

 University of Groningen

Choreographies
Lazovik, Alexander; Aiello, Marco; Gennari, Rosella

Published in:
Proceedings of the Advanced International Conference on Telecommunications and International Conference
on Internet and Web Applications and Services (AICT/ICIW 2006)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lazovik, A., Aiello, M., & Gennari, R. (2006). Choreographies: using Constraints to Satisfy Service
Requests. In Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006) IEEE (The
Institute of Electrical and Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/72d118bb-d3fc-4116-a6f2-30bc81468b6a

Choreographies: using Constraints to Satisfy Service Requests

Alexander Lazovik,1 Marco Aiello,1,2 and Rosella Gennari3

1. DIT, University of Trento, Via Sommarive 14, 38100 Trento, Italy
2. VITALab, TUWien, Argentinierstrasse 8, 1040 Wien, Austria

3. Bozen-Bolzano Free U., Piazza Domenicani 3, 39100 Bolzano, Italy
{lazovik,aiellom}@dit.unitn.it gennari@inf.unibz.it

Abstract

Interacting with a web service enabled marketplace to
achieve a complex task involves sequencing a set of indi-
vidual service operations, gathering information from the
services, and making choices. In the context of coreogra-
phies of web services, we propose to encode the problem of
issuing requests as a constraint problem. In particular, we
provide a choreographic framework to handle requests, we
show how request encoding is performed, and we illustrate
an implementation using the Choco constraint system.

1 Introduction

Satisfying complex business requirements in service-
enabled marketplaces comprises the composition of busi-
ness processes, their execution and monitoring, and gath-
ering information from services at run-time. Requesters
and service providers have complex requests which express
desiderata of distributed interaction and, ideally, they would
want to abstract from the inner working of the marketplace.
These desiderata express the achievement of complex busi-
ness requests, the preference of some requests over others,
and the achieving of certain requests with specific numeric
values ranges. A user may desire to obtain a trip package
for a given date spending a certain amount of money and
preferring a certain flight carrier. A service provider might
expose a business rule that forces unregistered users to pay
before receiving the service.

A broad service enabled marketplace is thus a distributed
system in which autonomous actors interact asynchronously
according to some standardized general business process
each one with its own requests and additional requirements.
The interaction of the service providers and requester in
such a setting is a choreography. Choreographies can be
modeled in various ways, a novel proposal is to use con-
straints. In this way, user requests are interpreted as addi-

tional constraints to be satisfied against the given business
process; the service providers’ requirements are then mod-
eled as constraints on how their services need to be invoked.

Methods and techniques to automatically enable chore-
ographies of services are the subject of recent research.
There are approaches based on formal logics [1, 7, 8] or
others based on logic programming formalisms (e.g., [6]).
All mentioned approaches work under the assumption of
having rich semantic service descriptions and run-time in-
formation at disposal. Artificial Intelligence techniques
can provide a solution to the problem of service composi-
tion; e.g., there have been several proposals using AI plan-
ning [9], while encoding planning problems as constraints
is in [2]. In [5], we proposed the XSRL request language
over complex business domains. In [4], we presented the
constraint model at the basis of the present work. In this
paper, we propose a framework for the encoding of chore-
ographies and requests as constraint set; finally, we propose
an implementation with the Choco constraint system.

The remainder of the paper is organized as follows. A
motivating example in the travel domain is introduced in
Section 2. In Section 3, we present the framework for
managing choreographies encoded as constraints. Section 4
presents the rules for encoding choreographies and requests.
A snapshot of our implementation in Choco is shown in
Section 5. Concluding remarks are presented in Section 6.

