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Renormalization Group, Non-Gibbsian states, their relation-

ship and further developments.

Aernout C.D. van ENTER1,

(1) Centrum voor theoretische natuurkunde R.U.G. Nijenborgh 4, 9747AG, Groningen, the Nether-
lands.

Abstract:

We review what we have learned about the “Renormalization Group peculiarities” which were discovered
more than twentyfive years ago by Griffiths and Pearce. We discuss which of the questions they asked
have been answered and which ones are still widely open.

The problems they raised have led to the study of non-Gibbsian states (probability measures). We also
mention some further related developments, which find applications in nonequilibrium questions and
disordered models.

Keywords: Renormalization-Group peculiarities, non-Gibbsian measures.

1 Introduction

More than twentyfive years ago, Griffiths and Pearce [30, 31] discovered some unexpected mathemat-
ical difficulties in rigorously implementing many of the generally used real-space Renormalization
Group transformations as maps on a space of Hamiltonians.

In this short review I plan to assess what we have learned about these problems since then. The
relevant objects which have provided the most information are the so-called non-Gibbsian measures.
Indeed, renormalizing Gibbs measures associated to some Hamiltonian can result in a non-Gibbsian
measure for which no “resonable” renormalized Hamiltonian can be found.

We will see that Renormalization-Group maps cannot be discontinuous, although they can be
ill-defined.

Moreover, in any region of the phase diagram the question whether a particular transforma-
tion is well-defined or ill-defined turns out to be highly non-trivial. The ill-definedness of various
Renormalization-Group maps can be expressed in the violation of the property of “quasilocality” in
the renormalized states. The study and classification of such non-quasilocal states (—non-Gibbsian
measures—) has led also to various results of mathematical interest, some of which we will men-
tion further on. Some papers covering the area of non-Gibbsianness and Renormalization-Group
peculiarities, also treating further related material are [104, 103, 98, 62, 112, 100, 21, 22, 23, 83, 51,
99, 48, 49, 38, 46] and references therein. The first systematic and extensive (an almost 300-page
paper...) follow-up study appeared in 1993 [103]. Although many further results have since been
proven, the conceptual point of view I present here is still essentially based on that paper.

Beyond Renormalization Group applications, non-Gibbsian measures have been found in various
other circumstances. I will shortly mention some of those. At the end of the paper I mention some
further open problems.

2 Gibbs measures and quasilocality

In this section we will describe some definitions and facts we will need about the theory of Gibbs
measures. For a more extensive treatment we refer to [28] or [103].
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We will consider spin systems on a lattice Zd, where in most cases we will take a single-spin

space Ω0 which is finite. The configuration space of the whole system is Ω = ΩZd

0 . Configurations
will be denoted by small Greek letters such as σ or ω, and their coordinates at lattice site i are
denoted by ω(i) or σ(i). A (regular) interaction Φ is a collection of functions ΦX on ΩX

0 , X ∈ Zd

which is translation invariant and satisfy:

Σ0∈X |ΦX |∞ < ∞ (1)

Formally Hamiltonians are given by

HΦ = ΣX∈Zd ΦX (2)

Under the above regularity condition these type of expressions make mathematical sense if the sum is
taken over all subsets having non-empty intersections with a finite volume Λ. For regular interactions
one can define Gibbs measures as probability measures on Ω having conditional probabilities which
are described in terms of appropriate Boltzmann-Gibbs factors:

µ(σ1
Λ|ωΛc)

µ(σ2
Λ|ωΛc)

= exp−(ΣX [ΦX(σ1
ΛωΛc) − ΦX(σ2

ΛωΛc)]) (3)

for each volume Λ, µ-almost every boundary condition ωΛc outside Λ and each pair of configurations
σ1

