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Chapter 1

Introduction

Surfaces are important in research disciplines like Computer Aided Design, Compu-
tational Geometry and Computer Graphics.

Computer Aided Design [8, 52] is the development of a wide range of computer-
based tools assisting in the design and creation of products and goods. These tools
help, amongst others, engineers and architects in their design activities. In Computer
Aided Design, the focus lies on construction and design of curves and surfaces.

Computational Geometry [60, 89] is the study of (computer) algorithms to solve
problems stated in terms of geometry. Computational geometry has recently ex-
panded its scope to include curves and surfaces. The research presented in this
thesis is funded by EU projects dedicated to curves and surfaces and focusses on
retrieval of properties of the curves and surfaces.

Computer Graphics [63] is the research field dedicated to visualization, where
one utilizes computers both to generate visual images and to alter visual and spatial
information sampled from the real world. Emphasis lies on visualization and output
of surfaces.

Irrespective of the purpose for which the surface is used, without a suitable
description a computer cannot be of any use. A surface representation is the for-
mulation of a surface such that a human is able to reason about the surface with
the aid of a computer. Many representations have been proposed [18, 49, 52] each
with different advantages and disadvantages. Conversions between representations
are needed in order to be able to use the advantages of different representations in
the same application. E.g., piecewise linear approximations are regularly used for
visualization and further geometric processing. Often it is not possible to give a
representation that defines the same surface as the original surface. In such cases
the surface is approrimated.

Starting point of this thesis is the class of skin surfaces used in molecular biology
[48]. Several methods exist that deform one skin surface efficiently into another skin
surface [28, 33, 48] making them potentionally suitable for animations. We show
how an arbitrary surface can be approximated with a skin surface in Chapter 3 and
construct a piecewise linear approximation of a skin surface in Chapter 5. Finally,
in Chapter 4 we extend the class of skin surfaces to the much wider class of envelope
surfaces, in particular envelopes of balls.
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Figure 1.1: The skin surface blends spheres together

The remainder of the introduction is organized as follows. We start with an
outline of this thesis. We then review areas in which surfaces emerge and present
surface representations. In Section 1.4 we present surface models used for molecular
surface design. We conclude the introduction with a brief description of several
surface approximation algorithms.

1.1 Outline of the thesis

In this thesis we propose a class of surfaces represented by a finite set of balls
contained inside the surface. The surface wraps tightly around the union of the
balls, making the transition between balls smooth. The size of the smooth patches
in between balls can be controlled as shown in Figure 1.1.

Surfaces defined by a set of balls are used in molecular modeling to build com-
puter representations of large proteins. In [48] Edelsbrunner defines such a class of
surfaces called skin surfaces. A skin surface is formed by a set of spheres that are
‘blended’ by smooth patches. These surfaces are used to simulate chemical processes,
like protein folding [25], in which molecules deform. Several algorithms have been
proposed to deform skin surfaces [28, 33, 48].

Generating balls Laser scanners provide an automated way to construct surfaces
of physical objects. These scanners probe an object with a laser and produce a dense
set of points on or near its surface. Many surface reconstruction algorithms have
been proposed that compute a surface by reconstructing the object from these points,
see Section 1.5. Algorithms [6, 7, 45] exist that transform a dense point sample on
a surface into a set of balls almost contained inside the surface. We describe such
an algorithm in Section 2.6. The generated balls can be used to define a surface in
our representation.

An example of the generation of these balls is shown in Figure 1.2. The three
pictures show the real-world object (the Stanford bunny), the point sample generated
by a laser scanner and the constructed set of balls contained inside the bunny.

Surface approximation FEven if a surface representation has many properties,
like ease of visualization and that is suitable for further geometric processing, it is
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(a) The Stanford bunny (b) A points on the sur- (¢) A set of balls con-
face of the bunny tained in the bunny

Figure 1.2: The input for our algorithm

of little use if there is no (automatic) way to construct or approximate a surface
in that representation. If the representation is not exact, then original surface and
its approximation should at least be ‘similar’. For example, one could say that
two surfaces are similar if they are topologically equivalent, which, among other
things, means that they have the same number of connected components, holes and
tunnels. Another metric on the class of compact surfaces is the Hausdorff distance,
which measures of the distance between the two surfaces. One could also require
that not only the distance between the surfaces is small, but also that the normals
to the surfaces agree. We discuss these notions in more detail in Section 2.2.

In this thesis, we use an additional criterion for good approximation. Our surfaces
are represented by a set of balls. We assume that the boundary of their union
forms a good approximation of the surface. Therefore, we also require that the
approximating surface touches all input balls. This is a guarantee that the surface
follows the boundary of the union of the balls closely.

1.1.1 Approximation by skin surfaces

We propose a method for the construction of a skin surface from an arbitrary surface
that guarantees good approximation qualities.

A set of inscribed balls of a surface is dense if the boundary of the union of
these balls and the surface have the same topology and a small Hausdorff distance.
To become more precise, the boundary of the union of a dense set of balls is not
differentiable on an intersection curve where two balls touch. To remove the tangent
discontinuities, we use skin surfaces. A skin surface defines a smooth surface con-
trolled by a single parameter called the shrink factor s. For a shrink factor equal to
one, the skin surface is the boundary of the union of the balls. If the shrink factor
is smaller than one, the radii of the balls are shrunk with a factor /s and the balls
are connected by smooth patches of hyperboloids and spheres. In order to make the
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Figure 1.3: The approximating skin surface of a set of balls forming a hand. The
patches between the balls are controlled by a single parameter.

skin surface wrap around the union of the balls (and not the shrunk balls), we first
grow the input balls by a factor of 1/4/s. We call the skin surface with the grown
balls the extended skin surface. An example of an extended skin surface is shown in
Figure 1.3. The left figure shows the input balls and the shrink factor is decreasing
from left to right.

If the shrink factor is close to one, the extended skin surface and the boundary
of the union of the balls have small Hausdorff distance and the same topology. In
fact, they are equal for a shrink factor one. As the shrink factor decreases, the
patches become larger and they may cover (small) intrusions in the surface, viz. the
region between the fingers and the palm in the third picture of Figure 1.3. Even
different parts of the surface may grow towards each other and merge. Therefore it
is important to have a lower bound on the shrink factor for which the extended skin
surface and the union of the balls have the same topology and a Hausdorff distance
smaller than some fixed constant. We propose an algorithm that derives the lower
bound in Chapter 3.

By continuously decreasing the shrink factor, we are able to prove the following
properties of the extended skin surface:

e the extended skin surface is topologically equivalent with the boundary of the
union of the input balls;

e the Hausdorff distance between the union of the input balls and the body of
the extended skin surface is smaller than some fixed constant € > 0;

e cach ball in the input set is tangent to the extended skin surface.

In fact, for a dense set of balls, these results also apply to the surface from which
the input balls are obtained if each ball contributes to boundary of their union.

1.1.2 Envelope surfaces

The extended skin surfaces have nice properties as mentioned in the previous section.
The main disadvantage of the approach is that a skin surface is only controlled by
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a single parameter, namely the shrink factor. For example in Figure 1.3, combining
the fingers of the second picture and the palm and wrist of the third picture gives
an approximation with the same properties as mentioned above.

In Chapter 4 we introduce a class of surfaces, called envelope surfaces, that
forms a generalization of the class of skin surfaces. With envelope surfaces we first
construct a triangulation of the centers of the balls and can change the envelope
surface at the level of simplices of the triangulation yielding an approximation that
is locally adaptive. Further, the interpolating patches generated by skin surfaces
are always concave. For envelope surfaces these patches can be both concave and
convex and, hence, allow for a better approximation. A two-dimensional example is
given in Figure 1.4. The set of input circles is shown in Figure 1.4(a). Figure 1.4(Db)
shows an extended skin curve with a shrink factor close to one. The extended skin
surface does not differ much from the boundary of the union of the input circles.
For a smaller shrink factor patches between different fingers arise and the extended
skin curve changes topology, as is shown in 1.4(c). Using an envelope surface to
construct the surface, it is possible to interpolate in the direction of the fingers, but
not in between the fingers, cf. Figure 1.4(d),

An envelope surface is defined as the boundary of the union of an infinite set
of balls. We define these balls by constructing a continuous function that assigns
a squared radius (weight) to each center. Under certain conditions on this weight
function the envelope surface is tangent continuous. As an important special case, we
analyze envelope surfaces defined by a piecewise quadratic weight function, which
includes the class of skin surfaces. For this type of weight function, we develop
efficient tests to validate the condition under which the envelope surface is tangent
continuous.

Many desirable properties of skin surfaces hold in the generalized setting of en-
velope surfaces, which makes us believe that applications, like deformation schemes
and meshing algorithms, developed for skin surfaces can be extended to envelope
surfaces. For example, both the skin surface and the envelope surface are piecewise
quadratic. However, a skin surface consists of parts of spheres and hyperboloids
whereas the envelope surface consists of pieces of quadrics any type. Further, for
both classes of surfaces there is a polyhedral partitioning of space decomposing the
surface into these quadrics.

1.1.3 Meshing skin surfaces

Meshing of smooth surfaces is a first step in many numerical simulations and is often
needed for visualization. In Chapter 5 we present an algorithm for meshing skin
surfaces with guaranteed topology. The algorithm decomposes the skin surface into
parts homeomorphic to a disk. A coarse mesh is then constructed by approximating
each part with a piecewise linear patch.

The coarse mesh is not directly suitable for further processing since it has too
little detail and many skinny triangles. Therefore we use several existing refinement
algorithms to enhance the mesh. The first method we propose is a subdivision
algorithm, which refines the mesh according to a subdivision scheme [69]. This
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(a) An approxi- (b) The extended (¢) The extended (d) An envelope
mating set of cir- skin curve skin curve with a curve
cles lower shrink factor

Figure 1.4: Various interpolation schemes

algorithm is very fast and particularly useful for visualization of skin surfaces. A
second algorithm is based on an algorithm by Chew [34] and increases the minimal
angle of a triangle. This is necessary for the stability of numerical simulations, [23].

1.2 Generating surfaces

We discuss three areas in which surfaces emerge.

In the setting of surface reconstruction the surface is not completely known.
A surface is constructed that forms a reconstruction of the original surface. For
example, a laser scanner generates a finite sample of points lying on the surface.
Based on that point sample, surface reconstruction algorithms construct a surface
that is a reconstruction of the scanned object.

In Section 1.3, we see that the implementation of operations on a surface depend
on its representation. Therefore it is sometimes necessary to change the representa-
tion of a surface. In the setting of surface approrimation, a surface defined in one
representation is approximated with a surface in another representation. Meshing
algorithms for smooth surfaces form an important class of surface approximation
method. A meshing algorithm generates a piecewise linear approximation (polyhe-
dron) of a smooth surface. In general, the faces of the approximation are triangles.
These meshes are used for visualizing the surface and for further geometric process-
ing. The algorithms proposed in Chapter 3 and 5 belong to the class of surface
approximation algorithms.

The last area from which surfaces emerge that we mention is surface design.
Surface design is the process in which persons like engineers and architects construct
a surface interactively using a computer. Important in surface design is that the
surface can be easily and intuitively manipulated. The class of envelope surfaces,
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introduced in Chapter 4 falls in this category.

1.3 Surface representations

We mention three basic classes of surface representations.

The first class is formed by parametric surfaces [52]. These surfaces are defined
by a function that maps a two-dimensional domain to a surface in R3. An example
of a parametric function f : [0, 7] x [0,271] — R3 that defines the unit sphere uses
spherical coordinates: f(u,v) = (sin(u) sin(v), sin(u) cos(v), cos(u)).

It is easy to generate points on a surface defined by a parameterization, which is a
starting point of many algorithms. These points are necessary for meshing surfaces.
On the other hand it is hard to test whether a point lies on a parametric surface.
Therefore it is also difficult to prove in general that the surface does not have self-
intersections, i.e., that there are no two different parameter values that map to the
same surface point.

The class of implicit surfaces [18] defines a surface as the zero set of a scalar
valued function on R3. In implicit representation, the unit sphere is defined by the
function f : R3 — R given by f(x) = ||x||* — 1. Testing whether a point lies on
an implicit surface is easy. On the other hand, generating points on the surface
is harder than for parametric surfaces. In fact, it is even hard to find the number
of connected components and points on each connected component. Both the skin
surface and the envelope surface are implicit surfaces.

Piecewise linear surfaces [49] play a crucial role in visualization and in numerical
simulations. The representation of parametric surfaces and implicit surfaces are often
too complicated to use directly in applications, therefore the surfaces are first meshed
and the computations are then performed on the piecewise linear approximation.
For further geometric processing it is important that the surface and the linear
approximation are topologically equivalent. In Chapter 5, we construct a mesh from
a skin surface with this property.

A surface representation that also defines a surface by a set of interior balls is the
Medial Azis Transform (MAT) [56, 95, 99], see Section 2.6. The surface is defined
as the boundary of the union of an infinite set of maximal balls. The centers of the
balls form a skeletal structure of the surface called the medial axis. The balls are
defined by assigning a radius to each point of the medial axis.

The thesis of Vermeer [95] focusses on the construction of a parametric represen-
tation of a surface from its Medial Axis Transform. They also analyze under which
conditions on the medial axis and the radii of the balls the surface is tangent contin-
uous. The methods we propose differ from the methods in [95] because we construct
balls centered on a three-dimensional domain and not restricted to the medial axis.
They also start with a complete representation of the MAT and then construct a
parametric representation of the surface, whereas we assume that the we are given
an incomplete set of balls, from which we reconstruct the surface. An advantage
of our method over theirs is that the analysis under which conditions the boundary
of the union of the balls is tangent continuous becomes easier. Our condition only



8. Chapter 1. Introduction

NN
() QO

SAS

(a) (b) (c)

Figure 1.5: Different kinds of molecular surfaces. Figure (a) and (b) show the
Van der Waals surface (VAW), the solvent accessible surface (SAS) and the solvent
excluded surface (SES) for different sizes of the solvent probe. Figure (c) shows the
skin surface.

depends on the radius function while their conditions also rely on the local structure
of the medial axis.

1.4 Molecular modeling

The surfaces discussed in this thesis are related to skin surfaces. We present the
theory of skin surfaces in more detail in Section 2.7. Several other types of surfaces
have been proposed to model molecules. Some of these models give insight in the
structure of the molecule or in characteristics like the double helix structure of DNA.
To sketch the context in which skin surfaces were developed for molecular modeling,
we review some of the models that are related to skin surfaces. A two-dimensional
example of the different surfaces is shown in Figure 1.5.

Van der Waals surface Each atom in a molecule has an electrical charge that
produces a Van der Waals force. This force is strongly repulsive in close proximity,
becomes mildly attractive at intermediate range, and vanishes at long distance. Due
to the repulsion on the short range, atoms cannot be too close to each other. The
strength of the force depends on the type of atom. For each type of atom, the
radius of the ball (the Van der Waals radius) where the center of no other atom can
penetrate is experimentally determined. In this way atoms are associated with balls.
The Van der Waals surface is the boundary of the union of these balls.

Solvent accessible surface Small gaps and pockets in the Van der Waals surface
are not relevant for chemical processes [40, 77]. For example, if these gaps and
pockets are so small that not even a solvent molecule (like water) can enter, they
do not influence chemical processes. The solvent accessible surface is proposed as a
tool to remove these small artifacts from the Van der Waals-surface.

To construct this surface, a spherical probe is rolled over the Van der Waals
surface. The trace of the center of the probe is the solvent accessible surface. It
bounds the region that is accessible by the (center of the) solvent. This surface is
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Figure 1.6: Solvent excluded surfaces for probe spheres with different radii. In light
gray, the atoms, darker gray the interpolating patches between two balls and in dark
gray the patches between three balls. The patches may not be tangent continuous as
is the case in the second figure, where the tangent plane is discontinuous at six points.
In the third figure the tangent plane of the SES is discontinuous at the intersection
circle of the two probes that touch all three atoms.

equal to the boundary of the union of the balls obtained by adding the radius of the
probe to the Van der Waals radius of each atom.

Solvent excluded surface Opposed to the solvent accessible surface, that bounds
the region where the center of the probe enters, the solvent excluded surface [87]
bounds the region where the solvent cannot enter. To construct this surface, the
spherical probe is used to carve away the space outside the Van der Waals balls.
This surface consists of spherical parts of the Van der Waals surface, toroidal patches
between two Van der Waals balls and spherical patches where the probe touches three
Van der Waals balls. This surface is also referred to as the Connelly surface [38, 39].
Note that this surface may also be not differentiable as shown in Figure 1.5(b) and
Figure 1.6. Visualization algorithms for this type of surfaces are presented in [14, 15].

1.5 Swurface reconstruction

Since the introduction of laser scanners, dense point sets of scanned objects are gen-
erally available. Surface reconstruction algorithms reconstruct the surface bounding
the object from these point samples.

Many algorithms were developed that construct an interpolating or approximat-
ing surface from the set of points. An interpolating surface is a surface that passes
through all sample points. Approximating surfaces do not interpolate the sample
points, but lie in their vicinity. If the point sample contains noise, the points do not
lie on the surface and algorithms that construct approximating surfaces can be used
to smooth away the noise at the expense of a loss in detail.

We describe some algorithms for the purpose of surface reconstruction from point
samples. This list is far from complete, but is intended to to give an overview of
surface reconstruction algorithms related to this thesis. Most of these algorithms
have theoretical guarantees with respect to the input surface like topological equality
and a bound on the Hausdorff distance under the assumption that the point sample
is an e-sample, with € < 0.1. An e-sample means that the point sample contains
points on all parts of the surface and more points in regions with more detail.
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(a) The original (b) The Delau- (¢) All polar cir- (d) The polar
curve nay  triangula- cles circles centered
tion of a finite within the curve

point sample

Figure 1.7: Surface reconstruction based on Delaunay the triangulation.

A mathematical definition of the notion of an e-sample is given in Section 2.6.
Although it is hard to satisfy or test this condition, the algorithms work well in
practice even if the sampling condition is not met.

Notation The set of sample points is denoted by P = {pg,...,pn}. Some of the
methods mentioned below produce an implicit function, the zero set of which is
the reconstructed surface. These method of surface reconstruction are also called
scattered data interpolation. We denote this function by F and the specified function
value of F at the point p; by f;.

Delaunay based reconstruction Several algorithms reconstruct a piecewise lin-
ear surface using the Delaunay triangulation of the point set [5, 6]. These algorithms
extend earlier work on curve reconstruction [4].

The Delaunay triangulation is one of the most basic structures in Computational
Geometry, and is described in detail in Section 2.5. The Delaunay triangulation is
the dual of the Voronoi diagram, which decomposes R3 into regions closest to a
certain site. The farthest point in the Voronoi cell from a site is called the pole of
the site. If the point sample is dense, the normal to the surface is well approximated
by the vector from a site to its pole. A polar ball is the largest ball centered at a pole,
not containing any site. Each polar ball has four sample points on its boundary.

The power crust algorithm [6] labels polar balls inside and outside. Two polar
balls are neighbors if their Voronoi vertices are connected by a Voronoi edge. The
algorithm starts by giving a large sphere outside the surface the label outside. Then
it progresses to neighboring polar balls and gives these balls the same label if the
outer angle in which the spheres intersect is large and the opposite label if the angle
is small. The reconstructed surface is defined as the set of points with equal distance
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to interior and exterior balls. Using a suitable distance function, this surface is a
subset of the facets of the Delaunay triangulation, which is piecewise linear.

The different steps of the algorithm are depicted in Figure 1.7. The reconstructed
curve is the subset of the edges of the Delaunay triangulation that are emphasized
in Figure 1.7(b). We describe this algorithm in greater detail in Section 2.6.

The cocone algorithm [5] uses the poles to estimate the surface normals in the
sample points. It then constructs cocones around the samples. These cocones are the
complement of the cone with apex at the sample and symmetry axis in the direction
of the estimated normal. The Delaunay facets (triangles) lying in the cocone are
selected as candidate samples. A manifold extraction step selects triangles that form
the final reconstructed surface.

Moving least squares The idea of the moving least squares approach [1, 79, 78]
comes from the well known least squares technique to fit a surface to a set of points.
The term “moving” refers to the various weighting of the points in calculating their
contributions to the solution at different locations. In general, sites lying close have
a larger weight. Several slightly different definitions are given in literature. for
assigning the weights and constructing the moving least squares function.

The approximating MLS-surface is homeomorphic to the original surface if the
uniform point sample is dense enough, as is shown in [70]. In [42], the condition
on the uniform sample is made adaptive, hence requiring less points. In [90], Shen
et.al. describe an algorithm that takes polyhedra as input instead of points.

Subdivision surfaces An important way of modeling and reconstructing surfaces
is by means of subdivision surfaces. These surfaces are defined by a coarse control
mesh which is then subdivided. Several schemes are proposed for subdivision. The
schemes in [47, 100, 69] interpolate the vertices of the control mesh, whereas the
schemes [81, 26] are approximating. In practice, the latter schemes produce better
results.

In [65, 67, 66], Hoppe et al. describe a surface reconstruction algorithm that
constructs this coarse mesh from an unorganized point cloud. The idea is to estimate
the tangent plane of the surface in each sample points. This is done by a least squares
fit through the samples in the neighborhood of the sample point. Then the normals
are oriented consistently and the surface is extracted with a marching cubes [82] like
algorithm.

This surface reconstruction algorithm is one of the first and very little is proved
about their behavior.

Natural neighbors A natural neighbor surface [20, 53] constructs an implicit
surface using natural neighbor coordinates, also called Sibson coordinates [91, 97].
The implicit surface is the zero-set of the implicit function.

The definition of natural neighbor coordinates is given in terms of Voronoi cells,
which are more generally discussed in Section 2.5. In short, the Voronoi cell v, of a
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point p € P with respect to a point sample P is the set of points closer to p than to
any other sample in P.

The natural neighbor coordinate associated to P of a point x € conv(P) are the
functions
~ valx)l

oi(x) =

x|
where | - | denotes the volume of a set, v, the Voronoi cell of the point x with respect
to P U {x} and vi(x) the intersection of v, with the Voronoi cell of p; € P with
respect to P. Since the Voronoi diagram partitions R3, it follows that 5 oy(x) =1,
for all x € R3. Further, o (pj) = dij, with di; the Kronecker delta. The points p;
with oi(x) > 0 are called natural neighbors of x.

The interpolated function value F(x) is defined as

Fix) =) ailx)fs,
i
or, if the normal n; of site p; is known, as

Fo) = Y oua(fi 3 (nx— po).

The approximation is the zero-set of F. The function F is differentiable, except at
sample points.

Initially, the natural neighbor coordinates were proposed for function interpo-
lation. For surface reconstruction, only natural neighbors lying near an estimated
tangent plane in the query point x are used. These points are called the T-neighbors.

Radial basis functions The reconstruction algorithms that use radial basis func-
tions [86, 93, 94] construct an implicit function F, the zero set of which is the re-
constructed surface. The implicit function is a weighted sum of radially symmetric
functions ¢ : R™ — R, depending only on the distance to a site:

n

Fd = Y wid(lpi —x) + P(x), (1.1)

i=0

where wy is the weight of the radial basis function ¢ centered at p; and P is (an
optional) low degree polynomial. Common choices are ¢(r) = r (linear), ¢(r) =
2 log(r) (thin-plate spline or biharmonic radial basis function in 2D) and ¢(r) = 13
(thin-plate spline in 3D).

In Equation (1.1), the unknowns are the weights w; and the coefficients c; of the
polynomial P. Since the equation is linear in both parameters, it can be expressed as
a linear system. The weights w; are used to solve the equations F(pi) = f; and the
coefficients of P are used to guarantee that the system of equations has a solution.
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These equations are formulated in the following linear system:

do1 do2 ... don Poo --- Pom Wo }co
b1 P12 ... bin PIO --- Pim Wi 1
Gn1 dPn2 --. Pnn Pno --- Pnm wn | =| fa |,
Co 0
constraints induced by polynomial

Cn 0
where ¢i; = (||pi —pj||) and pi is the factor of P with coefficient ¢y evaluated
at pj.

If all function values f; are zero, then the trivial solution w; = 0, ¢; = 0 is valid.
In that case F is the zero function. To avoid this solution, additional samples are
placed inside (outside) the surface with positive (negative) function values. The
position of these additional constraints influences the surface. Common placement

rules are along the normal (inside, outside or both) or on a skeletal structure of the
surface called the medial axis which is described in Section 2.6.
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Chapter 2

Preliminaries

This chapter introduces the necessary mathematical notions and definitions used
throughout the thesis.

2.1 Topology

Topology is the mathematical study of the invariants that are preserved through
deformations, without changing the local connectivity of the object. Topological
invariants include the number of connected components, the number of holes and the
number of tunnels. In the topological sense a doughnut and a teacup are equivalent,
since both are made from one piece and both have one tunnel (the hole in the
doughnut and the ear of the teacup).

Two objects Xo, X7 C R are homeomorphic or topologically equivalent if there
is a continuous bijective map f : Xo — X; that has a continuous inverse. The two
circles in Figure 2.1(a) and (b) are homeomorphic.

A (topological) embedding is a continuous injective map, which is a homeomor-
phism onto its image. Let Xo, X7 C R and fo, f; : Z — R be two embeddings such
that fi(Z) = X;. Then Xo and X; are isotopic if there is a continuous family Fy,
with 0 < s < 1, of embeddings Z — R9, such that Fy = fo and F; = f;.

In particular, isotopic surfaces are homeomorphic. The two circles in Figure 2.1(a)
and (b) are not isotopic.

2.2 Metrics for surface approximation

In surface approximation, one surface is approximated as good as possible with
another surface. However it is not clear what ’good’ exactly means. A metric on a
topological space X is a non-negative function g with the following properties:

e g(x,y) >0 and g(x,y) =0if x =y, with x,y € X;
e g(x,y) = g(y,x) (a metric is symmetric);

e g(x,y) +9(y,z) > g(x,z) (the triangle inequality).
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(a) (b)

Figure 2.1: The circles in (a) and (b) are homeomorphic, but not isotopic.

Capturing the right topology on its own is not enough to guarantee a good
approximation. The Hausdorff distance is a measure for the distance between two
sets (the surface is an infinite set of points), see [60, Chapter 43]. The Hausdorff
distance d(X,Y) of two compact subsets X, Y is defined by:

d(X,Y) = max(maxmin g(x,y), maxmin g(x,y)).
xeX yey yeY xeX
Note that maxyex minyey ||x —y|| and maxyey minyex || x —y|| are not necessarily
equal. For example if X is contained in Y then maxyex minyey || x —y|| is zero, but
maxy cy Minyex || x —y|| is positive.

