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Abstract

Skeletal representations of 2-D shape, including shock
graphs, have become increasingly popular for shape match-
ing and object recognition. However, it is well known that
skeletal structure can be unstable under minor boundary
deformation, part articulation, and minor shape deforma-
tion (due to, for example, small changes in viewpoint). As a
result, two very similar shapes may yield two significantly
different skeletal representations which, in turn, will induce
a large matching distance. Such instability occurs both at
external branches as well as internal branches of the skele-
ton. We present a framework for the structural simplifica-
tion of a shape’s skeleton which balances, in an optimiza-
tion framework, the desire to reduce a skeleton’s complex-
ity by minimizing the number of branches, with the desire to
maximize the skeleton’s ability to accurately reconstruct the
original shape. This optimization yields a canonical skele-
ton whose increased stability yields significantly improved
recognition performance.

1. Introduction

The skeleton of a shape aims to capture its part structure.

One of the first formal skeleton definitions is that of Blum

[3], who defined the medial axis of a shape as the loci of

centers of the maximal circles inscribed in the shape. Me-

dial axes are created from a shape using the Medial Axis

Transform (MAT), while a related skeleton definition uses

the local maxima, also called creases or ridges, of a shape’s

distance transform (DT) [3]. The original shape can be re-

constructed from the skeleton points s ∈ S using the MAT’s

radius function, R(s), or distance transform value DT (s),
which labels every skeleton point s with the radius of the

maximal inscribed circle centered at s, i.e., the minimal dis-

tance from s to the boundary.

∗The authors would like to thank Kaleem Siddiqi for his valuable feed-

back on an earlier draft of this paper.

Early algorithms used to compute the discrete, pixel-

sampled MAT tended to create skeletons that were ex-

tremely sensitive to boundary noise, spatial sampling rate,

and small perturbations of the shape boundary. Several re-

searchers, including Blum himself, proposed solutions to

robustly computing the MAT. The generalized MAT [3]

considers only skeleton points s with radius R(s) > r0

greater than some threshold r0; however, this may result

in a disconnected skeleton. Other approaches use branch

pruning and multiscale representations [8, 10, 12, 11, 5, 20].

Branches created by spatially small boundary details can be

pruned using a collapsed boundary length metric [12, 11,

5, 20]. However, this works only for the so-called external

branches. A branch is external if it has exactly one terminal

endpoint in the skeleton tree, and internal otherwise. Over-

all, most methods encounter problems in eliminating spu-

rious internal branches while retaining important descrip-

tive branches, as illustrated in Fig. 1(a,b), where random

“bumps” and “notches” are added to a hand shape.

A second source of skeletal instability has been studied

by August et al. [1], who have shown that shape bound-

ary concavities produce so-called ligature branch segments

whose points are related only to the concave boundary

points; when a ligature segment spans the entire branch, it

is called a ligature branch [3, 1]. Small positional changes

of such concavities can cause significant ligature branch

structural changes (see Fig. 1(c,d)), which ultimately give

rise to significant differences in their corresponding shock

graphs [16]. August et al. [2] show that the internal skele-

ton instabilities cannot be removed by boundary smoothing

alone. August et al. [1] attempt to deal with this problem by

eliminating those shock graph nodes that represent ligature

branches, in order to produce more stable graphs. However,

this requires the robust detection of concave corners, which

is a challenging problem for discrete images.

Giblin and Kimia [7] have catalogued all the generic

transitions of the medial axis and showed that the above two

types of MAT instabilities are the only cases where small

boundary changes produce large representation (skeleton)
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(a) (b)

(c) (d)

Figure 1. The Instability of a Shape’s Skele-
ton. Considering only skeleton points with
radius greater than some threshold r does
not eliminate all spurious branches in the
presence of bumps (a) or notches (b). Mi-
nor deformations in shape due to viewpoint
change or articulation (c) and (d) may result
in major changes in the topology of ligature
segments (darkened) which, if spanning an
entire branch, are called ligature branches.
Changes in branch color reflect qualitative
changes in the branch’s radius function.