Λ and σ2
Λ in Λ. As long as Ω0 is compact, there always exists at least one Gibbs measure for every

regular interaction; the existence of more than one Gibbs measure is one definition of the occurrence
of a first-order phase transition of some sort. Thus the map from interactions to measures is one
to at-least-one. Every Gibbs measure has the property that (for one of its versions) its conditional
probabilities are continuous functions of the boundary condition ωΛc , in the product topology.
It is a non-trivial fact that this continuity, which goes by the name “quasilocality” or “almost
Markovianness”, in fact characterizes the Gibbs measures [95, 47], once one knows that all the
conditional probabilities are bounded away from zero (that is, the measure is nonnull or has the
finite energy property). In some examples it turns out to be possible to check this continuity
(quasilocality) property quite explicitly. If a measure is a Gibbs measure for a regular interaction,
this interaction is essentially uniquely determined. Thus the map from measures to interactions is
one to at-most-one.

A second characterization of Gibbs measures uses the variational principle expressing that in
equilibrium a system minimizes its free energy. A probabilistic formulation of this fact naturally
occurs in terms of the theory of large deviations. A (third level) large deviation rate function is
up to a constant and a sign equal to a free energy density. To be precise, let µ be a translation
invariant Gibbs measure, and let ν be an arbitrary translation invariant measure. Then the relative
entropy density i(ν|µ) can be defined as the limit:

i(ν|µ) = limΛ→Zd

1

|Λ|
IΛ(ν|µ) (4)

where

IΛ(ν|µ) =

∫
log(

dνΛ

dµΛ
)dνΛ (5)

and µΛ and νΛ are the restrictions of µ and ν to ΩΛ
0 . It has the property that i(ν|µ) = 0 if and

only if the measure ν is a Gibbs measure for the same interaction as the base measure µ. We can
use this result in applications if we know for example that a known measure ν cannot be a Gibbs
measure for the same interaction as some measure µ we want to investigate. For example, if ν is a
point measure, or if it is the case that ν is a product measure and µ is not, we can conclude from
the statement: i(ν|µ) = 0, that µ lacks the Gibbs property.

For another method of proving that a measure is non-Gibbsian because of having the “wrong”
type of (in this case too small) large deviation probabilities, see [90].
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3 Renormalization-Group maps: some examples

We will mostly consider the standard nearest neighbor Ising model with (formal) Hamiltonian

H = Σ<i,j> − σ(i)σ(j) − hΣi σ(i) (6)

at inverse temperature β. The magnetic field strength is h. The dimension d in what follows will
be at least 2.

We will consider various real-space Renormalization-Group or block-spin transformations which
act on the Ising Gibbs measures. Our first question is to find the domain of definition of such trans-
formations (that is: Is the first step of the renormalization program well-defined?). The question
then is to find the renormalized interaction, that is the interaction associated to the transformed
measure. This then should define the transformation at the level of interactions (Hamiltonians).

Although in applications the transformation needs to be iterated, and one would like to know
about fixed points, domains of attraction etc, we will mostly restrict ourselves to considering a
single transformation. Existence of the first step is of course necessary but far from sufficient for
justification of an iterative procedure. For some recent work considers what happens after many
iterations, see [5, 6, 7]. We mention e.g. that sometimes, even if the first step is ill-defined, after
repeated transformations a transformed interaction can be found [78].

In contrast to what one might at first believe, the critical point can be either outside or inside
the domain of definition of the Renormalization Group operator, and does in general not play any
special role.

We divide the lattice into a collection of non-overlapping blocks. A Renormalization-Group
transformation defined at the level of measures will be a probability kernel

T (ω′|ω) = ΠblocksT (ω′(j)|ω(i); i ∈ blockj) (7)

This means that the distribution of a block-spin depends only on the spins in the corresponding block,
in other words the transformation is local in real space. The case of a deterministic transformation
is included, by having a T which is either zero or one.

Renormalization-Group methods are widely in use to study phase transitions and in particular
critical phenomena of various sorts (see for example [113, 68, 17, 26]), as was alos testified by the
workshop. Some good recent references in which the theory is explained, mostly at a physical level
of rigour, but including some more careful statements about what actually has and has not been
proven are [29, 2, 1].

