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1 Introduction

With the proliferation of huge data sets, factor models are becoming more

and more popular. Approximate factor models exploit the intuitively ap-

pealing idea that variations in a large number of economic variables can be

adequately modelled by a small number of reference variables, in other words

that movements in a large number of series are driven by a limited number of

common ‘factors’. A more recent development is the introduction of dynamic

factor models, in which factors can affect variables with lead and lags. Recent

examples are Stock and Watson (2002a, 2002b), Camba-Mendez, Kapetan-

ios, Smith, and Weale (2001), and the Generalized Dynamic Factor Model of

Forni, Hallin, Lippi and Reichlin (2000).

A natural question to ask is how much information is in the data set.

This question has two dimensions: (i) how many factors are sufficient to

adequately capture the information in the data set? and (ii) is there an ‘op-

timal’ size of the data set, i.e. does an additional variable add information?

To start with the latter, the size of the data set does not need to be very

large to obtain reasonable precise factor estimates. Boivin and Ng (2003) and

Inklaar, Jacobs, and Romp (2005) find that some 40 variables are sufficient

using Monte Carlo simulations and a comparison to conventional NBER-type

business cycle indicators, respectively. Bai and Ng (2002) come to the same

conclusion.

The determination of the optimal number of factors is a topic of ongoing

research. Two main approaches can be distinguished. Forni et al. (2000) ad-

vocate heuristic inspection of eigenvalues against the number N of the series.
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Each factor should explain at least a prespecified percentage of total vari-

ance. The average over the first q empirical eigenvalues diverges, whereas the

average of the (N − q) smallest eigenvalues is relatively stable. An alterna-

tive route is taken by Bai and Ng (2002), who propose the use of information

criteria to determine the optimal number of static factors r as a trade-off

between goodness-of-fit and overfitting. The Bai and Ng information criteria

give an upper bound for the number of dynamic factors q, since the number

of static factors r = q(p+1) is the maximum combination of dynamic factors

and their lag p. Recently, Kapetanios (2004, 2005) provides an alternative

to information criteria based on a sequence of tests on the largest eigenvalue

of the sample covariance matrix.

This paper exploits concepts from information theory in static and dy-

namic factor models, in particular Kullback-Leibler numbers. We link en-

tropy and information (negative entropy) from data to factor models, and

derive the distribution of eigenvalues in relation to information. We show

that the whole distribution of eigenvalues of the covariance matrix in the

data and the exact factor model contributes to the information and not only

the largest ones. In addition, we analyse a strict factor model. By this we

derive the condition that the first q say eigenvalues diverge whereas the rest

remain bounded in the static model rather than having to assume it as for

example Forni et al. (2002) do. Finally, we calculate information in static

and dynamic factor models, which can be used to find the dimensions of the

factor space. Simulation experiments illustrate our methods.

The paper is structured as follows. Section 2 discusses information in the

data set. Section 3 looks at static factor models focusing at modelling cross-
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sectional correlations, whereas Section 4 considers dynamic factor models and

autocovariances. Section 5 reports some simulation experiments. Section 6

concludes.

2 Information in data

Let xt be an N -dimensional vector of observed data at time t, t = 1, . . . , T .

The data is demeaned and normalized, and normally distributed with mean

zero and variance E(xtx
′
t) = Γ0, i.e. xt ∼ N(0, Γ0), where diag(Γ0) =

(1, 1 . . . , 1), tr(Γ0) = N and Γi = E(xtx
′
t−i) are the autocovariances of xt.

The entropy, denoted by H, as measure of disorder is for a stationary,

normally distributed vector given by

2Hx = cN + logdet(Γ0),

where c ≡ log(2π) + 1 ≈ 2.84, with 2Hx,max = cN in case Γ0 = IN , see e.g.

Goodwin and Payne (1977). The information or negentropy is defined as

Ix ≡ 2Hx,max − 2Hx = −logdet(Γ0) ≥ 0, (1)

which is zero in case Γ0 = IN .

Assuming that the autocovariance matrix Γ0 has full rank, we can apply

the decomposition

Γ0 = CΛC ′, with Λ = diag(λ1, . . . , λN); λ1 ≥ λ2 ≥ . . . ≥ λN > 0. (2)
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Therefore, we have tr(Γ0) = tr(Λ) = N .

