

 University of Groningen

Agreeing Asynchronously
Cao, M.; Morse, A.S.; Anderson, B.D.O.

Published in:
Proceedings of the 45th IEEE Conference on Decision and Control (CDC)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Cao, M., Morse, A. S., & Anderson, B. D. O. (2006). Agreeing Asynchronously: Announcement of Results.
In Proceedings of the 45th IEEE Conference on Decision and Control (CDC) (pp. 4301-4306). University of
Groningen, Research Institute of Technology and Management.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/32c194b9-ec58-4475-8734-59d5cf884112

Agreeing Asynchronously: Announcement of Results∗

M. Cao
Yale University

m.cao@yale.edu

A. S. Morse
Yale University

as.morse@yale.edu

B. D. O. Anderson
Australian National University

and National ICT Australia Ltd.
brian.anderson@anu.edu.au

Abstract— This paper formulates and solves a continuous-
time version of the widely studied Vicsek consensus problem in
which each agent independently updates its heading at times
determined by its own clock. It is not assumed that the agents’
clocks are synchronized or that the “event” times between
which any one agent updates its heading are evenly spaced.
Heading updates need not occur instantaneously. Using the
concept of “analytic synchronization” together with several key
results concerned with properties of “compositions” of directed
graphs, it is shown that the conditions under which a consensus
is achieved are essentially the same as those applicable in the
synchronous discrete-time case provided the notion of an agent’s
neighbor between its event times is appropriately defined.

I. INTRODUCTION

In a recent paper Vicsek and co-authors [1] consider a sim-
ple discrete-time model consisting of n autonomous agents
or particles all moving in the plane with the same speed
but with different headings. Each agent’s heading is updated
using a local rule based on the average of the headings of its
“neighbors.” In their paper, Vicsek et al. provide a variety
of interesting simulation results which demonstrate that the
nearest neighbor rule they are studying can cause all agents to
eventually move in the same direction despite the absence of
centralized coordination and despite the fact that each agent’s
set of nearest neighbors can change with time. Vicsek’s
problem is what in computer science is called a “consensus
problem” [2] or an “agreement problem.” Roughly speaking,
one has a group of agents which are all trying to agree on
a specific value of some quantity. Each agent initially has
only limited information available. The agents then try to
reach a consensus by communicating what they know to their
neighbors either just once or repeatedly, depending on the
specific problem of interest. For the Vicsek problem, each
agent always knows only its own heading and the headings
of its neighbors. One feature of the Vicsek problem which
sharply distinguishes it from other consensus problems, is
that each agent’s neighbors change with time, because all
agents are in motion. It has recently been explained why
Vicsek’s agents are able to reach a common heading [3],
[4], [5], [6], [7].

∗ The research of Cao and Morse was supported in part, by grants from
the Army Research Office and the National Science Foundation and by a
gift from the Xerox Corporation. The research of Anderson was supported
by National ICT Australia, which is funded by the Australian Government’s
Department of Communications, Information Technology and the Arts and
the Australian Research Council through the Backing Australia’s Ability
initiative and the ICT Centre of Excellence Program.

In this paper we consider a continuous-time version of the
Vicsek problem in which each agent independently updates
its heading at times determined by its own clock. We do not
assume that the agents’ clocks are synchronized or that the
“event times” between which any one agent updates its head-
ing are evenly spaced. In contrast to prior work addressed to
asynchronous consensus [8], [9], heading updates need not
occur instantaneously. As a consequence, it is not so clear
at the outset how to construct from the asynchronous update
model we consider, the type of discrete-time state equation
upon which the formulation of the problem addressed in
[8] depends. For the problem considered in this paper, the
deriving of conditions under which all agents eventually
move with the same heading requires the analysis of the
asymptotic behavior of an overall asynchronous continuous-
time process which models the n-agent system. We carry out
the analysis by first embedding this asynchronous process
in a suitably defined synchronous discrete-time, dynamical
system S using the concept of analytic synchronization
outlined previously in [10], [11]. This enables us to bring to
bear key results derived in [12] to characterize a rich class
of system trajectories under which consensus is achieved.
In particular, we prove that the conditions under which a
consensus is achieved are essentially the same as those in
the synchronous discrete-time case studied in [4], [5], [12]
provided the notion of an agent’s neighbor between its event
times is appropriately defined.

