

 University of Groningen

Agilo
Guicking, Axel; Tandler, Peter; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Guicking, A., Tandler, P., & Avgeriou, P. (2005). Agilo: A Highly Flexible Groupware Framework. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/e955bc58-fb97-4c18-9f27-15bb9b028ce2

Agilo: A Highly Flexible Groupware Framework

Axel Guicking, Peter Tandler, and Paris Avgeriou

Fraunhofer IPSI,
Dolivostrasse 15, D-64293 Darmstadt, Germany

{axel.guicking, peter.tandler, paris.avgeriou}@ipsi.fraunhofer.de

Abstract. Today there exist many frameworks for the development of
synchronous groupware applications. Although the domain of these appli-
cations is very heterogeneous, existing frameworks provide only limited
flexibility to integrate diverse groupware applications in a meaningful
way. We identify five variation points that a groupware framework needs
to offer in a flexible way in order to facilitate the integration of diverse
groupware applications. Based on these variation points, we propose a
groupware framework called Agilo that tries to overcome the limited flex-
ibility of existing frameworks by offering multiple realizations of these
variation points and providing a modular architecture to simplify the
integration of applications and the extensibility and adaptability to dif-
ferent application and integration requirements.

1 Introduction

Today there exist many frameworks to support and to simplify the development
of applications for synchronous groupware [1]. While the application domain of
these applications covers a diverse range from simply structured and inherently
conflict-free applications like chats to conflict-rich shared whiteboards and shared
knowledge maps with highly structured data models, the combination of diverse
applications from this domain requires the integration on different levels: user
interface, application logic, and data model.

The difficulties of combining different applications are caused by their use of
different concepts and abstractions, such as different object sharing approaches
and distribution architectures. While there are many groupware frameworks that
provide certain concepts and several frameworks that offer flexibility in some as-
pects, yet, there is no framework that offers enough flexibility to combine very
heterogeneous groupware applications. In addition, different frameworks often
use different domain-specific abstractions, making it hard for application de-
velopers to learn a new framework and difficult for them to combine different
frameworks [2]. The groupware frameworks we developed in the past [3,4] had
a focus on cooperative hypermedia systems, e.g. [5]. Although these frameworks
provide excellent support for modeling complex object structures they are too
heavy-weight to design applications that don’t benefit from using shared objects
with transaction-based conflict management and replication support (such as

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 49–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 A. Guicking, P. Tandler, and P. Avgeriou

chats or voting tools). However, many groupware systems benefit from the com-
bination of such simple tools with complex ones, making it necessary to combine
applications with different requirements.

In this paper we present a new Java-based framework called Agilo that seeks
to overcome the shortcomings of existing groupware frameworks with respect to
their limited flexibility. Although Agilo supports application integration on all
above levels, we concentrate on the two latter levels and describe how it provides
the required flexibility by offering multiple realizations of several architectural
commonalities of synchronous groupware applications.

The structure of the rest of this paper is as follows: in section 2 we identify
several variation points common to synchronous groupware applications and how
they are realized in existing groupware frameworks. Section 3 presents how these
variation points are realized in the Agilo framework. The final section 4 concludes
the paper with a short summary as well as the current status of the framework
development and future work.

2 Analysis of Variation Points and Related Work

The diversity of synchronous groupware applications demonstrates that, depend-
ing on the specific application, there are many different requirements for the un-
derlying framework. In this section, we identify five variation points (also called
hot spots [6] or hooks [7]) that represent the aspects of groupware applications
which may differ from one to another. The essential requirement for a group-
ware framework as proposed in this paper is the ability to combine different
manifestations of each of the following variation points on the framework level
in order to be able to combine different groupware applications (Fig. 1). The
identified variation points are a starting point to characterize different types of
groupware applications. A more comprehensive analysis whether the identified
variation points are sufficient requires further research.

Fig. 1. The variation points and important realizations

Agilo: A Highly Flexible Groupware Framework 51

DistributionModel. The first aspect that requires variability is the distribution
model [1]. The two most common forms are Client-Server and Peer-to-Peer. Most
other alternatives can be mapped on a combination of these two approaches [8].

There are many groupware frameworks that support a Client-Server architec-
ture, such as COAST [3] or Rendezvous [9], while others are designed as Peer-to-
Peer systems, e.g. GroupKit [10]1 or DreamTeam [11]. Depending on the usage
context, each approach has benefits and liabilities. While Client-Server reduces
complexity and simplifies consistency issues as well as support for latecomers
[1], Peer-to-Peer avoids having the server as bottleneck and single point of fail-
ure [8,11]. Additionally, Client-Server is more appropriate when using handheld
devices because of their limited resources – the central server then also plays the
role of a storage medium. In some circumstances it might even be better to use
a hybrid approach where some clients communicate mediated by a server while
others form a Peer-to-Peer subgroup [1].