changes.1 Such instability poses a major obstacle to ef-

fective object recognition, in general, and generic object

recognition, in particular, where representational invariance

to part articulation, minor shape deformation, and minor

changes in viewpoint is essential. If such changes in an ob-

ject’s shape induce major changes in its underlying skeletal

(or shock) graph structure, the distance between two graphs

(as computed by a skeletal graph matcher, such as [17, 13])

will not reflect the distance between the two shapes. Our

challenge is to eliminate these two types of instability by

structurally simplifying a shape’s skeleton, so that non-

salient branches, both internal and external, are removed,

leaving a canonical skeleton that captures only the salient

part structure of the shape.

In this paper, we introduce an optimization framework

1In fact, these two forms of instability are characterized by transitions

of the symmetry set [7]. Another form of instability addresses the move-

ment of a branch point as a function of boundary deformation (see, for

example, Bouix et al. [4]). We do not address this form of instability since

its affect on skeletal structure is minimal.

for structural simplification that balances, on one hand, our

desire to abstract or simplify a shape’s skeletal representa-

tion (for fewer nodes in its underlying graph will lead to

less complex graph matching) with, on the other hand, our

desire to yield a representation that is true to the original

shape, i.e., a skeleton whose reconstruction error is mini-

mized. This trade-off between abstraction (complexity) and

faithfulness (reconstruction error) is task dependent, and

different recognition domains may weight these two goals

differently. Still, they provide a pair of opposing forces

which will help us converge on a canonical skeleton for

shape matching. We describe our framework and demon-

strate its efficacy on the domain of shock graph-based ob-

ject recognition, showing how our structural simplification

applied to both database and query shapes can yield a sig-

nificant improvement in recognition performance.

2. Structural Simplification

Our structural simplification procedure is divided into

two stages, both of which balance reconstruction error with

branch complexity. The first stage removes unstable exter-

nal branches, while the second stage removes unstable inter-

nal branches. Removing external branches first is motivated

by the fact that an external branch may separate two inter-

nal branches that will merge naturally after removing the

external branch, thereby simplifying internal structure. Re-

moving internal branches involves first identifying the liga-

ture branches, which represent candidates for removal. Re-

moving a candidate ligature branch requires the modifica-

tion of neighboring branches subject to all of them obeying

the properties of a MAT as well as minimizing reconstruc-

tion error. This latter problem was considered by Telea et
al. [19], who proposed a principled framework that gener-

ates a simplified, abstracted skeleton hierarchy by analyzing

the quasi-stable points of a Bayesian-inspired energy func-

tion. However, their method does not generate a true axis

of symmetry, in the sense of the MAT definition, and thus

cannot be directly used with existing skeleton-based shape

matching techniques, such as [17, 13].

2.1. Candidate Branches for Pruning

Before applying our two-stage optimization procedure

for branch pruning, we must identify candidate external

and internal branches for pruning, and rank-order them by

increasing saliency. The saliency of a branch, both inter-

nal and external, is related to the reconstruction error (de-

tailed later in this section) induced by the skeleton minus

the branch; branches that contribute less to the shape, and

whose removal yields small reconstruction error, will be

ranked before branches that contribute more to the shape,

and whose removal yields large reconstruction error. In the
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case of external branches, all external branches are consid-

ered as candidates for pruning. However, in the case of in-

ternal branches, only ligature branches are candidates for

pruning and must therefore first be identified.

To identify the ligature branches, we will analyze the

radius function of each internal branch. Specifically, let

a skeleton S be a discrete, connected set of points in N
2,

and let the local neighborhood of a discrete point be its 8-

neighborhood. We will approximate the radii of a branch’s

skeleton points as a function of the cumulative piecewise

linear distance, di, along the branch {si} with endpoints s0

and sn, where si = [xi, yi], for 0 ≤ i ≤ n. This distance is

given by di =
∑i−1

k=0 ||sk+1 − sk||2, and the radius R̂(di)
of the skeleton point si at distance di from s0 is equal to

R(si).