2 An example in the travel marketplace

Consider a user requesting a trip to Nowhereland and hav-
ing a number of additional requirements regarding such a
trip, e.g., that the total price of the trip be lower than 300
euro, the prices of the hotel lower than 200 euro, avoid using
the train, and so on. To be satisfied such a request involves
the interaction with various autonomous service providers,
including a travel agency, a hotel company and a flight car-
rier. Services reside in the same travel marketplace domain
and must follow a standard business process for that do-

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

1 2

43

5 6

7 8 9

10 11

goal
XSRL

re
vis

io
n

is
re

qu
ire

d

a1:getHotelPrice()

a2:pricea3:bad price

a4:reserveHotel()

a5:reserved
a6:getTrainPrice()

a7:getFlightPrice()

a8:price

a9:bookFlight()

a10:price

a11:bookTrain()

a14:booked

a12,a13:bad price

AGENCY
a5:fault:no room

TRAVEL AIR
SERVICE SERVICE

TRAIN
AGENCY

PAYMENTHOTEL
SERVICEUSER

makePayment()payForHotel()

a15:ask confirmation

a16:confirmed

13

12

14

15

a17:acceptFlight()
a19:price

16
a18:rejectFlight()

a20:rejected

makePayment()

makePayment()

rejectPayment()

payed

payed

payed

failed

failed

failed

paymentRejected
payment cancelled

successful payment

final

17

16

18

a19:noTrain

a14:noFlight

Figure 1. A travel business process.

main. Such a process is exemplified in the above figure.
We assume that such a process is given by the marketplace
designer. This process is modeled as a labelled transition
graph, that is, every node is a state in which the process can
be, while directed arcs, each labeled by a specific action,
indicate how the process changes state. Actors involved in
the process are shown at the top of the graph. The actors
include the user issuing the request, a travel agency, a hotel
service, an air service, a train service and a payment service.

The process is initiated by the user contacting a travel
agency, hence, (1) is the initial state. The state is then
changed to (2) by requesting a quote from an hotel (ac-
tion a1). The dashed arcs represent web service responses,
in particular arc a2 brings the system in the state (3). The

execution continues along these lines by traversing the paths
in the transition graph until we reach state (14). In this state
a confirmation of an hotel and of a flight or train is given by
the travel agency and the user is prompted for acceptance of
the travel package (13). Actions in the graph can be nonde-
terministic. This is illustrated, for instance, in state (4). In
this state the user has accepted the hotel room price however
is faced with two possible outcomes, one that a room is not
available (where the system transits back to state (1)) and
the other where a room reservation can be made (state (5)).
The actual path will be determined only at run-time. The
lower part of the business process models the payment of
the travel package just booked as an atomic action. This
means the entire trip payment is atomic.

3 Web service execution using constraints

Issuing a request to a marketplace generates a choreo-
graphic effect in which the various service providers are in-
voked and provide service following a precise order. The
order is determined by the request, by the run-time condi-
tions, by the values returned by the various providers, and
by nondeterministic conditions. We view such an execution
as the performing of a set of actions of the transition graph
in order to achieve the issued request. Given the number of
unknown elements and the nondeterministic nature of ser-
vices, an initial plan will often fail, making replanning nec-
essary. We encode the choreography as a constraint prob-
lem. In [4], we provide the basic algorithms for the encod-
ing, here we introduce the framework for supporting such
an encoding.

In this view of a choreography, a business process is a
planning domain, that is, a labeled transition graph whose
states represent the state of a distributed computation. Such
a transition graph can be extracted from a standard chore-
ography description. What we do is to transform this graph
into a set of constraints according to the rules shown in Ta-
ble 1. The user request is also encoded as a set of con-
straints, as shown in Table 1, to be satisfied against the
constraint set of the business process. In other words, a
choreography for satisfying a request amounts to the the
execution of a plan, which in turn we view as a solution to
a constraint-based problem.