1) One class of examples we will consider are (linear) block-average transformations. This means
that the block-spins are the average spins in each block. Applied to Ising systems they suffer from
the fact that the renormalized system has a different single-spin space from the original one. Despite
this objection, the linearity makes these maps mathematically rather attractive, and they have often
been considered. As long as we are not iterating the transformation we need not worry too much
about the single-spin space changing, but see [5, 6, 7].

2) Majority rule and Kadanoff transformations.
In the case of majority rule transformations [84] applied to blocks containg an odd number of

sites, the block spin is just given by the sign of the majority of the spins in the block. These
transformations have been chosen often because of their numerical tractability.

The Kadanoff transformation is a soft version (a proper example of a stochastic transformation)
of the majority rule:

T (σ′(j)|σ(i); i ∈ blockj)) = C exp [pσ′(j)Σi∈blockj
σ(i)] (8)

In the limit in which p goes to ∞ the Kadanoff map reduces to a majority rule transformation. Once
the block size is even, and there is the possibility of a tie (equally many pluses and minuses in the
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block), one gives a prescription what happens in such a case. For example, a popular prescription
is then to flip a coin to decide.

Majority rule transformations map Ising systems onto Ising systems, and have at least in principle
the possibility to be iterated, and to have nontrivial fixed points.

3)Decimations and projections.
We will call a “decimation” taking the marginal of a measure restricted to the spins on a sublattice

of the same dimension as the original system, (thus the block-spins are the spins in some periodic
sub-lattice).

A “projection” will mean taking the marginal to a lower-dimensional sublattice. Projections are
not Renormalization-Group maps proper, but share some mathematical properties of Renormalization-
Group maps. See [69, 70, 90].

Although decimation transformations have the advantages both of being linear and of preserving
the single-spin space, infinite iteration has the disadvantage that critical fixed points won’t occur.
However, this problem does not show up after a finite number of applications of these maps, so we
will here not too much worry about it.

4 Peculiarities:The investigations of Griffiths and Pearce

Griffiths and Pearce [30, 31] seem to be the first investigators who looked seriously at the question
whether renormalized Hamiltonians exist in a precise mathematical sense. They found that for some
real-space transformations like decimation or Kadanoff transformations in the low-density regime
(that means strong magnetic fields in Ising language) the Renormalization-Group map maps the
Ising Gibbs measure on a Gibbs measure for an in principle computable interaction. They also
found, both at phase transitions and near areas of the phase diagram where first order transitions
occur, that there are regimes where the formal expression for renormalized interactions behaved
in a peculiar way. These “peculiarities” were found for decimation, Kadanoff, and majority rule
transformations. The problem underlying the peculiarities is the occurrence of phase transitions in
the system, once it is constrained (or conditioned) by prescribing some particular, rather atypical,
block-spin configuration. This means that there can exist for these block-spin configurations long-
range correlations in the presumed “short-wavelength degrees of freedom”- or “internal spins”-,
which are to be integrated out in a Renormalization-Group map.

In their paper Griffiths and Pearce discuss various possible explanations of these “peculiarities”:

P1)The renormalized interaction might not exist,

P2)it might exist but be a singular function of the original interaction,

P3)it might be non-quasilocal,
or

P4)the thermodynamic limit might be problematic.
Shortly after, the problem was studied by Israel [42]. He obtained (very) high-temperature

existence results, including approach to trivial fixed points, as well as an analysis of the decimation
transformation at low temperature, indicating strongly that in that case the renormalized interaction
does not exist. Israel’s results convinced Griffiths that in fact possibility P1)— non-existence of the
renormalized interaction— applies [32]; however, it seems that most authors aware of their work
interpreted the Griffiths-Pearce peculiarities as singular behaviour of the renormalized interactions
(possibility P2)). See for example [39, 11, 41, 96]. Many authors did not even show awareness
that the determination of renormalized interactions presented problems beyond mere computational
difficulty. See the Appendix for some illustrations of this point.

