(x, u) +

∂V

∂σ
g(σ, y, u) ≤ −α3(|x − σ|) .

Then, by [1], Theorem 3, Assumption 2 implies Assumption
4.

In the sequel, it will be useful to single out a part of the
observer (14) not affected by the output:

Assumption 5: Map ga
T (σ(kT ), y(kT ), u(kT )) can be de-

composed as

ga
T (σ(kT ), y(kT ), u(kT )) = ga

T1(σ(kT ), u(kT ))+

ga
T2(σ(kT ), y(kT ), u(kT )) .

Furthermore, there exist a class-KL function ω̃(·, ·) and
a constant χ̃ such that, |σ(kT ) − x(kT )| ≤ ω̃(|σ(0) −
x(0)|, kT ) + χ̃ implies

|ga
T2(σ(kT ), y(kT ), u(kT ))| ≤ ω̃(|σ(0) − x(0)|, kT ) + χ̃ .

Remark. If g(·, ·, ·) is a continuously differentiable func-
tion, and the Lyapunov function in the Remark following
Assumption 4 holds with V (x, σ) = V (x − σ) =: V (e),
then it implies that x = σ must be an invariant manifold for
system (1), (12), (13) and therefore g(x, h(x), u) = f(x, u)
which in turn implies [28]

σ̇(t) = f(σ(t), u(t)) + g̃(σ(t), y(t), u(t))(y(t) − h(σ(t))) ,
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with g̃(·, ·, ·) a suitable continuous function. Using e.g. Euler
discretization for the latter system and letting h(·) be Lips-
chitz continuous, then Assumption 4 implies:

|ga
T2(σ(kT ), y(kT ), u(kT ))| = |g̃(σ(kT ), y(kT ), u(kT ))·

·(y(kT ) − h(σ(kT )))| ≤ G̃(ω(|σ(0) − x(0)|, kT ) + χ) ,

for some constant G̃ > 0.
Following [30] (see also [24]), we propose the following
observer-based encoder:

σ((k + 1)T ) = ga
T (σ(kT ), y(kT ), u(kT ))

ς((k + 1)T ) = ga
T1(ς̂(kT ), u(kT ))

�((k + 1)T ) = Λ�(kT ) + ω̃(2
√

nX, kT ) + χ̃ .

(16)

Remark. If the function ω̃(·, ·) is not available, then it can be
replaced by a suitable constant. This replacement will affect
the accuracy of the encoding procedure carried out by the
device (16).

Notice that, differently from the state feedback case, here
the signal ς̂(·) represents not the encoded state of the process
x(·) but the encoded state of the observer σ(·). Furthermore,
ς(·) represents the center of the quantization region. Hence,
analogously to the state feedback case, |σ(kT )−ς(kT )|∞ ≤
�(kT ) implies |σ(kT ) − ς̂(kT )|∞ ≤ �(kT )/B. It is worth
stressing that the decoder at the other end of the channel will
implement only the last two equations in (16) (y(·) is not
available to the decoder). Now, we introduce the constant:

Z := ω(2
√

nX, 0) + ω̃(2
√

nX, 0) + χ + χ̃ + X + Y .

The main result of this subsection is as follows:
Proposition 3: Let Assumptions 2 and 4-5 hold. Then for

any X > 0 and for any U > 0 we can find a T ∗ > 0 with
the property that, for all T ∈ (0, T ∗], |x(0)|∞ ≤ X implies

|x(kT ) − ς̂(kT )|∞ ≤ ω(|σ(0) − x(0)|, kT ) + χ + �(kT )

provided that ς(0) = 0, |σ(0)|∞ ≤ X , �(0) = X , Λ :=
Ga/B, and B > Ga +1, with Ga > 0 the Lipschitz constant
for which

|ga
T1(σ, u) − ga

T1(σ̂, u)|∞ ≤ Ga|σ − σ̂|∞
for all (σ, u), (σ̂, u) ∈ Cn(Z) × Cm(U).
Remark. It is easily seen that the estimation error x(kT )−
ς̂(kT ) asymptotically converges to a square with edges of
length χ + χ̃/(B − Ga).