In Figure 2, we present the constraint-based choreog-
raphy framework to satisfy user requests. The framework
consists of three main components: monitor, constraint pro-
gramming system, and executor. The monitor manages the
overall process of interleaving planning and execution. It
takes user requests, the business process, and starts inter-
acting with the constraint programming system that synthe-
sizes a plan and returns it to the monitor. The plan is a
sequence of actions to be executed. The constraint system
returns a failure if there is no plan for the user request in

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Constraint Programming
System

Monitor

SERVICE
REGISTRY

WEB SERVICE
IMPLEMENTATIONS

Executor

verifies constraints on-the-fly

invokes web services
collects new information

role & provider-level
assertions

client

service providers

business process,
process-level assertions requests plan

executioninitial plan,
replanning

Figure 2. Framework with a constraint pro-
gramming system.

the given domain. Let us assume that a correct plan exists
and therefore is synthesized. Then the the executor takes the
plan from the monitor and executes it. While executing each
action of the plan, the executor may gather new information
from the service registry or from the service invocations.
Whenever new information is obtained, the constraint set is
updated and the constraint system checks if the newly in-
troduced constraints violate the plan under execution. The
framework works iteratively until the request is satisfied or
there is no satisfying execution.

For the framework shown in Figure 2 constraints come
out as the natural choice. Firstly, typical web service inter-
actions involve constraints over numeric values, and con-
straint programming systems provide solvers for these. Sec-
ondly, the execution of the business process depends on the
outcome of the services it consist of, new information gath-
ered at runtime; in other words, a process result depends on
the information that is available only at runtime. Interleav-
ing planning and execution supports such iterative model of
execution. Replanning is performed when new information
is gathered. Due to the incremental nature of most con-
straint programming solvers, full replanning from scratch is
not needed, in the sense that one can add new constraints
to the set of already active ones; this can be seen as a re-
finement of the initially synthesized plan. However, when
constraints are to be removed from the constraint set, for ex-
ample, when changing a provider, the constraint space may
have to be rebuilt—however, an extension of Choco allows
for the “intelligent” removal of constraints [3].

To benefit from constraint programming we have to for-
mulate the choreography problem in terms of constraints.
In the following section we show how the service domain
accompanied with requests is encoded.

4 Expressing Choreographies and Requests

To express the execution of the requests, i.e., the run of a
choreography in a specific web service context, we need
three main ingredients:

(BP) a representation of the Business Process or Domain;

(RL) a Request Language to express requests;

(!") a mechanism to decide how to coordinate and sequence
the service invocations in order to satisfy the requests.

There are a number of requirements on these ingredients.
For the business process, we want to use a representation
able to capture the nondeterminism typical of web service
implementations and to be state based. For the request lan-
guage, we want a language which is high-level and expres-
sive. It must be possible to state preferences, to state a num-
ber of subtasks, to sequence the order in which the subtasks
might be achieved. Finally, for the choreographic mech-
anism we want an agile framework which can be imple-
mented, but also sound and complete.

We formalize the choreography as a constraint program-
ming task. In this way, the requester’s desires become a set
of constraints over an actual business process, while the sat-
isfaction of the request is the satisfaction of the constraints.
While the constraint programming system tries to satisfy
these, a number of invocations are performed which might
lead to more constraints being added or to the instatiation of
a number of free variables. The latter process is an instance
of information gathering at run time.

More formally, we model (BP) ad (RL) as a set of con-
straints (!") over controlled and non-controlled variables.
The constraints have the following form:

[∀ξi :] cv !" value, (1)

• value is a value from the domain of the variable v,

• cv is a vector of expressions of the form
∑

βi[ξi]ai,k

with βi, ξi ∈ {0, 1},

• the ξi are non-controlled variables and the βi are con-
trolled variables,

• ai,k is the effect of action ai for outcome k,

• !" is either <,>,≥, ≤ or =,

• and [·] denote that the expression is optionally present
in the constraint.

Then we can define the problem of choreography as a ser-
vice constraint problem. There are two types of Boolean
variables: controlled variables, denoted by βi, and non-
controlled variables, denoted by ξi. Non-controlled vari-
ables represent nondeterministic action outcomes. The un-
derlying idea is that the constraint programming system

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

may not be free to choose a specific value for a non-
controlled variable, thus a solution to the problem may be
such regardless of the values assigned to the non-controlled
variables.