Let ||A||E =
(∑

i,j |ai,j|2
)1/2

= tr(A′A)1/2 be the Euclidean (Schur)

norm of the matrix A. So, ||Γ0||2E =
∑

i,j |γi,j|2 measures the magnitude of

correlation between xi,t and xj,t with γi,i = 1. From Equation (2) we have

||Γ0||2E = tr(CΛ2C ′) = tr(Λ2) =
N∑

i=1

λ2
i

Let λ = (λ1 . . . λN)′, then ||Γ0]]
2
E = λ′λ which under the restriction ι′λ =∑

λi = N attains its maximum when λ1 = N and λj = 0, j = 2, . . . , N .

Absolute information can be rewritten as

Ix =− logdet(Γ0) = −
N∑

j=1

log λj ≥ 0

=−
N∑

j=q+1

log λ̃j −
q∑

j=1

log λj ≥ 0, λ̃j ≤ 1, λj > 1

=
N∑

j=q+1

log
(
1/λ̃j

)
−

q∑
j=1

log λj ≥ 0

=
(
log(1/λ̃N)− log(λ1)

)
+

(
log(1/λ̃N−1)− log(λ2)

)
+ . . . ≥ 0.

So, absolute information Ix is positive if
(
1/λ̃N

)
> λ1,

(
1/λ̃N−1

)
> λ2, . . . or

tr(Λ−1) > tr(Λ) = N . The information Ix is determined by the magnitude of

the (N−q) eigenvalues λ̃2
j < 1 and the magnitude of the q largest eigenvalues

λj. The larger tr(Λ−1)−N , the more information. This can be seen by using

a divergence information measure based on the Kullback-Leibler numbers and

the entropy of the eigenvalues.
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Kullback-Leibler information and divergence

Let f1(x̃) : x̃ ∼ NN (0, Γ0 = CΛC ′) be the density function of x (time index

suppressed), then f1(x) : x ∼ NN (0, Λ) where x = C ′x̃. Let f2(x̃) : x̃ ∼

NN (0, IN). Then f2(x) : x ∼ NN (0, IN) with x = C ′x̃. The so-called

Kullback-Leibler numbers are defined as

G1 = Ef1

(
log

(
f1(x

f2(x)

))
and G2 = Ef2

(
log

(
f2(x

f1(x)

))
(3)

and G(x) = G1(x) + G2(x) is the measure of information for discriminating

between the two density functions with G(x) = 0 in case f1(x) = f2(x) and

G = ∞ in case of perfect discrimination, see Young and Calvert (1974, pp

245–245). For a general background see Burnham and Anderson (2002).

For tr (Γ0) = tr(Λ) = N we have G1(x) = −logdet(Λ) and G2(x) =

logdet(Λ) + 1
2
(tr(Λ−1)−N). Therefore

2G(x) = tr(Λ−1)−N = tr(Λ−1)− tr(Λ) =
N∑

j=1

(1− λ2
j)

λj

, (4)

from which it can be seen that G(x) is not discriminating if λj ≈ 1 but is

discriminating for “small” λj < 1.

Consider the special case of the transformation with xt ∼ NN (0, Γ0 = CΛC ′)

with C = (c1 c2 . . . cN) and λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, i.e.

yt = C ′
1xt or y′t = x′tC1 = x′t(c1 c2 . . . ck)
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where {cj, j = 1, . . . k} are the first k eigenvectors, then E(yt) = 0 and

var(yt) = Λ1 = diag(λ1 . . . λk).

This transformation, in which yt is called the feature-vector, is known

as the Karhunen-Loève expansion. Young and Calvert (1974) show that the

Karhunen-Loève expansion is an optimal minimax entropy feature extractor

in case f(x) is not Gaussian (e.g. a mixture of density functions {f(x) :

E(xt) = 0, E(xtx
′
t) = R}. Estimates of the feature vector yt through time

are given below, relating the feature vector to principal components.