2.3 Envelopes

Let F: R4 x R — R be a C' function defining a one parameter family of functions
F.:RY — R by F, (x) = F(x, ). Assume that the sets

Z,=1{x¢€ R | Fu(x) <0}

are bounded. The envelope of the family Z,, is the boundary of their union. Note
that the envelope may be empty. Let x € Z,, be a point on the envelope. Then
F(xo, o) = 0, and F(xp, ) > O for all n. Therefore g is a (global) minimum of the
function p — F(xp, 1), so g—fl(xo, o) = 0. It follows that the envelope is a subset of
the discriminant set Dy of the family F, defined by

oF
Df ={x € R | F(x,n) = at(x, i) =0, for some p € R}.

If the family depends on a multi-dimensional parameter p € R¥ then the discrimi-
nant set is defined by

Df ={x € RY | F(x,u) =0, V.F(x,u) =0, for some p e R¥).
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Figure 2.2: The envelope of the circles given by F((&1,82), 1) = (&1 — n)? + &5 —
0.5u% —0.5.

Example We compute the envelope of a set of spheres centered at (p,0,0) and with
squared radius spu? + c. The function F: R? x R — R defines this set of spheres:

Flx,p) = (&1 — W) + &3+ &5 —su? —c,
with x = (&1,&,,&3). Hence g—‘;(x, i) = 2((1 — s)u — &;), which vanishes if p =
&1/(1 —s). Substitution of u in F yields an implicit equation for the envelope:

S
*m&%—Faé—l—({é*C:O.

In Chapter 4 we analyze envelopes of spheres with a piecewise quadratic radius-
squared function in more detail.

2.4 Complexes

A convex polyhedron is the, possibly unbounded, intersection of a finite number of
closed half-spaces. A polyhedral complex C is the collection of faces of a finite number
of polyhedra, such that

(i) if o € C and T is a face of o, then T € C and
(ii) if 0,0’ € C such that cN o’ # 0, then 0N o’ is a face of both.

We write T < o, for T,0 € C, if T is a face of 0. A d-simplexr is the convex hull
of d 4+ 1 independent points. A simplicial complex is a polyhedral complex all non-
empty faces of which are simplices.

2.5 Voronoi diagrams and Delaunay triangulations

The Voronoi diagram, named after Georges Voronoi [46, 96], is one of the most
fundamental structures in Computational Geometry. You may think of the Voronoi
diagram in terms of a grass-fire analogy. At each site a fire is ignited that spreads
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with constant rate of one unit distance per unit time. The Voronoi diagram consists
of cells that are ignited by the same site (or set of sites).

The Voronoi diagram has applications in many areas of interest. Different names
particular to the respective field have been used such as medial axis transform in
biology and physiology, Wigner-Seitz zones in chemistry and physics, domains of
action in crystallography, and Thiessen polygons in metereology and geography,[13].
For a survey on Voronoi diagrams and its applications see [12, 54] and [60, Chapter
23].

More formally, the Voronoi diagram of a collection of geometric objects P is
a partition of space into cells, each of which consists of the points closer to one
particular object than to any other. For each site p € P, the Voronot cell v, is
defined by:

v, ={x € R | d(x,p) < d(x,p’), for all p’ € P}.

The input sites are not necessarily points. In R?, Voronoi diagrams of geometrical
objects like line segments, polygons and circles have been studied [2, 64, 83].

Different distance functions yield different Voronoi diagrams. Usually, the Eu-
clidean distance or two-norm (L;) denoted by || - || is chosen as the distance function
d.

By giving sites a weight it is possible to favor one site over another. A weighted
point P = (p,P) € R x R has a location p and a weight P. A point with zero weight
is called an unweighted point. The way this weight is taken into account results in
different Voronoi diagrams. In the additively weighted Voronoi diagram the distance
function d is given by d(P,x) = ||p — x|| —P. The multiplicatively weighted Voronoi
diagram is defined by the distance function given by d(p,x) =P ||p — x|

Power diagrams The last, and the distance function used in this thesis is the
power distance 7(f,x) = ||p — x||* — P, where ||-|| denotes the Euclidean distance.
The Voronoi diagram obtained from this distance function is the power diagram.
If all weights are equal, then the power diagram is just the unweighted, Euclidean
Voronoi diagram. Since the power diagram is the only type of Voronoi diagram used
in this thesis, we also refer to it as the (weighted) Voronoi diagram.
The power distance is generalized to a pseudo distance between two weighted
points p and q:
n(p, ) =llp—al’—pr-q, (2.1)

where p = (p,P), § = (q,Q). The unweighted points with zero power distance to
a weighted point P form the sphere centered at p with radius /P. We make no
distinction between the weighted point and this sphere. If the weight is negative,
the sphere is imaginary.

Note that the power distance 7t is not a real distance function since 7t(p,q) is
not positive nor does it satisfy the triangle inequality or is (P, ) zero if P = g.

Two weighted points with zero power distance are called orthogonal. If the
weights of the two points are positive, this means that the corresponding spheres
intersect in a circle and their tangent planes are perpendicular. Two weighted points
are further than orthogonal if their power distance is positive. An orthosphere of a
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Figure 2.3: The Voronoi diagram (dashed) and the Delaunay triangulation (solid)
of a set of weighted points (circles) in 2D. The dotted circle is hidden.

set of weighted points P is, by definition, a sphere orthogonal to each of the weighted
points in P. An unique orthosphere exists for d 4+ 1 weighted points in R? that are
in general position.

Let p and G be two weighted points. The points with equal power distance to
p and g form a hyperplane orthogonal to the line segment pq. Denote with Hg 4
the halfspace containing all points closer to P than . By definition, the weighted
Voronoi cell v of the site P is the intersection of a set of halfspaces which is a,
possibly unbounded, convex polyhedral region:

Vp = ﬂ Hﬁ)a.
GeP,a#p

The weighted Voronoi cell is unbounded if the center of the weighted point lies on
the convex hull of the centers of all weighted points in the input set. By choosing
appropriate weights, a weighted Voronoi cell can also be empty. A weighted point
with an empty Voronoi cell is called hidden, or redundant. A Voronoi cell of the
power diagram also does not necessarily contain the location of its site.

The two-dimensional power diagram of eight weighted points, of which one is
hidden (the dotted circle), is shown in Figure 2.3. The power diagram is drawn with
dashed lines and the solid lines depict its dual, viz. the Delaunay triangulation.

The Voronoi diagram inherits a polyhedral structure by generalizing the defini-
tion of a Voronoi cell to sets of sites X C P:

vy ={x e RY | wt(x,p) < m(x,p’), forallp € X,p’ € P}
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In other words, the Voronoi cell vy is the intersection of the Voronoi cells vg for
P € X. Hence, vy is contained in vy, if X' C X.

General position In this thesis we assume general position, by which we mean
that no 5 weighted points are equidistant to a point in R and no k + 2 centers of
weighted points lie on a common k-flat for k = 0,1,2. We also assume that no four
spheres bounding balls in the input set touch in a single point. Several methods
like [50] exist to symbolically perturb a data set and ensure these conditions. Also
algorithms exist that actually perturb the input in such a way that the perturbed
input is in general position [55, 61].

Under this genericity condition vy is determined by |X|—1 independent equalities
(and a number of inequalities). Therefore dimvy =3 — (|X|—1) =4 — |X| if vy
is not empty. Hence, |X| < 4 for a non-empty Voronoi cell. Every 0-cell is a point,
which is the intersection of four adjacent Voronoi cells. A 1-cell is a line segment,
possibly unbounded. And a facet (2-cell) is the intersection of the boundary of two
3-cells which is a convex polyhedron. The 2-cell is a subset of the set of unweighted
points equidistant to the two weighted points associated with the 3-cells. A 3-cell
is a nonempty Voronoi-cell of some p € P. The Voronoi cell vy for X C P is
non-empty, iff there is an orthosphere of X’ that is further than orthogonal from all
weighted points in P\ X, cf. [49, Chapter 5].

To conclude, the weighted Voronoi diagram (power diagram) is the subdivision
of 3-space generated by the non-empty weighted Voronoi cells:

Vor(P) = {vxlX C P Avy #0).

Decomposition of the union of balls The weighted Voronoi diagram decom-
poses the boundary of the union of a set of balls into spherical patches. A point on
the intersection of a ball p and the boundary of the union of balls has zero distance
to P and non-negative distance to all other balls. Therefore this point is contained
in the Voronoi cell vy and

@ JP)np =~vpnop.

We use this property to decompose the boundary of the union of a set of balls into
spherical patches for the meshing algorithm proposed in Chapter 5.

2.5.1 Delaunay triangulations

The Delaunay triangulation is the dual of the Voronoi diagram, which means that
there is a Delaunay simplex 0y for every non-empty Voronoi cell vy. The weighted
Delaunay triangulation, or regular triangulation, is the dual of the weighted Voronoi
diagram. The weighted Delaunay triangulation and the Delaunay triangulation are
equal if all weights are equal since in that case the power diagram and the unweighted
Voronoi diagram are identical.
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The convex and affine hull of a set of (weighted) points X = {p;} is defined by:
aff(X) = {d vipil) vi=1}
i i
conv(X) = D) viPil) vi=1,vi>0}
i i

A weighted Delaunay (3 — {)-cell exists for every non-empty weighted Voronoi
l-cell vy € Vor(P) and is the convex hull of the centers of the weighted points in X:

dx = conv({plp € X}).

Observation 1. The cells b and vy are complementary and orthogonal.

The focus Note that dx and vy for vy # () can be disjoint, but their affine hulls
always intersect in a single point, the focus f(X) of X'. Since the focus lies on the
affine hull of the weighted Voronoi cell, it follows that 7t(p, f(X)) = n(q, (X)) for
all p,q € conv(X).

The weighted Delaunay triangulation is the subdivision generated by the Delau-
nay cells:

Del(P) = {5;@ ‘ Vy € VOI“(P)}

Geometric construction The definition of the weighted Delaunay triangulation
given above is indirect in the sense that it is derived from the weighted Voronoi
diagram. There is also a direct geometric construction of the weighted Delaunay
triangulation. For this construction we introduce the vector space of weighted points,
cf. [48]. The set of weighted points inherits a vector space structure from R?* via the
bijective map TT:R3 x R — R*, defined by

m(p) = (&1,&2, &, [0 |> —P), (2.2)

with p = (&7, &2, &3). Using this vector space we define the addition of two weighted
points and the multiplication of a weighted point by a scalar as

p+a = T '(T(P) +T1(Q)),
c-p = T '(c-TI(P)).

For a skin surface with a shrink factor s we introduce the notion of shrinking. Let P
be a weighted point and ' the weighted point centered at p with zero weight. The
shrunk weighted point p* is defined as:

PS=sp+(1—s)p’. (2.3)

If P is a set of weighted points, we denote by P* the set obtained by shrinking every
point of P by a factor s.

Before we state the geometric construction of the Delaunay triangulation, we
make some preliminary observations on the vector space structure inherited under TT.
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Let P’ = (p’, P’) be an affine combination of the weighted points Py, i.e., p = >_viPi
for scalars y; with )} yi =1

pr=Tr" (Z%”(ﬁi)) ,

A simple calculation shows that

/

p/ Zi/Yizpi) 2 (24)
Po= Pl = v (llpall” —Pi)

It follows from Equation (2.4) that p* = (p, s P). In other words, P* corresponds to
the ball centered at p with radius v/sP. We express the power distance of p’ to an
unweighted point x in terms of the power distance to the weighted points Pj:

2
') = [x—p' | =P
2 2 2
= |x=p'I" =PI+ D>_villlpeI° —Ps)
i

= Ixl? =260 + > villlpi I —po)
i
= 3 villxl® =20, p3) + [P ]* —p)

= ) vin(pi,x) (2.5)

Without changing the derivation, we may replace x with a weighted point g.

Observation 2. Let P’ be an affine combination of weighted point ;. Then P’ is
orthogonal to the orthosphere of the weighted points Pj.

This is not true for affine combinations in the Euclidean space, but follows from
the change of weights induced by the vector space inherited under TI.

Finally, note that if TT maps a weighted point P vertically above another weighted
point q, then their centers are identical and the weight of P is smaller than the weight
of 4. Hence the weighted points on the lower convex hull of TT(P) have maximal
weight.

Lemma 3. A set X C P defines a Delaunay simplex dx if conv(TI(X)) lies on the
lower convex hull of TI(P).

Proof. Assume that the lifted weighted point in conv(X') lies on the lower convex
hull of conv(P), then there exists a hyperplane hy containing TT(conv(X’)) and lying
vertically below the convex hull of TT(P). Let q be the orthosphere of all weighted
points projecting onto hy. This orthosphere exists since it is defined by any four
independent points on hy and orthogonal to all points by Equation (2.5). Since hy
lies below the convex hull of TT(P), it follows from the definition of TT that the weight
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Figure 2.4: The medial axis in 2D.

of p € P is smaller than the weight of the weighted point p’ lying on hy with center
p. Since P’ and q are orthogonal, P is further than orthogonal from q and X forms
a Delaunay simplex.

Conversely, if the lifted weighted point in conv(X) does not lie on the lower
convex hull of conv(P), then no hyperplane hy containing conv(X') and lying below
conv(P) exists. Hence there is no orthosphere of X' that is further than orthogonal
to all weighted points in P. (]

2.6 Medial axis and the Medial axis transform

Much research has been done on constructing skeletal representations of two-dimen-
sional curves and three-dimensional surfaces. Perhaps the most natural concept is
the medial axis introduced in [19]. The medial axis of a surface is the closure of
the set of points that have more than one closest point on the surface. A recent
survey paper on the medial axis is [11]. The medial axis of a generic surface consists
of surface patches that meet in a well defined way. For curves this structure is
analyzed with differential geometry in [57, 59] and for surfaces in [58].

By definition, each point of the medial axis is the center of a ball touching the
surface in at least two points and containing no part of the surface. An empty ball
is a ball that is contained in the surface. Maximal balls are empty balls that are
maximal with respect to inclusion. In other words, an empty ball is maximal if there
is no empty ball in which it is contained. Each maximal ball touches the surface in
at least two points and is therefore centered on the medial axis. The set of maximal
balls of a surface is the medial axis transform (MAT). The boundary of the union
of the maximal balls is the surface [98], which means that the medial axis transform
is a representation of the surface. In fact, the medial axis is a strong deformation
retract of the region bounded by the surface, see [35, 80]. The construction of the
surface from a medial axis transform is studied in [56, 95].

A two-dimensional example depicting empty circles, maximal circles and the
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medial axis is given in Figure 2.4. Figure 2.4(a) shows a closed curve and (b) the
same curve with three empty balls. The only maximal circle in the figure is the
smallest circle. The medial axis of the curve is shown in (¢). Note that the outer
branches are clipped, but are actually unbounded.

The medial axis and the medial axis transform are of interest in this thesis for
two reasons. First, the union of the maximal balls contained in the interior of a
closed surface define the surface from the inside. Although it is in general hard to
compute the medial axis transform of a smooth surface, it is possible to construct a
dense finite sample of approximate maximal balls from a dense point sample on the
surface. An approximate maximal ball is a ball that has a small Hausdorff distance
to a true maximal ball. We describe the construction of a sample of approximate
maximal balls later in this section. The boundary of the union of the approximate
maximal balls has a small Hausdorff distance to the original surface. This sample is
therefore well suited as input for the algorithms described in Chapter 3 and 4.

Secondly, the distance to the medial axis is a good measure of the level of de-
tail of the surface. For example, the distance to the medial axis in Figure 2.4 is
smaller near the fingers than on the part of the curve forming the hand palm. This
distance is called the local feature size (LFS). Using the local feature size we make
mathematically precise what we mean with a dense point sample. Using existing
algorithms, it is possible to construct the set of approximate maximal balls from a
dense point sample.

Local feature size

The local feature size in a surface point is the distance from that point to the medial
axis of the surface. It is a measure for the level of detail in a certain part of a surface.
This measure is used to describe what is meant by a dense sample of points on a
surface.

A point sample on the surface is an e-sample if the distance in any point x on
the surface to a sample is at most € times the local feature size in x. For € < 0.1,
the power crust algorithm [6] produces a set of balls such that the boundary of its
union S’ approximates the surface in the sense that:

e The Hausdorff distance between S and S’ is of the order of €, [6, Theorem 21].

e The angle between the normal in a regular point on S’ and the normal in the
closest point on S is of the order O(+y/€) [6, Theorem 24].

e The surfaces are homeomorphic [6, Lemma 25].
The balls contained in the bunny in Figure 1.2(c) are generated by the power crust
algorithm.
Approximate maximal balls

An approximate maximal ball is a ball that has small Hausdorff distance to a true
maximal ball. A set of approximate maximal balls can be constructed with the
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Figure 2.5: A sliver.

power crust algorithm [6, 7]. A similar algorithm is presented in [45]. The algorithm
depends heavily on the Voronoi diagram of the point set. A point on a Voronoi face
has at least two nearest sites. Hence, the two-skeleton of the Voronoi diagram is the
medial axis of the point sample.

In 2D, the vertices of the Voronoi diagram are the points that have three closest
sites. For an e-sample of the curve, the vertices of the Voronoi diagram lie close to
the medial axis. An example is shown in Figure 2.4. The crucial step is to label
the Voronoi vertices as inside or outside. To this end, the algorithm constructs
a weighted Voronoi diagram of the empty circles centered at Voronoi vertices. It
gives an initial circle outside the surface the label outside. Then it progresses to
neighboring empty circles and gives these circles the same label if the outer angle in
which the circles intersect is large and the opposite label if the angle is small.

In 3D, the algorithm is slightly different since not all Voronoi vertices converge
to the medial axis as the sample density approaches infinity. Delaunay tetrahedra
called slivers are dual to Voronoi vertices that lie arbitrarily close to the surface.
They are formed by four points that lie near the equator of a sphere, cf. Figure 2.5.
On the other hand, the set of Voronoi vertices called poles do converge to the medial
axis. The pole of an input site is the point in its Voronoi cell furthest away from the
site. This point is always a Voronoi vertex and the empty ball centered at the pole
is called the polar ball. If we construct the weighted Voronoi diagram from the polar
balls and label them as in the two-dimensional case we obtain an appropriate set of
approximate maximal balls. The construction of this set of balls is crucial for the
construction of input data for the approximation algorithm presented in Chapter 3.

The algorithm in [45] improves the power crust algorithm in the sense that it
does not construct a weighted Voronoi diagram of the poles, but constructs an ap-
proximate medial axis directly from the Delaunay triangulation of the input sample.
To this end, it labels the polar balls using the Delaunay triangulation of the point
sample.

2.7 Skin surfaces

The key concept in skin surfaces is the construction of an interpolating radius func-
tion. Skin surfaces, introduced by Edelsbrunner in [48], are used for molecular mod-
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eling. Molecules are constructed from atoms and each atom is represented by a ball.
Smooth patches make the transition between intersecting balls tangent continuous.
Edelsbrunner mentions nice properties of skin surfaces:

e Decomposability: a skin surface consists of a finite number of degree-2 patches;

e Constructibility: there are fast combinatorial algorithms constructing a skin
surface or a piecewise linear approximation, see [29, 32] and Chapter 5;

e Symmetry: a skin can be defined from the inside as well as the outside;

e Smoothness: in the non-degenerate case a skin surface is everywhere tangent
continuous;

e FEconomy: even a small number of weighted points can generate skin surfaces
with a fairly complicated topological structure;

e Universality: every orientable closed surface can be approximated by skin
surface;

e Deformability: several schemes exist to deform skin surfaces [28, 33, 48], and
topological changes of evolving skin surfaces can be efficiently computed;

o Continuity: a skin surface varies continuously with points and weights.

2.7.1 Definition

We review the theory of skin surfaces presented in [48]. For further reading on the
vector space of weighted points we recommend [84, 41].

In addition to the set of weighted points (balls), a skin surface also depends on
an input parameter called the shrink factor. The shrink factor is a scalar s € [0, 1]
that controls the size of the smooth patches over the intersection curves of two balls
and also the amount with which the radii of the input balls are shrunk. For a shrink
factor is smaller than one, the radii of the input balls become smaller and smooth
patches “blend the balls together”. For the definition of skin surfaces we use the
vector space of the weighted points defined for the construction of the Delaunay
triangulation in Section 2.5. Recall the bijective map TT projecting a weighted point
P to the vector space from Equation (2.2):

(p) = (&1,&2,&3, P[> —P), (2.2)

where p = (&1,&2,&3).

For a shrink factor equal to one, the skin surface of a set of weighted points is
obtained by taking the boundary of the union of all weighted points in conv(P). We
show that in that case the skin surface is the boundary of the union of the input
balls.
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Figure 2.6: The convex hull of two input balls and the same balls shrunk with
s=0.5

In the proof of Observation 2, we showed that for a weighted point § =}, viPs,
with ) ;vi =1 we have:

= vin(pi,x) (2.5)

Let x be a point outside the union of the input set, then 7t(p,x) > 0 for all p € P.
Hence, the distance of any point q € conv(P) to x is positive. Therefore all balls
in conv(P) are contained in the union of the input balls and the skin surface for a
shrink factor equal to one is the union of the input balls.

The body of a skin surface bdy®(P) is the union of the weighted points in
conv(P)®, and the skin surface skn®(P) is its boundary:

bdy®(P) = U(convP)?*
skn®(P) = 0 bdy®(P).

Here conv(P) C R3 xR is the convex hull — with respect to the vector space structure
inherited under TT — of a set of weighted points P, whereas 0 denotes the boundary —
in three space — of the union of the set of balls. Note that this definition generalizes
the definition for a shrink factor equal to one.

Figure 2.6 depicts a skin curve in 2D associated with two weighted points. The
left figure shows the skin surface with a shrink factor equal to one. Note that every
circle passes through the intersection points of the two input circles. On the right,
the skin surface for a shrink factor of 0.5 is shown. Since large circles are shrunk
more than smaller circles, a smooth transition between the two shrunk input circles
appears.

It follows directly from the definition of shrinking that bdy®(P) C bdy® (P) if
s < s’. Another important feature of a skin surface is that varying the shrink factor
does not change the topology, i.e., for 0 < s,s’ < 1, skn®(P) and skn®’ (P) are
homeomorphic. For s = 1, the body of the skin surface is the union of the balls
in the input set. In particular, the body of a skin surface is homeomorphic to the
union of the balls in the input set.

2.7.2 Relation to the Delaunay triangulation

At first sight, the definition of a skin surface given in Equation (2.7) does not have
nice properties. In this section we have a closer look at the weighted points defining
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the skin surface. The main result of this section is formulated in the following lemma.

Lemma 4. For a set of weighted points P we have
Uconv(P) = U{conv(?() | dx € Del(P)}.

Proof. Let P be a weighted point in conv(P). There are many weighted points in
conv(P) with the same location p. They only differ in their weight. The weighted
point with the largest weight corresponds to the ball with the largest radius. Since
their centers are all equal this weighted point contains the other weighted points.

In the vector space structure inherited under TI, the last coordinate of a lifted
point decreases if its weight increases. Hence, all weighted points with maximal
weight lie on the lower convex hull of the lifted points in P. In Lemma 3 we observed
that this lower convex hull is defined by convex combinations of sets of weighted
points that define Delaunay simplices.

To conclude, convex combinations of weighted points defining a Delaunay simplex
have the property that they maximize weight. Therefore, a these weighted points
contain all weighted points in P. O

In view of the this lemma we have:
bdy®(P) = J{bdy®(X) | 5x € Del(P).

In other words, although a skin surface may have a complicated structure, it can be
decomposed into simple pieces defined by at most four weighted points.

2.7.3 Envelopes of weighted points

We analyze the structure of a skin surface defined by up to four weighted points. By
definition, bdy®(X) = Uconv(X)®. For now, we are not interested in the boundary
of conv(X) and we consider the boundary of Uaff(X)°.

If |[X| = 1, then aff(X) contains a single weighted point, say P and Uaff (X)® = .
In words, the skin surface of a single weighted point p is the sphere bounding the
shrunk weighted point p*.

In general, the set aff(X') is an {-dimensional affine subspace of the vector space
inherited under TT, with £ = |X| — 1. By Observation 2, every weighted point in
aff (X') is orthogonal to the orthosphere § of X. Assume that § is centered at the
origin and the affine space is spanned by the first £ coordinate-axes. We parameterize
aff (X') as follows. Let p(tq,...,ty) be the weighted point with center p(ty,...,tp) =
(t1,...,t¢,0,...,0) and orthogonal to §. Since 7t(p, ) = 0, it follows that the weight
of P(ty,...,te) is:

P(t, ..., te) = [p(tr,....t) | —@.

Hence, the skin surface is the envelope of the function f defined by:

f(t],...,tg,X) :ﬂ(ﬁs(t])-" )tf)ax)'
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A calculation similar to the example in Section 2.3, shows that the envelope of these
balls is implicitly defined the zero set of

14
f(&1,&2,E3) Z——mz Tez
i=1

j= €+1

where Q is the weight of the orthosphere of X.

Concluding, the envelope of aff(X)® is a quadric. Let X be the set of centers of
the weighted point in X'. For { = 0, this quadric is a sphere, which is the shrunk
weighted point in X'. For { = 1, the envelope is a hyperboloid with symmetry axis
aff (X) and for £ = 2, it is another hyperboloid with symmetry plane aff(X). For
¢ = 3, the envelope is a sphere, but now the body of the skin surface lies outside the
sphere.

The next step is to analyze how these envelopes contribute to the skin surface.
This results in the construction of the mixed complex as we will see in the next
section.

2.7.4 Mixed complex

In this section we define a polyhedral structure called the mixed complex Mix®(P)
that partitions R3 into convex polyhedra. This partitioning has the property that
the mixed cell p3, contains the part of the skin surface that is defined by the weighted
points in conv(X):

uS Nskn®(P) = us Nskn®(X). (2.8)

The mixed complex Mix®*(P), associated with a shrink factor s € [0,1], is an
intermediate complex between the Delaunay triangulation and the Voronoi diagram.
The Minkowski sum of two sets A and B is the pointwise sum of the points in A and
B:

A®B={a+b|laeAbeB}

Each mixed cell in the mixed complex is obtained by taking Minkowski sums of
shrunk Delaunay simplices and their dual Voronoi cells.

Definition 5. For dx € Del(P) the mixed cell u3, is defined by u%, = (1 —s)-dx @
S-Vy.

Here - denotes the multiplication of a set by a scalar and & denotes the Minkowski
sum. For s = 0 the mixed cell is the Delaunay cell. If s increases it deforms affinely
into the Voronoi cell for s = 1.

Each mixed cell is a convex polyhedron since it is the Minkowski sum of two
convex polyhedra. In 3D, there are four types of mixed cells based on the dimension
of the Delaunay simplex. A mixed cell of type £ corresponds to a Delaunay {-cell
and is of the form p$, with |[X| =€+ 1. In 3D, mixed cells of type 3 are tetrahedra
(shrunk Delaunay 3-cells) and mixed cells of type 0 are shrunk Voronoi 3-cells. A
mixed cell of type 1 or 2 is a prism with respectively the shrunk Voronoi facet or
the shrunk Delaunay facet as its base.
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(a) The Voronoi diagram (dashed) (b) The mixed complex
and Delaunay triangulation (solid)
of five weighted points

(c) Three types of mixed cells u$,, with dx a vertex, an edge and a face

Figure 2.7: The decomposition of a skin curve of five weighted points.
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The intersection of the skin surface and a mixed cell is a piece of a sphere or a
hyperboloid see [48]. In fact the mixed cell u3 defines the region where skn®(X’)
touches the skin surface skn®(P), cf. Equation (2.8).