In this paper, when we talk about nondeterministic ac-
tions we refer to their outcomes (states) which can be dif-
ferent; yet, once an action is invoked, we assume that its
outcome is fixed. That is, any of its future invocations pro-
duce the same outcome for the same provider.

Definition 1 (service constraint problem). A service
constraint problem is a tuple CP = 〈β,N , ξ, C〉, where:

• β is a set of controlled boolean variables;

• N is a set of controlled variables over integers;

• ξ is a set of non-controlled boolean variables;

• C is a set of constraints, as in Equation 1, in which (i)
if a non-controlled variable occurs then it is
universally quantified, (ii) otherwise a value is
available and substituted for the variable.

A solution to a service constraint problem is an assignment
to controlled variables which satisfies all the constraints.

The encoding is performed in two phases: in phase (i) the
service business process itself is encoded; in phase (ii) the
request is added to the encoding.

4.1 Phase I

We consider the business process as a labeled-edge graph
with two types of actions to go from one state to another:
deterministic and nondeterministic ones. This can be pic-
tured as a graph of nodes (states) and labeled arcs (actions)
with some extra information (roles, variables and effects,
[5]). During Phase I the business process is encoded. Start-
ing from a business process as a labeled transition graph,
we arrive at a set of expressions cv as in Equation (1) plus
a set of linear constraints of the form

∑
βi ≤ 1. In the fol-

lowing, we adopt the notation of Equation (1); in addition,
n varies over integers and specifies how many times a cycle
is followed, while ai is overloaded to represent not only the
action, but also its effects.

The encoding is generated by an algorithm that visits the
process graph, separately keeping track of cycles, and re-
turns a set of constraints. The whole process is recursive
and is divided into the following cases (see also Table 1):
(A) Base case. If the degree of the arcs leaving the state s
is 0, then there is no constraint to be returned. The case of
the directed cycle, which is presented below, is also a base
case.

Type of action Encoding

(A) No action 0
(B) Single deterministic action βa
(C) Sequence of actions β1(a1 + β2a2)
(D) Branching β1a1 + β2a2, with

β1 + β2 ≤ 1
(E) Nondeterministic action ξ1a′ +ξ2a′′, with ξ1 +

ξ2 = 1
(F) Cycle: undirected cycle state splitting, no spe-

cific encoding
(G) Cycle: directed cycle na

Table 1. Domain encoding rules.

(B) Single deterministic action a is encoded as βa, where
β is a controlled boolean variable. Then β = 1 means that
action a must be in the resulting plan.
(C) Sequence of actions. This rule is applied to consecutive
actions as follows (for two deterministic actions): β1(a1 +
β2a2). If β1 = 1 then action a1 is added to the plan, and if
also β2 = 1, then a2 is added to the plan right after a1. If
β1 = 0 then neither action a1 nor a2 are added.
(D) Branching. If there are several outgoing actions from
the state s and the system is supposed to choose only one of
them to add to the plan, then this situation (for two actions)
is encoded as follows: β1a1 + β2a2, where β1 + β2 ≤ 1
means that at most one action can be chosen. If some of
these actions are nondeterministic, then the (E) rule is ap-
plied to each one.
(E) Nondeterministic action. This rule takes care of a non-
deterministic action. Such an action may bring the system
nondeterministically in several states. To represent the be-
havior, in which one has no control over the action’s out-
come, the non-controlled variables ξ are introduced. The
encoding (for a nondeterministic action with two possible
outcomes) is the following: ξ1a′+ξ2a′′, where ξ1 +ξ2 = 1.
(F) Cycle: state splitting. This rule is applied to undirected
cycles. To proceed we need to duplicate the state s already
visited by creating state s′ and recursively encode the dupli-
cated state. There is no further encoding for this case.
(G) Cycle: directed cycle. This rule is applied to directed
cycles. Variable n in the encoding denotes the number of
times the cycle is going to be executed.