We consider a least-squares fitting error for each line seg-

ment. Since we do not expect outliers, an unweighted least-

squares method provides a good approximation. To com-

pute the n + 1 indices of endpoints for n line segments that

minimize the fitting error, we define the following function:

Ê(n, i, k) =

{
LSF(i, k) if n = 1,

min
i<j<k

n
Ê(�n/2�, i, j) + Ê(�n/2�, j, k)

o
otherwise;

(1)

where LSF(i, k) is the line and its associated error that

best fits, in the least-squares sense, the data between end-

points indexed by i and k, i.e., LSF(i, k) = e(mik, bik), for

e(m, b) =
∑k

j=i(R(dj) − (mdj + b))2 and (mik, bik) =

argmin
m,b∈R

{e(m, b)}. In turn, Ê(n, i, k) is the minimum error

that can be achieved when fitting points i to k with n seg-

ments. Note that the segments are constrained to be contin-

uous on s but not on R(s).

We implement the function Ê(n, i, k) using dynamic

programming and use it to find the smallest value of n

whose minimum error is smaller than half the number of

skeleton points in a branch. This piecewise linear repre-

sentation of the radius function of a skeleton branch al-

lows us to identify the ligature segments within a branch.

Since ligature segments are associated with concave bound-

ary corners, we know that they must start at a branch junc-

tion point, have decreasing radii, and end at the first abrupt

change in the slope of R(s) (see Fig. 2).

The identification of ligature segments will allow us to

reconnect a skeleton when removing internal branches with-

out significantly affecting the original shape boundary. We

locate the endpoints of a ligature segment within a branch

by detecting significant “accelerations” in the branch’s ra-

dius function, i.e., differences between the slopes of two ad-

jacent line segments that exceed a threshold. Let m0 and m1

be the slopes of adjacent line segments with equal sign. We

Figure 2. Approximating a Branch’s Radius
Function for Ligature Segment Identification.
(a) The radii of maximally inscribed circles
rapidly decrease as we move toward the con-
cave corner between the fingers. (b) We com-
pute a piecewise linear approximation to the
radius function.

group together the points associated with these segments if

|m0 − m1|

max(|m0|, |m1|)
≤ τl,

where τl is the ligature segment threshold. Note that

max(|m0|, |m1|) > 0 because in this step we have only de-

creasing branches. Hence, our ligature detection does not

depend on the precise detection of local concave bound-

ary corners, but rather on a more robust, global measure

of relative slope change. We do not simply remove liga-

ture branches, as in [1], but rather mark them as potential

removals during our optimization procedure that balances

reconstruction error with branch complexity.

When removing a ligature branch, we re-attach the skele-

ton branches that were connected to it in order to preserve

skeleton connectedness, as illustrated in Fig. 3. Consider

the removal of the small ligature branch in Fig. 3(left) be-

low the junction of the index and middle fingers. If we were

to deepen the concavity between the index and middle fin-

ger, as shown in Fig. 3(middle), the small target ligature

branch would effectively disappear. Our strategy, therefore,

will be to approximate this deepening of the concavity by

modifying the branches adjacent to the ligature branch. To

do this, we will alter only those branches attached to the

smaller (in terms of radius) end of the ligature branch; in

Fig. 3, this corresponds to the endpoint that leads to the ring

finger. The target ligature branch will be removed, and the

adjoining branches will be modified to connect to the larger

end of the removed ligature branch.

The branches to be modified may consist of both non-

ligature and ligature segments, as shown in Fig. 3(left),

where the index finger consists of a non-ligature segment

(red) at its extremity and a ligature segment (brown) at-

tached to the ligature branch to be removed. The first step in
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Figure 3. Removing ligature branches: (left)
original skeleton in preparation for removal
of target ligature branch below index and
middle fingers; (middle) if we deepen the
concavity between the two fingers slightly,
we effectively end up with a skeleton without
the target ligature branch; (right) overlay of
the left and middle figures, motivating our ap-
proximation method that replaces the adjoin-
ing ligature segments and the target ligature
branch with straight-line approximations.

the adjoining branch modification is to replace the adjoin-

ing ligature segments with linear approximations from their

smaller endpoints to the larger endpoint of the removed lig-

ature branch.2 This effectively bridges the gap left by the

removed ligature branch. However, we must still assign cor-

rect radius values to our skeleton approximation.