In the plane, the intersection of a skin curve with a mixed cell is either part of
a circle or hyperbola. An example of the mixed complex and a skin curve is given
in Figure 2.7. In 2D, there are three types of Delaunay simplices and therefore also
three types of mixed cells. All rectangles are mixed cells of type 1 and contain
hyperbolic patches. The other cells contain circular arcs. Depending on whether the
mixed cell is of type 0 or 2, the interior of the skin curve lies inside or outside the
circle.
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Chapter 3

Approximation by Skin Surfaces

This chapter appeared as [72, 74].

In this chapter, we present a method to approximate a simple, regular C? surface
W in R3 by a (tangent continuous) skin surface S. The input of our algorithm is a
set balls, the boundary of which is homeomorphic to W and has a small Hausdorff
distance to W. By generating patches of spheres and hyperboloids over the inter-
section curves of the balls the algorithm determines a one-parameter family of skin
surfaces, where a parameter controls the size of the patches. The skin surface S is
homeomorphic to W and the approximate maximal balls of W in the input set are
also maximal with respect to S. See Section 2.6 for the definitions. The Hausdorff
distance between the regions enclosed by the input surface W and the approximating
skin surface S depends linearly on the Hausdorff distance between the boundary of
the union of the input balls and W.

3.1 Introduction

We consider the problem of approximating a simple, regular smooth (Cz) closed
surface in R3 by a skin surface. An example in 2D of a curve, reconstructed using
this approach, is drawn in Figure 3.1c. In Figure 3.2 some skin surfaces are drawn
for different values of the shrink factor.

The input for the approximation algorithm is a finite sample of the medial axis
transform of a surface W, i.e., a finite set of W-maximal balls. Let ¥ be a closed
surface in R® (compact without boundary), which is the boundary of a compact
subset V of R3. A ball is called an empty ball of L if it is contained in the closure
of V. A X-mazimal ball is an empty ball of X not contained in any other empty ball
of X. The medial axis transform of W is the set of W-maximal balls. The medial
axis M of W is the closure of the set of centers of the maximal balls of W, and is a
skeletal structure of the surface. See also Section 2.6.

For a sufficiently dense finite subset of the medial axis transform, the boundary
of the union of the corresponding maximal balls, forms a good approximation of the
surface. Figure 3.1b illustrates this observation for a curve in the plane. Obviously,
this approximation is not tangent continuous. Our algorithm reconstructs a tangent
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(a) (b) (c)

Figure 3.1: The approximation of a curve in the plane. (a) The medial axis and
some maximal circles. (b) A finite set of maximal circles is the input of our algorithm.
(c) The output is a skin curve approximating the input curve in Figure 3.1a.

continuous surface from a sample of (approximate) maximal balls by adding smooth
patches over the points of intersection. By controlling the size of these patches, we
guarantee that the approximation is homeomorphic to the union of the maximal
balls. Furthermore, as we increase the sampling density of the set of (approximate)
maximal balls, the maximal distance between the regions enclosed by W and the
approximating skin surface tends to zero.

We give a more precise specification of the algorithm in Section 3.2, and state the
main result on its complexity: the approximating skin surface can be computed in
O(N?log N) time and O(N?) space, where N is the number of approximate maximal
balls in the input set. A key ingredient of the algorithm is the construction of
the weighted Voronoi diagram of a set of balls with radii growing with the same
multiplicative factor. In Section 3.3 we present an algorithm that maintains this
diagram as the radii are growing. In Section 3.4 we show how the algorithm satisfies
the constraint that the balls in the input set are also S-maximal. Section 3.5 derives
a bound on the Hausdorff distance between the regions enclosed by the input surface
W and the skin surface S in terms of a parameter related to the sampling density
of the set of (approximate) maximal balls. For the proofs in Section 3.3, 3.4 and
3.5 we impose some further constraints on the set of maximal balls. In Section 3.6
we show that the Power Crust algorithm [6] can be used to construct a sample of
maximal balls satisfying these constraints.

Related work Amenta et al. [6] show that the medial axis transform of a surface
can be effectively approximated from a sufficiently dense sample of points on the
surface. If the sample is sufficiently dense, the boundary of the set of approximating
maximal balls is homeomorphic to the original surface. In [6] Amenta et al. use
the approximation of the medial axis transform to compute the power crust, which
approximates the original surface by piecewise linear patches.
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Figure 3.2: The approximating skin surface of a set of balls forming a hand. The
patches between the maximal balls become larger as the shrink factor is decreased.
The shrink factors (from left to right) are 0.95, 0.8, 0.5 and 0.2.
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Figure 3.3: The set of maximal circles and the approximating skin curve for different
shrink factors (decreasing from left to right).

Recently, another approach is proposed to model a surface with a skin surface
[31]. In this method the radii of the input balls are shrunk during the construction
of the approximating skin surface. Our algorithm deliberately prevents shrinking.

3.2 Approximation algorithm

In this section we present the conditions imposed on the surface computed by the
approximation algorithm. A maximal ball is a ball contained in a surface W that
is maximal with respect to inclusion. We say that a ball p is W-maximal if it is a
maximal ball of W. For a definition of the Hausdorff distance we refer to Section 2.2.

Definition 6. Let W be a C?-surface embedded in three space. For ¢ > 0 a finite
set P of balls with union M is e-admissible if

(i) the boundary OM of M is homeomorphic to W;
(ii) every ball in P is M-mazimal;

(i1i) The Hausdorff distance between M and the body enclosed by W is at most e.
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For a given C?-surface W and a positive constant ¢, the approximation algorithm
takes an ¢’-admissible set P of balls, 0 < ¢’ < ¢, and computes a C' skin surface S
associated with P satisfying the following properties:

C1(S): W and S are homeomorphic;
C2(S): Every ball in P is S-maximal;
C3(S): The Hausdorff distance between the bodies of W and S does not exceed «.

The conditions for an e-admissible set are rather strong, but not all conditions
are needed for the properties to hold. In fact, we only need condition (i) for C;(S),
(1) for C2(S) and (iii) for C3(S). In Section 3.6 we show that the power crust
algorithm [6] can be used to generate an e-admissible set.

From the definition of shrinking, Equation (2.3), it follows that (p'/*)s = f.
Therefore, skn®((P'/%)) contains the balls in P. We define our approximating skin
surface Sg(P) as follows.

Definition 7. For a set of balls P the surface Ss(P), with 0 < s < 1, is the skin
surface with shrink factor s associated with the set of balls P1/5.

If no confusion is possible, we write S instead of Sg(P). If P is an e-admissible
set of balls then all three properties C1(Ss)—C3(Ss) are satisfied. Indeed, P! = P,
so S7 is the boundary of the union of these balls and the properties are trivially
satisfied. Obviously, Sy is not smooth. However, also for values of s slightly smaller
than 1 the properties are satisfied, and S is a C'-surface. Indeed, for s sufficiently
near 1, the surface Sg is homeomorphic to S, and hence to W. In general each ball
touches the union of the balls in a spherical patch. For s near 1, the patches smoothly
connecting the input balls are small and therefore all input balls contribute to the
skin surface in a spherical patch. These patches make the balls maximal. Because
the patches are small, the Hausdorff distance between these patches and the union
of the balls is also small.

One or more of these conditions may be violated for smaller values of s. To
illustrate these violations in the 2D-case we depict a sequence of skin curves corre-
sponding to decreasing values of s in Figure 3.3. Figure 3.3a shows the skin curve for
s = 1. As we decrease the shrink factor, the skin curve becomes tangent continuous,
due to the appearance of hyperbolic patches connecting the circles, see Figure 3.3b.

Decreasing the shrink factor, i.e., growing these patches, causes a change in the
topology of the skin curve, i.e., a violation of condition C;(Ss), see Figure 3.3d. Fi-
nally, as we decrease the shrink factor even further, the balls are no longer maximal,
i.e., a violation of C,(Ss), as depicted in Figure 3.3e. In Section 3.3, we show how
to compute the shrink factor at which the change of topology occurs. In Section 3.4
we derive, how far the shrink factor can be decreased without loss of maximality of
the balls.

Our goal is to determine the interval of s-values for which conditions C;(Sg)—
C3(Ss) are satisfied. One of the main results of this chapter is
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Theorem 8. A wvalue si(P) < 1 such that for s, with si(P) < s < 1, condition
Ci(Ss) is satisfied for i = 1,2,3, can be computed in O(m?logn) time and O(n?)
space, where n is the number of balls in P.

In fact the computed value s;(P) is the minimal value for which the theorem
holds. The algorithm presented in Section 3.3 computes s1(P) by maintaining the
weighted Voronoi diagram of a set of balls with growing radii; This algorithm is of
some independent interest. In Section 3.4 this method is slightly adapted to compute
an interval of s-values for which condition C2(Ss) holds. Finally, in Section 3.5, we
determine a bound on the error with respect to the Hausdorff distance between the
input surface and the computed skin surface. This error analysis gives us a value

for 33(73).

3.3 Maintaining the topology of the union of grow-
ing balls

In this section we derive properties of a set of balls with growing radii, which are
of independent interest. We introduce a growth factor t, and later on we apply the
results of this section for t = 1/s, where s is the shrink factor.

We compute the smallest t, such that the boundary of the union of the balls
in P' is not homeomorphic to @ U P, viz. the transition of Figure 3.3c—d. Since
the skin surface Sg(P) is homeomorphic to the boundary of the union of the set of
balls P!, see Section 2.7, this is equivalent to computing the value sq(P), defined
in Section 3.2. Figure 3.4 illustrates this equivalence in 2D, where the change of
topology of the skin curve coincides with the change of topology of the union of
balls defining the skin curve.

Definition 9. The boundary 0 U P of the union of balls in P* changes topology
at (x,T) € R3 x R if for every neighborhood U of x in R3 there is an € > 0 such
that, fort—e <ti <1<ty <T+E¢, the sets UNOUPY and UNJ U P2 are not
homeomorphic.

A ball G € P is tnvolved in the change of topology at (x,T) if x lies on the sphere
bounding q~.

Obviously, if 8 U P' changes topology at (x,T), then x € 9 U PT. Occasionally,
we just say that 0UP' changes topology for t = T if the location x is irrelevant.

The following result states that a set of weighted points changes topology if their
intersection becomes non-empty.

Lemma 10. If all weighted points of Q are involved in a change of topology of 9U Q"
at (x,7T), then
nQt — 0, fort<m,
{x}, fort=rm,

and NQY # 0, fort > 1.
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Figure 3.4: Change of topology at (x,T) of a union of one, two and three weighted
points.

Proof. Since all weighted points in Q are involved, the intersection of QT is not
empty. For ty > 7T, the ball P is contained in pt°, hence NQ # (). Because a ball
is convex, the union of Q' is star shaped for to > T. Its boundary is homeomorphic
to a 2-sphere and does not change topology for to > T.

If NQt £ (), for to < T, then 0 U Q' is homeomorphic to a 2-sphere. Hence,
0 U Q' does not change topology for tg = T, which contradicts the prerequisite. [

It follows from the proof that, for t > 7, the union of Q' is homeomorphic to a
ball. Furthermore, x is an interior point of NQ".

Lemma 11. If d U P changes topology at (x,T) € R3 x R, then the subset Q of P
of weighted points involved in this change of topology defines a cell in the weighted
Voronoi diagram of P*. This cell contains the point x.

Proof. Tt follows from Lemma 10 that x belongs to the boundary of the weighted
points in QF, so 71(4%,x) =0, for § € Q. for p € P\ Q, the distance 7(p™,x) > 0,
since x ¢ P*. Hence, x belongs to the cell vo- of the weighted Voronoi diagram of
P O

Consider a set Q of balls, such that the boundaries of the weighted points intersect
in x. Generically, the tangent planes at x intersect transversally, i.e., the intersection
is an affine space of co-dimension |Q| — 1. The balls Q' form a one-parameter family,
so at isolated values of t we expect intersections with non-transversal tangent planes,
i.e., the co-dimension of this intersection is less than |Q|—1. We impose the following
generic condition on the family P.



3.8. Maintaining the topology of the union of growing balls 39.

v g

& &

Figure 3.5: The topological changes of a skin surface defined by two and three
weighted points as the input balls are grown.

Generic change of topology. If 0 UP' changes topology at (x,T), and the subset
Q of P consists of the balls involved in this change of topology, then the tangent
planes at x of the balls in QT intersect in an affine space of co-dimension |Q| — 1.

In the plane, at most three weighted points are involved in a generic change of
topology, see Figure 3.4. A single weighted point P becomes real and creates a new
component at t = 0. If two weighted points are involved, the change in topology
corresponds to the creation of a bridge between two parts of the boundary. A change
of topology in which three weighted points are involved corresponds to the filling of
a void.

To describe the situation in three-space, let Q be the set of balls involved in a
generic change of topology, then |Q] < 4. The changes of topology correspond to
the creation of a new component, if |Q| = 1, the creation of a bridge, if |Q| = 2, the
filling of a tunnel, if |Q| = 3, and the filling of a void, if |Q| = 4.

Lifting the weighted Voronoi diagram In view of Lemma 11, topological
changes in 0P are related to the cells of the weighted Voronoi diagram. To in-
corporate t-dependence, we lift the weighted Voronoi diagram to the extended space
R3 x R. To this end let P, § € P and consider the halfspace HS 4 C R3 x R defined
by

H%,a = {(X,t) € R3 X R | USE (X) < UsE (X)}
= {(x,t) eR>xR|
2(x,q—p) +tl@—p) < [q|*—[p|*

The boundary of this halfspace is called the extended bisector of the weighted points
P and 4. With a weighted point p € P we associate the extended Voronoi cell V*(p)
in R? x R defined by
Vip)= () Hia
q:9#p
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For p = (p,P) € P, the point (p,0) belongs to V*(P), so no extended Voronoi cell is
empty. The extended Voronoi cells determine a subdivision of R3 x R into convex
polyhedra. This subdivision is called the extended Voronoi diagram of P, and is
denoted by VD*(P). The weighted Voronoi cell of P with respect to PT is the
intersection of the extended Voronoi cell V*(9p) and the hyperplane t = T.

General position of scaled weighted points. We assume that the weighted
points in P are in general position in the sense that

1. The centers of k+2 weighted points in P lie on a common k-flat, for0 < k < 2;
2. no 6-tuple of weighted points in Pt has a common orthosphere;

3. a 5-tuple of weighted points in P has a common orthosphere for an unique
value of t.

For a set of weighted points in general position, there is a constant number of 1-faces
and 2-faces incident upon a vertex of the extended Voronoi diagram.

If P is in general position, then, for 0 < k < 4, the k-flat supporting a k-face of
the extended Voronoi diagram is defined by 5 — k weighted points, in other words, it
is incident to 5 —k extended Voronoi cells (a cell is a 4-face of the extended Voronoi
diagram). Since a vertex of the extended Voronoi diagram is defined by 5 weighted
points, it is incident upon (i) = 5 edges. The number of edges incident upon a
vertex (x,T) of the extended Voronoi diagram, and contained in the halfspace below
(above) the hyperplane t = T, is at least 1 since the extended Voronoi diagram
subdivides R3 x R. If a vertex has k + 1 incident edges in the halfspace below the
hyperplane t = T, for 0 < k < 3, then this vertex is said to be of type k. Since no
Voronoi cell is empty at t = 0, we do not encounter vertices of type O.

Lemma 12. The extended Voronoi diagram of a set of N weighted points in general
position in R3 has O(N?) faces.

Proof. Obviously, the number of 4-faces is O(N), since there is a one-one corre-
spondence between the set of 4-faces and the set of weighted points. Similarly, the
number of 3-faces is O(N?), since each 3-face is defined by a pair of weighted points.

Vertices (0-faces) of type 0 (type 3) are t-minimal (t-maximal) points of a 4-face,
so there are O(N) vertices of type 0 and of type 3. Vertices of type 1 (type 2) are
t-minimal (t-maximal) points of a 3-face, so there are O(N?) vertices of type 1 and
of type 2.

Five 1-faces are incident to a vertex. Therefore the number of 1-faces is O(N?).
Each 2-face incident to a vertex is also incident to two 1-faces incident to the vertex.
Hence, the number of 2-faces incident to a vertex is at most (g) = 10 and the number
of 2-faces is O(N?2).

Since we assume general position, the total number of faces of the extended
Voronoi diagram is O(N?). O

To see that the quadratic complexity is attainable, we construct a set of weighted
points for which the structure of the weighted Voronoi diagram changes a quadratic
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Figure 3.6: A set of weighted points for which the Voronoi diagram changes topology
a quadratic number of times is shown in (a). The figures (b)—(d) show the Voronoi
diagram for increasing t.

number of times as we grow the weighted points. More specifically, the Voronoi cells
of O(N) weighted point become empty which corresponds to vertices of type 3 in the
extended 3D Voronoi diagram. Further, O(N?) flips of a Voronoi edge to a Voronoi
facet and vice versa (these are vertices of type 1 or 2) occur.

The construction is planar. First align N/2 points along the vertical axis with
weight P. The other weighted points are aligned along the positive horizontal axis
and have a weight P/, with P’ < P. Further, the weighted point on the horizontal axis
closest to the origin is positioned such that its Voronoi cell is incident to all Voronoi
cells of the weighted points positioned on the vertical axis, viz. Figure 3.6(a).

As the weights increase, the Voronoi cells of the weighted points positioned on
the vertical become larger, whereas the Voronoi cells of the weighted points on the
horizontal axis become smaller. As a result for each weighted point on the horizontal
axis, we have O(N) edge flips before the Voronoi cell becomes empty. The outmost
weighted point forms an exception, since their Voronoi cells do not become empty.
This process is depicted in Figure 3.6(b) to (d).

Proposition 13. The extended Voronoi diagram of a set of N weighted points in
R3 can be constructed in O(N?logN) time.

Proof. We maintain the weighted Voronoi diagram of P using a sweep-hyperplane
algorithm with planes t = constant, starting at t = 0. The weighted Voronoi
diagram for t = 0 can be computed in O(N?) time, using the algorithm from [68].
The combinatorial structure of VD(P') changes at the t-coordinates of the vertices
of the extended Voronoi diagram. There are several types of events, depending on
the type of the vertex: the type of the event is by definition the type of the vertex.
At an event of type k, 0 < k < 3, a k-face f (and its incident j-faces, 0 < j < k) is
destroyed, and a 3 — k-face f’ is created.

Since the weighted points are in general position, face f is a k-simplex just before
its destruction. The algorithm maintains a priority queue storing the destruction
times of all k-simplices in the current weighted Voronoi diagram. A Voronoi vertex
corresponds to a line segment in the extended Voronoi diagram. By definition of
the extended Voronoi diagram, a Voronoi vertex parameterized in terms of t, moves
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along a line in R3 at constant speed. At an event, at least two Voronoi vertices
coincide and five weighted points have a common orthosphere.
Processing an event of type k boils down to the following update operations:

(i) Update the weighted Voronoi diagram, i.e., remove the destroyed k-simplex
and insert the created 3 — k-simplex, thereby updating all incidence relations;

(ii) Update the priority queue by adjusting the destruction times of all simplices,
incident to the newly created simplex.

Adding the destruction time of the newly created simplex is not necessary since it
has the value of the current event. In each event at least one edge is destroyed, hence
the destruction time of a k-facet is equal to the destruction time of one of its edges.
Therefore, it is sufficient to compute the destruction time of each new or updated
edge. A constant number of faces is involved in a single event. Hence, step (i) takes
O(1) time and step (ii) takes O(log N) time.

In view of Lemma 12 the total number of time stamps is O(N?). Therefore the
time complexity of the algorithm is O(N?log N). O

In practice, there is no need to compute the entire extended Voronoi diagram
and our algorithm terminates as soon as one of the properties of our approximation
is violated.

Corollary 14. Let P be a set of N weighted points in R3. Then To, defined by

To = min{t >1|0UP" changes topology
fort =1},

can be computed in O(N?log N) time.

Proof. Consider a face of the extended Voronoi diagram, defined by a subset Q of
P. There is a unique value t for which NQ" consists of a single point, x say: solve
(x,t) from the equation 7(q',x) = 0, for some, and hence all, § € Q. In this way a
unique time stamp Tg is defined for each k-face of the extended Voronoi diagram.
The value T is the minimal time stamp greater than 1. Since there are O(N?)
faces, it can be computed from the extended Voronoi diagram in O(N?) additional
time. L]

3.4 Preserving maximality of the balls

The medial axis transform is a representation of a surface (the boundary of the union
of all maximal balls is the surface). An e-admissible set approximates the medial axis
transform of a surface W by a set P of approximate maximal balls of W. The balls
are approximate maximal balls since the body of W and UP have small Hausdorff
distance and the balls are maximal in balls of @ UP. In this section, we compute
a shrink factor s;(P), such that all balls in P are maximal in the approximating
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Figure 3.7: Three weighted points in an ¢-admissible set P. The radius of the
maximal circle P in the middle is shrunk with a factor e¢. The result is that p only
touches NP in one small circular arc.

skin surface S¢(P), for s2(P) < s < 1. This means that we do not discard any
information given by the maximal balls in P.

Consider an e-admissible set P. The surface M = UP is composed of spherical
patches. Each spherical patch is part of the boundary of some maximal ball in P.

Requirement (ii) of an e-admissible set ensures that each weighted point gener-
ates at least one spherical patch on 0M, otherwise the weighted point is not dM-
maximal. In Figure 3.7, we show that for any r > 0, we can construct an e-admissible
set that contains a weighted point P such that P generates only one circular arc and
this arc is arbitrarily small. This example can be extended in any dimension. To
guarantee that each weighted point in P is also maximal in the approximating skin
surface, we show that each input ball intersects the skin surface in a spherical patch
y.

Conceptually, we start with the skin surface for s = 1. Since each ball touches
the boundary of the union of the input balls, there exists a spherical patch y for
each weighted point. As we decrease s, smooth patches between spheres arise and
Y N Ss becomes smaller. We stop decreasing s just before the last spherical patch
generated by an input ball disappears.

To determine if an input ball intersects the skin surface Sg in a point, we use
the mixed complex. Recall that the mixed complex decomposes the skin surface
into quadratic patches. In particular, a mixed 0-cell clips its corresponding maximal
ball. A mixed O-cell corresponds to a weighted point p € P. Its shape is the Voronoi
3-cell of p shrunk with a factor s towards the weighted Delaunay 0-cell dp;.
Lemma 15. Let vy be a spherical patch on the boundary of UP generated by a
weighted point p € P. Then there is a weighted Delaunay 3-cell dx adjacent to dip)
for which the segment between p and vy intersects y. Furthermore, the skin surface
Ss contains a spherical patch of y iff

2
s-lp—vxl”>p,
for some 3-cell dx incident to dpp,.

Proof. First, we analyze the shape of a mixed 0-cell more carefully. A Voronoi 3-cell
is a convex polyhedron with its Voronoi O-cells at its vertices. Since a mixed O-cell
is a Voronoi 3-cell shrunk towards the center of its corresponding weighted point, a



44. Chapter 3. Approzimation by Skin Surfaces

mixed O-cell is a convex polyhedron with its vertices on the line from the weighted
Delaunay 0-cell to each of the adjacent Voronoi O-cells.

To be more precise, for every weighted Delaunay 3-cell dx adjacent to 84y, the
mixed O-cell has a vertex at the point:

s-vy + (1 —S)-é{ﬁ}.

The intersection of the spherical cap y with S¢ is non-empty if some part of y lies
inside the mixed O-cell. Since a mixed 0-cell is a convex polyhedron, this is the case
if a vertex of the polyhedron lies outside p. Therefore the intersection of y with the
skin surface is non-empty if the inequality in the lemma holds. Note that in this
equation vy also depends on the shrink factor. ]

The algorithm to obtain the lowest shrink factor is similar to the algorithm used
to compute the minimal shrink factor for which the skin surface is homeomorphic to
the original surface W. Instead of testing if a set of weighted points in a weighted
Delaunay cell causes a topological change, we test for each weighted Delaunay vertex
if a spherical patch degenerates into a point. Through our study of degeneration, we
have obtained the lowest shrink factor for which we can guarantee that the maximal
balls in P are also maximal in the skin surface.

3.5 Error estimates

In this section we prove the following approximation result.

Proposition 16. Let ¢ > 0, and let P be an €¢’-admissible sample of a surface W,
where 0 < ¢/ < &. Then there is an s3(¢g,&’), with 0 < s3(e,e’) < 1, such that

1. s3(e,€’) can be computed in O(N?logN) time;

2. Forsz(e,e’) < s <1, the Hausdorff-distance between the body By, bounded by
W and the body Bs(s) bounded by Ss(P) does not exceed «.

Since P is ¢’-admissible it follows that d(Bw/,UP) < &/, see Section 3.2, condi-
tion (iii). Therefore, the main result would be clear if we can prove that

d(UP,Bs(s)) <e—¢’

for shrink factors s3(e,e’) < s < 1. The latter statement follows from the following
result by taking s3(e,e’) = si(e —¢’):

Lemma 17. Forn > 0 there is an s5(n), with 0 < s5(m) < 1, such that
1. s5(m) can be computed in O(N?log N) time;

2. For si(m) < s < 1, the Hausdorff-distance between UP and Bs(s) does not
exceed M.
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To prove the lemma, we need three technical lemmas. The first result states that,
for an efficiently computable range of shrink factors, the body Bp(s) = bdy®*(P'/#)
of the skin surface S¢(P) intersects a cell u$, of the mixed complex of Pl/s only if
the focus f(X) of X is contained in UX.

Lemma 18. There is an s, with 0 < s¥ <1, such that
1. s can be computed in O(N?logN) time;
2. If s <s <1 and us NBx(s) #0, then f(X) € UX.

Proof. The main idea of the proof is again to use the sweep-line algorithm and to
compute the maximal shrink factor for which u$ N By (s) = 0. By taking the maxi-
mum of all these local values, we obtain a global maximum. This global maximum
is the minimal value for which condition 2 is not satisfied.

In the remainder of this proof we show how to compute the shrink factor locally
for different types of mixed cells. The focus of a mixed O-cell is the center of the
generating weighted point, which lies inside the weighted point.

A mixed T-cell corresponding to a set X contains a two sheeted hyperboloid. Its
symmetry axis is the line through the centers of the two weighted points in X. For
s = 1, we know that the mixed 1-cell does not contain any part of the skin surface,
since no patches are generated. As we decrease the shrink factor, the first point
where the skin surface intersects the mixed 1-cell is on the symmetry axis.