II. ASYNCHRONOUS SYSTEM

The system to be studied consists of n autonomous agents,
labelled 1 through n, all moving in the plane with the same
speed but with different headings. Each agent’s heading is
updated using a simple local rule based on the average of
its own heading plus the headings of its “neighbors.” Agent
i’s neighbors at time t, are those agents, including itself,
which are either in or on a closed disk of pre-specified
radius ri centered at agent i’s current position. In the sequel
Ni(t) denotes the set of labels of those agents which are
neighbors of agent i at time t. In contrast to earlier work
[3], [4], [5], [6], [7], this paper considers a version of
the flocking problem in which each agent independently
updates its heading at times determined by its own clock.
We assume for i ∈ {1, 2, . . . , n} that agent i’s event times
ti0, ti1, . . . , tik, . . . satisfy the constraints

T̄i ≥ ti(k+1) − tik ≥ Ti, k ≥ 0 (1)

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

ThIP10.5

1-4244-0171-2/06/$20.00 ©2006 IEEE. 4301

where ti0 = 0 and T̄i and Ti are positive numbers.
Updating of agent i’s heading is done as follows. At its

kth event time tik, agent i senses the headings θj(tik), j ∈
Ni(tik) of its current neighbors and from this data computes
its kth way-point wi(tik). We will consider way point rules
based on averaging. In particular

wi(tik) =
1

ni(tik)

⎛⎝ ∑
j∈Ni(tik)

θj(tik)

⎞⎠ , i ∈ {1, 2, . . . , n}

(2)
where ni(tik) is the number of indices in Ni(tik). Agent
i then changes its heading from θi(tik) to wi(tik) on the
interval (tik, ti(k+1)]. Thus

θi(ti(k+1)) = wi(tik), i ∈ {1, 2, . . . , n}, k ≥ 0 (3)

Although we will not be concerned about the precise manner
in which the value of each θi changes between way-points,
we will assume that for each i ∈ {1, 2, . . . , n}, there is a
piece-wise continuous signal µi : [0,∞) → [0, 1] satisfying
µ(tik) = 1 and limt↓tik

µi(t) = 0 for all k ≥ 0, such that

θi(t) = θi(tik) + µi(t)(wi(tik) − θi(tik)),
t ∈ (tik, ti(k+1)], k ≥ 0, i ∈ {1, 2, . . . , n} (4)

For i ∈ {1, 2, . . . , n}, let Mi denote the class of all
piecewise continuous signals ρ : [0,∞) → [0, 1] satisfying
limt↓tik

ρ(t) = 0 and ρ(tik) = 1 for all k ≥ 0. The
assumption that (4) holds for some µi ∈ Mi, is equivalent
to assuming that θi is at least piecewise continuous and that

|θi(t) − θi(tik)| ≤ |wi(tik) − θi(tik)|,
t ∈ (tik, ti(k+1)], k ≥ 0 (5)

Clearly (4) implies (5); on the other hand if (5) holds and
we define µi : [0,∞) → [0, 1] on (tik, ti(k+1)] as

µi(t) =

{
θi(t)−θi(tik)

wi(tik)−θi(tik) if wi(tik) �= θi(tik)

1 if wi(tik) = θi(tik)

then µi will be in Mi and (4) will hold.
For µi to be in Mi means that µi could be constant at the

value 1 on each interval (tik, ti(k+1)); this would mean that
just after tik, θi would jump discontinuously from its value at
tik to wi(tik) and remain constant at this value until just after
ti(k+1) [9]. More realistically, µi might change continuously
from 0 to 1 on (tik, ti(k+1)) which would imply that θi is
continuous on [0,∞). Under any conditions equations (2)
and (4) completely describe the temporal evolution of the n
agent asynchronous system of interest.

A. Extended Neighbor Graph

The explicit form of the update equations determined by
(2) and (4) depends on the relationships between neighbors
which exist at each agent’s event times. It is possible to
describe all neighbor relationships at any time t using a
directed graph N(t) with vertex set V = {1, 2, . . . n} and
arc set A(N) ⊂ V × V which is defined in such a way so
that (i, j) is an arc or directed edge from i to j just in case

agent i is a neighbor of agent j at time t. Thus N(t) is a
directed graph on n vertices with at most one arc between
each ordered pair of vertices and with exactly one self-arc
at each vertex. We write Gsa for the set of all such graphs.
It is natural to call a vertex i a neighbor of vertex j in any
graph G in Gsa if (i, j) is an arc in G.

Although the neighbors of each agent i are well defined at
event times of other agents, what’s important for modelling
agent i’s updates are the headings of neighboring agents
only at agent i’s own event times. We deal with this matter
by re-defining each agent’s neighbor set at times between
its own event times to consist of only itself. Our reason
for doing this will become clear later when, for purposes
of analysis, we use analytic synchronization to embed the
n agent asynchronous model defined by (2) and (4) in a
synchronous dynamical system.