Our new approximations to the two adjoining ligature

segments of our target ligature branch may effectively

deepen the concavity between the two fingers, and as a re-

sult, part of the ligature approximation may become non-

ligature. For this portion of the ligature approximation, the

radius values will be assigned based on a linear extrapola-

tion of the adjoining non-ligature segment’s radius function.

For the portion that remains a ligature segment, a linear in-

terpolation between the two endpoints is used to assign the

remaining radius values.

2.2. Pruning as Optimization

As mentioned earlier, our simplified skeleton balances

reconstruction error with shape (branch) complexity, and in

our branch selection process, both candidate internal and

external branches for pruning are rank-ordered by increas-

2Ligature segments correspond to maximal circles that share two (in

the case of full ligature) boundary concavity points) or one (in the case

of semi-ligature) boundary point [1]. These constraints lead to ligature

segments with low curvature, facilitating our straight-line approximation.

This approximation can be improved by considering the constraints on the

gradient of radius values of skeleton points, as defined by Damon [6].

ing reconstruction error. The reconstruction error is area-

based, and therefore reflects the area difference between the

reconstructed shape from the skeleton with the branch and

the reconstructed shape minus the branch. However, a sim-

ple area difference will fail to capture salient shape differ-

ences due, for example, to the removal of a long, thin part

(e.g., the leg of a giraffe) whose area relative to the entire

object is small, but whose contribution to salient part struc-

ture is large.

To account for part structure, similar to Styner et al. [18],

we weight each pixel’s contribution to the area by its nor-

malized distance transform, in which the skeleton receives

value 1 and the boundary receives value 0. In this man-

ner, the skeleton of a long, thin part is weighted the same

as that of a long, thick part, as are their respective bound-

aries. However, the larger area of the thick part will result

in a larger integration of normalized distance transform val-

ues, and hence a larger reconstruction error. In this way, we

can balance salient part structure with part mass, yielding

an effective reconstruction error.

Specifically, for each shape point p, we associate the

closest skeleton point sp ∈ S:

sp = min
s∈S

||s − p|| (2)

The reconstruction error of a point p, E(p), is now given

by:

E(p) = 1 −
||sp − p|| − R(sp)

R(sp)
(3)

where R(sp) is the radius of sp. The reconstruction error

R(S) for a shape S with respect to the original shape SO is:

R(S) =

∑
p∈SO−S E(p)∑

p∈SO

(4)

The cost function C(S) for a skeleton S with branch com-

plexity B(S) and reconstruction error R(S) has the form:

C(S) = B(S) + ωR(S), (5)

where B(S) is simply the number of branches (nodes) of

skeleton (graph) S. The ω we used ranges from 10,000 to

350. A high ω strongly penalizes the reconstruction error

which, in practice, yields no simplification at all. Decreas-

ing ω puts less emphasis on exact reconstruction and fa-

vors skeletons with lower branch complexity, obtained by

removing less salient external branches and internal ligature

branches.

Our optimization is two-pass. First, we optimize our cost

function by considering only candidate external branch re-

moval. Next, we fix the remaining external branches, and

optimize in a second pass by considering only candidate in-

ternal branches. Fig. 4 shows the results of simplifying the

four skeletons shown in Fig. 1, with ω = 600. Note that the
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(a) (b) (c) (d)

Figure 4. Structural simplification applied to
the objects in Figure 1. Whereas articulation
and noise led to four different skeletal topolo-
gies in Figure 1, their structural simplifica-
tions are almost identical.

four divergent skeletons in Fig. 1 have converged toward

a canonical skeleton structure that is invariant to noise and

articulation.