A similar analysis of mixed 2-cells and 3-cells, shows that the first point where
the skin surface will intersect the mixed cell lies on the segment between the focus
f(X) and the center of a weighted point in X. Moreover, the skin surface intersects
the mixed cell if 5
|

s-|lp—f(xVs)||” <p,

for some P € X'. This can be shown in a similar way as done in the proof of Lemma 15
and is left as an exercise to the reader. [

As a corollary, for shrink factors in the range [s§, 1] the patches of the skin surface
are defined by subsets X’ of P for which all weighted points in aff(X’) have positive
weights. This is made more precise in our second technical lemma.

Lemma 19. If f(X) € UX, then the weight P of a weighted point p € aff (X) is
non-negative.

Proof. All weighted points in aff(X’) are orthogonal to the orthosphere § of X, cf.
Observation 2.

A simple, but tedious, calculation shows that for p € aff(X), «(p,f(X)) =
constant. Since f(X) lies inside p’ € X, n(p’,f(X)) < 0, which means that
7P, f(X)) < 0. As a result, ||p—f(X)|* < P, so P > 0. Therefore, all weighted
points in aff (X') have positive weight. O

Our third technical result provides us with an upper bound on the Hausdorff-
distance between a quadratic patch and (a subset of) the union of balls in the input
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| T (p2)
TT(conv (X)) |
T () (p,°)
TT(conv(X'/$)) |
| TT((conv (X1/5))s)
NIGHAS

Figure 3.8: The vector space obtained under the lifting operator T, defined in
Equation (2.2), on 1-dimensional weighted points. It shows how the convex hull of the
set X = {P1,P2} deforms as we decrease the shrink factor.

set. Let X be a subset of P with f(X) € UX. Let X = {p | p € X} and let
m € aff(X) be the point equidistant to each x € X. Let dy be the corresponding
distance || m —x||.

Lemma 20. Forsy(e) <s <1 with

we have that
d(UX,Bx(s)) < e.

Proof. We define the function Ps(p) as the weight of the weighted point centered at
p in (conv(X1/$))s.

The set TT(conv(X)) forms a hyperplane in R*. Since the weight is the distance
along the last coordinate axis to the unit paraboloid, Pq(p) is a paraboloid with
leading coefficient 1. For the analogue of the vector space obtained under TT of
weighted points with an 1-dimensional center, see Figure 3.8. The top parabola
denotes the set of weighted points with zero weight.

A similar reasoning shows that TT(conv(X''/$)) is also a hyperplane in R*. By
the definition of shrinking, P¢(p) is a paraboloid with leading coefficient s.

Knowing the leading coefficient of P¢(p), we now determine its top. Consider a
weighted point p’ € X. It is first shrunk with a factor 1/s and then with a factor
s, therefore Ps(p’) = P’, as is also depicted in Figure 3.8. Using these points the
parabola is uniquely defined, and it follows that

Ps(p) =P1(p) — (1 —s)(|x —m[*—[p—m|?),
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for some x € X, since ||x —m| = |[x'— m| for x,x" € X. Indeed, P¢(p) is a
paraboloid with leading coefficient s, since Pq(p) has leading coefficient 1. Further,
the weight of the points in X’ is independent of the shrink factor.

Using the fact that for s = 1, p(1) € conv(X) is contained in UX and that each
weighted point corresponds to a ball with real radius, we bound the patch in terms
of the distance between P(s) € conv(X'/$)° and p(1).

d(p(s),UP) < d(p(s),p(1))
= /P(s)—+/P(1)
< Ju=s)lx=m|> = p—m|?)

The equation in the lemma follows if we take p = m to obtain the maximal difference
in weight, and then solve d(p(s),UP) = ¢ for s. Note that this bound can be too
pessimistic since m can lie outside the convex hull of X, and therefore ||p — m ||2 >0
for all p € conv(X) O

PROOF OF LEMMA 17. Since UP C Bg(s), for 0 < s < 1, it follows that
d(x,Bs(s)) = 0 for x € UP. Conversely, let x € Bs(s). Let s{(n) be the maxi-

mum of Sé’ and
max{sy(n) | f(X) € UX],

then the statement follows from Lemmas 18, 19 and 20. a

3.6 Generating input data

This section presents a way to obtain an e-admissible set of maximal balls from a
finite sample of points on the surface W bounding a volume By,. In the compu-
tational geometry community several algorithms [3, 6, 43] have been proposed to
reconstruct a surface from a finite point sample on the surface. Some of these algo-
rithms first approximate the medial axis (transform) and use it for reconstruction.
In this section, we show that the approximate medial axis transform of the power
crust [6] can also be used to generate an e-admissible sample of maximal balls.

The extended medial axis transform is the medial axis transform not restricted
to the inside of the surface. All maximal balls in the extended medial axis transform
touch the surface in at least two points, and contain no surface points in their
interior. The extended medial axis is the set of centers of the maximal balls in the
extended medial axis transform.

The power crust We will only briefly discuss the power crust here and refer to
[6] for a more detailed discussion. The method is based on the observation that the
Voronoi cells of a dense sample X on a surface W are elongated in the direction of
the normals.

To be more precise, the poles of a site x € X are the two points in the Voronoi cell
of x farthest away from x, such that the two points lie on different sides of W. The
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balls centered at the poles that touch the sites are called the polar balls. The main
observation of Amenta and Bern [3] is that the two poles lie close to the extended
medial axis, one to the interior and the other to the exterior medial axis.

If the polar balls are found, it remains to label the balls in- and outside. There-
fore, consider the Voronoi diagram of the polar balls. Start with labeling one polar
ball on the convex hull as outside and label adjacent polar balls according to the
following three criteria: first, two polar balls corresponding to the same site have
opposite labels. Secondly, if the two balls have a shallow intersection, they lie on
opposite sides of the surface, because of the assumption that distance between sam-
ple points is small with respect to the radius of the polar balls. On the other hand,
if two balls intersect deeply, they have the same label.

To complete the surface reconstruction process, the Voronoi facets separating
inner from outer poles are returned.

Sampling of the surface Under some conditions on the point sample of the
surface, the power crust can be proven to give accurate results. The following
definitions are taken from [3, 4].

Definition 21. The Local Feature Size (LFS) at a point w € W is the distance
from w to the nearest point of the extended medial axis.

The LFS is a measure of how close another part of the surface is to a surface
point. Note that the LFS of x can be smaller than the minimal distance to the
centers of the maximal balls touching in x.

Definition 22. Forr > 0, a set X C W 1is an r-sample if the distance from any
point w € W to its closest neighbor in X is at most r - LES(w)

For an r-sample with r < 0.1, the algorithm labels the polar balls correctly.
Furthermore, the union of the inner polar balls is homeomorphic to By,. For the
proofs in the next paragraph we assume that this sampling condition is satisfied.

Construction of an ¢-admissible set We will use the power crust to obtain an
e-admissible set from an r-sample X of points on a surface W. Let P be the set of
inner polar balls and M = UP.

Condition (1) (see page 35) is proven directly in [6, Lemma 25|, that states that
there exists a homeomorphism between 0M and W. For condition (ii), we prove the
following lemma.

Lemma 23. All inner polar balls P are maximal balls in M.

Proof. The maximal balls in P are polar balls of X. These polar balls are centered
at Voronoi vertices of X. Therefore, each p € P touches four points in X. Since all
points in X lie on 9M [6, Observation 3|, all input balls are maximal. O

Although all balls in P are maximal in 0M, there can be weighted points that
touch 0M only in intersection curves or intersection points of other weighted points.
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For any s < 1, smooth patches grow over the intersection curves and these weighted
points are not maximal anymore. We do not consider these weighted points if we
compute the minimal shrink factor for which all balls are maximal.

We prove the condition (iii) using the tubular neighborhood of the surface W,
cf. [6].

Definition 24. The tubular neighborhood around the surface W is the set of points
within distance v - LES(w) of a point w € W

We can now prove criterion (iii).
Lemma 25. The Hausdorff distance d(Bw, M) is O(r).

Proof. The bodies M and By only differ in the tubular neighborhood T of W, since
all poles are labeled correctly ([6, Lemma 37]) and their boundaries lie in the tubular
neighborhood ([6, Theorem 21] and the definition of T).

Consider a point m € M N T, the distance of m to By \ T is O(r) LES(w) for
some w € W. We bound LFS(w) by max,, cyw LFS(w’), which is a constant since
W does not change. Thus the distance of m to By is O(r). A similar reasoning
holds for the distance between a point w € By N'T and M. O

To conclude, the power crust constructs an e-admissible set of maximal balls
from an r-sample on a surface, where ¢ = O(r). For small ¢ this means that there
is a constant ¢ such that ¢ < c¢-r. Therefore, the power crust can construct an
e-admissible set from an ¢/c-sample. The constant ¢ can be rather large. This is
due to the fact that the Hausdorff distance is a global measure between the two
surfaces, whereas the local feature size is defined locally on the surface.

3.7 Conclusion and future work

We presented an algorithm to effectively compute a C'-approximation S of a C2-
surface W represented by a set of approximate W-maximal balls. The approximation
S is a skin surface, which is homeomorphic to the boundary of the union of the
approximate W-maximal balls. Furthermore, the Hausdorff distance between the
regions enclosed by W and S converges to zero as we increase the density of the
sample of maximal balls.

A disadvantage of our method is that the surface is usually bumpy, i.e., the error
of the tangent vector (the C 1—error) is not bounded, since the interpolating patches
between balls are always concave. Another drawback of our algorithm is that it
determines the shrink factor globally: if a high shrink factor is needed to satisfy some
condition in a small part of the skin surface, this influences the approximation of the
whole surface. In the next chapter we show that it is possible to use different values
of the shrink factor in different parts of the surface, according to some criterion.

For s close to 1, the skin surface and the boundary of the union of the input
balls is almost the same. This would imply that our approach hardly improves on
the union of the balls. We assume that the shrink factor will be significantly smaller
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than 1. Let sy be the shrink factor obtained by our algorithm for the medial axis
transform of W, we conjecture:

Conjecture 26. For a C?-surface W there is an sw < 1 such that the shrink factor
ss corresponding to a sample S of the Medial Axis Transform of W converges to sy
if the sampling density goes to 1.

We think that the value sy depends upon the maximal ratio between the radius
of the maximal ball touching a point x € W and the local feature size in x. The
larger this ratio, the higher sy .



Chapter 4

Envelope surfaces

4.1 Introduction

In this chapter we construct a closed C! manifold in R¢ that wraps tightly around
the union of a set of balls. Such a manifold is useful since the union of a finite set
of balls can approximate any closed smooth manifold arbitrarily close. However,
the boundary of the union of balls is not tangent continuous along the intersection
curve of the boundary of two balls. The main idea is to construct a radius function
defined on the convex hull of the centers that interpolates the radius of the input
balls on their centers. The approximating manifold is the envelope (the boundary of
the union) of the infinite set of balls defined by the radius function. Under certain
conditions on the radius function the approximating manifold is C'.

The theory of envelope manifolds holds in general for R9, but their main appli-
cation is in R? and R3. Therefore we write envelope curve or envelope surface even
if the results apply manifolds in R9.

In the previous chapter we developed a method for approximating a surface
in a similar way using skin surfaces. The approximating surface obtained by the
approximation algorithm presented in Chapter 3 has nice properties:

e the surface is tangent continuous,
e it is homeomorphic to the union of the input balls,

e every ball is tangent to the boundary of the union of the input balls also
touches the approximating surface and

e the Hausdorff distance between the boundary of the union of input balls and
the approximating surface is bounded by an arbitrarily small, positive con-
stant.

The main drawback of this method is that the patches interpolating between balls
are concave and that the approximation is controlled by a global parameter.

We generalize the theoretical framework of skin surfaces by introducing the much
larger class of envelope surfaces, more precisely envelopes of balls. Our scheme allows
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Figure 4.1: An example of an envelope surface. The weight function, defined on a
line segment, is a quadratic univariate function with leading coefficient 1, 0.5, 0 and
-0.5, respectively (from left to right and top to bottom).

for a local control of the surface. Therefore it is possible to interpolate between
certain balls with convex patches while the interpolating patch between other balls
is concave.

General idea A ball B(p,r) is defined by its center p and radius r. A set of
balls corresponds to a point set with a radius assigned to each point. The idea is to
construct a continuous radius function p defined on a convex and compact domain
D containing the point set, and interpolating the radii of a given finite set of balls
with centers in D. We define the approximating surface S as the boundary of the
infinite set of balls {B(p, p(p)) | p € D}.

For the analysis of the surface it is more convenient to construct a squared radius
function, also called weight function W. Hence, p(-) = v/W(-). If W(p) is negative,
then p(p) is imaginary and the ball centered at p is omitted from the infinite set of
balls.

The approximating surface contains the input balls if the radius function in-
terpolates the radii on points of the point set. Moreover, p is bounded since it is
continuous and defined on a compact domain. The approximating surface is there-
fore closed and compact. However, S is not necessarily C'. Under certain conditions
on the weight function W, the surface S is C', as is shown in Section 4.3.

In Section 4.4, we let the weight function be a piecewise quadratic function on
a triangulation of the point set, and let D be the convex hull of the input points.
In this setting, the approximating surface S is decomposable into pieces of quadrics.
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Figure 4.2: The function £(f) is the Legendre-Fenchel transform (conjugate) of the
convex function f.

We construct a polyhedral complex that partitions R¢ into a finite set of polyhedral
cells such that the intersection of the surface S and a cell is a piece of a quadric. We
conclude the chapter by showing how skin surfaces fall in this framework and how
envelope surfaces can be used in surface design.

An example in 2D of an envelope curve is presented in Figure 4.1, where the
set of centers D is the line segment connecting the centers of two input disks. The
weight function is quadratic. Different choices of the quadratic coefficient ¢ yield
different interpolating curves as shown in the pictures: the union of the circles ¢ =1,
a concave interpolating patch for 0 < ¢ < 1, a linear interpolation for ¢ = 0 and a
convex interpolating patch for ¢ < 0. Examples of envelope surfaces that are not C'
are given in Figures 4.1(a), 4.3 and 4.4.

4.2 The Legendre-Fenchel transform
We use the Legendre-Fenchel transform to show under which conditions the envelope
surface is C'. We first derive some of its properties.

Let f: D — R be a continuous function defined on a compact subset D of R4,

Definition 27. The Legendre-Fenchel transform (or: conjugate) of f is the function
L(f) :RY = R, defined by

L(f)(x) = maxpep ((x,p) — f(p)). (4.1)

See Figure 4.2. Note that the maximum exists, since f is continuous and D is
compact.
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Examples. 1. Let D = [-1,1], and let f : D — R be defined by f(p) = p%. Then
—x—1, if x < -2,
L(f)(x) = —x?, if —2<x<2,
x—1, if x> 2.
2. Let D = [a,b], with a < 0 < b, and let f : D — R be defined by f(p) =| p |. Then
alx+1), if x < -1,

L(f)(x) = 0, if —1<x<1,
b(x—1), if x> 1.

Let f : D — R be a strictly convex function defined on a compact subset D of R9.
For x € R¢ there is a unique point, denoted by A(x), at which the maximum in (4.1)
is attained. According to Lemma 64, the function A : R4 — D is continuous.

Lemma 28. For x € RY there is a unique point, denoted by A(x), at which the
mazimum in (4.1) is attained. The function A : RY — D is continuous, and the set
A (p) is convez, for p € D.

Proof. Uniqueness of A(x) follows from the strict convexity of f (See also Figure 4.2).
According to Lemma 64, the function A : RY — D is continuous.

To show that A~ (p) is convex, let xo,x; € R% such that A(xg) = Alx1) = po.
From the strict convexity of f it follows that

(x,p) —(p) < L)(x), for p £ Ax).

Let x’ = (1 —y)xo + yx7, with 0 <y < 1, be a point on the line segment xoX7.
Then, for p # po:

x'sp) —flp) = (1—=v)({(x0,p) = f(P)) +v ((x1,p) — f(p))
< (T—=2) L(f)(x0) +v L(f)(x1)
= (1=7v) ({x0,p0) — f(po)) +v ((x1,p0) — f(Po))
- <X )X0> — f pO
Therefore, A(x’) = Ppo, so A (po) is convex. O

Note that the set A~ '(p) is connected since it is convex.

Proposition 29. If f: D — R is a strictly convex continuous function defined on
a compact subset D of RY, then the Legendre-Fenchel transform L(f) is a conver
C'-function. Its derivative at x € RY is the linear function

L(£)'(x) = (Ax), ). (4.2)
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A point po is equal to N(xo) if and only if the directional derivatives (cf. Section A.2)

are non-positive:

oD
E(XO)pO)(\)) S 0) fOT all v € Rda

where the function ® : RY x D — R is defined by ®(x,p) = (x,p) — f(p).
If f is a C¥-function, with k > 2, on a neighborhood of po € D, then:

° %(x,?\(x))(v) =0 for allv € RY and
o there is a unique point xo € R with po = A(xo) and
o L(f) is a C* function on a neighborhood of x.

Furthermore, p = A(x) is the unique solution of the equation
x = Vf(p),

for x mear xo and p near po-.

Proof. For p € D the function ®@(-,p) is affine, hence convex. Since L(f)(x) =
maxpep O (x,p), Lemma 68 implies that the Legendre-Fenchel transform L£(f) is
convex.

We first prove that the Legendre-Fenchel transform £(f) is Gateaux-differentiable
on RY. To this end, let x,v € R, and let h > 0. It follows from the definition of ®
that

L(f)(x +hv) — L(f)(x) S O(x +hv,A(x)) — O(x,A(x))
h - h

= (v, Ax)).

Since L(f) is convex, its directional derivative L£(f)’(x;v), cf. Section A.2, exists
according to Lemma 69. The last identity yields, after taking the limit h | O:

L(f) (x;v) > (v, A(x)). (4.3)
To prove the reverse inequality observe that convexity of L£(f) implies

L(f)(x +hv) — L(f)(x)

L(F)'(x;v) < ;

Hence

O(x +hv,A(x +hv)) — D(x,A(x))
h
D(x + hv,A(x + hv)) — O(x,A(x + hv))
h

L(f) (xv) <

IN

= (v, Alx+hv))
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Using the continuity of A (cf. Lemma 64) we obtain, after taking the limit h | 0:
L(f) (x;v) < (v, A(x)). (4.4)

From (4.3) and (4.4) we conclude that £(f) has a directional derivative at x € R4
in all directions v € R4, and that

L) (x;v) = (v, A(x)).

Therefore all partial derivatives of £(f) at x exist, and are continuous. Hence £(f) is
even Fréchet differentiable with derivative £(f)’(x) = (A(x), ). Since this derivative
is continuous, £(f) is a C'-function.

All directional derivatives of ®@(x, ) exist by Lemma 69. Since the maximum of
D(x,-) is attained at A(x) we have

0D
a(x,k(x))(\)) <0, for all ve R4

Conversely, if aa%(x,po)(v) < 0 for allv € R4, then po = A(x) since ®(x, -) is strictly
convex.

If f is C* at A(x), then the point A(x) is a critical point of the function ®(x, ),
so V@ (x,A(x)) = 0. In other words, p = A(x) is the solution of the equation

x — Vi(p) =0.

So let xo = Vf(po), then A(xg) = po. Since k > 2 and f is strictly convex, the
Hessian of f exists and is positive definite on a neighborhood V of po. In other
words, the C¥~T-function Vf : RY — RY is locally invertible at po. Its inverse is
the function A, restricted to the neighborhood V of pg. The singleton set {xo} is
a connected component of A~ (py). Since the latter set is connected according to
Lemma 28, we conclude that

A (po) = {xoh

In other words, x¢ is the unique point with po = A(xp). By the Inverse Function
Theorem, A is also a C*~'-function. In view of (4.2) the derivative of L£(f) is a
Ck—1_function on V, so L(f) is a C*-function on V. O

Remark. As can be seen from the second example preceding Proposition 29, the
result does not necessarily hold if the function f is not strictly convex. In that case
f is convex and A is discontinuous.

4.3 Envelope surfaces

Let D be a compact convex subset of R, and let W : D — R be a continuous
function. Consider the family of spheres {C,, | p € D}, where C,, is the sphere with
center p and weight W(p). A point x € R? lies on the envelope S of this family of
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Figure 4.3: An example where the weight function is chosen so that the envelope
surface is the boundary of the union of the input circles.

spheres if it lies on at least one sphere, and on or outside all other spheres. In other
words, x lies on the envelope if H(x) = 0, where H: RY — R is defined by

H(x) = minpep (||x—p||2—W(p)>. (4.5)

Since D is compact and W is continuous, the minimum is attained in at least one
point of D. The main result of this section states that, under certain conditions on
the weight function W, the zero set of H is a C'-submanifold of R4,

Proposition 30. Assume that Wy : D — R, defined by Wi (p) = ||p ||2 —W(p), is
a strictly convex function. Then

1. For x € R the minimum in (4.5) is attained in a unique point A(x), and the
function A : RY — D is continuous.

2. H is a C'-function, with derivative
H'(x) = 2{x — A(x), -
In particular, x is a critical point of H if and only if x € D and x = A(x).

3. The zero set of H is a C'-submanifold of R™ if it does not contain any zeros
of W.

4. If Wi is a C*-function in a neighborhood of po, with k > 1, then there is a
unique point xo with po = A(xo), and H is a C¥-function on a neighborhood of
X0-

Proof. 1. Rewrite H as follows
Hix) = [1x]* = maxpen (2(p,x) = [p ]I +Wip)) (4.6)
= |Ix|]* =2£(1/2W;)(x).

Here £(1/2W;) : RY — R is the Legendre-Fenchel transform (or: conjugate) of
1/2W;. We refer to Section 4.2 for the definition, and some key properties relevant
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for our context. Since W; is strictly convex, for x € R™ there is a unique point
A(x) in D in which the maximum in (4.6) is attained. Obviously, the minimum in
(4.5) is also attained at A(x). According to Lemma 64, the function A : R — D is
continuous.

2. According to Proposition 29 the £(1/2W;) is C', since D is compact and W is
strictly convex. Therefore H is a C'-function, the derivative of which satisfies

H'(x) = 2(x,-) — 2L(1/2W7)'(x) = 2{x — A(x), -).

The expression for the derivative of £(1/2W7) is given in Proposition 29.

3. From the second part we conclude that H is C' and we assume that k > 2. By
the Implicit Function Theorem, it is sufficient to prove that H is regular at every
point of its zero set. Let x be a point of H™'(0). Since A(x) € D, every point x
in the complement of D is different from A(x). According to the second part of the
proposition, H is regular at such points. Next consider x € D. Since W(x) # 0, it
follows from

Ix = A [I* = W(A(x)) = H(x) =0

that x # A(x). Therefore, H is regular at x.
4. This follows directly from Proposition 29. O

Remark. If W; is not strictly convex, then the zero set of H need not be a C'-
surface. An example is given in Figure 4.3. The weight function is defined on a line
segment and is given by W(p) = ||p ||2 + ¢, with ¢ > 0. The function Wy is constant
and therefore convex, but not strictly convex. In this case the zero set of H is not

c'.

Remark. If A(x) is an interior point of D, and W is differentiable at A(x), then
x € H71(0) if there is a point p (namely, p = A(x)), such that

O(x,p) =0 and V,O(x,p)=0.

Here ® : RY x D — R is defined by ®(x,p) = ||X—P||2 — W(p). Note that
D(x,p) = ||x|* — 2f(x,p), with f(x,p) = (x,p) — 1/2W;(p). Let x € H'(0) and
x # A(x), then ®(x,p) = 0 and ®(x,-) has a maximum at A(x), even if W is not
differentiable at A(x) or if A(x) lies on the boundary of D. Denote by L the set:

Y ={xecR* D(x,p) =0 and ®(x,-) has a maximum at p, for p € D}.  (4.7)

If x # A(x) for all x € D, then the envelope surface H='(0) is contained in £. The
envelope surface and X are equal if W, is strictly convex. If Wj is not strictly
convex then ®(x,-) may have more than one critical point and H~'(0) may be a
proper subset of £, as is shown in Figure 4.4.
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Figure 4.4: In these two cases the envelope surface is a proper subset of L defined
by Equation (4.7). The weight function W : [-1,1] — R is defined by W(p) =
1.25p% + 0.75 (left) and by W(p) = 1.5p* + 0.5 (right).

Piecewise smooth envelopes Piecewise smooth envelope surfaces can be con-
structed from piecewise smooth weight functions. So let D be a compact convex
polyhedron in R4, endowed with a triangulation T. The function W : D — R is
piecewise C*¥ with respect to T if

1. W is continuous on D, and

2. the restriction W of W to a d-dimensional simplex ¢ of T can be extended to
a Ck-function on a neighborhood of the closure of o.

The envelope surface associated with the family of spheres with center p and weight
W(p), with p ranging over D, is a C' surface if the function W; : D — R, defined
by
2
Wi (p) = |[[p[I” — W(p), (4.8)

is strictly convex. Each of the functions Wy should therefore satisfy the following
condition.

Strict Convezity Condition. The function Wy 1, defined by W4 1(p) = || p ||2—W0(p)
on the domain of Wy, is strictly convex.

Obviously, this condition does not guarantee strict convexity of W; at lower di-
mensional simplices of T. Therefore we require that the family {W,} satisfies the
following condition.

Monotonous Transition Condition. If the d-dimensional simplices 0 and o’ share a
facet T with normal v directed from o to ¢’, then for py € T:

W/ (po;v) < Welpo;v).

Lemma 31. Let W: D — R be a piecewise C'-function with respect to the triangu-
lation T, satisfying the Strict Convezity Condition and the Monotonous Transition
Condition. Then the function Wy : D — R, defined by (4.8), is strictly convez.

Proof. We shall prove that Wy is strictly convex along line segments 1 N D, where
lis a line in RY. To this end, it is sufficient to prove that W; is convex along such
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lines. Indeed, the triangulation T partitions LN D in a finite alternating sequence of
points and open intervals, formed by the intersection of 1 with the simplices of T.
Let 1Nt be such an open interval, and suppose the simplex T lies in the closure of the
d-dimensional simplex 0. Then W; coincides with W on this interval, so W1 |1
is strictly convex. Therefore Lemma 66 in Appendix A.3 allows us to conclude that
W is strictly convex once we know that W; is convex along 1 (or, more precisely,
that Wi|inp is convex).

We first prove that W is convex on any line disjoint from the (d — 2)-skeleton
of T, and conclude, via a limit process, that W is convex on any line.

So consider a line 1 with direction v that only intersects simplices of dimension d
and d — 1. Since W satisfies the Strict Convexity Condition, it is sufficient to prove
that

W 1(posv) < We 1 (posv),

for a point pp on a (d — 1)-simplex T shared by two d simplices 0 and o', such
that v is directed into 0. Note that v is not parallel to T since 1l is disjoint from
the (d — 2)-skeleton of T. Write v = v + v, where v is parallel to T and v
is perpendicular to T. Since Wy 1 and W,/ 1 are the restrictions of C'-functions
defined on a neighborhood of pg in RY, the derivatives of these functions at po exist
and are linear, so:

We 1(posv) = We 1(po;vy) + We 1 (posvi).
and
W 1 (po;v) = Wer 1 (posvy) + Weo 1 (Posvi).