To proceed, let T denote the set of all event times of all
n agents. Relabel the elements of T as t0, t1, t2, · · · in such
a way so that t0 = 0 and tτ < tτ+1, τ ∈ {0, 1, 2, . . .}. For
i ∈ {1, 2, . . . , n}, let Ti denote the set of tτ ∈ T which are
event times of agent i. For each i ∈ {1, 2, . . . , n} define

N̄i(τ) =

{
Ni(tτ) if tτ ∈ Ti

i if tτ �∈ Ti,
(6)

Thus N̄i(τ) coincides with Ni(tτ) whenever tτ is an event
time of agent i, and is simply the single index i otherwise.

Much like N(t) which describes the original neighbor
relations of system (2), (3) at time t, we describe all re-
defined neighbor relationships at time τ ∈ {0, 1, . . .} to
be the directed graph N̄(τ) with vertex set V and arc set
A(N̄(τ)) ⊂ V × V which is defined so that (i, j) is an
arc from i to j just in case agent j is in the neighbor set
N̄i(τ). Thus like the neighbor graphs N(t), each N̄(τ) is a
directed graph on n vertices with at most one arc between
each ordered pair of vertices and with exactly one self-arc
at each vertex. We call N̄(τ) the extended neighbor graph
of the system (2) and (3) at time τ .

B. Objective

A complete description of the asynchronous system de-
fined by (2) and (4) would have to include a model which
explains how the µi(t) and Ni(t) change over time as
functions of the positions of the n agents in the plane.
While such a model is easy to derive and is essential for
simulation purposes, it would be difficult to take into account
in a convergence analysis. To avoid this difficulty, we shall
adopt a more conservative approach which ignores how the
Ni(t) and the µi(t) depend on the agent positions in the
plane and assumes instead that each might be any function in
some suitably defined set of interest. Our ultimate objective
is to show for any initial set of agent headings, any set of
µi ∈ Mi, i ∈ {1, 2, . . . n} and for a large class of functions
t 	−→ Ni(t), that the headings of all n agents will converge
to the same steady state value θss.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThIP10.5

4302

III. MAIN RESULTS

To state our main result, we need a few ideas from [12].
We call a vertex i of a directed graph G, a root of G if for
each other vertex j of G, there is a path from i to j. Thus i is
a root of G, if it is the root of a directed spanning tree of G.
We will say that G is rooted at i if i is in fact a root. Thus G

is rooted at i just in case each other vertex of G is reachable
from vertex i along a path within the graph. G is strongly
rooted at i if each other vertex of G is reachable from vertex
i along a path of length 1. Thus G is strongly rooted at i
if i is a neighbor of every other vertex in the graph. By a
rooted graph G is meant a graph which possesses at least
one root. Finally, a strongly rooted graph is a graph which
has at least one vertex at which it is strongly rooted.

By the composition of two directed graphs Gp, Gq with
the same vertex set we mean that graph Gq ◦ Gp with the
same vertex set and arc set defined such that (i, j) is an
arc of Gq ◦ Gp if for some vertex k, (i, k) is an arc of Gp

and (k, j) is an arc of Gq . Let us agree to say that a finite
sequence of directed graphs Gp1 , Gp2 , . . . , Gpm

with the
same vertex set is jointly rooted if the composition Gpm ◦
Gpm−1 ◦ · · · ◦ Gp1 is rooted. An infinite sequence of graphs
Gp1 , Gp2 , . . . , with the same vertex set is repeatedly jointly
rooted if there is a positive integer m for which each finite
sequence Gpm(k+1) , . . . , Gpmk+1 , k ≥ 0, is jointly rooted.

Equations (2) and (4) can be combined. What results is a
description of the evolution of θi on agent i’s event time set.

θi(ti(k+1)) =
1

ni(tik)

⎛⎝ ∑
j∈Ni(tik)

θj(tik)

⎞⎠ , i ∈ {1, 2, . . . , n}

In the synchronous version of the problem treated in [3],
[4], [5], [6], [7], for each k ≥ 0, the kth event times
t1k, t2k, . . . , tnk of all n agents are the same. Thus in this
case each agent’s heading update equation can be written as

θi(t) =
1

ni(tk)

⎛⎝ ∑
j∈Ni(tk)

θj(tk)

⎞⎠ ,

t ∈ (tk, tk+1], k ≥ 0 (7)

where t0 = 0 and tk = tik. The main result of [3] is as
follows.