Deep in the uniqueness regime the Renormalization-Group procedure appeared to be well-defined
in some generality.
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At that stage, various open questions formulated by Griffiths and Pearce and Israel were still
left:

Q1) What is the nature of the “peculiarities”?

Q2) Can one say anything about the critical regime?

Q3) Do different transformations exhibit similar behaviour? For example, are decimation, block-
averaging, majority and momentum-space Renormalization-Group transformations similar regarding
the occurrence of “peculiarities”?

Q4) As the “peculiarities” are due to rather atypical spin-configurations, can one make the Renormalization-
Group enterprise work, by considering only typical configurations, and thus work with appropriate
approximations? Or, more generally, is there a framework in which one can one implement the
whole Renormalization-Group machinery in a mathematically correct way?

5 Answered and unanswered questions

About question Q1 —the nature of the peculiarities— we have acquired some more insight. In
[103] the Griffiths-Pearce study was taken up and further pursued. We provided a rather extensive
discussion of the physical interpretation of these issues, as well as proving a number of varied
mathematical results. It was found for example, making use of the above-mentioned variational
characterization of Gibbs measures, that the peculiarities could not be due to discontinuities in
the Renormalization-Group maps. In fact the Renormalization Group map from interactions to
interactions is one to at-most-one. The underlying argument is that if one transforms two measures,
their relative entropy tends to shrink, for a wide class of transformations. Hence renormalizing two
phases (different Gibbs measures for the same interaction, having relative entropy density zero with
respect to each other) cannot result in two Gibbs measures for different interactions, for which these
relative entropy densities need to be non-zero.

However, in the “peculiar” cases considered by Griffiths and Pearce the renormalized measures
all have conditional probabilities with points – spin configurations – of essential discontinuity. That
is, they are non-Gibbsian. See also [46]. Thus a renormalized Hamiltonian does not exist. This
despite many attempts to compute these — non-existent — renormalized Hamiltonians, and the
various physically plausible and intuitively convincing conclusions, derived from such approximate
computations.

In fact, those constrained block-spin configurations, pointed out by Griffiths and Pearce, for
which the internal spins have phase transitions are precisely the points of discontinuity – non-
quasilocality– for some conditional probability. The observation that the “peculiarities” were due
to the violation of the quasilocality condition was in essence, though somewhat in a slightly implicit
way, already made in Israel’s analysis.

At first the non-Gibbsian examples were found at or near phase transitions, at sufficiently low
temperatures. Then it was found [101] that decimation applied to many-state Potts models gives
non-Gibbsian measures also above the transition temperature.

Somewhat surprisingly, it turned out that even deep in the uniqueness regime, the non-Gibbsianness
can occur. This happens for example at low temperature for block-average [103], and majority rule
[101] transformations in strong external fields, and it is even possible to devise transformations for
which this happens at arbitrarily high temperatures [97]. On the other hand, it turns out that
for Gibbs measures well in the uniqueness regime, a repeated application of a decimation transfor-
mation, even after composing with another Renormalization-Group map, leads again to a Gibbs
measure, although applying the decimation only a few times may result in a non-Gibbsian measure
[78, 79]. For related work in this direction see also [4]. As mentioned before, physically this means
that one cannot find a “reasonable” (more or less short-range, local) Hamiltonian.
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About critical points (question Q2), Haller and Kennedy [38] obtained the first results, proving
both for a decimation and a Kadanoff transformation example that a single Renormalization-Group
map can map an area including a critical point to a set of renormalized interactions. There are
strong indications for similar behaviour for other transformations [45, 3, 12, 86]. The indications
are partly numerical,however, and fall short of a rigorous proof. See also the numerical work of
[87]. On the other hand, counterexamples where a transformed critical measure is non-Gibbsian
also exist [97, 98]

Another critical regime result is the observation of [18], that majority rule scaling limits of critical
points above the upper critical dimension (when the critical behaviour is like that of a Gaussian)
are non-Gibbsian.