Since the restrictions of the functions Wy 1 and Wy 1 to the facet T are equal, the
derivatives of these functions at po in directions parallel to v are equal. In particular
W 1 (posvy) = We 1 (posv)).

According to the Monotonous Transition Condition
Wi 1(posvi) < Wgq(posvi).
These identities and inequalities imply that
Wi 1(po;v) < W q(posv).

Hence W is convex along 1.

To prove that Wy is convex along any line 1, let l,, n =0, 1,..., be a sequence of
lines converging to 1, such that 1,, is disjoint from the (d—2)-skeleton of T. According
to Appendix A, Lemma 65, the restriction of Wy to 1 is a convex function, since it
is the limit of the sequence of convex functions Wi |y .. O

If the function W is piecewise C* with respect to the triangulation T of D and
W is strictly convex, then the function H is piecewise C* on the pull-back A*(T) of
T under A : RY — D. The pull-back A*(T) is the subdivision of R¢ into the regions
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A~ '(1), where T ranges over all simplices of T. In general this subdivision can have
a weird structure, even though the regions A~'(7) are connected. However, if W is
piecewise quadratic with respect to T, the cells of the pull-back are polyhedra. This
context is studied in detail in the next section.

4.4 Piecewise quadratic weight functions

Suppose that we have a finite set of balls P and a triangulation T of their centers. In
accordance with the ideas presented in the previous section, we construct an envelope
surface by defining a piecewise quadratic weight function on T. This weight function
is differentiable except possibly at lower dimensional cells, where it is merely assumed
to be continuous.

If the weight function is interpolating, then the envelope surface contains the
input balls. In this section we show that the envelope surface is piecewise quadratic
and that there is a polyhedral complex partitioning the envelope surface into the
quadratic pieces.

Quadratic functions A quadratic function q on RY is of the form
q(x) =x"Qx +a’x + b,

for a symmetric d x d matrix Q, a d-vector a and a constant b. The matrix Q is
called the defining matrix of q. Since Q is symmetric, it has real eigenvalues [71, Ch.
7]. If the eigenvectors of Q span the coordinate axes, then Q is a diagonal matrix
with the eigenvalues on the diagonal.

Quadratic weight function In this section, the weight function is piecewise
quadratic. Each quadratic function is defined on a simplex. We analyze the en-
velope surface corresponding to a single quadratic weight function. In order to
avoid boundary conditions, we extend the domain D of the weight function to an
n-dimensional affine subspace of RY containing the domain. Hence we extend the
line segment of centers in Figure 4.1 to the line containing the segment and avoid
spherical patches where the outer circles touch the envelope surface.

These weight functions are of special interest since the corresponding envelope
surfaces are quadrics. Note that in this setting, D is not compact as assumed in the
text above. Therefore, the minimum in Equation (4.5) might not be attained. Write

Hx) = infpen (Ix—pI> ~W(p))
= |Ix|* —infpep (2(p,x) — Wi (p)),

where Wy : D — R is defined by Wi (p) = ||p ||2 — W(p). If Wj is strictly convex,
then 2(p,x) — Wj(p) has a positive definite quadratic form and the infimum is
attained. Hence,

H(x) = minpep (|| x—pl? - W(p)) .
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Lemma 32. If W is a quadmtzc functwn, defined on an affine subspace D of R9
and Wy defined by W1 (p) = ||p || W(p), is a strictly convex function, then

1. The map A 1s linear,
2. The set A~ (p) is orthogonal and complementary to D.
3. The function H is a quadratic function that is rotationally symmetric in D,

4. The eigenvectors of W and H restricted to D coincide and an eigenvalue di of
W corresponds to an eigenvalue di/(di — 1) of H. The eigenvalues of H in the
direction orthogonal to D are 1. The critical point of W and H are equal and
the critical values in the apexr are equal with opposite signs.

Proof. 1. Let W : D — R be given by W(p) = p'Qp + a’p + ¢, where Q is
a symmetric positive definite n x n-matrix with eigenvalues less than one, a is a
vector in R™ and c is a real constant. Let oc: RY — D be the affine map projecting
a point orthogonally on D

Then @ (x,p) = [|x — &(x) [|*+®(a(x),p), wher
of ® to D x D. Hence V,,®@(x,p) = V,O(ax(x),
A:RY — R™ is given by:

ere @ : DxD — R is the restriction
p) = 2ua(x) —2(Q —I)p — a. So

a). (4.9)

So, A(x) depends linearly on x.

2. Furthermore, A—'(p) is the pre-image of the point —(Q — I)p — 1/2a € D under
the orthogonal projection from R™ onto RY. Therefore, A~'(p) is orthogonal and
complementary to D.

3. Since
H(x) =[x — A(x) [|* = W(A(x)),

it follows that H depends quadratically on x. Finally,
HO) =[x — o) 2+ (%) = A(x)[|F = WIAR)): (4.10)

If x; and x; are in an affine subspace orthogonal to D and at the same distance from
D, then a(x1) = a(xz2), [|x1 —a(x1)| = [[x2 — «(x2)]|, and, by the second part of
the lemma A(x7) = A(x2). Therefore H(x7) = H(x2), so H is rotationally symmetric
with respect to D.

4. It follows from (4.10) that H is a quadratic function with matrix of the form

R 0
(o 1)
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with respect to the orthogonal splitting of R4 into spaces parallel and orthogonal
to D. To determine the eigenvalues of R, observe that according to (4.9): «(x) =
(T—Q)A(x) —1/2a, so:

loc(x) = A(x) [|* = W(A(x))
= | —QAX) —1/2a]* = A(x)TQA(X) — aTA(x) — ¢
= Ax)"(Q?—QAX)+a"(Q=DA(x)+1/4a’a—c
= a)T(Q 1)'Qalx) +aT(Q ) alx)  1/4[al* <.

Therefore R = Q(Q — I)~', so the eigenvalues of R are di/(d; — 1), with 1 < i< n.
The critical point of W is the point pg € D such that VW(po) = 0, hence

1
Po = —qu a.

Since H is symmetric in D by part 3, the critical point of H lies on D. The gradient
of H vanishes at po if 2(Q—1)"'Qpo+(Q—1)"Ta =0, i.e., if po = —1/2Q'a. The
critical value of Wis ¢ —1/4a"Q 'a and the critical value of His —c+1/4a"Q 'a,
which concludes the proof. [

Corollary 33. The type of the quadric H='(0) only depends on the eigenvalues of
the quadratic weight function.

The eigenvalues of H determine the type of quadric. In view of Lemma 32, part
4, the eigenvalues of H depend only on the eigenvalues of W. For example, let W
be defined on a one-dimensional affine space with leading coefficient c¢. Then the
envelope surface is a hyperboloid if 0 < ¢ < 1, a cylinder for ¢ = 0 and an ellipsoid
for ¢ < 0.

Decomposition of the surface For x € S the ball B, with center A(x) and
radius-squared W(A(x)) is called the defining ball of x. It is tangent to S at x. For
a simplex o of T let S; be the set of points of the envelope surface S such that
the center of their defining balls lies on the relative interior of 0. We shall prove
that {Sy | 0 € T} is a decomposition of S into quadratic patches. Even stronger, we
shall construct a polyhedral decomposition {|y | 0 € T} of R4 such that S, is the
intersection of S with the polyhedral cell u.

More precisely, for a simplex o of T let pgy = {x € R4 | A(x) € rel-int(o)}. Since
A is continuous, it maps the closure 1y of pus onto o.

Example. Let W(p) = 1/2||p ||2 be defined on the triangle (po,p1,p2) with po =
(—1,-1), p1 = (—1,2) and p2 = (2,-1), viz. Figure 4.5(a). We compute the
polyhedral cell wy,y, which is formed by all points x where H(x) = ®(x,po), since
rel-int(po) = po. Hence, )y = {x = (&,&1) | &,& < —.5}. Since A changes
continuously with x, it follows that w,, »,) is bounded by incident simplices. Let
x = (&0, &1) and p’ € rel-int(po,p1) be the point minimizing ®(x,p) over all p €
rel-int(po, p1). Then x € Wy, p,y if @x,p’) = H(x). For & < —1/2 we have
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D(x,p’) > D(x,po), hence ®(x,p’) > H(x). Similarly for £&; > 1 we have O (x,p’) >

®(x,p1) and for &y > —1/2, O(x,p’) > ®(x,p”), with p” the point minimizing

®(x,p) over all p € rel-int(po,p1,p2). Hence, wypy p,y = (—00, —1/2] x (~1/2,1).
The remaining cells of the polyhedral complex are determined similarly.

Remark. The set [ty is different from the set {x € R¢ | A(x) € o). The example in
Figure 4.5(b)—(d) illustrates this. The cell Ty with 0 = (po,p1,P3) does not contain
the cells pr for T = (po,p3) or T = (po). However, the set u(o) = Upeos 1(p) does
contain these cells.

In the following proposition, we define the polyhedral complex and show that it
decomposes the envelope surface in pieces of quadrics.

Proposition 34. The cells iy, with 0 € T, and their non-empty intersections form
a polyhedral complex decomposing RE. Moreover, the cells have the property that

1. for 0,0’ € T, with o’ < o, the cells iy and Ty’ intersect

2. the intersection of e with S is contained in the quadratic envelope surface
obtained by extending Wy to aff(o)

Proof. We use Lemma 35 to show that the cells 1ty and their non-empty intersections
form a polyhedral complex. Before we can apply this lemma, we have to show that
the cells Tty are convex and partition R9.

We first show that the cells p. with T € T form a partition of R and are
pairwise disjoint. To this end, let x € RY and T € T be the simplex containing
the point A(x) € D in its relative interior. There may be more simplices containing
A(x), but only one simplex contains A(x) in its relative interior. Hence, the cells are
pairwise disjoint and their union is R9.

To prove that the cell pgy is convex, let xo,%x1 € e and x’ = (1 —y)xo + vx3
for vy € [0,1]. The cell uy is convex if x’ € us. Let p’ = (1 —y)A(xo) + YA(x7).
We shall prove that A(x’) = p’, then x’ € us since p’ € rel-int(o). To this end, let
® : R4 x D — R be defined by ®(x,p) = (x,p) — Wi(p). By Proposition 29, the
points p’ and A(x’) are equal iff

L)
E(x’,p’)(v) <0, for all v e RY.

By the same proposition, %(Xo,?\(Xo))(v) < 0 and 22(x1,A(x1))(v) < 0. We
expand the directional derivative to:

od

3p ORIV = (v = Wipiv). (411)

Since xo,X] € Wy, the points A(xo) and A(x1) lie in the relative interior of 0. Let
o’ be the simplex containing the points A(xg) + €v, for small positive €. Then ¢’
also contains the points A(x1) + ev for small positive €. Hence, W(A(xi) + €v) =
Wei(A(xi) + €v), for 1 = 0,1. If v is parallel to aff(o), then the simplices 0 and o’
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Figure 4.5: The decomposition of the envelope surface into quadrics.
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are equal, otherwise 0 < ¢’. Restricted to ¢/, W is a quadratic function. In view of
(4.11), the directional derivative of @ is linear in x and p. But then,

od od

35 (x,p")v) = —((1—=v)xo+vx1, (1 —v)A(xo) +VA(x1))(V)
p op
= (1 —v)—%q) (x0,A(x0)) (V) +v—a® (x1,A(x1))(v)
p op
< 0.

Hence, p’ = A(x’) and x’ € ps. Therefore ps is convex.

In view of Lemma 35, the cells [ty with a non-empty interior form a polyhedral
complex. A cell with empty interior is a common face of two cells with non-empty
interiors by the continuity of A.

1. Let x € 5 \ Lo and T € T the simplex such that x € p;. Note that o # t. From
the continuity of A we derive that A(x) is a point on the boundary of o. Since A(x)
lies in the relative interior of T, we have T < 0.

2. Let x be a point in ty. Using the continuity of A, the point A(x) is contained
in 0. Hence H(x) = Hg(x), with Hg(x) = minpeg(Hx—pH2 — Wq(p)). Since
W 1 is strictly convex, H has a unique minimum A(x) € o for all p € aff(o) and
Heo(x) = mingeas(o) (|| x — P ||2 — W, (p)). Lemma 32 states that Hs is a quadratic
function. The surface S is defined as the zero set of H, hence

MoNS =T NH(0) =1 NH'(0). O

The following general lemma is used in Proposition 34 to show that the cells u,
with o € T, form a polyhedral complex.

Lemma 35. Let C be a finite set of closed convex sets, with non-empty interior
partitioning RE. The sets in C and their non-empty intersections form a polyhedral
complex if each they only intersect in their boundaries.

Proof. First, we show that the sets are convex polyhedra. Since the sets are convex
and their interiors are disjoint, there exists a, not necessarily unique, hyperplane
separating the interiors of any two sets in C. For two sets ¢,¢’ € C, with ¢ # ¢/,
denote with H(c, ¢’) the closed half-space containing ¢ and bounded by a hyperplane
separating ¢ and c’.

For fixed ¢ € C, let x be a point in the interior of the intersection of all halfspaces
H(c,c’), for ¢/ € C and ¢’ # c. Since x does not lie in any set ¢’ € C for ¢’ # ¢, the
point x is contained in the set c. Hence,

c= ﬂ Hc,c’a

c’eC,c’#c

which is a polyhedron by definition.
The intersection of two convex polyhedra is empty or another convex polyhedron.

Since the sets in C only intersect in their boundary, the intersection is a face of
both. o
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Mixed complex The polyhedral complex for envelope surfaces is a generalization
of the mixed complex for skin surfaces, see Section 2.7.4. For a skin surface with
shrink factor s, the graph of the weight function on a simplex ¢ is a paraboloid with
leading term equal to s. The apex of the paraboloid lies on the intersection point
of the affine hull of the Delaunay simplex 6, and the Voronoi cell v, which is the
focus f(o) of o, cf. Section 2.5.1.

A calculation in the spirit of Lemma 32 shows that {f(o)+ (1 —s)x|x € ds} is the
image of [y onto aff(d5). From a similar analysis of the directional derivatives in
directions orthogonal to &4, it follows that the mixed cell is {f(co) + sx | x € v} is
the image of [ty onto aff(vy). Combining these two results, we obtain the following
identity of the polyhedral cell:

e =(1-5)06®s- Vg,

which matches the definition of the mixed cell given in Section 2.7.4, Definition (5).

Parameterization of the weight function For ease of manipulating the piece-
wise quadratic weight functions, we define the weight function on a simplex by
values at its vertices and at the midpoints of its edges. A quadratic function in
d-dimensions, has d(d + 1)/2 quadratic terms, d linear terms and a single constant.
In total, there are (d + 1)(d + 2)/2 degrees of freedom. On the other hand, a d-
dimensional simplex has d + 1 vertices and d(d + 1)/2 edges. If the vertices are
affinely independent, the quadratic function is uniquely determined by specifying its
value at the vertices on every vertex and at the midpoints of the edges.

To show that the weight function is continuous, let 0,0’ € T be two full di-
mensional cells and T their common n-dimensional face. Restricted to T, W* is
quadratic and interpolates the weights at the vertices and at the midpoints of the

edges of T. These weights determine the quadratic weight function uniquely and
W*|T = WO'|T = W0"|T-

4.5 Existing schemes

The new interpolation scheme, to be presented in Section 4.6, generalizes two existing
methods. In this section, we describe these methods in terms of the definitions of
the previous sections. An example in 2D of both methods is shown in Figure 4.6.

We first show how skin surfaces fit in our approach. Recall that, the radii of the
input balls are shrunk in the construction of a skin surface.

In Chapter 3, we adapted the construction of skin surfaces such that the weight
function interpolates the weights of the initial balls to the effect that the input balls
are contained in the resulting skin surface. We call the skin surface defined in this
way the extended skin surface.

Both methods define a one-parameter family of envelope surfaces, depending only
on the shrink factor s. For a shrink factor equal to one, the weight functions of both
methods are equal and therefore their envelope surfaces. We also use this weight
function as starting point for the new interpolation scheme. This initial weight
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Figure 4.6: Two existing interpolation schemes. On the left the skin curve [48]
(s =1/2) and on the right the extended skin curve presented in Chapter 3.

function, denoted by W*, is presented in the next paragraph. The two schemes are
then derived. In [48], Edelsbrunner proposes to deform skin surfaces by adding a
scalar to all weights. This deformation works in general for envelope surfaces and is
discussed at the end of the section.

Initial weight function Let T be the (weighted) Delaunay triangulation of the
input set P. The initial weight function W* is piecewise quadratic with respect to T.
Each quadratic function W} on a d-simplex o is uniquely defined by the following
two conditions:

e W7 interpolates the weights on vertices of o

e the defining matrix is the identity matrix.
We show that the W* satisfies the Monotonous Transition Condition.

Lemma 36. The weight function W* satisfies the Monotonous Transition Condi-
tion.

Proof. In view of Lemma 3, the graph of W7, defined by Wi (p) = ||p ||2 — W*(p),
is the lower convex hull of the set of lifted points TT(P), cf. Equation (2.2), which is
convex. Note that W7 is simplexwise affine.

Since W7, is convex, the function W7 satisfies the Monotonous Transition Con-

dition by Lemma 69, and W* satisfies the Monotonous Transition Condition as
well. O

The weight function W* is a good starting point for our construction since the
envelope surface it defines is the boundary of the union of the input balls.



4.5. FExisting schemes 69.

Lemma 37. The envelope surface defined by the initial weight function W* is equal
to the boundary of the union of the input balls.

Proof. The weight function interpolates the weights on centers of the input balls.
Hence, the input balls are contained in the envelope surface. It remains to show
that the approximating balls lie within the union of the input balls.

Let p’ be a point in D and let ¢ € T be the simplex containing p’. Write p’
as a convex combination of the vertices p; of o: p’ = Y, vipi with y; > 0 and
Y . vi = 1. Since W*(x) = |[p||> + W;(p), so ®(x,p) = ||x]|* — 2(p,x) — Wi(p) is
affine in p if p ranges over o and

O(x, Y vipi) = Y vi®(x,pi)

Let x € R4 be a point outside the union of the balls in . Then, ®(x,p;) is positive,
for any weighted point (pi, Pi) € P, since W*(pi) = P;. But then ®(x,p’) > 0 and,
hence, x also lies outside the ball centered at p’. ]

Recall from the end of Section 4.4 that each quadric is uniquely determined by
specifying the function values at vertices and at the midpoints of the edges. We
denote the initial weight at the vertex p; € P of T with W} and the initial weight at
the midpoint of the edge pip; with W{;. The initial weight function W* interpolates
the weights of the input balls if the value W is set to the weight of the input ball
centered at p;. Moreover, the defining matrix of W*|; is the identity matrix if the
quadratic weight function restricted to any edge has leading coefficient equal to one.
Let pi,p; be two vertices of o then the quadratic weight function on the edge pi,p;
has leading coefficient equal to one if the weight W7; at the midpoint of the edge is:

* * 2
L WVEHEWS p -yl
by 2 4 ‘

Skin surfaces The weight function for a skin surface is obtained by multiplying
the initial weight function with s:

W?e(x) = s W*(x).

In terms of the parameterization of the weight function, the weight function is ob-
tained by multiplying the weights at the vertices and at the midpoints of the edges
with s.

Corollary 38. For s < 0 < 1, the skin surface skn®(X) is tangent continuous.

Proof. The eigenvalues of the quadratic weight function restricted to a simplex are
all equal to s. Hence, W* satisfies the Strict Convexity Condition. By Lemma 36,
W* satisfies the Monotonous Transition Condition and so does W*. Hence, the

envelope surface obtained from the weight function W* is C', which is also shown
in [48]. O
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Since all weights are multiplied by s, the weights on the vertices and edges
controlling the weight functions are also multiplied by s. The weight of the input
balls are scaled with a factor s, and therefore the input balls are not contained in
the skin surface. See also Figure 4.6(a).

Extended skin surfaces The fact that the input balls are shrunk in the con-
struction of skin surfaces makes them not directly suitable for the construction of
envelope surfaces containing the input balls. In Chapter 3, we proposed a method
that first multiplies the weights of the input balls with 1/s, and then computes
the skin surface with shrink factor s. An example of this construction is shown in
Figure 4.6(b).

Since the extended skin surface is a skin surface (of the grown set of input balls),
it is a C'-manifold, as is shown in Corollary 38. If we combine the phases of growing
the balls and multiplying the weight we obtain a deformation scheme of the weights
on the vertices and edges. The weights on the vertices do not change. The weight
at the midpoint of an edge pip; is given by:

Wi + W, L ll°
Wy — er N 1 4v;||-

During the growth of the input balls the (weighted) Delaunay triangulation may
change, see Section 3.3. If we only increase the weights on the edges do not adapt
the triangulation accordingly, the Monotonous Transition Condition is not satisfied
and the envelope surface is not C'. In Section 3.3, we developed an algorithm that
maintains the Delaunay triangulation of the set of growing balls.

Deforming envelope surfaces A method to deform skin surfaces is to increase
the weight by adding a scalar. The increased weight function also satisfies the Strict
Convexity Condition and the Monotonous Transition Condition since the derivative
of the weight function does not change. Therefore, the envelope surface is C'. In
fact, this surface is another level set of H. Since H is C', a level set of H is C' if it
does not pass through a critical point of H. In view of Proposition 30, part 3 this
is the case if the envelope surface does not intersect the zero set of the deformed
weight function.

An example of a deforming skin curve obtained in this way is shown in Fig-
ure 4.8(e). For level sets of a curve constructed by the new interpolation scheme
described in the next section, see Figure 4.8(f).

4.6 The new interpolation scheme

The schemes described in the previous section are global in the sense that they
define a one parameter family of weight functions. In this section we propose an
adaptive interpolation scheme. The advantage of this scheme is that it adapts the
weight function locally allowing for a local control on the envelope surface. However,
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(a) Input set (b) Extended skin curve (c) The new interpolation
scheme

Figure 4.7: The extended skin surface defines concave patches between the input
balls. With the new interpolation scheme it is possible to interpolate both with convex
and concave patches.

the envelope surface is only C! if Strict Convexity Condition and the Monotonous
Transition Condition are satisfied, cf. Lemma 31.

Validation The Strict Convexity Condition is satisfied if the Hessian of the func-
tion Ws 1 : D — R, defined by Wy 1(p) = ||p||2 — Wq(p), is positive definite,
cf. Lemma 67. For a quadratic function, this is the case if the eigenvalues of the
defining matrix are positive. Hence, the eigenvalues of the defining matrix of Wy
have to be smaller than one. The Strict Convexity Condition with respect to a sim-
plex o only depends on W, and therefore only on the weights at the vertices and at
the midpoints of the edges of o.

To see if the Monotonous Transition Condition is satisfied, let 0,0’ € T be two
full dimensional cells with a common facet T and let v be the normal of T directed
from o to o’. Let the map w be defined on T by w(p) = W/, (p;v) —W/{ (p;v). Since
the gradient of a quadratic function is a linear map, w is linear. Therefore, w(p) > 0
for all p € T iff w(p) > 0 for every vertex p of T. Hence, the Monotonous Transition
Condition is satisfied at every point of T iff w(p) > 0 for every vertex p of T. The
Monotonous Transition Condition of a face T incident to 0 and ¢’ depends on W,
and Wy, and therefore on the weights at the vertices and at the midpoints of the
edges of o and o’.

Changing the weights Conceptually, the algorithm is similar to the extended
skin surface algorithm. First construct the initial weight function W* and then
continuously increase the weights on the midpoints of the edges. We define a local
growth factor ti; for every edge pip; and parameterize the weight at the midpoint
of an edge by:
Wi+ W P —ps|°

2 4 )
Note that the envelope surface is an extended skin surface with s = 1 — ty;, if all
growth factors are equal. Initially all scalars ti; are equal to zero. We continuously
increase the local growth factors as long as the Strict Convexity Condition and the

Wy = + (ty — 1)
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Monotonous Transition Condition are satisfied. The envelope surface is therefore C'.
Since the conditions are locally determined, we can fix the local growth factors that
would invalidate one of the conditions and increase the other local growth factors.

Another method fixes the local growth factor on edges between disjoint balls in an
early stage and increases the local growth factor at midpoints of the edges between
intersecting weighted points as much as possible. This gave us the interpolation on
the fingers of the hand in Figure 4.8.

Examples Envelope curves that have an increasing weight on the midpoint of an
edge are shown in Figure 4.1. Two examples of the interpolation scheme of [74] ver-
sus the local interpolation scheme are given in Figure 4.7 and 4.8. By construction,
the extended skin surface interpolates the input balls with concave patches. The
local interpolation scheme, on the other hand, allows for envelope surfaces with in-
terpolating patches that are both convex and concave, viz. Figure 4.7. In Figure 4.8,
we increased the weight on the edges in the direction of the fingers and not on edges
between balls of different fingers. The result is an envelope surface that interpolates
nicely in the direction of the fingers. The extended skin curve is either bumpy (b),
or contains patches in between fingers (c).

The envelope surfaces in Figure 4.9 show the flexibility of these surfaces for
only four input balls Figure 4.9(a). The envelope can be decomposed into quadric
patches determined by simplices of the triangulation, see Section 4.4. The patches
are color-coded by the dimension of this simplex. Figure 4.9(b)—(d) show envelope
surfaces for which the local growth factor at the midpoints of the edges is increased
with the same amount. These envelope surfaces are also extended skin surfaces. In
Figure 4.9(e)—(g) we increased the local growth factor on the midpoints of one, two
and three edges, respectively. The spheres are connected due to this increase.

4.7 Conclusions and future work

We constructed a class of smooth surfaces as the envelope of a set of balls. The
theory behind envelope surfaces generalizes the concepts used for skin surfaces. The
set of balls is defined by a convex set of centers and a weight function assigning a
squared radius to each center. If the weight function is piecewise quadratic, then
the envelope surface is also piecewise quadratic. The envelope surface is shown to be
C! if two conditions on the weight function hold. These conditions can be verified
automatically.

We assume that there is a topological relation between the weight function W
and the function H defining the envelope surface:

Conjecture 39. The isosurface of W and —H are isotopic for all isovalues.

The conjecture is true for skin surfaces and if W is differentiable then the critical
points of W and H coincide and the critical values are equal with opposite signs, cf.
Proposition 30.
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(c) The extended skin curve with a (d) The new interpolation scheme
lower shrink factor

(e) Different level sets of H defined (f) Different level sets of H defined
by the extended skin surface by the new interpolation scheme

Figure 4.8: Different interpolation schemes



7.

Chapter 4. FEnvelope surfaces

o
g

&

<

o
0

(8)

Figure 4.9: Envelope surfaces of four balls with different values for the local growth
factors.



Chapter 5

Meshing Skin Surfaces

This chapter appeared as [75] and is accepted to Computational Geometry, Theory
and Applications as [76].