Theorem 1: Let the θi(0) be fixed. For any trajectory of
the synchronous system determined by (7) along which the
sequence of neighbor graphs N(0), N(1), . . . is repeatedly
jointly rooted, there is a constant θss for which

lim
t→∞ θi(t) = θss (8)

where the limit is approached exponentially fast.
The aim of this paper is to prove that essentially the same

result holds in the face of asynchronous updating.
Theorem 2: Let the θi(0), wi(0), and µi ∈ Mi be fixed.

For any trajectory of the asynchronous system determined by
(2) and (4) along which the sequence of extended neighbor
graphs N̄(0), N̄(1), . . . is repeatedly jointly rooted, there is a

constant θss for which

lim
t→∞ θi(t) = θss (9)

where the limit is approached exponentially fast.
It is worth noting that the validity of this theorem de-

pends critically on the fact that there are finite positive
numbers, namely Tmax = max{T̄1, T̄2, . . . , T̄n} and Tmin =
min{T1, T2, . . . , Tn}, which uniformly bound from above
and below respectively, the time between any two successive
event times of any agent. This is a consequence of the
assumption that inequality (1) holds.

As noted in the last section, for the asynchronous problem
under consideration, the only vertices of N̄(τ) which can
have more than one neighbor, are those corresponding to
agents for whom tτ is an event time. Thus in the most likely
situation when distinct agents have only distinct event times,
there will be at most one vertex in each graph N̄(τ) which
has more than one neighbor. It is this situation we want to
explore further. Toward this end, let G∗

sa ⊂ Gsa denote the
subclass of all graphs which have at most one vertex with
more than one neighbor. Note that for n > 2, there is no
rooted graph in G∗

sa. Nonetheless, in the light of Theorem 2
it is clear that convergence to a common steady state heading
will occur if the infinite sequence of graphs N̄(0), N̄(1), . . .
is repeatedly jointly rooted. This of course would require that
there exist jointly rooted sequences of graphs from G∗

sa. We
will now explain why such sequences do in fact exist.

Let us agree to call a graph G ∈ Gsa an all neighbor
graph centered at v if every vertex of G is a neighbor of
v. Note that all neighbor graphs are maximal in G∗

sa with
respect to the partial ordering of G∗

sa by inclusion, where in
this context Gp ∈ G∗

sa is contained in Gq ∈ G∗
sa if A(Gp) ⊂

A(Gq). Note also the composition of any all neighbor graph
with itself is itself. On the other hand, because the arcs of
any two graphs in Gsa are arcs in their composition, the
composition of n all neighbor graphs with distinct centers
must clearly be a graph in which each vertex is a neighbor of
every other; i.e., the complete graph. Thus the composition
of n all neighbor graphs from G∗

sa with distinct centers is
strongly rooted. In summary, the hypothesis of Theorem 2
is not at all vacuous for the asynchronous problem under
consideration. When that hypothesis is satisfied, convergence
to a common steady state heading will occur.

IV. ANALYTIC SYNCHRONIZATION

To prove Theorem 2 requires the analysis of the asymp-
totic behavior of the n mutually unsynchronized processes
P1, P2, . . . Pn which the n pairs of heading equations (2),
(4) define. Despite the apparent complexity of the resulting
asynchronous system which these n interacting processes
determine, it is possible to capture its salient features using a
suitably defined synchronous discrete-time, hybrid dynamical
system S. The sequence of steps involved in defining S has
been discussed before and is called analytic synchronization
[10], [11]. First, all n event time sequences are merged into
a single ordered sequence of event times T , as we’ve already
done. This clever idea has been used before in [13] to study

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThIP10.5

4303

the convergence of totally asynchronous iterative algorithms.
Second, between event times each agent’s neighbor set is
defined to have exactly one neighbor, namely itself; this we
have also already done. Third, the “synchronized” state of
Pi is then defined to be the original of Pi at Pi’s event times
{ti1, ti2, . . .} plus possibly some additional state variables;
at values of t ∈ T between event times tik and ti(k+1), the
synchronized state of Pi is taken to be the same at the value
of its state at time tik. Although it is not always possible to
carry out all of these steps, in this case it is. What ultimately
results is a synchronous dynamical system S evolving on the
index set of T , with state composed of the synchronized
states of the n individual processes under consideration. We
now use these ideas to develop such a synchronous system
S for the asynchronous process under consideration.