In order to be able to integrate applications that use different distribution
models and to adapt the distribution model of an application to domain-specific
and environmental constraints, it is essential that groupware frameworks allow
flexibility in choosing and adapting the distribution model accordingly.

Communication Infrastructure. The requirements of groupware applica-
tions often influence the selection of the communication infrastructure. This
includes support for different protocols and different marshalling.

Multiple communication protocols must be supported in different application
contexts. For clients running on a LAN, a fast protocol such as TCP or UDP
is sufficient. If the communication must cross firewalls, it might be necessary
to use HTTP or another protocol that firewalls support. Therefore all recent
messaging protocols such as SOAP2 and XMPP3 are defined independently of
the underlying communication protocols.

Similarly, different contexts and applications introduce different requirements
for the data exchange format which we call marshalling, i.e. the transformation
of messages into machine-independent format appropriate for sending through
the network. If large amounts of data have to be transmitted, the marshalling
should be designed to reduce the size of the data, which may include a binary
encoding and compression. On the other hand, if small or heterogeneous devices
are communicating, the marshalling must be designed in a way that allows all
devices to support it. While SOAP and XMPP support different protocols, they
offer an XML-based marshalling only. The COAST framework [3] allows the
use of different marshalling for different clients, but uses a single proprietary
protocol based on TCP.

Sharing Model. For some applications such as a simple chat application, it
is convenient to use messages to inform other clients about application state
1 Although GroupKit relies on a central server called “Registrar” the communication

between the clients is based on a Peer-to-Peer distribution model.
2 http://www.w3.org/TR/soap/
3 http://www.ietf.org/rfc/rfc3920.txt

52 A. Guicking, P. Tandler, and P. Avgeriou

changes. However, applications like a shared knowledge map have a complex
object structure that can be implemented far more easily on top of a higher-
level abstraction than messages, e.g. shared objects.

While messages are transient objects that carry specific semantics such as a
text message in a chat session and that are usually sent only once between two
nodes in a system, shared objects are long-living and often persistent objects
that are manipulated and updated often by different users. Therefore, the access
of shared objects needs to be synchronized in order to avoid data corruption and
inconsistencies (see below). Furthermore, the shared objects are distributed in
the system using a distribution scheme – typical distribution schemes are central,
asymmetric, semi-replicated, and replicated [1].

To free the developer from the burden of implementing concurrency control
strategies and distribution schemes as part of the application the framework
needs to provide an object-sharing abstraction that includes these two aspects.
However, there are two essential requirements: First, the developer must be able
to adapt the different aspects of the sharing model in order to optimize the
use of available resources such as network traffic and performance. Second, the
developer must not be required to use this shared data abstraction at all to avoid
potential performance overhead. Besides, for applications where no conflicts can
occur (such as chats) or that rely on concepts that do not fit to a shared data
abstraction, using shared data is of less value.

Several groupware frameworks directly support sharing of information, such
as COAST [3], Rendezvous [9], and DyCE [4]. However, these systems force the
developer to use the sharing abstraction. GroupKit [10] allows the combination
of both approaches, messages and shared objects.

Concurrency Model. Due to the nature of the domain of synchronous group-
ware each such application has to deal with concurrency issues. To let appli-
cation developers concentrate on the application logic, groupware frameworks
need to make use of an efficient concurrency behavior. This includes the poten-
tially concurrent access of services by different clients as well as the combined
use of asynchronous and synchronous application components without degrad-
ing non-functional quality requirements, such as performance, robustness, and
scalability. With respect to the sharing model the framework has to correctly
resolve the concurrent reception of messages and concurrent manipulation and
access of shared objects, respectively.

For example, DreamTeam provides support for interweaving synchronous and
asynchronous communication using the Half-Sync/Half-Async pattern [11]. The
COAST server uses the Active Object pattern to process incoming messages [3].

Synchronization Model. When concurrent processes access shared resources,
synchronization is necessary in order to ensure consistency of data in case of con-
current modification. There are two principal approaches to ensure consistency:
Avoid conflicts by locking data before modification or to detect and resolve con-
flicts. Common locking mechanisms include mutexes and semaphores. Common
conflict resolution mechanisms include transactions and protocols for updating

Agilo: A Highly Flexible Groupware Framework 53

shared data. Both approaches can be implemented in many different ways. Lock-
ing is appropriate if, e.g., changes are hard to detect or complicated to resolve.
However, locking reduces performance, as the application has to wait for the lock
before being able to continue, which affects the usability of interactive systems.

Depending on application requirements, both strategies can be appropriate
and therefore groupware frameworks need to provide enough flexibility in this re-
spect. For example, DyCE [4] offers optimistic transactions, whereas COAST [3]
additionally offers pessimistic transactions, both with automatic conflict detec-
tion and rollback.