5.1 Introduction

We present an algorithm for meshing skin surfaces with guaranteed topology. The
algorithm presented in this chapter constructs a mesh isotopic to the skin surface
in two steps: it constructs a coarse, isotopic mesh which is subsequently improved
by refinement algorithms. The complexity of the coarse mesh is quadratic in the
number of input balls, and is independent of the shrink factor. This is worst case
optimal. For the second step a broad range of refinement algorithms can be used.
Existing algorithms may have to be adapted slightly to ensure the isotopy. We
show how this is done for the refinement algorithms of Chew [34] and Kobbelt [69].
The v/3-subdivision algorithm by Kobbelt is very fast, and refines the size of the
triangles. However, it does not improve the quality of the mesh elements in terms
of angle size. Chew’s algorithm improves the quality of the mesh in terms of the
angles and the size of the triangles in terms of a measure like the circumradius or the
length of the longest edge. The quality mesh is suitable for numerical computations.
Our version of these algorithms preserve the isotopy property. Methods like the one
presented in [44] are also well suited for mesh enhancements.

Related work Most existing algorithms for meshing implicit surfaces do not guar-
antee topological equivalence of the surface and the mesh constructed. The march-
ing cubes algorithm [82] subdivides a region into cubes and triangulates the surface
within these cubes based on whether the vertices of the cube lie inside or outside
the cube. A variant of this algorithm that follows the surface is presented in [17].

The marching triangulation method [62] extends a small initial mesh by walking
over the implicit surface, starting from a seed point. Our paper [73] presents a
marching triangulation method for meshing skin surfaces by carefully choosing the
step size during the walk over the mesh. However, as the shrink factor goes to one
or to zero, the size of the mesh goes to infinity.
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Several algorithms [27, 29, 30, 51] have been proposed to construct a topologically
correct mesh approximating a skin surface in the special case of a shrink factor 1/2.
It is likely that these algorithms can be generalized to work for arbitrary shrink
factors, but this will result in a denser mesh in order to guarantee the topology and
will therefore yield slower running times.

The algorithms in [27, 51] construct a dense point sample on the skin surface
and use a three-dimensional Delaunay triangulation to extract the mesh from these
points. These algorithms are rather slow compared to the other algorithms [29, 30].

Another approach is presented in [29]. The algorithm is competitive in terms
of running times. We could not verify the claim that the mesh produced by the
algorithm in this paper is homeomorphic to the skin surface. In fact, in [30] the
authors say the following. “This method improved the efficiency dramatically (with
respect to [27]) but resulted in robustness problem of the implementation ... The
accumulation of numerical errors in the approximation of Morse-Smale complex led
to inconsistent critical points after eliminating noisy critical points inaccurately.”

The recent algorithm in [30] uses the theoretical results from [27] combined with
ideas of the advancing front from [29]. The mesh is constructed by advancing the
mesh over the skin surface while maintaining the restricted Delaunay triangulation.

Another method for visualizing molecules uses Molecular Surfaces [38]. Visual-
ization algorithms for this type of surface are presented in [14, 15]. The algorithms
presented in [21, 85] are the first general methods guaranteeing topological equiva-
lence of the implicit surface and the mesh.

Contribution The approach to meshing skin surfaces described in this chapter
is new. The main contribution compared to [27] is that our approach works for
any shrink factor. We also establish isotopy, which is stronger than topological
equivalence. Our algorithm is more flexible in the sense that we generate a coarse
mesh that is isotopic to the skin surface that can subsequently be refined by various
algorithms, as shown in Section 5.3.4, whereas the algorithm in [27] immediately
constructs a homeomorphic quality mesh. Further, our algorithm is much faster. It
constructs a mesh in minutes where the algorithm presented in [27] takes hours.
On the theoretical side, we analyze the structure of the mixed complex and
decompose the mixed cells into tetrahedra. Within a tetrahedron the intersection
with the skin surface is either empty or a topological disk. It is fairly easy to extract
the isotopic mesh from this tetrahedral complex by a marching tetrahedra algorithm.

Outline In Section 5.2 we extend the theory of skin surfaces as presented in [48].
We start by introducing a hierarchical combinatorial structure on the mixed com-
plex. With each face of this complex we associate an anchor point, which plays a
crucial role in the meshing algorithm. Section 5.3 describes the construction of the
coarse mesh and establishes the isotopy between this mesh and the skin surface. In
Section 5.3.4, we describe two methods to improve the coarse mesh via (i) subdivi-
sion of the triangles and (ii) improvement of the quality of the triangles with regard
to the size of the minimal angle. Finally, we describe our implementation and give
experimental results in Section 5.4 and 5.5.
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5.2 Definitions

This section first briefly reviews skin surfaces and then introduces some new concepts
specific to the meshing algorithm. For a more thorough introduction to skin surfaces,
we refer to Section 2.7 and to [48] where they were originally introduced.

5.2.1 Skin surfaces

A skin surface is defined in terms of a finite set of weighted points P and a shrink
factor s, with 0 < s < 1. A weighted point p = (p,P) € R? x R corresponds to a
ball with center p and radius v/P. A pseudo-distance between two weighted points
is given by:
2
n(,q) =|p—al”—P—q

where p = (p,P), § = (q,Q) and |- || denotes the Euclidean distance. The pseudo-
distance 7(P,x) of a weighted point P to an (unweighted) point x is the pseudo-
distance of P to the weighted point centered at x with zero weight. Two weighted
points with zero distance are called orthogonal. An orthosphere of a set of weighted
points P is, by definition, a sphere orthogonal to each of the weighted points in P.

The space of weighted points inherits a vector space structure from R4*! via
the bijective map TT: R xR — R4 defined by TI(p) = (x1,...,xa, ||p||* — P),
with p = (x1,...,xq). Addition of two weighted points and the multiplication of a
weighted point by a scalar are defined in the vector space structure inherited under
TT. For further reading on the space of circles and spheres we refer to [84, 41].

Starting from a weighted point p = (p,P), the shrunk weighted point p° is
defined as p° = (p,s-P). The set P* is the set obtained by shrinking every weighted
point of P by a factor s.

The skin surface skn®(P) and its body bdy®(P) associated with a set of weighted
points P, are defined by

bdy®(P) = U(conv P)*
skn®(P) = 0 bdy*(P).

Here conv(P) C R4 xR is the convex hull - with respect to the vector space structure
inherited under TT — of a set of weighted points P, whereas 0 denotes the boundary
—in RY — of the union of the corresponding set of set of balls. For a skin curve in
2D associated with two weighted points: see Figure 5.1.

5.2.2 Delaunay triangulation

The Delaunay triangulation and Voronoi diagram are used to decompose the skin
surface into patches of spheres and hyperboloids. We briefly give the definition of
these structures and mention some properties.

The (weighted) Voronoi diagram (or: the power diagram) Vor(P) of a set of
weighted points P is the subdivision of R into cells vy that have smaller power
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Figure 5.1: The skin curve of two weighted points (the two dashed circles). The
smaller circles form a subset of the shrunk convex hull of the input points. Its boundary
forms the skin curve.

distance to the weighted points in X C P than to any other weighted point in P:

ve= [\ {xeRYn(p,x) < mlp’ x).

pexX,p’eP

Observation 40. Let yp 5/ be a point with the same power distance to P and P’,
then va = Ngex prep® € RY(x—yppr,p’ —p) <0}

Proof. We have

ni(P,x) < (P’ x)
2
Ip—x|*—p < |p x| — P’
2 2
206,p" —p) <P—P +[p'I” —|p|
20,p"—p) < 2upp, P —P)
= (xypp,p —Pp) <0

Hence, the proof follows from the definition of a Voronoi cell. ]

The dual of the Voronoi diagram is the Delaunay triangulation (or: regular
triangulation) Del(P). We denote a Delaunay simplex of a set X C P, with vy # 0,
by &x. Recall that by = conv({p|p € X}). f X C X’ and vy # 0, then vy is a
proper face of vy and by is a proper face of dy.

The affine hulls of a Delaunay simplex &y and its dual Voronoi cell vy are
complementary and orthogonal. Hence, the affine hulls of d v and vy always intersect
in a single point, the focus f(X') of X.

General position In the remainder of this chapter we assume general position,
by which we mean that no d + 2 weighted points are equidistant to a point in R¢
and no k + 2 centers of weighted points lie on a common k-flat for k =0,...,d — 1.
Several methods like [50] exist to symbolically perturb a data set and ensure these
conditions. Note that, under this genericity condition, an orthosphere of a set X
only exists if |X| < d+ 1.

Consider a Delaunay cell dx+ and one of its faces dx, with X € X’. Their
duals are respectively a face of a Voronoi cell and the Voronoi cell itself. There is
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a halfspace through 0y containing dy+ and a halfspace through vy containing vy
such that their normals point in opposite directions.

Lemma 41. Let dx,0x: € Del(P), such that dx is a proper face of dx: and let
u = Xé — x5 with x5 € 5x, Xé € int(SX/). Then

1. (u,xy —x4,)=0, for xy,x,, € vyr.
2. (u,xy —x5,)<0, for xy € vy\ vy, X, € vy

Proof. Claim (1) follows directly from the orthogonality of 6y, and vy, cf. Obser-
vation 1. Hence, claim (2) is independent of the choice of xZ,.

For the proof of claim (2), let m = |X|, n = [X'| and X' = {P1,...,Pn}, such
that p; € &, for i < m. Write x5 and xj in barycentric coordinates: xs = Y Vi - pi,
Xy = > vi-pi with > vi =X v{ =1, vi,v{ > 0. Since x5 € dx, yi = 0 for
i>m+ 1, and y{ > 0 since x§ € int(dx+). Rewrite u as:

U = X§—Xs

n
(Y{—vidpi+ D vips

I
.MB

i1 i—m+1
m n
= Y iy P+ ) il )
i1 i—m+1
Expanding (u,x, — x%,) yields:
m
(uxy =x4) = D (vi—vi){pi —p1,xv —x{)
iz
n
+ > Yilpi—pr Xy —x)
i=m-+1

From Observation 40, with yp, 5, = x4, it follows that (pi —p1,xv —xJ) is not
positive. Moreover, the inner product is zero if and only if p; € X. Hence, the
elements of the first sum are zero and the elements of the second sum are negative,

so (u,xy —x.) < 0. Note that for P; we can substitute any weighted point in X. [

Although the meshing algorithm generalizes to any dimension, the main appli-
cation is in R3. Therefore we present the algorithm in three space.

5.2.3 The mixed complex

We already described the mixed complex in Section 2.7.4. In this section we give a
more thorough presentation of the mixed complex and derive its polyhedral struc-
ture.

The mixed complex Mix®(P), associated with a scalar s € [0,1], is an interme-
diate complex between the Delaunay triangulation and the Voronoi diagram. Each
mixed cell in the mixed complex is obtained by taking Minkowski sums of shrunk
Delaunay simplices and their dual Voronoi cells.
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(a) The Delaunay triangulation (dashed), (b) The mixed complex and some of the
the Voronoi diagram (dotted) and the labels. Note that v = ufﬁo P L1 Pt =

Mixed complex (solid). ufﬁ WPo,P1,P2)
2mPosP1P2s

Figure 5.2: The skin curve of four weighted points (the circles). Each mixed cell
contains parts of an hyperbola or a circle.

Definition 42. For dx € Del(P) the mixed cell u3, is defined by n5 = (1 —s) -
dx ®s-vy.

Here - denotes the multiplication of a set by a scalar and & denotes the Minkowski
sum. For s = 0 the mixed cell is the Delaunay cell. If s increases it deforms affinely
into the Voronoi cell for s = 1.

Each mixed cell is a convex polyhedron since it is the Minkowski sum of two
convex polyhedra. Based on the dimension of the Delaunay simplex, there are four
types of mixed cells. A mixed cell of type { corresponds to a Delaunay {-cell and is
of the form p$, with |X| =€+ 1. In 3D, mixed cells of type 3 are tetrahedra (shrunk
Delaunay 3-cells) and mixed cells of type 0 are shrunk Voronoi 3-cells. A mixed cell
of type 1 or 2 is a prism with respectively the shrunk Voronoi facet or the shrunk
Delaunay facet as its base.

The intersection of the skin surface and a mixed cell is a piece of a sphere or a
hyperboloid. In the plane, the intersection of a skin curve with a mixed cell is either
part of a circle or hyperbola. An example of the mixed complex and a skin curve is
given in Figure 5.2. All rectangles are mixed cells of type 1 and contain hyperbolic
patches. The other cells contain circular arcs. Depending on whether the mixed cell
is of type 0 or 2, the interior of the skin curve lies inside or outside the circle.

Within a mixed (-cell u3,, the skin surface is a quadratic surface of the form
I}] (0), where:

1 1
IX(x):——inz—l—g > X —R% (5.1)
i=1
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with x = (x1,%2,%3) and R? the weight of the weighted point in aff(5x) centered
at f(X). More precisely, skn®(X) N us, = I;ﬂ (0) N u%. The coordinate system is
orthonormal with its origin at the focus of X', and such that the first £ coordinates
span the affine hull o, see [48].

The following observation holds trivially for mixed cells of type 0 and 3. For
mixed cells of type 1 and 2, the symmetry sets of the hyperboloids are the affine
hulls of the corresponding Delaunay simplex and Voronoi cell. Hence it follows from
the construction of the mixed cells.

Observation 43. Each proper face of a mized cell u3, is perpendicular to a sym-
metry set of 1y

Since the symmetry axis and the symmetry plane of the hyperboloid are perpen-
dicular, each face of a mixed cell of type 1 or 2 is parallel to the other symmetry
set.

Polyhedral complex The mixed complex is a polyhedral complex. The 3-cells
of this polyhedral complex are formed by the mixed cells. We give a more detailed
description of its structure.

Definition 44. For X, X' C P, withvx,vx: # (), a polyhedral cell W% y. is defined
S _ S S
as Wy yr = KUy MKy, -

Edelsbrunner gives an intuitive picture of the mixed complex in [48]. Take the
interval of d-dimensional affine subspaces of R4*+! defined by xq,1 = s, for s € [0, 1].
Draw Del(P) in xq11 = 0 and Vor(P) in xq,1 = 1. For each Delaunay simplex and
corresponding Voronoi cell construct

Ly =conv(dxy Uvy).

All p, are convex polyhedra of dimension d+1, their interiors mutually disjoint, and
they decompose the strip between xq4+1 =0 and xq+1 = 1. The subspace xq+1 = s
intersects p, in the mixed cell pu3, .

It is clear that a polyhedral cell u5 ,, is non-empty, for 0 < s < 1, if the Delaunay
and Voronoi cells of X and X’ have a non-empty intersection. Or, equivalently, if
Vxnx, Vaux: € Vor(P). It is not enough for one of the two simplices to exists.
E.g., let P1,P2,P3 be weighted points, the centers of which are the vertices of a
triangle in a two-dimensional Delaunay triangulation and X = {p1,P2}, X' = {p3}.
Then dxyux: € Del(P), but XYNX' =0, hence dxnx+ & Del(P). On the other hand,
let dx, dx: be two Delaunay edges, that share a common vertex, but do not have
an incident triangle in common, then dxnx: € Del(P), but dxux+ & Del(P).

The following lemma describes the structure of the mixed complex.

Lemma 45. A mized cell u% . is not empty iff Vanx+ and vxux: are nonempty
In that case,

H},X/ =(1—5)-dxnx’ ®s-Vaux-.
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(a) X = {Po}, X' = {Po,P1,P2}, (b) X = {Po, P11, X" = {Po,P2},
hence X C X’/ hence X ¢ X’ and X' ¢ X

Figure 5.3: [Illustration of the proof of Lemma 45.

Before we prove this lemma we first make some general remarks. Note that the
lemma also holds if vynx =0 or vyux: =0, since then ps = 0.

Corollary 46. If vynx: and vyyux: are nonempty, then My xr = ufYﬂX’,XUX’

The corollary holds since, pusny: yuxr = (1 —8) - dxnxs @ s - vauxs. Hence,
each non-empty polyhedral cell pu% », has a unique label, if X C & !, To gain
some intuition for the lemma, take s equal to zero. Then the mixed complex is the
Delaunay triangulation and indeed ug(’ v = 0x Ndxys = dxnxs. Conversely, for
s = 1, the mixed complex is the Voronoi diagram and u}(’x, =vxyNVy =Vyux’-

PrROOF OF LEMMA 45. The proof is trivial if X = X/, hence we assume that
X # X'. For simplicity, let F = (1—38) - dxnx ®S-Vxux:-

From Definition (42) it follows that F C u3, and F C p%,/, since dxnx’ C dx,0x-
and Vyux' C Vx,Vxr. Hence, F - LL}’X,.

For the opposite inclusion, we show that the two mixed cells lie in opposite
halfspaces and intersect the bounding plane in F.

We distinguish two cases. First, consider the case where X C X’ or X’ C X; See
Figure 5.3(a). Without loss of generality we assume that X C X’. Let u be a vector
perpendicular to 6y pointing from a point in &y towards a point in the interior of
dx, such that (u,x5 —xs) >0, for x5 € dx, x5 € dx/ \ dx. Such a vector u exists,
since dy is a proper face of the convex polyhedron dy.. Note that u is perpendicular
to dx. Lemma 41(2) states that (u,x!, —xy) <0, for x, € vy \ v/, Xy € Vy-.

For each point x in a mixed cell pj there exists a unique combination x5 € dx,
Xy € Vy, such that x = (1—s)-0x +5s-Vy, since dy and vy are affinely independent.
Hence, since F C p$,, a point yo € F can be uniquely written as yo = (1—s)-yS+s-y$
with y2 € dx, Y% € vr.

We analyze the sign of the inner product (u,y — yo) for y subsequently in p3, \ F,
Fand ps,, \ F.



5.2. Definitions 83.

First, let y € u% \ F. We writey = (1 —s) -ys + s -y, with ys € dx and
Yv € vx \ vyr. The inner product (u,ys—y?) is zero since ys,y% € dx and
(W, yv —y2) < 0 by Lemma 41(2). Hence (u,y —yo) <O fory € pu$ \ F.

Now assume that y € F. Similar to yo, we write y = (1 —s) -ys + s - Yyv, with
Ys € dx, Yv € Var. The inner product (u,ys —y?) is zero since ys,yd € dx and
(W,yy —y2) = 0 by Lemma 41(1).

Finally, assume that y € u%, \ F, then we write y asy = (1 —s) -ys + s - U~,
with ys € 84/ \ 84 and yy € vy,. The inner product (u,ys —y?) is positive by
construction of u, and (u,y, —y<) = 0, again by Lemma 41 (7). Hence (u,y —yo) >
0 fory e p%, \F

Summarizing, we have:

<0, forye us \F
W,y —yo)s =0, fory eF,
>0, fory e p%, \F

Hence, u3 and p%, lie in opposite halfspaces and meet only in F.

We continue with the proof of the second case. Assume that 6y is not a face of
dxs and vice versa. Then XY N X' C X, X' C X UX’, viz. Figure 5.3(b). For this
case the proof is similar, except for the construction of the vector u.

Let x1 € dxnx’. The Delaunay simplex d ynx+ has at least co-dimension 2, since
X UX'|—|XNX' > 2. Hence, the set of points orthogonal to dyny through x is
at least 2-dimensional. We intersect this orthogonal set with a small sphere centered
at x1. If the radius is small enough, the intersection contains a point xg € int(dxy)
and X(/) € int(éX/).

Let uw =" - (x§{ —xo), for some 0 <y < 1. By construction the triangle x1, xo, X
is perpendicular to dxnxs. Since ||x; —Xo| = ||x1 —x§ ||, the triangle x,x¢,x{ is
an isosceles triangle. Hence, the angles Zxr, xo,x{, £x1,%§, X0 are equal and acute.
As a result, for yg € dxnx’ we have:

<0, fory € dx \ dxnar,
(W, y —yo) =0, fory € dxnxv,
>0, fory € dxr \ S

Note that uw points from xo towards the interior of dyyux/. Hence, u satisfies
Lemma 41 with respect to dy and dyyux/. Using a similar argument, —u satis-
fies Lemma 41 with respect to dy. and dyyx/. So, for yo € vyux: we have:

<0, foryevxy \vrux,
<uay_y0> :Oa fOI'y € Vxyux’,
>0, foryevy \vyux:.

Now we combine the results for the Delaunay simplices and the Voronoi cells to a
statement for the mixed cell. Let yo € F and write yo as yo = (1 —s) -y +s-y$
with yg € dx, y?, € Vyr.

Write y € p% \ F uniquely as y = (1 —s) -ys + s -y, with ys € dx and
Yy € Vy. Sincey & F, either ys € dxnx’ or yv € vyux . Expand the inner product
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e

(a) Circular facets (b) Hyperbolic facets

Figure 5.4: The anchor points of two-dimensional polyhedral cells. Each anchor
point is labeled by the type its cell (f for face, e for edge and v for vertex). The
triangulation constructed in Section 5.3.2 is also shown.

(W, y —yo) to (1—5)- (u,ys —y2) +s- (1, yv —y9). Using the estimates above, we
obtain (u,y —yo) <0

A similar reasoning yields (u,y —yo) = 0 for y € F and (u,y —yo) > 0 for
yepuy \F O

Denote with aff (X) the affine hull of a set X.

Lemma 47. For X C X', aff(u% y.) and aff(dx/) N aff(vy) are complementary
and orthogonal.

Proof. To shorten notation we write F = aff(u% »/) and G = aff(dx/) Naff(vy).
Recall from Lemma 45 that u% », = (1—5s)-dxDs-vyr.

The cells 6y and vy are affinely independent, hence dimF = dim dy+dimvy, =
d + |X| — |X’|. Further, dx/ and vy are orthogonal and dim G = dimaff(dx/) —
dim aff (6 ) = |X'| — |X|. Hence, the dimensions of F and G add up to d. Both o
and vy are orthogonal to G, which shows the orthogonality of F and G. [

Corollary 48. The dimension of a non-empty mized cell p% y, in R4 ds d —
XUX'|+|XNAX.

5.2.4 The anchor point

For the construction of the mesh we use the anchor point of a polyhedron.

Definition 49. Let A be a convez set and p a point in R3. Then the anchor point
a, (A) is the point in A closest to p.

We are interested in the case where A is a polyhedral cell p% »/, a Delaunay cell
dx or a Voronoi cell vy and p is the focus f(X'). In fact, we use the anchor points
of the polyhedral cells as vertices of a tetrahedral complex that decomposes the skin
surface into topological disks.
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We distinguish two types of critical points on a mixed cell p%, interior critical
points are critical points of Iy contained in the interior of p% and boundary critical
points are critical points of Iy restricted to the boundary of u3,. All critical points
are anchor points of a face of the mixed cell, viz. Figure 5.4. However, not all anchor
points are critical points, e.g. the point that is both the anchor point of a vertex and
an edge in Figure 5.4(a).

Lemma 50. A (boundary or regular) critical point of 1x on a polyhedral cell u% .
is the anchor point of Wy y. or the anchor point of one of its faces with respect to
f(x).

Proof. The focus f(X) is the only critical point of the quadratic function 1. If f(X)
is contained in p% ., then it is the anchor point ag(x) (u})x,).

It remains to show that all boundary critical points are also anchor points. By
Observation 43, a face of pu% . is either parallel or perpendicular to the symmetry
sets of Ix. Hence, if f(X) pyrojects onto the facet, then the facet has a boundary
critical point. By definition, this point is the anchor point of the facet with respect
to f(AX). O

Let p% y. be a common face of u%, and pj. The following lemma shows that
the anchor points of u% ., with respect to f(X') and f(X'') are identical.

Lemma 51. af(X)(ufY,X/) = le(X')(Hf\a,X/)-

Proof. Both f(X) and f(X’) lie on aff (bux /) and aff (Vvynxs) by definition. Hence
they lie on aff (b ) Naff (Vyna), which is orthogonal to n% x- by Lemma 47. [

The following lemma gives a relation between the anchor point of a polyhedral
cell and the anchor points of Delaunay simplices and Voronoi cells.

Lemma 52. afx)(py x/) = (1 —8) - arxna(dxnxr) +5 - aprux) (Vaux).

Proof. If A and B are orthogonal, then
afx)(sA® (1 —5)B) = agx)(sA)+ agx)((1—5)B).

Therefore, since dxnxs and vyyx s are orthogonal, we have a¢(y) (u}’x,) =(1—s)-
arx)(dxnxr) + s arx)(vaux:).

Since f(X),f(X NX') € aff (Vynx') and dxny- is orthogonal to vynys, we have
af(X)(éXmX/) = af(XﬁX/)(SXmX/). Slmllarly, f(X),f(XUX/) € aﬁ.(SXUX/) and
dxux is orthogonal to vyux/, hence af x)(Vaux') = afxux/) (Vauxr). Conclud-
ing, arx)(Ky x) = (1 —8) - arvnx) (dxnxr) +5- afrur) (Vaux:). O

Now that we have the decomposition of the anchor point of a polyhedral cell into
the anchor point of Delaunay and Voronoi cells, we show that these anchor points
are easily constructed.

Lemma 53. The anchor point agx)(dx) lies in the interior of dx or af(x)(dx) =
afx)(dx), where dx/ is a face of dx
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Proof. Assume that f(X') is not contained in int(dy ), otherwise the proof is trivial.
Since by is a convex polyhedron, the point closest to f(X') lies on a proper face of
dx, say dx.

Since f(X),f(X’) € aff(vx/) and dx- is orthogonal to vy, we have a¢ ) (dx/) =
arx(dxr). O

A similar lemma holds for Voronoi cells, for which we omit the proof.

Lemma 54. The anchor point a¢x)(vy) lies in the interior of vy or agx)(vx) =
afx)(var), where vy is a face of vy

Concluding, from the anchor points a¢(x)(dx) and a¢(x)(vy), with dx € Del(P)
we can construct the anchor point of any polyhedral cell. Moreover, Lemma 53 and
Lemma 54 give a recursive definition that makes it easy to compute afx)(dx) and

af(X)(VX)-

5.3 The meshing algorithm

This section describes the construction of a tetrahedral complex for which the inter-
section of a cell with the skin surface is either empty or a topological disk. Moreover
we show that the mesh extracted from this tetrahedral complex by the marching
tetrahedra algorithm [92] is isotopic to the skin surface.

5.3.1 Monotonicity condition

In Section 5.3.2 we give a detailed construction of the tetrahedral complex. For
now, we only give the main condition imposed on the tetrahedral complex. First,
we require that each tetrahedron is contained in a single mixed cell. Recall that
the skin surface restricted to a mixed cell p% is a subset of the quadric 1}1 (0), cf.
Equation (5.1). Express a point x = (x1,x2,%x3) in the local coordinate system of

L.

Condition 55 (Monotonicity). Let ab be a line segment contained in a mized
cell w3, of type €, with Ix(a) < Ix(b). The segment ab satisfies the monotonicity
condition if X% +...+ X% 1§ mon-increasing and X%H + ...+ x% 1s non-decreasing on
the segment from a to b.