3. Experiments

We evaluate our framework for the tasks of object recog-

nition and pose estimation. Since we are interested in ob-

taining stable skeletons for improved object recognition, we

will adopt the shock graph as an abstracted skeletal rep-

resentation, allowing us to utilize a powerful shock graph

matcher [9]. A shock graph [16] is based on a coloring of

the skeleton points (shocks) according to their radius func-

tion. The taxonomy consists of four distinct types: the ra-

dius function along the medial axis varies monotonically at

a 1, achieves a strict local minimum at a 2, is constant at a

3 and achieves a strict local maximum at a 4. Once a skele-

ton’s points are labeled according to this taxonomy, a parti-

tioning of the points is performed. Each resulting segment

becomes a node in the shape’s shock graph, with directed

edges joining adjacent skeleton segments and directed from

larger to smaller (in terms of radii) nodes. Details and ex-

amples can be found in [15].

Our view-based 3-D object database consists of 120

views (8 objects at 15 views each). A recognition trial con-

sists of removing a view from the database (without replace-

ment), indexing into the database to retrieve a small subset

of candidates (using the indexing framework described in

[14]), matching the query to each candidate to yield a dis-

tance, rank-ordering the candidates by increasing distance

(decreasing similarity), and choosing the closest candidate.

If the parent object of the closest candidate is the same as

the parent of the query, recognition is successful. If recog-

nition is successful and one of the neighboring views of the

query (on the viewsphere of the object) has high rank (in the

rank-ordered list of candidates), then pose estimation is also

successful. The small changes in viewpoint between sam-

ples on the viewsphere can introduce significant changes in

shock graph structure. Hence, we expect our structural sim-

plification to reduce the structural changes between neigh-

boring views, leading to improved recognition and pose es-

timation performance. We expect similar improvement for

the case of articulated objects, but leave such experiments

as future work.

The results for both object recognition and pose estima-

tion are shown in Figure 5. Each figure shows recognition

performance (% trials correct) as a function of the weighting

parameter ω, which varies from 10,000 (no smoothing) to

350 (maximum smoothing). The optimum recognition per-

formance was achieved with ω = 600. As can be seen from

the two plots, structural simplification results in a 4% im-

provement in recognition performance and a 12% improve-

ment in pose estimation performance. Note that overly large

values of ω (very mild smoothing) can lead to structural in-

consistencies across the views of an object, resulting in a

dip in recognition performance.

A more dramatic improvement is found with perturbed

(noisy) queries, in which between 3 and 40 small circular or

triangular bumps and/or notches are randomly added to the

boundary of the query shape, resulting in the introduction

of structural instabilities. Figure 6 illustrates both recog-

nition and pose estimation results with (blue) and without

(red) structural simplification; in each case, we have chosen

ω = 600, the optimum value for unperturbed queries. The

performance varies as a function of the nature of the per-

turbation, i.e., whether the perturbation contains notches,

bumps, or both, as well as the magnitude of the perturba-

tion given by the radius of the bump or notch (which varies

from 3 to 6 pixels). As can be seen from the two plots, struc-

tural simplification results in up to 16% improvement for

recognition and up to 20% improvement for pose estima-

tion. These results clearly indicate the ability of our frame-

work to simplify a noisy, unstable skeleton representation

to yield an invariant, canonical skeletal representation.

4. Conclusions

Skeletal descriptions of a shape offer a powerful shape

representation for object recognition, yet their structural in-

stability has long been an obstacle to their widespread use.

Our structural simplification framework isolates this insta-

bility at both external and internal branches, and removes

non-salient branches. The removal of internal branches re-

quires a proper smoothing of neighboring branches so that

the resulting skeleton is a MAT and reconstruction error is

minimized. The pruning of branches is formulated as an op-

timization process which balances branch complexity with

reconstruction error. Results on a shock graph recognition

experiment indicate a significant improvement in recogni-

tion and pose estimation performance when both query and
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Figure 5. Results on unperturbed queries
showing improved performance due to struc-
tural simplification for object recognition
(top) and for pose estimation (bottom). The
far left of each plot represents no structural
smoothing (cost function reflects only recon-
struction error), while the far right represents
large structural smoothing (cost function is
dominated by branch reduction). See text for
discussion.

database are structurally simplified prior to recognition.
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