3 Framework Design

The design of the Agilo framework directly addresses the variation points de-
scribed in the previous section. It is based on experiences with groupware frame-
works we developed in the past [3,4]. Its flexibility is increased by using design
patterns from the domain of distributed and concurrent computing. This leads
to an extensible and flexible groupware architecture that allows the integration
of heterogeneous groupware applications while giving developers enough freedom
in choosing abstractions that fit best to the applications they are building.

Before describing how the different variation points are realized in the Agilo
framework, the core concepts of the framework are described next.

The Agilo framework is designed around two key concepts: Modules and Mes-
sages. Modules are software components that are either located on the frame-
work level or on the application level. An Agilo groupware application consists of
several modules each running on a node of the system. Messages are application-
specific data chunks that are sent between nodes. Incoming messages at a node
are processed sequentially and are “forwarded” to one or more application mod-
ules which usually send messages to one or more modules running on other nodes
as result of processing an incoming message. Providing this message-based com-
munication concept the framework allows the development of groupware appli-
cations with a very simple need for communication support such as chats and
voting tools, while more sophisticated communication needs can be built easily
on top of the message communication (see below).

The framework core is designed to be as small as possible whereas most of
the functionality is implemented as separate modules. This approach reveals
two advantages: first, the knowledge about the framework required to build
applications is kept very small and it can be extended successively as needed.
Second, many parts of the framework can be configured independently, leading
to a high adaptability and flexibility of the framework.

The remainder of this section elaborates on how exactly the framework pro-
vides this flexibility by offering alternative realizations at the different variation
points described in the previous section.

Distribution Model. The distribution model of Agilo has been designed to ac-
commodate both the Client-Server and Peer-to-Peer distribution architectures.

54 A. Guicking, P. Tandler, and P. Avgeriou

In order to be able to establish a Client-Server distribution, the framework con-
sists of three parts: A client-side part, a server-side part, and a common part that
is required by both client and server. The Peer-to-Peer distribution is achieved
by making each participating node a combined client and server, i.e. by deploying
client and server components together in each node. Additionally, both distri-
bution architectures require specific configuration settings in order to adapt the
server and client functionality to work in the respective distribution type.

Communication Infrastructure. The Communication Infrastructure of Agilo
allows the use of different transport and data protocols. It is realized by following
the Client-Dispatcher-Server pattern [12]. The communication between client
and server or among peers can be customized on two levels: On the lower level,
Agilo supports different transport protocols, such as TCP or HTTP. Protocol-
specific implementations accomplish sending and receiving messages while hiding
implementation details such as fault-tolerance and native resource handling. The
upper level provides different marshalling behavior to support different data-
exchange protocols (e.g. SOAP, XMPP). The customizable marshalling behavior
especially allows the integration of heterogeneous clients, such as PDAs and
smartphones.

Sharing Model. Besides the core concept of “low-level” messages, the Agilo
framework offers support for “high-level” shared objects that are implemented
on top of the two core concepts of Agilo, messages and modules.

Agilo provides a concrete interface for objects that need to be shared while
the distribution scheme is implemented in a separate ObjectManager module.
The data itself and its distribution scheme are thus decoupled, allowing the use
of different distribution schemes such as centralized, semi-replicated, or repli-
cated shared objects. Application-specific objects that need to be shared have
to implement a specific interface in order to be managed by the ObjectManager.

Concurrency Model. The Concurrency Model of Agilo makes provision how
multiple concurrent threads can simultaneously work together in the context of
the groupware application. Specifically, clients can interweave synchronous and
asynchronous messages following the Half-Sync/Half-Async pattern [13].

Another concurrency concern is the processing of incoming messages on the
nodes of the system. Messages are received by the node’s ConnectionHandler mod-
ule following the Reactor pattern [13]. The incoming messages are unmarshalled
and enqueued in the node’s MessageHandler module. The messages are dequeued
by a single-threaded active object [13], called MessageRouter that is responsible for
notification of the node’s application modules. A different implementation of the
ConnectionHandler uses the more performant Proactor pattern [13]. Furthermore,
instead of the naive single-threaded MessageRouter, a multi-threaded implemen-
tation using the Leaders/Followerspattern [13] can be used for module notification
if there is no need for a globally consistent order of messages.

In case of a Peer-to-Peer distribution model concurrency issues arise because
the order of incoming messages is no longer guaranteed to be the same on all

Agilo: A Highly Flexible Groupware Framework 55

peers. The handling of these problems when using a Peer-to-Peer setting is part
of the communication infrastructure.