In words, a segment ab satisfies the monotonicity condition if the distance to both
symmetry sets of the quadric I x is monotone and the distance to one symmetry set of
I does not increase if the distance to the other symmetry set increases. For spheres
(£ = 0,3) one symmetry set is empty and the monotonicity condition is satisfied if
the distance to the center of the sphere is monotone. For hyperboloids ({ = 1,2) a
segment satisfies the monotonicity condition if the distances to the symmetry axis
and the symmetry plane are monotone and the distance to one symmetry set does
not increase if the distance to the other symmetry set increases. From Equation (5.1)
we conclude:
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Observation 56. If a line segment ab satisfies the monotonicity condition, then
Iy is monotonically increasing on ab.

We construct the tetrahedral complex in such a way that all edges satisfy the
monotonicity condition. In fact, if all edges satisfy the monotonicity condition, then
a generalized monotonicity condition holds for all cells.

Lemma 57. Let pu% be a mized cell of type { and let vi,...,vn be the vertices of a
cell of the tetrahedral complex in p5., with Ix(vi) < Ix(v;) if i <j.

If the monotonicity condition holds for all edges then, each segment ab, with
a € conv(vy,...,vk) and b € conv(viy1,...,vn), for k € {1,...,n}, satisfies the
monotonicity condition.

In the proof we need a small lemma.

Lemma 58. Let vivyv3 be a triangle in R?, such that the distance to the origin is
monotonically increasing (decreasing) along both vivs and vavs. Then the distance
to the origin is monotonically increasing (decreasing) on the segment xvs, with x €
Viva.

Proof. Let x = (1 — t)v1 + tva, with t € (0,1) and let d(y) = [|(1 —v)x +yvs ||
be the squared distance to the origin on the line segment xv3. The distance d(y)
is monotone if d’(y) > 0 or d’(y) < 0 for vy € [0,1]. Since d’(y) = 2(x,v3 —x) +
2y(v3 —x,v3 —x), d(y) is monotone if (x,v3 —x) > 0 or (v3,vz —x) < 0.

Assume that the distance to the origin increases monotonically on both line
segments vivs and vav3, hence (vi,vz —vq) > 0 and (v2,v3 —vy) > 0. We have

(x,v3—=x) = (1—=t)(vi,v3—V1)
+t(va,v3 —Vv2)
+t(1 —t)||va — vy ||?
> 0.

Conversely assume that the distance to the origin decreases monotonically on both
line segments vivs and v,v3, hence (v3,vz —v;) < 0 and (v3,vs —vy) < 0. Then
we have (v3,vz —x) = (1 —t)(v3, vz —v1) + t(v3,v3 —v2) <O0. O]

Proof of Lemma 57. We repeatedly move vertices along edges of the cell of the tetra-
hedral complex while maintaining the monotonicity condition. After the displace-
ment of the vertices, the line segment ab lies on one of the edges.

Since Ix(vi) < Ix(vj) for i < j and by Equation (5.1), the distance to the
symmetry set spanned by the first £ coordinate axis is decreasing and the distance to
the other symmetry set is increasing. Assume for now that if we move the vertices v;
and vi 1 over the edge vivi 1, that all edges in the new cell satisfy the monotonicity
condition.

We now move v; to a and v, to b. If k = 1, then a is v{. Otherwise we move
Vik_1 to vi until a lies on the face conv(vy,...,vr 1) and repeat this step for k — 1.
Similarly we move vy 1 to v, until b lies on the face conv(vii1,...,vn) and
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Figure 5.5: The three different configurations of a tetrahedron. White and black
vertices lie on different sides of the skin surface.

repeat the step for k41 until k =n—1. Then ab is an edge of the new tetrahedron.
Hence ab satisfies the monotonicity condition.

It remains to show that the new edges also satisfy the monotonicity condition.
Therefore consider three vertices vi, viy1 and v;j. If j <1i(j > i+1) then the distance
to the first symmetry set along the line segment v;v; and vjvii is decreasing (in-
creasing) and to the second symmetry set it is increasing (decreasing). We show that
the distances remain monotonically increasing or decreasing along a line segment xv;
for x € viviy1. We distinguish three cases. First, assume that the symmetry set is
a point. We project the symmetry point on the plane vjvivi; 1. From the previous
lemma it follows that the distance on xv; to the projection of the symmetry point
is monotone, and therefore also the distance to the symmetry point. Next, assume
that the symmetry set is a line, then we project the triangle vjvivi;1 on a plane
orthogonal to the symmetry line. By applying the previous lemma, it follows that
the distance to the projection of the line on the plane along the line segment xv;
is monotone. Finally, if the symmetry set is a plane we do not need the previous
lemma. In this case the distance to the plane at x is smaller (greater) than the
distance at vj. Hence the distance to the symmetry plane on xv; is monotone.

To conclude, if the distance to a symmetry set is monotonically increasing (de-
creasing) along both vjvi and vjviy1, then this distance is also monotonically in-
creasing (decreasing) along the line segment xvj, with x € vivi;1. Hence xvj; satisfies
the monotonicity condition. ]

Mesh extraction The coarse mesh is extracted from the tetrahedral complex
by the marching tetrahedra algorithm [92]. Each edge of the tetrahedral complex
intersects the skin surface at most once by Observation 56. We place vertices of
the mesh on these intersection points. Then the mesh is constructed by considering
the number of vertices of the tetrahedron inside the skin surface as depicted in
Figure 5.5. The third configuration remains ambiguous, since the common interior
edge of the two triangles can be flipped.

Theorem 59. A tetrahedral complex for which each edge satisfies the monotonicity
condition has two properties:

1. each cell intersects the skin surface in a topological disk and

2. the mesh extracted from the tetrahedral complex is isotopic to the skin surface.
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Proof. Let V— and V' be the vertices of a k-cell of the tetrahedral complex inside
and outside the skin surface, respectively. Consider the set of line segments ab with
a € conv(V~), b € conv(V"). The set of line segments is empty if the cell does not
intersect the skin surface, i.e. if V- =0 or V' = (). On the other hand, if the cell
intersects the skin surface, then the set of line segments spans the cell and the line
segments may intersect but only at their endpoints. On faces of the cell, the line
segments are defined consistently because there the construction is based only on
the labels of vertices of the face.

By Lemma 57, each segment satisfies the monotonicity condition. Hence Iy is
monotone on ab. Moreover, a lies inside and b outside the skin surface. Therefore ab
intersects the skin surface in a single point. Since the segments span the tetrahedron,
the skin surface within the cell is a topological disk.

By construction, each segment also intersects the coarse mesh transversally in
exactly one point. We construct the isotopy by constructing an isotopy between the
mesh and the skin surface within each tetrahedron and by showing that the isotopies
defined by two tetrahedra are identical on a common face.

Neither the skin surface nor the mesh intersects a tetrahedron with only inside
(outside) vertices, and we define the isotopy by the identity function. If the skin
surface intersects a tetrahedron, then the segments span the tetrahedron and each
point in the tetrahedron and on the skin surface lies on a unique segment. The same
holds for a point in the tetrahedron and on the mesh. We construct the isotopy by
linearly moving each point on the skin surface along the segment to the mesh. By
construction of the segments, this deformation is an isotopy.

To show that these local isotopies can be combined to form an isotopy between
the skin surface and the coarse mesh it remains to show that the transition between
two local isotopies is continuous. This follows from the construction of the segments
on a common face, which depends only on the label of its vertices. ]

We call the segments in the proof above transversal segments because each seg-
ment intersects both the skin surface and the coarse mesh transversally in a single
point.

5.3.2 The tetrahedral complex

Up to now we assumed that it is possible to construct a tetrahedral complex in such
a way that all edges satisfy the monotonicity condition. In this section we construct
this tetrahedral complex. We triangulate polyhedral cells in order of increasing
dimension.

All vertices of the tetrahedral complex are anchor points of polyhedral cells. In
case an anchor point lies on the boundary of its polyhedral cell, it coincides with
another anchor point and the simplicial complex is degenerate. Therefore, during
the construction of the tetrahedral complex we test whether the anchor point lies in
the interior of the polyhedral cell, and collapse the vertex otherwise. For simplicity,
in the remainder of this section we assume that the anchor point lies in the interior
of the mixed cell.
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Subdividing polyhedral cells of positive co-dimension On each vertex of
the polyhedral complex we place a vertex of the tetrahedral complex. Note that
these vertices are the anchor point of 0-cells of the polyhedral complex.

Next, consider an edge p% »/ of the polyhedral complex. By Lemma 50, if Ly has
a critical point on the interior of the edge, this critical point is the anchor point of the
edge. Therefore we split the edge in the anchor point ay X)(u}) y.) and construct
two edges from the anchor point to the vertices. By Observation 43 a polyhedral
edge is parallel to one symmetry set and is split in the point closest to the projection
of the other symmetry set, hence both edges satisfy the monotonicity condition.

We distinguish two types of facets: circular facets are facets for which the contour
lines of Iy restricted to the facet are circles. The other facets are called hyperbolic
because the contour lines are hyperbolas on the facet. Since the skin surface is
tangent continuous, Iyx|u% » = Ix/|u5 . and the facet inherits the same type
from both mixed cells u% and ps. All facets of mixed cells of type 0 and 3 are
spherical. The facets of a mixed cell of type 1 or 2 are spherical if they touch a
mixed cell of type 0 or 3, and hyperbolic if they touch a mixed cell of type 1 or 2.

We triangulate circular and hyperbolic facets differently. Circular facets are
triangulated by adding an edge from the anchor point of the facet to each anchor
point on the boundary of the facet, i.e., either the anchor point of an edge or a
vertex. See Figure 5.4(a). Since the anchor point of the facet is the point closest to
the center of the sphere, the distance to the focus increases monotonically on each
edge and each edge satisfies the monotonicity condition.

Hyperbolic facets are rectangles with edges parallel or perpendicular to the sym-
metry axis of the corresponding hyperboloid. The anchor point of an edge is the
point closest to the focus, hence it is the point on the edge closest to the symmetry
axis the edge is orthogonal to. Similarly, the anchor point of the facet is the point
on the facet closest to the focus. Thus the edges from the anchor point of the facet
to the anchor point of an edge are parallel to one axis and the distance to the other
axis increases monotonically. Further, we add edges from the anchor point of an
edge to the anchor point of an orthogonal edge. On these edges the distance to one
symmetry axis increases whereas the distance to the other symmetry axis decreases.
This triangulation is depicted in Figure 5.4(b).

Subdividing polyhedral cells of type 0 and 3 The mixed cells of this type
contain a spherical patch of the skin surface. Similar to spherical facets, we have
to triangulate polyhedral cells of type 0 and 3 in such a way that the distance to
the focus is monotone on each edge. The anchor point of the mixed cell is the point
in the mixed cell closest to the focus. Hence the distance to the focus on each line
segment from the anchor point of the mixed cell to any other point in the mixed cell
is monotone, and therefore satisfies the monotonicity condition. We have already
constructed the triangulation of the boundary of the mixed cell and triangulate the
entire cell by adding edges from the anchor point of the cell to each vertex on the
boundary. The tetrahedra are formed by taking the join of a triangle on the the
triangulated boundary of the mixed cell and the anchor point of the mixed cell.
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Subdividing polyhedral cells of type 1 and 2 The triangulation of mixed
cells of type 1 and 2 is slightly more subtle. The mixed cell contains a hyperboloid
patch of the skin surface and the mixed cell is a prism with its base parallel to
the symmetry plane of the hyperboloid. For an edge to satisfy the monotonicity
condition, the distance to both the symmetry plane and the symmetry axis has to
be monotone and the distance to one symmetry set may not increase, if the distance
to the other symmetry set increases.

We already triangulated the facets of the mixed cell. The hyperbolic facets of
the prism are the facets that are parallel to the symmetry axis. We split the prism
in the plane V through the anchor point of the mixed cell parallel to the symmetry
plane. This plane also contains the anchor points of the faces and edges of the
mixed cells that are parallel to the symmetry axis. Hence each facet parallel to the
symmetry axis is already split in V. The new facet is spherical and we triangulate
it accordingly.

Consider one split mixed cell. The base of the prism furthest away from the
symmetry plane contains the points furthest away from the symmetry plane. Hence
its anchor point is the point with maximal distance to the symmetry plane and
minimal distance to the symmetry axis. Therefore, all line segments in the split
mixed cell with this anchor point as a vertex satisfy the monotonicity condition.
The boundary of the prism is already triangulated and we triangulate the split
mixed cell by adding edges from the anchor point of the base to all vertices on the
boundary. The tetrahedra are the join of a triangle on the triangulated boundary
and the anchor point of the base.

Union of balls For a shrink factor one, the skin surface of a set of balls is the union
of these balls. In this case, the mixed complex is the Voronoi diagram. This means
that only mixed cells of type 0 are three-dimensional cells. This greatly simplifies
the set of tetrahedra.

It is also desirable to retain edges of the mesh on the intersection of two balls.
The subdivision algorithm ensures this by definition. Chew’s algorithm can also be
extended to allow constrained edges, see [34].

5.3.3 Complexity analysis

In many real world applications the size of the Delaunay triangulation is linear in
the number of input balls, see [36, 10]. However, the worst case complexity of the
Delaunay triangulation is quadratic in the number of input balls, see [22]. We show
that the size of the coarse mesh is linear in the size of the Delaunay triangulation
and that this is worst case optimal.

Lemma 60. The size of the coarse mesh is linear in the size of the Delaunay tri-
angulation.

Proof. Because of the duality relationship, the size of the Voronoi complex is equal
to the size of the Delaunay triangulation. Each mixed 0-cell (corresponding to a
Delaunay vertex, is a shrunk Voronoi 3-cell, and its size is therefore equal to the
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Figure 5.6: The cross section in the xz-plane of the skin surface with a quadatic
number of holes. The centers of the dashed circles lie on the unit circle in the xy-
plane and the centers of the solid circles on the z-axis.

Voronoi cell. Similarly, the complexity of a mixed 1-cell, 2-cell and 3-cell are linear
in the complexity of the Voronoi facet, Delaunay facet and Delaunay tetrahedron.
We split each edge of the mixed complex at most in two parts. The triangulation
of a mixed facet contains at most one triangle per split edge. Finally, the triangu-
lation of a mixed cell contains at most one tetrahedron per triangle on the mixed
facets. Hence, the size of the tetrahedral complex is linear in the mixed complex.
Within each tetrahedron we construct at most two triangles. Thus, the mesh is
linear in the size of the Delaunay triangulation. L]

To show that this is worst case optimal, we construct a skin surface with Q(n?)
holes from a set of n balls. Any mesh with Q(n?) holes has complexity Q(n?), thus
giving the lower bound. The construction, depicted in Figure 5.6, is as follows: the
first n/2 balls are centered on the unit circle in the xy-plane and have radius 0.5.
The other n/2 balls are centered on the z-axis. Their radius is such that they touch
the first n/2 balls.

Each two subsequent spheres on the z-axis form a tunnel with each sphere cen-
tered on the unit circle. There are n/2 — 1 such pairs and n/2 spheres centered
on the unit circle, hence there are Q(n?) tunnels. The skin surface also has O(n?)
holes because it is homeomorphic to the union of the balls.

5.3.4 Mesh enhancement

The topologically correct mesh obtained with the marching tetrahedra algorithm is
rather coarse and may contain long and skinny triangles. Therefore, we develop a
method to enhance the mesh while maintaining the isotopy. The changes to the
mesh we allow are local and do not change the topology of the mesh.
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Before we change the mesh, we first test whether the isotopy with the skin surface
is maintained. Therefore we use the transversal segments as described in the proof
of Theorem 59. In fact, we first test whether each transversal line segment intersects
the new mesh exactly once. We conclude this section with two examples of mesh
refinement algorithms.

Changing the mesh To test whether the isotopy is maintained under a change
of the mesh we would have to test whether each transversal line segment intersects
the mesh once. We rephrase this in such a way that it is easier to verify.

Let ¢ be a 3-cell in the tetrahedral complex, t a triangle of the mesh intersecting
c and V— and VT the vertices of ¢ inside and outside the skin surface, respectively.

Lemma 61. If for all t and ¢, V- and V' are separated by the plane through t
and V~ lies in the direction of the inner part of the mesh, then each transversal line
segment within c intersects the mesh once.

Proof. Consider a line segment p~p™, with p+ € conv(V*). Since p~ and p* lie
on opposite sides of the mesh, p~p ™ intersects the mesh at least once. Assume that
it intersects p~p* more than once, then on the second intersection point from p—,
the segment moves from outside the mesh to the inside. Hence. the inner product
with the normal is negative. L]

We now have an efficient way of testing whether the isotopy of the skin surface
and the mesh is maintained. If the test fails, then the mesh is too coarse and we
refine the mesh. We show that the refinement succeeds for small triangles.

Lemma 62. A triangle t of the mesh contained in a single tetrahedron c can be
subdivided in any point x € t by moving x along the transversal segments to the skin
surface.

Proof. Since x moves along the line segments within ¢, the line segments through f
and the subdivided faces are the same. Thus the new mesh can be obtained from
the old mesh by interpolation along the line segments. ]

We can also flip an edge of the triangulation if the two adjacent triangles and
the new triangles are intersected by the same transversal segments. This condition
is similar to the condition in a two-dimensional mesh that an edge can be flipped if
the union of the two triangles is convex.

To summarize, we have an efficient test to check whether the isotopy is main-
tained. If a change of the mesh would result in a violation of the isotopy test,
then we can always subdivide the face into faces that are contained within a single
tetrahedron. Each of these faces satisfies the isotopy test.

Sqrt-3 method We implemented the sqrt-3 subdivision method [69] on the coarse
mesh. The sqrt-3 subdivision method splits each triangle into 9 sub-triangles and
then moves the newly created vertices towards the skin surface along the transversal
segments.
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Figure 5.7: The Sqrt-3 subdivision method applied twice. Left: the original triangle,
in the middle the subdivided triangle. On the right are the vertices placed on the skin
surface.

By Lemma 62, the subdivision algorithm maintains the isotopy. Hence, it is not
necessary to test isotopy, which make the algorithm very fast. On the other hand,
the subdivision algorithm does not improve the quality of the triangles. Therefore
this method is not suitable for constructing a mesh for numerical simulations.

Chew’s algorithm We also implemented Chew’s algorithm [34] to improve the
quality of the triangles of the coarse mesh and obtain a mesh suitable for numerical
simulations. After the algorithm terminates, each triangle has angles between 30
and 120 degrees and has a user defined maximal size. The only constraint on the
size-criterion is that there exists a & > 0 such that any well-shaped triangle that fits
within a circle of radius & is well-sized. We chose the size of a triangles inversely
proportional to the maximal curvature which is nonzero on skin surfaces.

During the refinement, we test the isotopy before an inserting a new point and
before flipping an edge.

5.4 Implementation

We implemented the algorithm described above in C++ using the Computational
Geometry Algorithm Library (CGAL) [37]. This algorithm will be available as a
CGAL extension package.

CGAL is a library written in C++ that uses generic programming to attain its
full flexibility. It can be subdivided in three parts: the kernel, datastructures and
algorithms and supporting classes.

The kernel provides geometric primitive objects like points, line segments, tri-
angles etc. The kernel also defines predicates and constructions on these objects.
Predicates are functions that test a property (return a boolean). For example the
“incirle test” used for the construction of the Delaunay triangulation is a predicate.
Constructions are functions that return a geometric object, for example the intersec-
tion point of a line and a plane. Several kernels are provided in CGAL: (1) inexact
predicates and inexact constructions, (2) exact predicates and inexact constructions
and (3) exact predicates and exact constructions.

The second part of CGAL contains a collection of basic geometric data structures
and algorithms, which are parameterized by traits classes that define the interface
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between the data structure or algorithm and the primitives they use. Sometimes, the
datastructures and algorithms are also parameterized by observer classes. Observer
classes define functions that are called before or after an event occurs, they “observe”
the algorithm.

The support library contains non-geometric support facilities, such as circula-
tors, I/O support and interfaces between CGAL and various visualization tools, like
geomview and QT.

5.4.1 OQOutline of the implementation

For the implementation of the algorithm the kernel is extended with a quadratic
surface class to store the part of the skin surface contained inside a mixed cell.

We did not introduce new datastructures, but customized the datastructures
available in CGAL to suit our needs. The weighted Delaunay triangulation is imple-
mented in the Regular_triangulation_3 class and does not need adaptations. The
triangulated mixed complex Triangulated_mixed_complex_3 is derived from the
triangulation class Triangulation_3 and has cells that additionally store a pointer
to the quadratic surface defined inside the cells. The triangulated mesh is stored as
a Polyhedron_3.

We implemented the function triangulate_mixed_complex_3 that constructs
the triangulated mixed complex from the Delaunay triangulation and the function
marching_tetrahedra_3 that extracts the triangulated mesh from the triangulated
mixed complex. Further, we implemented the subdivision algorithm in the func-
tion skin_surface_sqrt3 and a prototype of Chew’s algorithm. An outline of the
implementation is depicted in Figure 5.8.

No functionality was added to the support library.

In the remainder of this section we discuss the implementation in more detail.
The kernels described below are the default kernels, everything can be customized
using techniques like traits classes and templates.

Delaunay triangulation.

We use the Regular_triangulation_3 to compute the weighted Delaunay trian-
gulation of the input balls. Since no geometric objects are constructed during the
construction of the Delaunay triangulation, any kernel with exact predicates pro-
duces the correct Delaunay triangulation.

Triangulated mixed complex.

The triangulated mixed complex is a Triangulation_3. Its kernel should also be
able to do exact constructions, since the vertices of the triangulation are anchor
points of simplices of the Delaunay triangulation, which are constructed. To speed
up the computation, we use a filtering technique [24] that is present in CGAL. This
filter first computes small boxes containing the vertices and uses those in further
computations. If the filtered computations fail to give a guaranteed result, the
computation is redone with an exact number type.
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Delaunay triangulation

Regular _triangulation_3

l triangulate mixed complex

Triangulated mixed complex

Triangulated mixed_complex_3

l marching tetrahedra algorithm

Mesh
Polyhedron_3

()

Subdivision Chew’s algorithm

Figure 5.8: Outline of the implementation. The boxes contain the datastructures
(with the name of the datastructure above the name of the class) and the labeled
arrows denote the functions that construct one datastructure from the other. The
labels describe the functions.

By definition, every tetrahedron in the triangulation is contained in a single
mixed cell. We store a pointer to the quadratic surface corresponding to the mixed
cell with each cell (tetrahedron). In this way we are able to move a point contained in
the cell towards the skin surface. This is done by first constructing the transversal
segment containing the point form the cell and then intersecting the transversal
segment with the quadratic surface.

Mesh

For the mesh, we use the Polyhedron_3 class which is able to store any orientable 2-
manifold. The kernel has to be able to perform exact constructions since its vertices
are constructed. Further the kernel has to support the predicates exactly that are
needed in the refinement step.

Construction of the triangulated mixed complex

The construction of the triangulated mixed complex is the least straightforward
part of the algorithm. It uses a Triangulation_incremental_builder_3 that is
developed for this algorithm, but might be of general interest. This builder first gets
the vertices of the triangulation and then the cells, which are defined by references
to four vertices. From these vertices and cells it constructs the triangulation.

The function triangulate_mixed_complex_3 computes the vertices and cells of
the triangulation and inserts them in the Triangulation_incremental_builder_3.
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The construction of vertices is complicated due to the occurrence of many degenerate
cases. For example, let vy be a Voronoi edge and let vy/, vy~ be its two vertices.
If the Voronoi edge degenerates into a point, then the anchor points a¢ x)(va),
afx)(vxr) and agx)(vyr) are equal. Similar cases occur if a Voronoi facet de-
generates into a line segment or a Voronoi cell into a facet. We first compute the
anchor points of the triangulated mixed complex and combine anchor points that
are equal using a union-find datastructure. We then insert all unique vertices and
the tetrahedra that are not degenerate, i.e., have four distinct vertices.

A similar class exists for the triangulation of the Voronoi diagram. This trian-
gulation can be used for meshing the boundary of the union of a set of balls.

Marching tetrahedra algorithm

The marching tetrahedra algorithm marching_tetrahedra_3 introduced in [92]
takes four arguments: the triangulation, the polyhedron, a traits class and an ob-
server class. The algorithm is performed on the triangulation and stored in the
polyhedron. The Polyhedron_incremental_builder_3 is used for constructing the
polyhedron.

The traits class defines a single predicate and a construction. First it is able to
test whether a vertex of the triangulation lies inside or outside the surface and it is
able to return an intersection point of the surface with an edge of the triangulation
whose vertices lie on opposite sides of the surface. For skin surfaces the intersection
point is unique as is shown in Theorem 59.

The observer class implements two functions that are called after the construction
of a vertex and a facet of the polyhedron. After insertion of a vertex in the polyhe-
dron a function is called with the vertex of the polyhedron and the corresponding
edge of the triangulation. Similarly, after insertion of a facet in the polyhedron a
function is called with the facet of the polyhedron and the corresponding cell of the
triangulation. Using these two functions it is possible to construct a reference from
simplices of the mesh to the corresponding simplices of the triangulation.

Both the traits class and the observer class make this algorithm highly flexible.

Refinement algorithms

We also implemented both algorithms described in the Section 5.3.4. The implemen-
tation of the v/3-subdivision method is straightforward. For the position of the new
vertices, we use point location in the triangulated mixed complex and then project
the new vertex along the transversal segment towards to the skin surface.

Initially, the performance of the subdivision algorithm was disappointing since
the filtered point location step failed often leading to slow running times. This
failure can be explained since new vertices of subdivided polyhedron lie on edges of
the coarse mesh, which in turn lie in facets of the triangulation. Filtered arithmetic
often fails in degenerate situations like this. To give the algorithm a significant
speedup, we also store with each facet of the polyhedron a pointer to the cell of
the triangulation entirely containing the facet. In this way the point location step
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Molecule Our algorithm Dynamic | Marching
Coarse | Sqrt-3 | Chew
pdb7tmn 0:00:01 | 0:00:02 | 0:00:05 | 0:10:00 0:00:05
DNA 0:00:14 | 0:00:29 | 0:00:55 | 0:35:12 0:00:51
Gramacidin A | 0:00:08 | 0:00:31 | 0:01:13 | 1:35:23 0:03:22

Table 5.1: Performance comparison

is not necessary. Storing this pointer is done with an adapted observer class of the
marching tetrahedra algorithm.

The implementation of Chew’s algorithm is the only part that is still in a devel-
opmental stage. Before we apply Chew’s algorithm we perform a preprocessing step
in which we remove small edges. This reduces the size of the final mesh considerably.

5.5 Examples and experiments

We compare our algorithm to the algorithms described in [27] and [29]. There is
a comparison of the two algorithms in [29]. These tests are run on a Pentium 4
running at 2.54GHZ. To test our algorithm we used an AMD Athlon 1800+ which
is actually a little slower. We tested our algorithm on various molecules, computing
only the coarse mesh, computing the coarse mesh and after that one v/3-subdivision
step and the coarse mesh which was subsequently improved using Chew’s algorithm.
For timings see Table 5.1.