Proof: The proof is omitted for lack of space.

B. Encoder design by approximate discrete-time models

In this subsection, we pursue another approach to the
design of practical encoders for system (1) with output map
(12), namely we assume the existence of a discrete-time
observer for the approximate model (9). We have [1]:

Assumption 6: System

ξ((k+1)T ) = fa
T (ξ(kT ), u(kT ))+gT (ξ(kT ), y(kT ), u(kT ))

is a semi-global practical observer for system (1), (12), i.e.
there exists a class-KL function β such that, for any 0 <

χ < X and any Y > 0, U > 0, it is possible to find a
T ∗ > 0 such that, for all T ∈ (0, T ∗],

|x(0)|∞ ≤ X , |x(0) − ξ(0)|∞ ≤ 2X ,

and
|x(kT )|∞ ≤ Y , |u(kT )|∞ ≤ U

for each k ∈ Z+, imply

|x(kT ) − ξ(kT )| ≤ β(|x(0) − ξ(0)|, kT ) + χ ,

for each k ∈ Z+.
Having set

Z = Y + β(2
√

nX, 0) + χ ,

we pick the constant F̃ a for which

|fa
T (x, u) − fa

T (x̂, u)|∞ ≤ F̃ a|x − x̂|∞
for all (x, u), (x̂, u) ∈ Cn(Z) × Cm(U), and set

µ(r, k, T ) = β(r, (k+1)T )+χ+F̃ a(β(r, kT )+χ)+T�(T ) .

We also set Λ = F a/B, with F a the Lipschitz constant of
fa

T (x, u) over the set Cn(µ(2
√

nX, 0, T )+X +Z)×Cm(U).
The encoder is as follows:

ξ((k + 1)T ) = fa
T (ξ(kT ), u(kT ))+

gT (ξ(kT ), y(kT ), u(kT ))

ξ̄((k + 1)T ) = fa
T (ξ̂(kT ), u(kT ))

�((k + 1)T ) = Λ�(kT ) + µ(2
√

nX, k, T ) ,

where |ξ̂(kT )−ξ(kT )|∞ ≤ �(kT )/B provided that |ξ̄(kT )−
ξ(kT )|∞ ≤ �(kT ).
Remark. As in the previous subsection, the decoder will
implement only the last two equations above. To correctly
encode the observer state ξ, the decoder needs an estimate
of the term gT (ξ(kT ), y(kT ), u(kT )). Part of the proof of
the proposition below deals with deriving this estimate.

We are now ready to state the main result of this subsec-
tion:

Proposition 4: Let Assumptions 1, 2 and 6 hold. Then for
any X > 0 and for any U > 0 we can find a T ∗ > 0 with
the property that, for all T ∈ (0, T ∗], |x(0)|∞ ≤ X implies

|x(kT ) − ξ̂(kT )|∞ ≤ β(|ξ(0) − x(0)|, kT ) + χ +
�(kT )

B

provided that ξ̄(0) = 0, |ξ(0)|∞ ≤ X , �(0) = X , and Λ :=
F a/B, with B > F a + 1.

Proof: The proof is omitted for lack of space.

IV. PRACTICAL STABILIZATION

The attention is now turned to the design of the controller,
for which we follow very closely [12]. We shall refer to
Proposition 1 for the state feedback case, and to Proposition
3, for the output feedback case. Analogous results can be
given using Proposition 2 and, respectively, Proposition 4.
A number of notions from [12] are now introduced. The
positive numbers r < R and rm < Rm are given and the
symbol V(S) denotes the level set {x : V (x) ≤ S}.
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Assumption 7: There exists a continuous Lyapunov func-
tion V (·) : R

n → R+ for which:

• There exist class-K∞ functions ν(·), ρ(·) such that
|V (x1) − V (x2)| ≤ ρ(|x1 − x2|). Moreover, V (x) ≥
ν(|x|).