Synchronization Model. The Synchronization Model of Agilo uses different
locking mechanisms, such as semaphores and mutexes as well as Java’s built-in
synchronization mechanisms to enforce controlled access to shared data. Ad-
ditionally, it allows for detection and resolution of conflicts. The framework
supports the use of transactions to combine multiple actions of a client into
an atomic action. When a client commits a transaction, a single message con-
taining the manipulations of the affected shared objects is sent to the server
where it is processed like any other message. Since the MessageHandler mod-
ule processes messages sequentially in the order they arrived, the processing of
incoming messages uses an implicit transaction management. In the case of a
Peer-to-Peer distribution model, the same concurrency issues arise as described
in the previous subsection.

4 Conclusions

In this paper we identified the limited flexibility of existing frameworks for syn-
chronous groupware applications as a significant shortcoming in order to combine
heterogeneous groupware applications in a reasonable way. This paper focused
on the integration of groupware applications on the application logic and data
model levels that were partitioned into five different variation points. Underlying
frameworks need to support these points of synchronous groupware applications
in a flexible and configurable way. Since existing groupware frameworks lack the
required flexibility we proposed a new groupware framework called Agilo that
seeks to overcome this shortcoming by providing enough flexibility and extensi-
bility with respect to all identified variation points. By providing a very modular
architecture that clearly separates different concerns it offers the required flexi-
bility to be applicable for a wide variety of groupware applications.

Since this paper presents work in progress some of the features described
above are not yet fully implemented in the Agilo framework. The Client-Server
and a rudimentary Peer-to-Peer distribution model, the communication infras-
tructure, the concurrency model as well as parts of the sharing and synchro-
nization models are already implemented as described in the previous section.
However, several essential parts are still missing, such as different distribution
schemes of shared objects and a transaction-based synchronization model.

Although the framework is not yet completely implemented, experience de-
rived from its use in a large commercial meeting support system4 has already
proved that the architecture of the framework greatly simplifies the develop-
ment of synchronous groupware applications. In order to integrate the meeting
support system with support for distributed meetings we used an existing chat
application framework5. In this framework we ported the lower communication
4 http://www.ipsi.fraunhofer.de/digital-moderation
5 http://www.ipsi.fraunhofer.de/concertchat

56 A. Guicking, P. Tandler, and P. Avgeriou

level to Agilo which made it easy to access the generated meeting documents
from the chat and provide a tight integration of the two systems.

Besides the implementation of the missing parts mentioned above, the next
steps concerning the proposed framework include more case studies, i.e. imple-
menting other diverse groupware applications. Furthermore, the evaluation of
the framework concepts and how these support application developers as well
as how different combinations of variation point alternatives influence quality
requirements such as scalability and performance remain open issues.

References

1. Phillips, W.G.: Architectures for synchronous groupware. Technical Report 1999-
425, Queen’s University (1999)

2. Lukosch, S., Schümmer, T.: Communicating design knowledge with groupware
technology patterns. In: Proc. CRIWG 2004. LNCS, Springer (2004) 223–237

3. Schuckmann, C. et al.: Designing object-oriented synchronous groupware with
COAST. In: Proc. CSCW’96, ACM Press (1996) 30–38

4. Tietze, D.: A Framework for Developing Component-based Co-operative Applica-
tions. PhD thesis, Darmstadt University of Technology, Germany (2001)

5. Streitz, N.A. et al.: DOLPHIN: Integrated meeting support across local and remote
desktop environments and liveboards. In: Proc. CSCW’94, ACM Press (1994) 345–
358

6. Schmid, H.A.: Systematic framework design by generalization. Communications
of the ACM 40 (1997) 48–51

7. Froehlich, G. et al.: Reusing hooks. In Fayad, M.E. et al., ed.: Building Application
Frameworks: Object-Oriented Foundations of Framework Design. John Wiley &
Sons (1999) 219–236

8. Roth, J.: A taxonomy for synchronous groupware architectures. In: Workshop
“Which Architecture for What” of CSCW’00. (2000)

9. Hill, R.D. et al.: The Rendezvous architecture and language for constructing mul-
tiuser applications. ACM ToCHI 1 (1994) 81–125

10. Roseman, M., Greenberg, S.: Building real time groupware with GroupKit, a
groupware toolkit. ACM ToCHI 3 (1996) 66–106

11. Roth, J.: ‘DreamTeam’: A platform for synchronous collaborative applications. AI
& Society 14 (2000) 98–119

12. Buschmann, F. et al.: Pattern-oriented Software Architecture. A System of Pat-
terns. Volume 1. John Wiley & Sons Ltd (1996)

13. Schmidt, D.C. et al.: Pattern-oriented Software Architecture. Patterns for Concur-
rent and Distributed Objects. Volume 2. John Wiley & Sons Ltd (2000)

	Introduction
	Analysis of Variation Points and Related Work
	Framework Design
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