4.2 Phase II

During the second phase of the encoding, we take a re-
quest (RL) and produce a set of constraints (!") for these;
then we try to satisfy the resulting constraints against the
constraint set encoding the business process (BP). The re-
quest is expressed in a language derived from XSRL [5].
Here we give the basic definition of the language and we

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

show the intuitions for the language constructs in Table 2.

Definition 2 (request language). Basic requests are vital
p | atomic p | vital-maint p | atomic-maint p
where p is a constraint over the v variable. A request is a
basic request or of the form achieve-all g1, . . . , gn |
optional g | before g1 then g2 | prefer g1 to g2.

The algorithm parses the request recursively distinguish-
ing the cases of the various operators and updating the set
of constraints. Whenever a new basic request/constraint is
added, a new set of controlled variables is introduced.
vital v !" v0. If the request is vital with respect to the vari-
able v constrained by the !" operator on the v0 value, we
restrict the constraint c to what concerns variable v, denot-
ing it by cv , and we add cv !" v0 to the constraints set. Since
the request is vital we also set all variables ξ associated with
cv to ξ0, by which we mean that the normal execution is fol-
lowed, in place of the nondeterministic failure ones.
atomic v !" v0. This is analogous to vital, except that the
nondeterministic variables ξ are universally quantified over.
vital-maint v !" v0. For maintainability requests we keep
track of all the states visited during a plan execution. Thus,
we apply the constraint as for vital for each step along the
execution.
atomic-maint v !" v0. This is analogous to vital-maint,
except that the nondeterministic variables ξ are universally
quantified over.

Next we consider non-basic requests.
achieve-all g1, . . . , gn. First, we recur on all sub-requests
g1, . . . , gn. Second, one considers all pairs of basic re-
quests coming from the recursive call and all execution
steps. In all these cases, if during the execution some
choices have been made for the same branch point among
different sub-requests, these choices have to be the same.
Therefore we add, to the set of constraints, expressions forc-
ing the same choices for the execution of any sub-requests.
These expressions introduce the execution step tk. Sup-
pose that the set

{
. . . βg

tk,i . . .
}

denotes the branch vari-
ables in step tk, that has been chosen to satisfy the re-
quest g. Then

∑
βgr

tk,i '= 0 denotes that one of the βs is
set to 1 for the step under consideration. In order to en-
sure that different reachability requests are satisfied by the
same sequence of actions, the following constraint is added:∑

β
gr1
tk,i '= 0 ∧

∑
β

gr2
tk,i '= 0 ⇒ ∀i : β

gr1
tk,i = β

gr2
tk,i. In order

to guarantee that maintainability request is satisfied along
the synthesized sequence of actions, one has to add impli-
cation for each pair of reachability/maintainability requests:∑

βgr
tk,i '= 0 ⇒ ∀i : βgr

tk,i = βgm
tk,i.

before g1 then g2. The principle behind the before-then
operator is similar to that of the achieve-all, with the differ-
ence that one forces the ordering of the satisfaction of the
sub-requests. Again, first we recur on the sub-requests, then
we constrain the execution choice variables

{
. . . βg

tk,i . . .
}

.

a1’’: failure

a3: reserveFlight

a2: reserveTrain

s0

s2

s3

a1’’: failurea1’: bookHotel

a0: getHotelPrice

Hotel Provider
- prefers flight over train
- use Visa card, if possible
- discounts for people over 60

Flight Provider
- cancellation is not available
- international valid insurance

Train Provider
- authenticated via PGP

knowledge-gathering
action

Figure 3. A component of a travel business
process.