It was found that non-Gibbsian measures can also occur as a result of applying momentum-space
transformations [100].

The conclusion of all the above is that different transformations can have very different behaviour.
This is a sort of answer to question Q3, although in principle not a very informative one. In fact for
applicability, if not for existence, something like this was already expected (compare for example
Fisher’s [25] remarks on “aptness” and focusability).

Regarding question Q4) —to find the right setting for implementing Renormalization-Group
Theory— the issue is still essentially open. One approach which was stimulated by the late R.L.
Dobrushin is related to the observation of Griffiths and Pearce that the block-spin configurations
responsible for the peculiarities (the discontinuity points) are rather atypical. By removing them
from configuration space, one might hope to be left with a viable theory. Such investigations have
led to the notions of “almost”, “intuitively weak”or “weak” Gibbs measures, the study of whose
properties is being actively pursued [15, 16, 10, 69, 110, 23, 73, 71, 24, 92, 58, 77, 64, 5, 6, 7, 111].
This approach is somewhat along the lines of Griffiths’ and Pearce’s possibility P3). See also the
next section. Whether it is possible to describe Renormalization-Group flows in spaces of such
interactions, while keeping a continuous connection between interactions describing a positively and
a negatively magnetized state, is not at all clear. A warning sign is that the variational principle
can be violated for a weakly Gibbsian situation [51].

As for projections, it is known that on the phase-transition line of the 2-dimensional Ising model
the projection to Z of any Gibbs measure is non-Gibbsian [90]. In the whole uniqueness regime,
except possibly at the critical point, this projection results in a Gibbsian measure [74, 62, 63].
In three dimensions the projected measures to two-dimensional planes are again non-Gibbsian on
the transition line [24, 75, 70]; however, now, due to the presumably existing surface (layering)
transition between different “Basuev states” (states with different layer thicknesses), one expects
that the projected measures also in a small field will be non-Gibbsian [62, 63].

The composition of a projection and a decimation in the phase transition region gives rise to
a new phenomenon, namely the possibility of a state-dependent result. The transformed plus and
minus measures are Gibbs measures for different interactions, while the transformed mixed measures
are non-Gibbsian [66]. Their relative entropy densitis with respect to each other are positive.

6 Further results on non-Gibbsian measures: FK, the colors

of Häggström, fuzzy Potts, quenched disorder and non-

equilibrium

Further investigations in which non-Gibbsian measures were displayed, have been done about the
random-cluster models of Fortuin and Kasteleyn [88, 33, 8, 36, 92], the related coloring model
of Häggström, [35], about the Fuzzy Potts image analysis model [76, 37, 34], and about various
non-equilibrium models, both in the steady state and in the transient regime – for this last case
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it is useful to note that an infinite-temperature Glauber dynamics can be viewed as a single-site
stochastic “renormalization-group” map–. [94, 112, 80, 79, 99, 60, 72, 13, 59].

Also, joint quenched measures of disordered systems, have been shown sometimes to be non-
Gibbsian [109, 107, 48, 49, 106], affecting the Morita approach to disordered systems [82, 53]. In
this last case, the peculiarity can be so strong – and it actually is in the 3-dimensional random
field Ising model– as to violate the variational principle. This means in particular that the (weakly
Gibbsian) interactions belonging to the plus state and the minus state are different, despite their
relative entropy density being zero. Non-Gibbsianness here means that the quenched measure cannot
be written as an annealed measure, that is a Gibbs measure on the joint space of spins and disorder
variables for some “grand potential”, such as Morita proposed.

The non-Gibbsian character of the various measures considered comes often as an unwelcome
surprise. A description in terms of effective, coarse-grained or renormalized potentials is often
convenient, and even seems essential for some applications. Thus, the fact that such a description
is not available can be a severe drawback. As remarked earlier there have been attempts to tame
the non-Gibbsian pathologies, and here we want to give a short comparison of how far one gets with
some of those attempts.