A. Definition of S

For each such i and each q ∈ Ti define

θ̄i(τ) = θi(tq), q ≤ τ < q′ (10)

w̄i(τ) = wi(tq), q ≤ τ < q′ (11)

where tq′ is the first event time of agent i after tq . Note
that for any tq ∈ Ti there is always such a q′ because we’ve
assumed via (1) that the time between any two successive
event times of agent i is bounded above. In the full length
version of this paper it is shown that for i ∈ {1, 2, . . . , n}
and τ > 0

θ̄i(τ) = w̄i(τ − 1), tτ ∈ Ti (12)

θ̄i(τ) = θ̄i(τ − 1), tτ �∈ Ti (13)

w̄i(τ) =
1

n̄i(τ)

∑
j∈N̄i(τ)

{(1 − µ̄j(τ))θ̄j(τ − 1)

+µ̄j(τ)(w̄j(τ − 1)}, tτ ∈ Ti (14)

w̄i(τ) = w̄i(τ − 1), tτ �∈ Ti (15)

where for τ ∈ {0, 1, . . .}, µ̄j(τ) = µj(tτ) for j ∈
{1, 2, . . . , n}, and n̄i(τ) is the number of indices in N̄i(τ).
This set of equations constitute the synchronous system S

we intend to analyze.

B. State Space Model

The equations defining S, namely (12) – (15), determine
a state space system of the form

x(τ + 1) = F (τ)x(τ), τ ∈ {1, 2, . . .} (16)

where

x(τ) = [θ̄1(τ −1) · · · θ̄n(τ −1) w̄1(τ −1) · · · w̄n(τ −1)]′

(17)
Each F (τ) is a 2n × 2n stochastic matrix which can be
described as follows.

Let R denote the set of all lists of n numbers µ̄ =
{µ̄1, µ̄2, . . . , µ̄n} with each µ̄i taking a value in the real
closed interval [0, 1]. Let B denote the set of all lists
of n integers b = {b1, b2, . . . , bn} with each bi taking
a value in the binary integer set {0, 1}. Each such triple

(N̄, µ̄, b) ∈ Gsa × R × B determines a 2n × 2n stochastic
matrix F(N̄, µ̄, b) whose entries for i ∈ {1, 2, . . . , n} are

fij = δ(i+n)j , and

f(i+n)j =⎧⎨⎩
1
n̄i

(1 − µ̄j) j ∈ (N̄i − i)
1
n̄i

µ̄j j ∈ (N̄i − i) + {n}
1
n̄i

δ(i+n)j j �∈ (N̄i − i) ∪ ((N̄i − i) + {n})
if bi = 1 and

fij = δij and f(i+n)j = δ(i+n)j

if bi = 0. Here N̄i is the set of neighbors of vertex i in N̄, n̄i

is the number of elements in N̄i, N̄i − i is the complement
of i in N̄i, δij is the Kronecker delta, and for any set of
integers I, I + {n} is the set I + {n} = {i + n : i ∈ I}.
We call any such matrix F an asynchronous flocking matrix.
Thus the image of F is the set of all possible asynchronous
flocking matrices.

It is easy to verify that the matrix F (τ) in (16) is of the
form F(N̄(τ), µ̄(τ), b(τ)) where N̄(τ) is that graph in Gsa

with neighbor sets N̄1(τ), N̄2(τ), . . . , N̄n(τ), µ̄(τ) is that
list in R whose ith element is µ̄i(τ), and b(τ) is that list in
B whose ith element is bi(τ) = 1 if tτ ∈ Ti or bi(τ) = 0 if
tτ �∈ Ti.

Note that unlike the other flocking problems considered in
the past where the F (τ) were flocking matrices from a finite
set, the set of all asynchronous flocking matrices which arise
here, namely image F, is not a finite set because R is not
a finite set. Nonetheless image F is a closed and therefore
compact subset of the set of all 2n× 2n stochastic matrices
S. To understand why this is so, note first that for each
fixed b ∈ B and N ∈ Gsa, the mapping R → S, µ 	−→
F(N, µ, b) is continuous on R. Therefore its image must be
compact because R is. Next note that Gsa and B are each
finite sets. Since the union of a finite number of compact
sets is compact, it must therefore be true that the image of
F is compact as claimed.

V. ANALYSIS

The ultimate aim of this section is to give a proof of
Theorem 2. We begin with the notion of the graph of a
stochastic matrix.