The second sub-request g2 should repeat the path of the first
sub-request g1, until the first is satisfied, and only then the
second expression is checked. This is ensured by expres-
sions of the form:

∑
βg1

tk,i '= 0 ⇒ ∀i : βg1
tk,i = βg2

tk,i which
are added to the set of constraints.
prefer g1 to g2. Preferences are handled not as additional
constraints, but rather appropriately instantiating the vari-
ables. The first step is to recur on the two sub-requests g1

and g2. Then the requests g1 and g2 are placed in a disjunc-
tion. When constraints are checked for satisfiability, vari-
ables are assigned in preference order. Optional requests
are a sub-case of prefer-to request, in which g2 is true.

5 A run of the travel example

We have implemented the encoding of the ser-
vice composition problem in Choco (http:
//choco.sourceforge.net/). Choco is a java
library for constraint satisfaction problems (CSP), con-
straint programming (CP) and explanation-based constraint
solving (e-CP). It is particularly well suited for adding and
removing constraints while the CP system is working. This
is the typical situation of a service enabled marketplace
where any service interaction may result in the addition
of a business rule of a provider or the gathering of new
numeric information, i.e., a new constraint. To illustrate
our work and its implementation in Choco, let us introduce
an example that is a snippet (shown in Figure 3) of the
travel choreography definition (introduced in Figure 1).
When deciding on a trip, the requester may first want to
book the hotel for the final destination and then book a
carrier to reach the location of the hotel. The first action
a0: getHotelPrice retrieves the hotel price. The next
action is that of reserving a hotel (state s1). This action
may nondeterministically result in the successful booking
of the room (state s2) or in a failure (return to state s1).
Finally, there are two ways to reach the state s3 in which
a carrier to arrive at the site of the hotel is booked. One

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

Request Where satisfied How encoded Type of request

vital p In a state where p holds to which there is a
path from the initial state modulo failures

ξ = ξ0: cv "# v0 reachability

atomic p In a state where p holds to which there is a
path from the initial state despite failures

∀ξ: cv "# v0 reachability

vital-maint p In a state to which there is a path from the
initial state modulo failures. p must hold
in all states along the path

ξ = ξ0: cv(ti) "# v0, for all encoding
steps ti

maintainability

atomic-maint p In a state to which there is a path from the
initial state despite failures. p must hold in
all states along the path

∀ξ: cv(ti) "# v0, for all encoding steps ti maintainability

prefer g1 to g2 In states where g1 is satisfied, otherwise
the satisfiability of g2 is checked

variables in g1 are instantiated before those
in g2

preference

optional g States where g is satisfied are checked first,
otherwise the request is ignored

encoded as prefer g to " preference

before g1 then g2 In states, to which there is a path from the
initial state, such that, states along these
path where g1 is satisfied precede those
where g2 is satisfied

for all steps tk:∑
βg1

tk,i #= 0 ⇒ ∀i : βg1
tk,i = βg2

tk,i

sequencing

achieve-all g1, . . . , gn In states, to which there is a path from
the initial state, such that, there are states
along the path where gi are satisfied

reachability/reachability request pairs:
for all steps
tk, for all reachability pairs gr1 , gr2 :∑

β
gr1
tk,i #= 0 ∧

∑
β

gr2
tk,i #= 0 ⇒ ∀i :

β
gr1
tk,i = β

gr2
tk,i

reachability/maintainability pairs of re-
quests: for all steps tk, reachability gr ,
maintainability gm:∑

βgr
tk,i #= 0 ⇒ ∀i : βgr

tk,i = βgm
tk,i

composition

Table 2. Request language constructs.

may choose to fly or to take a train. This is achieved
by choosing one of the two actions reserveTrain or
reserveFlight. There is one knowledge-gathering
action: a0: getHotelPrice. The process variables,
ranging over integers, are: hotelBooked, trainReserved,
flightReserved, which are boolean, and hotelPrice,
trainPrice, flightPrice, price.