Note that both our algorithm and the marching algorithm [29] are significantly
faster than the dynamic skin algorithm [27]. However, [29] does not come with
topological guarantees.

Figure 5.10 shows the molecule pdb7tmn. In Figure 5.10(d) we enlarged a part
of the coarse mesh and applied the Sqrt-3 method in Figure 5.10(e). Note that
the triangles remain skinny. Figure 5.10(f) shows the result of applying Chew’s
algorithm directly to the coarse mesh. Because of small edges in the coarse mesh,
there are also small edges near parts with low curvature. If we remove small edges,
as in Figure 5.10(g), before we apply Chew’s algorithm, we obtain Figure 5.10(h).

5.6 Extension to envelope surfaces

We think that it is possible to adapt the algorithm presented in this chapter to mesh
envelope surfaces, introduced in Chapter 4.

The main change lies in the construction of the triangulation of the generalized
mixed complex defined in Section 4.4, Proposition 34. Similar to mixed complex of
the skin surface, this polyhedral complex decomposes the envelope surface into pieces
of quadrics. The function defined within a cell (of any dimension) of the polyhedral
complex is a quadric. Any (non-degenerate) quadric has a unique critical point. We
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) DNA

(a

(b) Gramacidin A

Figure 5.9: Two larger molecules.
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(a) Shrink: .85 (b) Shrink: .5 (c) Shrink: .15

(d) Coarse mesh (e) Sqrt3-method (f) Chew applied to the
coarse mesh

(g) Small edges removed (h) Chew applied to the
enhanced mesh

Figure 5.10: The molecule pdb7tmn.
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define the vertices of the triangulated polyhedral complex as the anchor points of
polyhedral cells with respect to the critical point of the quadric.

Next, we construct a triangulation such that all edges have the monotonicity
condition. Therefore, we write the quadric in normal form using the eigenvectors
as its basis and we split the polyhedral cell along the planes through the critical
points spanned by two eigenvectors. For each non-empty clipped polyhedral cell, we
first triangulate the facets of lower dimensional simplices and then construct interior
edges. For the triangulation of facets we repeat the algorithm. The triangulation
of the interior of the polyhedral cell is done such that on each edge the distance to
a basisvector is non-decreasing (non-increasing) along the edge if the corresponding
eigenvalue is positive (negative). This implies that all edges satisfy the monotonicity
condition and that it is possible to construct the transversal segments. Using these
segments we are able to prove Theorem 59 for the general case of envelope surfaces.

5.7 Conclusion and future work

We present an algorithm that constructs a mesh that is isotopic to the skin surface
and discuss two methods to refine this mesh.

The algorithm we present is static in the sense that it generates a mesh for a
fixed set of input balls.

Maintaining the coarse mesh while deforming the input set, is important for ani-
mations and deforming molecules. Two deformation schemes seem computationally
interesting. From Lemma 52 we know that the anchor point of a mixed cell p% 5.
only depends on the Delaunay cell dyyx/, the Voronoi cell vynys and the shrink
factor. Adding a constant to all weights does not change the Delaunay and Voronoi
diagram and hence does not change the simplicial complex. Hence, the coarse mesh
of the skin surface obtained by adding a constant to each weight is another level-set
of the tetrahedral complex. Another deformation is obtained by varying the shrink
factor. Again, the structure of the mixed complex and simplicial complex remains
unchanged, however the positions of the anchor points change. It is sufficient to
reposition the anchor points and then update or recompute the coarse mesh. In
general, the solid foundation of the simplicial complex makes us believe that it is
possible to maintain the simplicial complex if the Delaunay triangulation can be
maintained.

We also believe that the algorithm can be generalized to mesh envelope surfaces
that are presented in Chapter 4. For this purpose, we have to implement the changes
proposed in Section 5.6. These changes do not seem to make the algorithm much
more complicated and is interesting to implement the algorithm in the future and
see how this algorithm performs for envelope surfaces.

Similar adaptations make the algorithm suitable for meshing Connelly surfaces.
These surfaces are also used in molecular biology and are formed by a small probe
sphere that carves away the space outside a union of balls. The disadvantage of this
type of surfaces is that they may not be tangent continuous.
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Chapter 6

Conclusion and open problems

Conclusion In this thesis we develop a class of C! surfaces, called envelope sur-
faces, that are defined as the envelope of a set of spheres. The set of spheres is
constructed by assigning a weight (i.e., squared radius) to a convex and compact
set of sphere-centers. The envelope surface is manipulated by changing the weight.
Moreover, if the weight function interpolates the weights at centers of a given finite
set of input balls, then the envelope surface contains the input balls.

Envelope surfaces extend a class of surfaces called skin surfaces. Skin surfaces
[48] were initially used for modeling molecular surfaces. In Chapter 3, we adapt
the theory of skin surface to make them suitable for surface approximation. Under
certain conditions on the input set of balls, we proved several properties of the
approximation with respect to the surface that is approximated: the two surfaces
are homeomorphic, the Hausdorff distance is arbitrarily small and every maximal
ball in the input set is also maximal in the approximation. For visualization and
further geometric processing of skin surfaces we developed a meshing algorithm in
Chapter 5. The approximating mesh is isotopic to the skin surface.

Open problems The flexibility of envelope surfaces makes us believe that these
surfaces are well suited for the design of surfaces. The approximation with skin
surfaces results in surfaces that are bumpy, i.e., the patches blending spheres together
are always concave. Using envelope surfaces the patches can be both concave and
convex. We conjecture that it is possible to construct an approximation scheme in
which the normals of the envelope surface converge to the normals of the original
surface.

Except for some prototypes used to give a proof of concept, we have not devel-
oped a modeler for these surfaces. With such a modeler it is possible to construct
and modify an envelope surface interactively and test the applicability of envelope
surfaces to their full extent. Several schemes are proposed in Section 4.6 to construct
a weight function interactively. Validation of these schemes on realistic data is also
possible with a modeler.

Several deformation schemes have been proposed to deform skin surfaces [28, 33,
48]. These algorithms have been developed for deformations of molecules. We think



104. Chapter 6. Conclusion and open problems

that these algorithms can also be used to deform envelope surfaces, which is impor-
tant in the setting of animations. It would be interesting to see how these schemes
perform on envelope surfaces. It might be necessary to develop new deformation
schemes to obtain better interpolation results.

Since the input of the surface approximation algorithms is a set of spheres con-
tained inside the surface, the construction of these sets is important for the appli-
cability of the approximation algorithms. Algorithms exist that construct a set of
balls from a dense point set on the surface. To the best of our knowledge, there are
no general algorithms that construct a set of maximal balls directly from a smooth
surface. These algorithms are of interest to us since they can be used to generate
the input balls.

We think that, with minor changes, the meshing algorithm for skin surfaces can
be generalized to mesh envelope surfaces. Also algorithms maintaining a skin surface
or an envelope surface of a deforming set of spheres are of great interest if animating
with skin surfaces or envelope surfaces.



Appendix A

Convex functions and differentiability

We review some basic concepts and properties from the theory of differentiable
functions (See, e.g., [9]) and from Convex Analysis (See, e.g., [16] and [88]).

A.1 Maxima of parameterized families

In this section X is a topological space, D is a compact topological space, and @ :
X x D — R is a continuous function. The function @ may also be considered as a
family of functions @, : X — R, parameterized by p € D, where @, (x) = O(x,p).
We will also use the shorthand notation ®(-,p) for ®,. Furthermore, we consider
the maximum-function ¢ : X — R, defined by

¢(x) = maxpep O(x, p).
Lemma 63. The function @ is continuous.

Proof. Let x € X, and let ¢ > 0. We shall prove that there is a neighborhood Xy of
x in X such that [@(&) — @(x)| < ¢ for & € Xo. For p € D there is a neighborhood
Xp of x in X and a neighborhood Dy, of p in D such that

[D(E,m) —@(x)] <,

for (§,m) € X, xDy,. Since D is compact, the cover {D;, | p € D} of D contains a finite
sub cover. In other words, there are py,...,pn € D such that D =Dy, U---UD,, .
Let Xo = Xp,, N---NX,,., then Xg is a neighborhood of x in X such that

D(E,M) — @(x)| <,

for £ € Xo and all m € D. Tt follows that |@(&) — @(x)| < € for & € Xo. In other
words, ¢ is continuous in x. [

In general, for given x € X the value of p for which ®(x,p) attains its maximum
is not unique. However, if it is unique it depends continuously on x.



106. Appendiz A. Convex functions and differentiability

Lemma 64. If for each x in X there is a unique value A(x) € D such that
@(x) = O(x,A(x)),
then the function A : X — D is continuous.

Proof. Let x € X, and consider a sequence {x,,} of points in X, converging to x. We
shall prove that the sequence {A(xn )} has A(x) as its unique limit point, which allows
us to conclude that A is continuous at x.

Let n € D be a limit point of {A(x.,)}. Such a limit point exists, since D is
compact. Passing to subsequences if necessary we may assume that the sequence
converges to 1. Since @ is continuous by assumption, and ¢ is continuous according
to Lemma 63, taking limits in

(P(Xn) - (D(Xna)\(xn))

we obtain the identity
@(x) = @(x,n).

Since the point at which ®(x,-) attains its maximum is unique, we conclude that
1N = A(x). In other words, A(x) is the unique limit point of the sequence {A(x)}. O

A.2 Gateaux- and Fréchet-differentiability

Consider a function f : RY — R. The one-sided directional derivative of f at x € R4
in the direction v, v € R4, is

. f(x+hv) —f(x)
Iineny) —
f'(x;v) = %&I& n )

provided this limit exists.
The function f is called Gateaux differentiable at x if the two-sided directional
derivative in the direction v

. f(x+hv) —f(x)
lim
h—0 h

exists for all v € R%. In this case f/(x;v) = —f’(x;—v). The function f is called
Fréchet differentiable at x € R® if there is a linear function T, : R — R such that

f(x +v) = f(x) + Tu(v) + || v|[[E(v),

for all v is some neighborhood of x, where E : RY — R is a function such that E(v) — 0
if ||v|| — 0. The linear transformation Ty is called the total derivative of f at x, and
is denoted by f'(x). If f is Fréchet-differentiable at x, then f is Gateaux-differentiable
at x in all directions v, and f’(x;v) = f/(x)(v) for all v € R%. Conversely, if f is
Gateaux-differentiable at x, and all its partial derivatives are continuous at x, then
f is Fréchet-differentiable at x.
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Note that this last property does not necessarily hold if the partial derivatives
are not continuous. To see this, consider the function f: R? — R, defined by

xy?

fx,y) = ¢ x* +y*’
0, if x =0.

if x # 0,

Then f is Gateaux-differentiable at xg = (0,0). In fact, if v = (a,b) then f'(xq;v) =
%Z, if a #0, and f'(xo;v) =0, if a = 0. On the other hand f is not even continuous
at (0,0), since f(y?,y) = %, if y # 0, and f(0,0) = 0. In particular, f is not
Fréchet-differentiable at (0,0).

A.3 Convex functions

We continue the discussion of Appendix A.1, but now we assume that X = R¢ and
D is a compact subset of R™. First we recall some results and terminology from
Convex Analysis.

A set A is convex if for any two points x,x’ € A the line segment xx’ lies in A
and A is called strictly convex if the open line segment (x,x’) lies in the interior of
A for any two points x,x’ € A.

The set of convex functions on a compact subset of a Euclidean space is closed.

Lemma 65. If a sequence of convex continuous functions defined on a compact
subset D of RY is convergent, then the limit function is convex on D.

The proof is straightforward. Note that the result is not true if we restrict to
strictly convex functions.
The epigraph of a function f : X — R is the set of points in X x R above the
graph of f:
epi(f) ={(x,z) | x € X,z € R and f(x) < z}.

A function is (strictly) convex if and only if its epigraph is a (strictly) convex set.
The following criterion for strict convexity is useful in the context of piecewise
smooth functions.

Lemma 66. Let f be a convex continuous function defined on a closed interval 1 of
the real line. If f is strictly convex on each connected component of the complement
of a finite set of points in 1, then f is strictly convex on 1.

Proof. Let S be the finite set of points such that f is strictly convex on each connected
component of I\ S. Consider a point & € S, and a neighborhood U of & in I that
contains no other points of S. It is sufficient to prove that f is strictly convex on
U, since a function is strictly convex on I if every point of I has a neighborhood on
which f is strictly convex.

Let xo,x7 € U with xg < x71, and let x¢y = (1 —t)xo + txq for 0 <t < 1. Since f
is convex on [xg,x1], we know that

fxe) < (1 —=1)f(xo) + tf(x1),
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for 0 <t < 1. If there is a t, with 0 < t < 1, for which equality holds, then equality
holds for all t. In that case f is an affine function on [xo,x7]. This contradicts the
fact that f is strictly convex on (xq, &) and on (&,x7). Hence the inequality is strict
for all t with 0 <t < 1. In other words, f is strictly convex on U. O

Lemma 67. If f is C?> on a conver domain D, then f is (strictly) conver iff the
Hessian of f is nonnegative definite (positive definite).

Proof. If the Hessian of f is nonnegative definite then the function is locally strictly
convex. A function that is everywhere locally strictly convex, is strictly convex. [

We present a simple situation in which the maximum-function ¢, introduced in
Section A.1, is convex.

Lemma 68. If ®(-,p) : RY — R is convex, for all p € D, then the function
@ :RY = R is conver.

Proof. Note that (x,z) € epi(¢) if and only if @(x) < z, i.e., if and only if ®(x,p) < z
for all p € D. Therefore:

epi(¢@) = Npep epi((+, p)).
The right hand side is an intersection of convex sets, so it is a convex set. 0

Lemma 69. A conver function on R has a (one sided) directional derivative at all
points in all directions. Furthermore,

—f'(x;—v) < f'(x;v),
for all x,v € RY.

Proof. Consider a monotonically decreasing sequence h,;, of positive numbers tending
to 0. Since f is convex, the sequence
f(x + hnv) — f(x)
hn

is monotonically decreasing, so it has a limit. In other words, f’(x;v) exists for all
x,v € RY, Now let h_ and h, be arbitrary positive numbers. Convexity of f implies
that

f(x) —f(x —h_v) < f(x + hyv) —f(x)
h_ - h, )
Taking limits for h_ | 0 and h, | 0 yields —f/(x;—v) < f/(x;v).
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Samenvatting

Voor het ontwikkelen en ontwerpen van producten wordt tegenwoordig veelvuldig
gebruik gemaakt van software-pakketten waarmee drie-dimensionale computermo-
dellen ontworpen kunnen worden. Deze modellen worden gebruikt om het product
te visualiseren voordat een fysiek prototype wordt gemaakt en voor het simuleren
van testen. Bekende voorbeelden hiervan zijn te vinden in de auto- en luchtvaart-
industrie, maar ook consumentenproducten worden met behulp van deze pakketten
ontwikkeld en getest.

Het modelleren van de oppervlakken van deze producten kun je je voorstellen
als het boetseren van een stuk klei. Hierbij is de klei een computermodel waaraan
je met de muis kunt “trekken” en “duwen”. De methodes die we beschrijven in dit
proefschrift worden gebruikt voor het modeleren van moleculen en gaan uit van een
andere beschrijving van de oppervlakken, namelijk door middel van een verzameling
bollen die binnen het oppervlak liggen. Het Michelinmannetje Bibendum is hier een
duidelijk voorbeeld van. Hij bestaat uit een aantal bollen die door middel van gladde
stukken aan elkaar geplakt worden.

Een eerste benadering voor het oppervlak gedefinieerd door een verzameling bol-
len is de rand van de vereniging van de bollen. Deze rand vormt een goede benadering
van het oppervlak als voor ieder punt op het oppervlak er een bol in de invoer verza-
meling is die voldoende dicht bij dit punt ligt, zie ook figuur 1.2. Een nadeel is dat
het oppervlak een knik heeft op de overgang tussen twee bollen. Met de methodes
die in dit proefschrift beschreven worden is het mogelijk oppervlakken te maken die
dicht om de rand van de vereniging van de bollen heen liggen en gladde stukken over
intersectiekrommen hebben, waardoor de oppervlakken glad worden. Een voorbeeld
van deze stukken is te zien in figuur 1.1.

Voor het maken van animaties is het nodig om een oppervlak in en ander opper-
vlak om te vormen. Er bestaan verschillende methodes die een verzameling bollen
in een andere verzameling bollen deformeert. Met behulp van deze methodes is het
mogelijk animaties te maken met de oppervlakken die in dit proefschrift worden
beschreven.

Het eerste hoofdstuk van dit proefschrift bevat de introductie waarin de glo-
bale indeling van de rest van het proefschrift wordt gegeven en gerelateerd onder-
zoek wordt beschreven. In hoofdstuk 2 worden algemene wiskundige begrippen
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getntroduceerd die worden gebruikt in de daaropvolgende hoofstukken.

Hoofdstukken 3 en 4 beschrijven twee methodes om de gladde overgangen tussen
de bollen te maken. Hierbij vormen envelope surfaces (beschreven in hoofdstuk 4)
een generalisatie van de benaderingsmethode met behulp van skin surfaces uit hoofd-
stuk 3.

Het model dat wordt uitgewerkt in hoofdstuk 3 is gebaseerd op skin surfaces
die door H. Edelsbrunner in [48] zijn ontwikkeld voor het modelleren van moleculen.
Een skin surface wordt gedefinieerd door een verzameling bollen en een shrink factor.
Teder molecule bestaat uit een aantal atomen waarbij iedere atoom gerepresenteerd
wordt door een bol. Het centrum van de bol komt overeen met de positie van het
atoom, en de radius (Van der Waals radius) hangt af van het soort atoom. De
rand van de vereniging van de bollen vormt het Van der Waals-oppervlak en wordt
gebruikt om moleculen te visualiseren. Het Van der Waals-oppervlak is de skin
surface van de bollen waarbij de shrink factor gelijk is aan 1. Voor een lagere,
positieve, shrink factor neemt de radius van de invoerbollen af (de bollen worden
kleiner) en verschijnen er gladde overgangen tussen de bollen. De skin surface van
een caffeine molecule is te zien in figuur A.1. De shrink factor is in dit geval gelijk
aan 1/2.

Voor het modelleren met behulp van skin
surfaces is het verkleinen van de bollen onge-
wensd. We willen namelijk een oppervlak maken
dat dicht om de vereniging van de bollen ligt en
niet om de vereniging van een verzameling klei-
nere bollen. Daarom vergroten we de bollen eerst
z6 dat het verkleinen van de bollen bij het con-
strueren van de skin surface teniet wordt gedaan.
Door deze combinatie van vergroten van de bollen

en het construeren van de skin surface krijgen we
een klasse van oppervlakken die dicht om de ver- Figuur A.1: De skin surface

eniging van de bollen heen ligt en gladde stukken van een caffeine molecule.
over de intersectie krommen heeft. Door middel van de shrink factor is het mogelijk
om de grootte van de interpolerende stukken tussen de bollen te beinvloeden. Een
voorbeeld van benaderingen met verschillende shrink-factor-waarden is te zien in
figuur 1.3. Voor een speciaal gekozen interval van shrink factor waarden tonen we
aan dat de skin surface de volgende eigenschappen in relatie tot de rand van de ver-
eniging van de bollen heeft. Ten eerste zijn de oppervlakken topologisch equivalent,
wat onder meer inhoudt dat de twee oppervlakken hetzelfde aantal componenten,
tunnels en gaten hebben. Verder liggen de twee oppervlakken niet ver uit elkaar
(in termen van de Hausdorff-afstand) en raakt iedere invoerbol, die de rand van de
vereniging raakt, de skin surface. Deze eigenschappen geven aan dat de benadering
met behulp van een skin surface niet veel verschilt van de rand van de vereniging
van de bollen.

In hoofdstuk 4 generaliseren we de klasse van skin surfaces tot envelope surfaces.
Met envelope surfaces is het mogelijk om de grootte van de interpolerende stukken
lokaal aan te passen. Hierdoor kunnen platte delen van het oppervlak benaderd
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worden met grote interpolerende stukken en kunnen kleinere stukken gebruikt wor-
den op plaatsen waar het oppervlak meer detail heeft. Het nadeel van deze grotere
flexibiliteit is dat een aantal eigenschappen die wel gelden voor skin surfaces niet
per definitie gegarandeerd zijn voor envelope surfaces. Zo kan het oppervlak zelf-
doorsnijdingen hebben of van topologie veranderen. We analyseren, met behulp
van ideeén uit de convexiteitstheorie, onder welke condities de oppervlakken geen
zelfdoorsnijdingen hebben en glad zijn.

Tenslotte beschrijven we in hoofdstuk 5 een
methode om een skin surface te trianguleren
(meshen). Een triangulatie is een verzameling
van driehoeken waarbij iedere driehoek een klein
stukje van het oppervlak bedekt en de driehoe-
ken op de randen aan elkaar passen. Een trian-
gulatie van de skin surface van het caffeine mo-
lecule op de vorige pagina is te zien in de figuur
aan de linker kant. Triangulaties zijn vaak no-
dig voor het visualiseren van de oppervlakken en

Figuur A.2: Een triangula- voor verdere bewerkingen, zoals simulaties. Het
tie van de skin surface van een triangulatie-algoritme maakt eerst een grove tri-
caffeine molecule. angulatie die isotoop is met de skin surface. Dit

houdt in dat de triangulatie en het skin surface
topologisch equivalent zijn. De grove triangulatie kan grote driehoeken of langgerekte
driehoeken bevatten. Voor visualisatie of voor verdere bewerkingen op de triangu-
latie moeten deze driehoeken worden vervangen. Dit kan worden gedaan door de
triangulatie lokaal te verfijnen met behulp van post-processing algoritmes. Momen-
teel wordt dit algoritme geimplementeerd en openbaar gemaakt als een uitbreiding
van de Computational Geometry Algorithms Library (CGAL). We beschrijven deze
implementatie kort en geven aan hoe dit algoritme gegeneraliseerd kan worden zodat
het ook geschikt is om envelope surfaces te trianguleren.
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Abstract

Nowadays, computer programs are often used for the construction of three dimen-
sional models in the development and design of products. These models are used
for visualization of the product even before the first prototype is constructed and
for simulating tests. Well known examples can be found in the automotive- and
aviation-industry. Also many consumer products are developed and tested with the
use of these computer programs.

Generally, the surfaces of these models are developed by virtually modeling a
piece of clay until it has the proper shape. In this analogue, the clay is a computer
model that is deformable with the use of a mouse by “pushing” and “pulling” parts
of the model. The methods described in this thesis use a different representation of
the surface and were initially developed for modeling molecules. These surfaces are
defined by a set of balls contained inside the surface. An example is the Michelin man
“Bibendum”, which is formed by a set of balls glued together by smooth patches.

A first approximation of the surface defined by a set of balls is the boundary of
the union of these balls. This boundary forms a good approximation of the surface
if there is a ball near every point on the surface, see also Figure 1.2. One of the
disadvantages of this surface is that has cusps on the intersection curves where more
than one ball touches the boundary. The methods described in this thesis are able to
construct surfaces that wrap tightly around the union of the balls and have smooth
patches over the intersection curves making the surface tangent continuous. See
Figure 1.1 for an example of these patches.

For animations it is necessary to deform one surface into another. Several meth-
ods exist to deform one set of balls into another. These methods can also be used
to deform the surfaces described in this thesis, hence giving an automatic way to
deform between the surfaces.

The outline of this thesis is as follows. Chapter 1 contains the introduction in
which related work is described and a more detailed outline of the thesis is given.
In Chapter 2 common mathematical notions are introduced which are used in the
subsequent chapters.

Chapters 3 and 4 describe two methods to construct tangent continuous surfaces
that wrap tightly around the union of a set of balls and have smooth patches over
the intersection curves. The envelope surfaces (described in Chapter 4) form a
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generalization of the approximation method that uses skin surfaces from Chapter 3.
The model presented in Chapter 3 is based on skin surfaces, which are introduced
by Edelsbrunner in [48] for the visualization of molecules. A skin surface is defined
by a set of balls and a shrink factor. Each molecule consists of a set of atoms and
each atom is represented as a ball centered on the location of the atom and its radius
(Van der Waals-radius) depends on the type of atom. The boundary of the union
of these balls forms the Van der Waals surface and is used for visualization of the
molecule. The Van der Waals surface is equal to the skin surface with a shrink
factor equal to one. For a lower, positive, shrink factor the radius of the input
balls decreases and smooth patches appear between the balls. The skin surface of a
caffeine molecule with a shrink factor equal to 1/2 is depicted in Figure A.1

In molecular biology, the decrease in the radius of the input balls is not important.
However for modeling, the skin surface should wrap tightly around the union of the
input balls and not around shrunk input balls. Therefore we first increase the radius
(grow the input balls) in such a way that due to the shrinking of the balls by
the construction of the skin surface, the balls obtain their original size again. By
combining these two steps (growing the balls and constructing the skin surface) we
obtain a class of tangent continuous surfaces that wrap tightly around the union of
the balls. With the shrink factor we are able to control the size of the interpolating
patches, as is seen in Figure 1.3. We are able to derive properties between the
boundary of the union of the balls and the skin surface for a specially chosen interval
of shrink factors. First, the two surfaces are homeomorphic, which, among other
things, means that they have the same number of connected components, tunnels
and holes. Secondly, the two surfaces lie close to each other (in terms of the Hausdorff
distance) and every input ball touching the boundary of the union of the input balls
also touches the skin surface. From these properties, we derive that the two surfaces
do not differ too much.

In Chapter 4 we generalize the class of skin surfaces to envelope surfaces. Using
envelope surfaces we are able to control the size of the interpolating patches locally.
This allows us to use larger interpolating patches on parts where the surface is flat
and smaller patches on parts of the surface with more detail. The disadvantage of
the increased flexibility is that properties which are valid for skin surfaces are not
necessarily valid for envelope surfaces. For example, an envelope surface can have
self intersections or can change topology. With results from convexity theory we
analyze under which conditions envelope surfaces are tangent continuous and do not
have self intersections.

Finally, in Chapter 5 we describe a method to triangulate (mesh) a skin sur-
face. A triangulation of a smooth surface is a set of triangles such that each triangle
covers a small part of the surface and the triangles fit nicely together on their bound-
aries. A triangulation of the caffeine molecule can be seen in Figure A.2. It is often
necessary to construct a triangulation of a surface for visualization and further ge-
ometric processing. The triangulation algorithm first constructs a coarse isotopic
triangulation. This implies that the skin surface and the triangulation are homeo-
morphic. The coarse triangulation can still contain large and skinny triangles which
are not suitable for further geometric processing. These triangles can be removed
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by a post-processing step which refines these triangles. This algorithm is currently
being implemented as an extension package to the Computational Geometry Algo-
rithms Library (CGAL). We briefly describe the implementation and the adaptations
needed to make it suitable for meshing envelope surfaces.
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