The foregoing shows that the distribution of the eigenvalues is important,

which can be measured by the entropy of the eigenvalues. Because tr(Λ) = N

we have λ̄j = λj/N with 0 ≤ λ̄j ≤ 1 and

Hλ̄ = −
∑

j

λ̄j log λ̄j (5)

with Hmax
λ̄

= log(N) for λ̄j = 1/N for all j. As mentioned above in the ideal

case we have λ1 = N (λ̄1 = 1) and λj = 0, j = 2, . . . , N and Hλ̄ = 0 (with

the usual convention λ̄j log λ̄j = 0 for λ̄j = 0). The information contained in

the eigenvalues is Iλ̄ = log(N)−Hλ̄ or the relative information

IR
λ̄ = 1− Hλ̄

log(N)
,

with 0 ≤ IR
λ̄
≤ 1.
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3 Static factor model

Up to now we did not exploit the fact that the data is driven by a number

of factors. Now let xt be driven by k factors

xt = BFt + εt, xt ∈ Rn, Ft ∼ Nk (0, Ik) , εt ∼ NN(0, σ2IN), (6)

where B ∈ RN×k are the matrix of factor loadings, with Euclidean norm

||B||2E =
∑

i,j |bi,j|2 = tr(B′B). We can apply the Singular Value Decompo-

sition (SVD) to the matrix of factor loadings

B = UNSV ′
k with S =

 Sk

0

 , (7)

where the columns of UN and Vk are orthonormal, i.e. UNU ′
N = U ′

NUN =

IN and VkV
′

k = V ′
kVk = Ik, Sk = diag(s1, . . . sk), s1 ≥ s2 ≥ sk > 0 (si’s are

the singular values). So, B has Euclidean norm ||B||2E = tr(B′B) =
∑k

i=1 s2
i .

Let bj ≡ (bj1 . . . bjk) be the j-th row of B, i.e. the vector of factor loadings

of the j-th component of xt. Then using tr(B′B) = tr(BB′)

tr(BB′) =
N∑

j=1

||bj||22 with ||bj||22 = bjb
′
j

and

SN ≡
k∑

i=1

s2
i (N) =

N∑
i=1

||bj||22,

i.e. the singular values function of N are proportionally increasing with N

provided ||bj||22 6= 0 for all j, so SN = O(N).
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Rewrite the factor model (6) as

xt = UNSV ′
kFt + ε̃t = UNSF̃t + ε̃t,

where F̃t = V ′
kFt with variance var(F̃t) = V ′

kVk = Ik and ε̃t = UNεt with

variance var(ε̃t) = σ2UNU ′
N = σ2IN . The factor model becomes

xt = UN

[
SF̃t + εt

]
,

and has autocovariance

Γ0 = E(xtx
′
t) = UN


 Sk 0

0 0

 + σ2IN

 U ′
N = UNAU ′

N .

Matrix A is equal to A = diag(s2
1 + σ2, s2

2 + σ2, . . . , s2
k + σ2, σ2, . . . , σ2) ∈

RN×N . Normalisation using tr(Γ0) = tr(A) =
∑k

j=1 s2
j + Nσ2 = N yields

Ã = diag

(
s2
1 + σ2

s̄N + σ2
,

s2
2 + σ2

s̄N + σ2
, . . . ,

s2
k + σ2

s̄N + σ2
,

σ2

s̄N + σ2
, . . . ,

σ2

s̄N + σ2

)
,

where s̄N ≡
∑k

j=1 s2
j/N . The first element in Ã is larger than one, because

s̄N ≤ k
N

s2
1.

Let c(B′B) = s1/sk be the condition number of B′B. Then s2
1 =

c2(B′B)s2
k and s̄N ≤ k

N
c2(B′B)s2

k from which follows that
s2
j+σ2

s̄N+σ2 > 1 for

j = 1, . . . , k if c(B′B) <
√

N
k
. The larger the average magnitude of B

measured by s̄N the smaller the (N − k) elements σ2

s̄N+σ2 < 1
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Adding a variable

What is the effect of adding a new variable xN+1,t to the data set xt? The

matrix of factor loading becomes BN+1 =

 B

bN+1

 with

tr(B′
N+1BN+1) =||BN+1||2E = tr(B′B) + bN+1b

′
N+1

=SN + ||bN+1||22 =
k∑

j=1

s2
j(N + 1) ≡ SN+1,

i.e. SN+1 = SN + ||bN+1||22. Therefore, if ||bN+1||22 6= 0, the sum of squared

singular values is proportionally increasing with N , sN = O(N), s̄N ≡ SN/N

is bounded, and s2
j , j = 1, . . . , k diverge whereas the last (n− k) elements of

Ã are bounded.

The information in the autocovariance matrix Γ0 is equal to 2Ix = −logdet(Γ0) =

−
∑N

j=1 log λj = −
∑N

j=1 log ãjj, where ãjj is the j-th element of Ã, or

2Ix = (N − k) log

(
s̄N + σ2

σ2

)
−

k∑
j=1

log

(
s2

j + σ2

s̄N + σ2

)
.