1) The fact that the constraints which act as points of discontinuity often involve configurations
which are very untypical for the measure under consideration, suggested a notion of almost Gibbsian
or weakly Gibbsian measures. These are measures whose conditional probabilities are either contin-
uous only on a set of full measure or can be written in terms of an interaction which is summable
only on a set of full measure. Intuitively, the difference is that in one case the “good” configurations
can shield off all influences from infinitely far away, and in the other case only almost all influences.
The weakly Gibbsian approach was first suggested by Dobrushin to various people; his own version
was published only later[14, 15, 16]. An early definition of almost Gibbsianness appeared in print
in [67], see also [24, 76, 77, 69, 111, 51, 83] for further developments. Some examples of measures
which are at the worst almost Gibbsian measures in this sense are decimated or projected Gibbs
measures in an external field, random-cluster measures on regular lattices, and low temperature
fuzzy Potts measures. In the random-cluster measures one can actually identify explicitly all bond
configurations which give rise to the non-quasilocality. They are precisely those configurations in
which (possibly after a local change) more than one infinite cluster coexist.

On a tree, because of the possible coexistence of infinitely many infinite clusters with positive
probability, the random-cluster measure can violate the weak non-Gibbsianness condition and be
strongly non-Gibbsian [36].

Dobrushin [14, 77, 15, 16] showed that for a projected pure phase on the coexistence line of
the 2-dimensional Ising model it is possible to find an almost everywhere defined interaction, hence
these measures are weakly Gibbsian. His approach, which is via low-temperature expansions, pro-
vides a way of obtaining good control for the non-Gibbsian projection. For similar ideas in a
Renormalization-Group setting see [10, 58, 65].

For some Renormalization-Group examples an investigation via low temperature expansions into
the possibility of recognizing non-Gibbsianness was started in [89].

Another simple counter-example of a strongly non-quasilocal measure, where each configuration
can act as a point of discontinuity, is a mixture of two Gibbs measures for different interactions
[108].

2) Stability under decimation (and other transformations).
In [78, 79] it was shown how decimating once-renormalized non-Gibbsian measures results in

Gibbs measures again after a sufficiently large number of iterations. These often decimated measures
are in the high-temperature regime, in which the usually applied Renormalization-Group maps are
well-defined (this does not hold true for all maps though, in view of the highly non-linear example
given before).
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On the other hand, in examples where the non-Gibbsian property is associated with large devia-
tion properties which are not compatible with a Gibbsian character (this holds for example for spin-
projected Gaussians, invariant measures of the voter and the Martinelli-Scoppola model[56, 57, 80])
the non-Gibbsian property survives all sort of transformations [79, 108]. The argument is that when
some obviously non-Gibbsian measure has a rate function zero with respect to the measure under
consideration, this property is generally preserved ([103] Section 3.2 and 3.3).

The family of spin-projected Gaussians include scaling limits for majority-rule transformations
in high dimensions [18]. The transformation of those scaling limits is, heuristically, interpreted as
making a move from a fixed point in what is usually called a “redundant” direction (cf. Wegner’s
contribution to [17]) in some space of Hamiltonians. Here, of course, the whole point is that such
Hamiltonians do not exist.

3) The two criteria mentioned above are distinct. A simple one-dimensional example due to
J. van den Berg [65] gives a one-dependent measure which has a set of discontinuity points of full
measure, but due to the one-dependence the measure becomes after decimation independent and
therefore trivially Gibbsian. In the opposite direction, there exist examples of measures whose
non-Gibbsianness is robust, although they are weakly, and even almost, Gibbsian[110].

7 Conclusions and some further open problems

We have by now managed well to understand the Griffiths-Pearce peculiarities in the sense that we
can identify mathematically their nature. However, how to get around them, and make Renormalization-
Group theory mathematically respectable, is still a task requiring a lot of further work. Renormalization-
Group ideas have of course often been inspirational, also for various rigorous analyses. Renormalization-
Group implementations on spin models, which both for numerical and pedagogical convenience have
often been treated by Renormalization-Group methods, run into difficulties which seem hard to
avoid.