The framework works in the following way. First, the do-
main is encoded: βs0,0(a0+βs1,0(ξs1,0nafail

1 +ξs1,1(aok
1 +

βs2,0a2 +βs2,1a3))); this represents the paths from state s1

to s3 with n being the number of times the cycle is fol-
lowed, and with βsi,j representing the j-th choice in state
si. Additionally, the constraint on the controlled variables
βs0,0,βs1,0,βs2,0,βs2,1 ∈ {0, 1} is βs2,0 + βs2,1 ≤ 1, and
the constraint on the non-controlled variables ξs1,0, ξs1,1 ∈
{0, 1} is ξs1,0 + ξs1,1 = 1, where ξsi,j represents the j-th
nondeterministic outcome in the state sj . Suppose the user
provides the following request:

achieve-all
vital hotelBooked ∧ vital trainReserved
vital-maint price ≤ 300

The request is encoded as follows. Every basic request
creates its own subset of controlled variables (Table 2).

The variables coming from the encoding of the request are
shown next. As a point of notation, we use courier to
present the output of our implementation.

xi_s1_0 in {0, 1}
beta_s2_0 in {0, 1}
beta_s2_1 in {0, 1}
beta_s2_0 + beta_s2_1 <= 1
xi_s1_1 in {0, 1}
xi_s1_0 + xi_s1_1 <= 1
beta_s1_0 in {0, 1}

For each of the vital request we additionally have
xi s1 0=0, xi s1 1=1, representing the execution with-
out failure. The first sub-request to be parsed is vital
hotelBooked. Since the hotelBooked variable is influ-
enced only by the aok

1 outcome, then the encoding is
βs1,0ξs1,1 = 1 and, since ξs1,1 = 1, then βs1,0 = 1.
By the same reasoning, one has the encoding for the train:
βs1,0βs2,0 = 1:

0.0+beta_s1_0*(xi_s1_1*(1.0))=1.0
0.0+beta_s1_0*(xi_s1_1*(beta_s2_0*(1.0)))=1.0

The atomic request vital-maint price < 300 is slightly dif-
ferent as price < 300 has to be checked for each state.
We assume that afail

1 = 0, that is, no fee is paid for

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

non-successful reservation. Recalling that a0 = 0 and
a4 = 0 since getting price information is free, only three
actions affect the price (bookHotel, reserveFlight, and
reserveTrain). These simply add the corresponding cost
to the overall price.

0.0 <= 300.0
0.0 + beta_s1_0 * (xi_s1_1 * (100.0)) <= 300.0
0.0 + beta_s1_0 * (xi_s1_1 * (100.0 +

beta_s2_0 * (200.0) + beta_s2_1 * (400.0)))<=300.0

For each nested vital request pair within an achieve-all,
there may be common branching points. If this is the case,
the choice made has to be the same for all requests. There-
fore, achieve-all adds the following constraints for vital
requests (vital 1 is a prefix for vital hotelBooked and
vital 2 for vital trainReserved). Note that constraints
are added only in states where there are at least two deter-
ministic actions:

if (vital_1_beta_s2_0 + vital_1_beta_s2_1 = 1) ∧
(vital_2_beta_s2_0 + vital_2_beta_s2_1 = 1)

then (vital_1_beta_s2_0 = vital_2_beta_s2_0) ∧
(vital_1_beta_s2_1 = vital_2_beta_s2_1)

Maintainability requests in achieve-all are treated differ-
ently: if a choice is made for any vital requests, then the
same choice must be made for vital-maint. Thus, for each
pair of vital and vital-maint inside the achieve-all request
we have the following constraints (where vitalm 1 is a
prefix for request vital-maint price ≤ 300):

if (vital_1_beta_s0_0 = 1) then
vital_1_beta_s0_0 = vitalm_1_beta_s0_0

if (vital_1_beta_s1_0 = 1) then
vital_1_beta_s1_0 = vitalm_1_beta_s1_0

if (vital_1_beta_s2_0 + vital_1_beta_s2_1 = 1)
then (vital_1_beta_s2_0 = vitalm_1_beta_s2_0) ∧