Do variables add information? Recall that for xt(N) ∈ RN with au-

tocovariance E(xt(N)x′t(N)) = Γ0(N) the entropy is defined as 2Hxt(N) =

cN + logdet (Γ0(N)) and the information as 2Ixt(N) = 2Hx,max − 2Hx =

−logdet (Γ0(N)) ≡ IN . Define the relative information (per component of

xt(N)) as:

2IR
N =

2Hmax − 2Hx(N)

2Hmax

=
IN

2Hmax

=
IN

cN
.
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If Hx(N) is equal to Hmax then 2IR
N = 0; if Hx(N) = 0 then 2IR

N = 1. So, an

additional variable xN+1,t adds information if

2IR
N+1 > 2IR

N or
IN+1

c(N + 1)
>

IN

cN
, i.e.(IN+1 − IN) > IN/N.

The (N + 1)-th variable need to add more information than the average

contribution of the N variables already included in the data set.

Least squares estimation and feature extraction

The static factor model with ”true” number of factors equal to k̄ is given by

xt = BFt + εt, t = 1, . . . ,

where the factor loading matrix B ∈ RN×k̄ with rank(B) = k̄, the factors

are orthogonal E (FtF
′
t ) = Ik̄, and the errors have mean zero E(εt) = 0 and

variance E(εtε
′
t) = Vε. Note that we do not assume a strict factor mapping

here.

Consider T demeaned observations of the j-th variable, j = 1, . . . , N ,

collected in the vector x̃j ∈ RT . Let xj = x̃j/sxj
with s2

xj
= ||x̃j||22/T

then ||xj||22 = T . Write the (T × N) matrix X as X =


x′1
...

x′T

, xt ∈

RN , x′t = (x1,t . . . xN,t). For T ≥ N we have 1
T
X ′X = Γ̂0 = 1

T

∑T
t=1 xtx

′
t,

with tr(Γ̂0) = N .
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To apply singular value compositions we distinguish two cases: (i) T ≥ N

and (ii) T < N . Ad (i) If T ≥ N the SVD becomes

X = UT

 SN

0

 V ′
N = UNSNV ′

N ,

with UT = (u1 . . . uT ) orthonormal (U ′
T UT = UT U ′

T = IT ), VN = (v1 . . . vN)

orthonormal (V ′
NVN = VNV ′

N = IN), and SN = diag(s1 . . . sN), s1 ≥ s2 ≥

. . . ≥ sN ≥ 0. Ad (ii) For T < N we get

X = UT (ST 0)V ′
N = UT ST V ′

T ,

with VT = (v1 . . . vT ) and ST = diag(s1 . . . sT ).

Defining kmax = min(N, T ) the two SVDs can be written as

X = UkmaxSkmaxV
′

kmax. (8)

If kmax = N , the autocovariance Γ̂0 = 1
T
X ′X = 1

T
VNS2

NV ′
N = VNΛ̂NV ′

N ,

or Λ̂N = 1
T
S2

2 , which implies the λ̂j = s2
j/T, j = 1, . . . , N , are eigenvalues of

Γ̂0.

Select k < kmax and apply a least squares decomposition

X = UkSkV
′

k + U2S2V
′

2 ≡ X̂ + E (9)

where Uk = (u1 . . . uk), U2 = (uk+1 . . . ukmax), Vk = (v1 . . . vk), V2 =

(vk+1 . . . vkmax), Sk = diag(s1 . . . sk) and S2 = diag(sk+1 . . . skmax) with
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s1 ≥ s2 ≥ . . . ≥ skmax ≥ 0. The Euclidean norm of the errors E is equal to

||E||2E = ||X − X̂||2E = tr(E′E) =
∑kmax

j=k+1 s2
j , which is the minimum. Note

that the least squares properties E′X̂ = V2S2U
′
2UkSkV

′
k = 0 and X̂ ′E = 0

are satisfied because of the orthogonality of U .

The first component of the least squares decomposition (9) becomes

X̂ =


x̂′1
...

x̂′T

 =


F̂ ′

1,1

...