• There exist a feedback function κ(·) : R
n → R

m and
constants T > 0, c > 0 such that the solution of ẋ(t) =
f(x(t), κ(x(0))) with x(0) ∈ V(R) satisfies:
(S1) V (x(T )) ≤ max{V (x(0)) − c, r}
(S2) V (x(t)) ≤ max{V (x(0)), r} + rm ,∀t ∈ [0, T ].

We also introduce the following:
Assumption 8: Set U := {u ∈ R

m : u = κ(x) , x ∈
V(R + Rm)}.
1) There exists M ≥ 0 such that |f(x, u)| ≤ M for all
x ∈ V(R + Rm), for all u ∈ U .
2) There exists Lfx, Lfu > 0 such that |f(x1, u1) −
f(x2, u2)| ≤ Lfx|x1 − x2| + Lfu|u1 − u2|, for all x1, x2 ∈
V(R + Rm), for all u1, u2 ∈ U .
Remark. Assumptions 7 and 8 are discussed in [12].
We recall the following statement from [12]:

Theorem 1: Under Assumptions 7 and 8, consider

ẋ(t) = f(x(t), κ(x(0))) + d(t)

where x(0) ∈ V(R). Let σ ∈ [0, Rm−rm). If the disturbance
d(·) satisfies

max
t∈[0,T ]

∣∣∣∣
∫ t

0

d(s)ds

∣∣∣∣ ≤ ρ−1(σ)e−LfxT

then for all t ∈ [0, T ], the solution x(·) exists and satisfies

V (x(T )) ≤ max{V (x(0)) − c, r} + σ

V (x(t)) ≤ max{V (x(0)), r} + (rm + σ) .
We now apply this theorem and the results in the previous

section to show practical stabilization when using the control
law

u(t) = κ(x̂(kT )) , t ∈ [kT, (k + 1)T ) ,

where the samples x̂(·) are generated by the decoder (10).
To proceed, fix r = rm < R, Rm. Set

ν(X) = R , ν(Y ) = R + Rm , U = max
|x|∞≤Y

|κ(x)|∞ ,

so that x ∈ V(R) implies |x| ≤ X and x ∈ V(R + Rm)
implies |x| ≤ Y . Choose the constant F a in Proposition 1
accordingly. Finally, in (10) set Λ = F a/B. The result below
proves that under the assumptions just stated, and despite of
the quantization error, a control law exists which keeps the
state confined in V(R + Rm), where, applying the results
established in the previous section, an increasingly accurate
estimation of the state is possible. Practical stability of the
resulting closed-loop system is then concluded.

Proposition 5: Let Assumptions 1, 7 and 8 hold. Let T ∈
(0, T0] with T and T0 as in Assumption 7 and, respectively,
Assumption 1. Let σ ∈ [0, min{Rm − rm, R − r, c/4}). Set

1√
n

Ek := Λk X

B
+

1
B − F a

T�(T ) , k ∈ Z+ ,

and choose B > F a + 1 so that:

E0 ∈
[
0, min

{
ρ−1(σ)

2 + LfxT
e−LfxT , ρ−1(R − r − σ)

})
.

(17)
Then, the solution of the closed-loop system

ẋ(t) = f(x(t), κ(x̂(kT ))) , t ∈ [kT, (k + 1)T ) , k ∈ Z+

from the initial condition x(0) ∈ V(R − 2ρ(E0)) exists for
all t ≥ 0 and satisfies

V (x(kT )) ≤ max{V (x(0)) − (3k − 1)c
4

, r}+
+ρ(Ek) + σ , ∀k ∈ Z+

V (x(t)) ≤ max{V (x(kT )) + ρ(Ek), r} + r + σ+

+ρ(Ek) , ∀t ∈ [kT, (k + 1)T ) ,∀k ∈ Z+ .
Remark. From the first inequality above, we see that
the state of the closed-loop system at the sampling times
asymptotically converges to the level set{

x ∈ R
n : V (x) ≤ r + σ + ρ

(
1

B − F a
T�(T )

)}
.