Any 2n × 2n stochastic matrix S such as those in im-
age F, determines a directed graph γ(S) with vertex set
{1, 2, . . . , n, n+1, n+2, . . . , 2n} and arc set defined is such
a way so that (i, j) is an arc of γ(S) from i to j just in case
the jith entry of S is non-zero. It is easy to verify that for
any two such matrices S1 and S2,

γ(S2S1) = γ(S2) ◦ γ(S1) (18)

We now define a set of directed graphs G on vertex
set {1, 2, . . . , n, n + 1, n + 2, . . . , 2n} which contains all
γ(F), F ∈ image F, and which is large enough to be closed
under composition. For this purpose it is convenient to adopt
the notation [v] for the subset {v, v + n} whenever v ∈ V ,
and to say that ([v], u) is an arc of a graph G in G if either

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThIP10.5

4304

(v, u) or (v + n, u) is. Similarly we say that (v, [u]) is an
arc of G if either (v, u) or (v, u + n) is and ([v], [u]) is an
arc of G if either (v, [u]) or (v + n, [u]) is.

We define G to be the set of all directed graphs with
vertex set {1, 2, . . . , 2n} whose graphs have the following
properties. For each G ∈ G and each pair of vertices
u ∈ {1, 2, . . . , 2n} and v ∈ V:

p1: v + n has a self-arc in G.
p2: ([v], v) is an arc in G.
p3: If (u, v) is an arc in G and u �= v, then (u, v + n) is

an arc in G.
p4: If (u, [v]) is an arc in G and u �= v, then (v + n, v) is

an arc in G.

It is straightforward to verify that for each F ∈ image F,
γ(F) is a graph in G. In view of the structure of the matrices
in image F it is natural to call a graph G ∈ G an event graph
of agent i ∈ V if (i+n, i) is the only incoming arc to vertex
i. Note that the graph of every matrix F(N̄, µ̄, b) for which
bi = 1 is an event graph of agent i. Thus γ(F (τ)) is an event
graph of agent i if tτ is an event time of agent i. It is easy
to see that there are graphs in G which are not the graphs
of any matrix in image F. Let us agree to say that G ∈ G
is attached at i ∈ V if vertex i has at least (i + n, i) as an
incoming arc. A graph G ∈ G is attached if it is attached
at every vertex in V . Thus γ(F (τ)) would be attached if
and only if tτ were an event time of every agent. Note that
the definition G allows this set to contain graphs which are
attached at i which are not event graphs of agent i. In other
words, an event graph of agent i must be attached at i, but
the converse is not necessarily so.

We begin our analysis with the following observation.
Proposition 1: The set of graphs G is closed under com-

position.
The following results from [12] are key to establishing

this convergence.
Proposition 2: Let Ssr be any closed set of stochastic

matrices which are all of the same size and whose graphs
γ(S), S ∈ Ssr are all strongly rooted. As j → ∞, any
product Sj · · ·S1 of matrices from Ssr converges exponen-
tially fast to a matrix of the form 1c at a rate no slower
than λ, where c is a non-negative row vector depending on
the sequence and λ is a non-negative constant less than 1
depending only on Ssr.

Proposition 3: Suppose n > 1 and let Gp1 , Gp2 , . . ., Gpm

be a finite sequence of rooted graphs with the same vertex
set. If each vertex of each graph has a self-arc and m ≥
(n − 1)2, then Gpm ◦ Gpm−1 ◦ · · · ◦ Gp1 is strongly rooted.
Unfortunately the graphs of importance in the asynchronous
case, namely the γ(F (τ)), do not have self arcs at all
vertices. Thus Proposition 3 cannot be directly applied.

To describe the analog of Proposition 3 appropriate to
the asynchronous problem at hand we need another concept.
Note that each G ∈ G determines a quotient graph Q(G) ∈
Gsa defined in such a way that Q(G) has an arc from i
to j just in case G has an arc from at least one vertex
in the set [i] to at least one vertex in the set [j]. Note

that Q(γ(F(N̄, µ̄, b))) = N̄. The following is the analog of
Proposition 3.

Proposition 4: Let Gp1 , . . . , Gp2m+1 be a sequence of
2m + 1 attached graphs in G whose quotients are rooted.
If m ≥ (n− 1)2 then Gp2m+1 ◦ · · · ◦Gp1 is strongly rooted.

A more in depth study of the graphs in G leads us to the
following observation.

Proposition 5: Let Gp1 , . . . , Gpm
be a sequence of graphs

from G which for each i ∈ V , contains a graph which is
attached at i. Then Gpm ◦ · · · ◦ Gp1 is an attached graph.

Let h be the smallest positive integer such that Tmax ≤
hTmin, then there will be at least one event time of any
one agent within a sequence of at most h + 1 consecutive
event times of any other agent. We are led to the following
conclusion.

Lemma 1: In any sequence of (n − 1)h + 1 or more
consecutive event times, there will be at least one event time
of each of the n agents.