F̂ ′
1,T

 SkV
′

k ,

where U ′
k ≡ (F̂1,1 . . . F̂1,T ) are realizations of the k factors. So we have

x̂t = VkSkF1,t = B̂1F1,t, (10)

where B̂1 = (s1v1 . . . skvk), with condition number c(B̂′
1B̂1) = s1/sk and

|| 1√
T
B̂1||2E = 1

T

∑k
j=1 s2

j =
∑k

j=1 λ̂j. The sample covariance matrix of the

factors is
∑T

t=1 F ′
1,tF1,t = U ′

kUk = Ik.

The residuals are equal to

E =


e′1
...

e′T

 =


F2,1

...

F2,T

 S2V
′

2 , (11)

with U ′
2 = (F2,1 . . . F2,T ). Therefore

et = V2S2F2,t = B̂2F2,t
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with B̂2 = (sk+1vk+1 . . . skmaxvkmax) and
∑T

t=1 F ′
2,tF2,t = U ′

2U2 = Ikmax−k.

The residuals are generated by (kmax− k) independent factors. The condi-

tion number of c(B̂′
2B̂2) is equal to c(B̂′

2B̂2) = sk+1/skmax. In addition we

have

|| 1√
T

B̂2||2E =
1

T

kmax∑
j=k+11

s2
j =

kmax∑
j=k+1

λ̂j.

Combining (10) and (11) we get

xt = x̂t + et = B̂1F1,t + B̂2F2,t (12)

with x̂′tet = F ′
1,tSkV

′
kV2S2F2,t = 0 because of the orthogonality of V , and

autocovariance

Γ̂0 =
1

T
X̂ ′X̂ +

1

T
Ê′Ê =

1

T
B̂1B̂

′
1 + V̂ε,

with V̂ε = 1
T

∑T
t=1 ete

′
t = 1

T
B̂2B̂

′
2 and tr(V̂ε) = 1

T

∑kmax
j=k+1 s2

j =
∑kmax

j=k+1 λ̂j is

minimum.

Feature extraction and Karhunen-Loève expansion

In Equation (8) we observed that

X = UkmaxSkmaxV
′

kmax.
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Let Vk = (v1 . . . vk) then XVk = UkSk or


x′1
...

x′T

 (v1 . . . vk) ≡


y′1
...

y′T

 =


F ′

1,1

...

F ′
1,T

 Sk,

where yt = SkF1,t, t = 1, . . . , T is the feature vector with covariance matrix

1
T

∑T
t=1 yty

′
t = S2

k/T = Λ̂k so the components of yt are linear combinations

of the factors. Because


y′1
...

y′T

 = (s1u1 . . . skuk) the j-th component of

the feature vector through time {yt, t = 1, . . . , T} is sjuj, that is the j-th

singular value times the j-th principal component uj ∈ RT .

4 Dynamic factor models1

Let xt be an N -dimensional vector of observed data at time t, t = 1, . . . , T ,

which is driven by q dynamic factors ut with loadings Bj up to lag p, i.e.

j = 1, . . . , p, and idiosyncratic components εt

xt = B0ut + B1ut−1 + . . . + Bput−p + εt. (13)

Equation (13) is the (dynamic) factor representation of the data. Note that

factors, loadings and idiosyncratic components are not observable. In vector

1This section draws upon Jacobs and Otter (2006).
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notation the model becomes

xt =

(
B0 B1 . . . Bp

)


ut

ut−1

...

ut−p


+ εt ≡ BFt + εt. (14)

We make the following assumptions. First, the q-dimensional vector of fac-

tors is Gaussian White Noise (GWN) with E(ut) = 0 and var(ut) = Iq, the

q-dimensional identity matrix. Secondly, the idiosyncratic components εt is

GWN with E(εt) = 0 and var(εt) = V and factors ut and idiosyncratic

components εt are independent. This assumptions imply that the general-

ized dynamic factor model of Forni, Hallin, Lippi and Reichlin (2000a) and

Forni and Lippi (2001), which allows some correlation among idiosyncratic

components, can be dealt with too. Thirdly, the matrix of loadings B has

full (column-)rank, i.e. rank(B) = (p + 1)q with (p + 1)q < N .