Proof: The result is an application of [12], Proposition
1, and its proof is basically the same. The differences are
as follows: We explicitly take into account the fact that the
“measurement noise” (i.e. the quantization error) is vanishing
and we take care of the fact that the measurement noise itself
is not known a priori unless we guarantee that the state is
confined within the quantization region. For lack of space,
details are omitted.

Mutatis mutandis, an output-feedback version of the pre-
vious result can also be stated. In the following proposition,
the solution x(·) we refer to is the solution of the process
(1) in closed loop with the “output feedback” control law:

u(t) = κ(ς̂(kT )) , t ∈ [kT, (k + 1)T ) ,

where the samples ς̂(·) are generated by the encoder (16).
Fix the constants r,R, rm, Rm and X as before, set ν(Y ) =
R + Rm,

Z = ω(2
√

nX, 0) + ω̃(2
√

nX, 0) + χ + χ̃ + X + Y ,

U = max
|x|∞≤Z

|κ(x)|∞ ,

and let Ga > 0 be such that

|ga
T1(σ, u) − ga

T1(σ̂, u)|∞ ≤ Ga|σ − σ̂|∞
for all (σ, u), (σ̂, u) ∈ Cn(Z)×Cm(U). Also let Λ = Ga/B
in the encoder (16). Then we can state:

Proposition 6: Let Assumptions 1, and 4-8 hold. Let T ∈
(0, T0] with T and T0 as in Assumption 7 and, respectively,
Assumption 1.
Set

1√
n

Ek := Λk X

B
+

1
B − F a

χ̃+

+
k−1∑
j=0

Λk−1−j w̃(2
√

nX, jT )
B

,
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k ∈ Z+, and choose B > Ga + 1 so that:

E0 ∈
[
0,min

{
ρ−1(σ)

2 + LfxT
e−LfxT , ρ−1(R − r − σ)

})
.

(18)
Then, the solution of the closed-loop system

ẋ(t) = f(x(t), κ(ς̂(kT ))) , t ∈ [kT, (k + 1)T ) , k ∈ Z+

from the initial condition x(0) ∈ V(R − 2ρ(E0)) exists for
all t ≥ 0 and satisfies

V (x(kT )) ≤ max{V (x(0)) − (3k − 1)c
4

, r}+
+ρ(Ek) + σ , ∀k ∈ Z+

V (x(t)) ≤ max{V (x(kT )) + ρ(Ek), r} + r + σ+

+ρ(Ek) , ∀t ∈ [kT, (k + 1)T ) ,∀k ∈ Z+ .
Proof: The proof is omitted.

V. CONCLUSION

The paper deals with the design of encoders for
continuous-time nonlinear systems via their approximate
discrete-time models. This approach has several advantages.
With respect to previous dynamic encoding schemes pre-
sented in the literature, the encoder designed in this way
allows to achieve (semi-global practical) stability with less
computational effort. Moreover, the methods presented in the
paper allow to extend the results available for the quantized
control of discrete-time systems to continuous-time systems,
and to overcome the drawbacks in connections with some
existing methods. In the results established in the paper,
decrease in sampling time improves the performance of the
system. However, this may not be possible due to communi-
cation constraints. The introduction of another parameter in
addition to the sampling period T allows to refine the model
independently of T , and thus to achieve the same results
while fulfilling the communication constraints. Although the
analysis of the role of such additional parameter has not been
included in the paper for lack of space, it is very important
for further developments. The paper has also shown how
to apply the results of [12] to the study of the robustness
of nonlinear systems in the presence of quantization errors.
Applications of the techniques presented in the paper to more
general problems of control under communication constraints
[9], [27] may represent another interesting line of research
to pursue.
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