The following proposition shows that for any sequence of
graphs Gp1 , . . . , Gpm from G whose quotients constitute a
jointly rooted sequence, the quotient of the composition of
the sequence is rooted.

Proposition 6: Let Gp1 , . . . , Gpm be a sequence of m > 1
graphs from G for which Q(Gpm) ◦ · · · ◦Q(Gp1) is a rooted
graph. Then Q(Gpm ◦ · · · ◦ Gp1) is also rooted at the same
vertex as Q(Gpm) ◦ · · · ◦ Q(Gp1).

In proving Theorem 2, we will need to exploit the com-
pactness of a particular subset of stochastic matrices in S
which can be described as follows. Let p ≥ n be any given
positive integer. Write Gp

sa for the subset of all sequences of
p graphs in Gsa which are jointly rooted and Bp for the set
of all lists of p binary vectors in B with the property that
for each i ∈ {1, 2, . . . , n}, each list {b1, b2, . . . , bp} contains
at least one vector whose ith row is 1. Since p ≥ n, Bp

is nonempty. Let Rp be the Cartesian product of R with
itself p times. We claim that the image of the mapping
Fp : Bp ×Rp × Gp

sa → S defined by

({N1, N2, . . . , Np}, {µ1, µ2, . . . , µp}, {b1, b2, . . . , bp}) 	−→
F(Np, µp, bp) · · ·F(N2, µ2, b2)F(N1, µ1, b1)

is compact. The reason for this is essentially the same as
the reason image F is compact. In particular, for any fixed
{N1, N2, . . . , Np} ∈ Gp

sa and {b1, b2, . . . , bp} ∈ Bp,
the restricted mapping {µ1, µ2, . . . , µp} 	−→
Fp({N1, N2, . . . , Np}, {µ1, µ2, . . . , µp}, {b1, b2, . . . , bp}) is
continuous so its image must be compact. Since Bp and Gp

sa

are finite sets, the image of Fp must therefore be compact
as well.

Set q = 2(n − 1)2 + 1 and let Fp(q) denote the set of
all products of q matrices from image Fp. Then Fp(q) is
compact because image Fp is. More is true.

Proposition 7: The graph of each matrix in Fp(q) is
strongly rooted.
We are now finally in a position to prove our main result.

Proof of Theorem 2: As already noted, it is sufficient
to prove that the matrix product F (τ) · · ·F (1) converges

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThIP10.5

4305

exponentially fast to a matrix of the form 1c as τ → ∞.
Observe first that there is a vector binary vector b(τ) ∈ B
and a vector µ(τ) ∈ R such that

F (τ) = F(N̄(τ), µ(τ), b(τ)), τ ≥ 0 (19)

because each F (τ) ∈ image F.
By hypothesis, the sequence of extended neighbor graphs

N̄(0), N̄(1), . . . , is repeatedly jointly rooted. This means that
there is an integer m for which each of the sequences
N̄(km + 1), . . . , N̄((k + 1)m), k ≥ 0, is jointly rooted. Let
h be as is in Lemma 1 and define p = rm where r is any
positive integer large enough so that p ≥ (n − 1)h + 1. Set
q = 2(n − 1)2 + 1 and let Gp

sa, Rp, Bp, Fp, and Fp(q) be
as defined just above Proposition 7.

Since each N̄(km+1), . . . , N̄((k+1)m), k ≥ 0, is jointly
rooted, each of the compositions N̄((k+1)m)◦· · ·◦N̄(km+
1), k ≥ 0, is rooted. This implies that each graph N̄((k +
1)p) ◦ · · · ◦ N̄(kp + 1), k ≥ 0, is rooted because p = rm
and because the composition of r rooted graph is rooted.
Therefore each sequence N̄(kp+1), . . . , N̄((k+1)p), k ≥ 0,
is jointly rooted. It follows that

{N̄(kp + 1), . . . , N̄((k + 1)p} ∈ Gp
sa, k ≥ 0 (20)

Note next that for each i ∈ {1, 2, . . . , n} and each k ≥
0, at least one of the graphs in the sequence γ(F (kp +
1)), . . . , γ(F ((k + 1)p)) must be attached at i because of
Lemma 1 and the assumption that p ≥ (n − 1)h + 1. This
implies that for each i ∈ {1, 2, . . . , n} there must be at least
one vector in each list {b(kp + 1), . . . , b((k + 1)p)}, k ≥ 0
whose ith row is 1. Therefore

{b(kp + 1), . . . , b((k + 1)p)} ∈ Bp, k ≥ 0 (21)

For k ≥ 0, define

S(k) = F ((k + 1)p) · · ·F (kp + 1) (22)

In view of (19) - (21) and the definition of Fp, it must be
true that S(k) ∈ image Fp, k ≥ 0. Thus if we define

S̄(k) = S((k + 1)q − 1) · · ·S(kq), k ≥ 0 (23)

then each S̄(k) must be in Fp(q). Therefore by Proposition
7, the graph of each S̄(k) is strongly rooted. Therefore by
Proposition 2, the matrix product S̄(k) · · · S̄(0) converges
exponentially fast as k → ∞ to a matrix of the form 1c as
k → ∞.