(vital_1_beta_s2_1 = vitalm_1_beta_s2_1)

if (vital_2_beta_s0_0 = 1) then
vital_2_beta_s0_0 = vitalm_1_beta_s0_0

if (vital_2_beta_s1_0 = 1) then
vital_2_beta_s1_0 = vitalm_1_beta_s1_0

if (vital_2_beta_s2_0 + vital_2_beta_s2_1 = 1)
then (vital_2_beta_s2_0 = vitalm_1_beta_s2_0) ∧

(vital_2_beta_s2_1 = vitalm_1_beta_s2_1)

There are two solutions for the above constraint, and these
are provided by our implementation. One of them is:

*** vital-maint (price <= 300)
vitalm_1_beta_s1_0 = 1
vitalm_1_beta_s2_1 = 0
vitalm_1_beta_s2_0 = 1
*** vital (trainBooked = true)
vital_2_beta_s1_0 = 1
vital_2_beta_s2_1 = 0
vital_2_beta_s2_0 = 1
*** vital (hotelReserved = true)
vital_1_beta_s1_0 = 1
vital_1_beta_s2_1 = 0
vital_1_beta_s2_0 = 0

Summarizing, the solution means that the plan involves first
invoking the reserveHotel and then reserveTrain.

The framework implementation includes algorithms for
the interleaving of planning and execution (monitor, execu-
tor, and interaction with a constraint programming system)
as well as for Phase I of the encoding. As for Phase II, all
the request encodings are implemented except for atomic
and prefer-to, the implementation of which is underway.

6 Concluding Remarks

The choreography of independent services to achieve com-
plex business requests is a labeled transition graph in which
the transition from one state to another is governed by con-
straints coming from different actors. The requester, the ser-
vice providers and the rules of the marketplace constrain the
possible interactions. We proposed a framework to handle
choreographies in which the problem of satisfying a request
is encoded as a constraint-based problem. We have also
provided an implementation of our framework to show the
feasibility of the approach. Concrete test cases will be con-
sidered in our future work together with detailed compar-
isons with other approaches for handling choreographies.

References

[1] L. Chen, N. Shadbolt, C. Goble, F. Tao, S. Cox, C. Puleston,
and P. Smart. Towards a knowledge-based approach to se-
mantic service composition. In 2nd Int. Semantic Web Conf.
(ISWC2003), LNCS 2870, pages 319–334. Springer, 2003.

[2] M. B. Do and S. Kambhampati. Planning as constraint satis-
faction: solving the planning graph by compiling it into csp.
Artificial Intelligence, 132:151–182, 2001.

[3] N. Jussien. e-constraints: explanation-based constraint pro-
gramming. In CP01 Workshop on User-Interaction in Con-
straint Satisfaction, 2001.

[4] A. Lazovik, M. Aiello, and R. Gennari. Encoding requests
to web service compositions as constraints. In Principles and
Practice of Constraint Programming (CP-05), 2005.

[5] A. Lazovik, M. Aiello, and M. Papazoglou. Planning and
monitoring the execution of web service requests. Journal on
Digital Libraries, 2005. To appear.

[6] S. McIlraith and T. C. Son. Adapting Golog for composition
of semantic web-services. In Conf. on principles of Knowl-
edge Representation (KR), 2002.

[7] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Se-
mantic matching of web services capabilities. In Int. Se-
mantic Web Conf. (ISWC2002), LNCS 2342, pages 333–347.
Springer, 2002.

[8] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composi-
tion of web services using semantic descriptions. In Web Ser-
vices: Modeling, Architecture and Infrastructure workshop in
ICEIS 2003, 2003.

[9] B. Srivastava and J. Koehler. Web Service Composition - Cur-
rent Solutions and Open Problems. In Workshop on Planning
for Web Services – ICAPS’03, 2003.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