An implementation of Renormalization-Group ideas on contour models looks more promising,
at least for the description of first-order phase transitions [27, 9].

On the other hand, having different descriptions and different mathematical objects at high tem-
peratures (lattice spin interactions), at low temperatures (Peierls contour models), and yet again
something different at critical temperatures (like possibly in two dimensions SLE, – the Schramm-
Loewner Evolutions, see e.g. [93, 54, 91, 44] –) seems not a good way to describe the textbook
Renormalization Group flow diagrams, where these three regimes typically are all included. There-
fore, although we understand the problems better, solutions seem still to be far out, and results
of Renormalization Group in the Mathematical Sciences need to develop a lot further before the
situation is satisfactory.

In non-equilibrium statistical mechanics there are still many open questions about the occurrence
of non-Gibbsian measures. Whether one can ascribe an effective temperature in a non-equilibrium
situation is a topic of considerable interest, (also in the physics literature, see e.g. [85]). The term
non-Gibbsian or non-reversible is often used for invariant measures in systems in which there is no
detailed balance [61, 20, 19]. It is an open question to what extent such measures are non-Gibbsian
in the sense we have described here. It has been conjectured that such measures for which there
is no detailed balance are quite generally non-Gibbsian in systems with a stochastic dynamics, see
for example [57] or [20], Appendix 1; on the other hand it has been predicted that non-Gibbsian
measures are rather exceptional ([61], Open problem IV.7.5, p.224) at least for non-reversible spin-
flip processes under the assumptions of rates which are bounded away from zero. The examples we
have are for the moment too few to develop a good intuition on this point, but see [59].
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We add the remark that sometimes a dynamics description is possible in terms of a Gibbs
measure on the space-time histories (in d + 1 dimensions). In such cases, looking at the steady
states is considering the d-dimensional projection of such Gibbs measures.

Recently, a study of non-Gibbsianness in a mean-field setting has started. In this case, the
characterization of Gibbs measures as having continuity properies in the product topology breaks
down. For these developments, see [50, 37, 52].

Another set of questions where non-Gibsianness probably plays an important role, but where we
don’t know much, is in Quantum Statistical Mechanics. A Gibbs state here should be a state on a
C∗-algebra satisfying the KMS condition for a C∗-automorphism. It seems that the finite-energy
poperty corresponds with the state having a cyclic and separating vector, implying the Tomita-
Takesaki structure. This means it has the KMS structure, but on the level of the von Neumann
algebra which is the weak closure of the C∗-algebra [105]. We do not have a good criterion as yet of
how to establish that a given quantum state is non-Gibbsian in this sense, but one properly quantum
mechanical non-Gibbsian example of a nonequilibrium steady state has been analyzed in [81].

Non-Gibbsian measures thus occur in quite different areas of statistical mechanics, besides renor-
malization group, and can have quite different properties. By now it seems somewhat surprising
that it took so long to appreciate the fact that the Gibbs property is rather special, in particular
in view of Israel’s [43] result that in the set of all translation invariant (ergodic, nonnull) measures,
Gibbs measures are exceptional.

8 Appendix: Some quotes from the literature

As an illustration that the heuristic character of Renormalization-Group theory, and in particular
the need to consider the existence problem of (approximately) local renormalized interactions was
recognized by various practitioners I mention the following quotes:
“One cannot write a renormalization cook book” (K.G. Wilson, cited by Niemeijer and van Leeuwen
[17]).
“The notion of renormalization group is not well-defined” ([2], opening sentence).
“It is dangerous to proceed without thinking about the physics” [29].
“...the locality [of the renormalized interactions] is a non-trivial problem which will not be discussed
further” [113].
“A Renormalization Group for a space of Hamiltonians should satisfy the following [25]:
A) Existence in the thermodynamic limit,...
B) ......
C) Spatial locality...”