The definitions of S(·) and S̄(·) in (22) and (23) respec-
tively imply that

S̄(k) · · · S̄(0) = F ((k + 1)pq) · · ·F1, k ≥ 0

For τ ≥ 0, let κ(τ) and ρ(τ) denote respectively, the integer
quotient and remainder of τ divided by pq. Then

F (τ) · · ·F (1) = Ŝ(τ)S̄(k(τ)) · · · S̄(0)

where k(τ) = κ(τ) − 1, and Ŝ(τ) is the bounded function

Ŝ(τ) =

{
F (τ) · · ·F ((k(τ) + 1)pq + 1) if ρ(τ) �= 0
1 if ρ(τ) = 0

Since k(τ) is an unbounded monotone nondecreasing func-
tion and S̄(k) · · · S̄(0) converges exponentially fast as k →
∞, it follows that F (τ) · · ·F (1) converges exponentially fast
as τ → ∞ to a matrix of the form 1c.

VI. CONCLUDING REMARKS

The version of the asynchronous consensus considered
here significantly generalizes our earlier work [9]. In par-
ticular, the present version of the problem can deal with
continuous heading changes whereas the version of the
problem solved in [9] cannot.

It is possible to formulate and solve a “continuous”
version of Viscek’s problem in which each agent’s heading
is adjusted by controlling its differential rate. Because of
changing neighbors this leads to a differential equation model
with a discontinuous vector field in which chattering may
occur. To avoid this one can introduce “dwell times” as was
done in [3] for the leader-follower version of the problem.
As a result, the question of synchronization again arises, in
this case with event times being the times at which each
agent’s dwell time periods begin. Thus although one might
think that the question of synchronization is irrelevant in
the continuous-time case, this appears to only be true if
one is willing to accept generalized solutions to differential
equations and the possibility of chattering.

REFERENCES

[1] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel
type of phase transition in a system of self-driven particles. Physical
Review Letters, 75:1226–1229, 1995.

[2] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the
Association for Computing Machinery, 32:347–382, 1985.

[3] A. Jababaie, J. Lin, and A. S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions
on Automatic Control, 48:988–1001, 2003. Also in Proc. 2002 IEEE
CDC, pages 2953 - 2958.

[4] L. Moreau. Stability of multi-agent systems with time-dependent
communication links. IEEE Transactions on Automatic Control,
50:169–182, 2005.

[5] W. Ren and R. Beard. Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transactions on
Automatic Control, 50:655–661, 2005.

[6] D. Angeli and P. A. Bliman. Extension of a result by Moreau on
stability of leaderless multi-agent systems. In Proc. of the 44th IEEE
CDC, pages 759–764, 2005.

[7] V. D. Blondel, J. M. Hendrichx, A. Olshevsky, and J. N. Tsitsiklis.
Convergence in multiagent coordination, consensus, and flocking. In
Proc. of the 44th IEEE CDC, pages 2996–3000, 2005.

[8] L. Fang, P. J. Antsaklis, and A. Tzimas. Asynchronous consensus
protocols: preliminary results,simulations and open questions. In Proc.
of the 44nd IEEE CDC, pages 2194–2199, 2005.

[9] M. Cao, A. S. Morse, and B. D. O. Anderson. Coordination of an
asynchronous multi-agent system via averaging. In Proc. of the IFAC
world congress, Prague, Czech Republic, 2005.

[10] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem - the asynchronous case. In Proc. of the 43rd
IEEE CDC, pages 1926–1931, 2004.

[11] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent
rendezvous problem - part 2: The asynchronous case. 2004. Submitted
to SIAM Journal on Control and Optimization.

[12] M. Cao, A. S. Morse, and B. D. O. Anderson. Reaching a consensus
in a dynamically changing environment - A graphical approach. April
2006. Submitted to SIAM Journal on Control and Optimization.

[13] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation. Prentice Hall, 1989.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThIP10.5

4306

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