Or, in the words of Lebowitz: “On the cautionary side one should remember that there are still
some serious open problems concerning the nature of the RG transformation of Hamiltonians for
statistical mechanical systems, i.e. for critical phenomena. A lot of mathematical work remains to
be done to make it into a well-defined theory of phases transitions” [55].

As an illustration that on the other hand the occurrence of the above-mentioned problems has
not been generally recognized, leading to some incorrect or at least misleading statements, I quote:
“The renormalization-group operator ... transforms an arbitrary system in the [interaction] space
... into another system in the space ....” [96].
“[the set of coupling constants gives rise to]..the most general form of the Hamiltonian...” [40].
“Further iterations of the renormalization group will generate long-range and multi-spin interactions
of arbitrary complexity” [114].
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“...the space of Ising Hamiltonians in zero field may be specified by the set of all possible spin-
coupling constants, and is closed [Fisher’s emphasis] under the decimation transformation” [26].
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[10] J. Bricmont, A. Kupiainen and R. Lefévere. Renormalization group pathologies and the defini-
tion of Gibbs states. Comm. Math. Phys.194, 359–388 (1998).

[11] T. W. Burkhardt and J. M. J. van Leeuwen. Progress and problems in real-space renormaliza-
tion. In Real-space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, Eds.(Springer,
1982).

[12] E. N. M. Cirillo and E. Olivieri. Renormalization-group at criticality and complete analyticity
of constrained models: a numerical study. J. Stat. Phys. 86, 1117–1151 (1997).

10



[13] D. Dereudre and S. Roelly. Propagation of Gibbsianness for infinite-dimensional gradient Brow-
nian diffusions. J. Stat. Phys. to appear (2006).

[14] R. L. Dobrushin. Lecture given at the workshop “Probability and Physics”, Renkum, Holland
(1995).

[15] R. L. Dobrushin and S. B. Shlosman. Gibbsian representation of non-Gibbsian fields. Russian
Math. Surveys 25, 285–299 (1997).

[16] R. L. Dobrushin and S. B. Shlosman “Non-Gibbsian” states and their Gibbs description. Comm.
Math. Phys. 200, 125–179 (1999).

[17] C. Domb and M. S. Green (Eds.). Phase transitions and critical phenomena, Vol.6. Academic
Press, New York, 1976.

[18] T. C. Dorlas and A. C. D. van Enter. Non-Gibbsian limit for large-block majority spin trans-
formations. J. Stat. Phys. 55, 171-181 (1989).

[19] M. H. Ernst and H. J. Bussemaker. Algebraic spatial correlations in lattice gas automata
violating detailed balance. J. Stat. Phys. 81, 515-536 (1995).

[20] G. L. Eyink, J. L. Lebowitz and H. Spohn. Hydrodynamics and fluctuations outside of local
equilibrium: driven diffusive systems. J. Stat. Phys. 83, 385–472 (1996).

[21] R. Fernández. Measures for lattice systems. Physica A 263, 117–130 (1999).

[22] R. Fernández. Contribution to Proceedings 2005 les Houches school on statistical mechanics,
to appear.

[23] R. Fernández, A. Le Ny and F. Redig. Variational principle and almost locality for some
renormalized measures. J. Stat. Phys. 111, 465–477 (2003).

[24] R. Fernández and C.-Ed. Pfister. Global specifications and non-quasilocality of projections of
Gibbs measures. Ann. Prob. 25, 1284–1315 (1997).

[25] M. E. Fisher. Scaling, universality and renormalization group theory. In Critical phenomena
(Stellenbosch 1982), Ed. F. J. W. Hahne, Springer Lecture Notes in Physics 186 (1983).

[26] M. E. Fisher. Renormalization group theory: Its basis and formulation in statistical physics.
Rev.Mod.Phys. 70, 653–681 (1998).
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