In the sequel we give a procedure based on canonical correlation to deter-

mine the information content in the set of autocovariances {Γi, i = 0, 1, 2 . . .}

with Γi = E(xtx
′
t−i) together with the dimension of the dynamic factors (q)

and the lag order (p). The basic idea is the following. Let

 xt

xt−i

 ∼ N2N


 0

0

 ,

 Γ0 Γi

Γ ′
i Γ0


 ,

where {xt, t = 1, 2, . . .} is assumed to be stationary. The canonical cor-

relation procedure linearly transforms the 2N -dimensional vector into the
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2N -dimensional vector yt

yt−i

 ∼ N2N


 0

0

 ,

 IN Si

Si IN


 ,

where Si is a diagonal matrix, i.e. Si = diag(si,1 . . . si,N), where {si,j, j =

1, . . . , N} are the canonical correlation coefficients with 0 ≤ si,j ≤ 1. Using

Bartlett’s test statistic a subset of the canonical correlation coefficients are

tested against zero. In case Si = 0 is accepted, the conditional entropy of yt

given yt−i is 2Hmax
y = cN , whereas if Si 6= 0 the conditional entropy of yt

equals 2Hy = cN + logdet(I − S2
i ) and hence

2I(yt|yt−i) = −logdet(I − S2
i ) = −

N̄≤N∑
j=1

ln(1− s2
i,j), (15)

where N̄ is the number of significant canonical correlation coefficients as

outcomes of the testing procedure for p and q given below.

Estimation of p and q

First we demean the N components of our data matrix xt and take unit

variances, obtaining x̃t. Let

Γ̂i =
1

T − i

T∑
t=i

x̃tx̃
′
t−i, i = 0, 1, 2, . . .

17



be a consistent estimate of the autocovariances Γi. Assuming that rank(Γ̂0)

has full rank N , we can apply the spectral decomposition

Γ̂0 = CΛ1/2Λ1/2C ′ = Γ̂
1/2
0 (Γ̂

1/2
0 )′, (16)

with Γ̂
−1/2
0 = Λ−1/2C ′ and the Singular Value Decomposition (SVD)

Γ̂
−1/2
0 Γ̂i(Γ̂

−1/2
0 )′ = HiSiQi (17)

where the columns of H and Q are orthogonal, i.e. H ′
iHi = HiH

′
i = IN and

Q′
iQi = QiQ

′
i = IN , and Si = diag(si,1, si,2, . . . , si,N), an N × N diagonal

matrix with singular values si,j ∈ [0, 1] with si,1 > si,2 > . . . > si,N ≥ 0.

The canonical correlation coefficients (singular values) si,j are estimates of

the equivalent population canonical coefficients ρi,j, see Otter (1990, 1991).

To test the null hypothesis that the N − k smallest population canonical

coefficients for the ith autocovariance are equal to zero

H0 : ρi,k+1 = . . . = ρi,N = 0,

we calculate Bartlett’s test statistic

χ2 = −
[
T − 1

2
(2N + 1)

] N∑
j=k+1

ln(1− s2
i,j), (18)

for all values of k = 0, 1, 2, . . .. This statistic follows a χ2 distribution under

the null with degrees of freedom df = (N − k)2.

18



Test procedure

The procedure essentially comes down to the linear transformation of x̃t and

x̃t−i into canonical vectors yt = Aix̃t and yt−i = Gix̃t−i with Ai = H ′
iΓ̂

−1/2
0

and Gi = QiΓ̂
−1/2
0 with E(yty

′
t−i) = Si and unit variance matrices. The

conditional variance of yt given yt−1 equals (IN−S2
i ) and hence the estimated

information is given by Equation (15) above. From Equation (14) and the

normalisation we have Γi = D−1/2B(i)B′D−1/2 where D = diag(σ2
1, ...., σ

2
N)

with the variances of the components of xt as elements. The N × (p + 1)q

dimensional matrix B(i) = (Bi Bi+1 . . . Bp 0 . . . 0) has rank (p + 1− i)q

and hence the rank of Γi is (p + 1− i)q for lags i = 1, .., p and zero for lags

greater than p. The ranks of Γ̂i are estimated by the number of significant

singular values using Bartlett’s test statistic as follows.

If for a given significance level the hypothesis that all population canonical

coefficients for the (p + i)th autocovariance (i > 0) are equal to zero, i.e.

H0 : ρp+i,1 = ρp+i,2 = . . . = ρp+i,N = 0, is accepted whereas the hypothesis

that all population canonical coefficients for the (p)th autocovariance are

equal to zero, H0 : ρp,1 = ρp,2 = . . . = ρp,N = 0 is rejected, but the hypothesis

that the (N−q) smallest canonical coefficients are equal to zero, H0 : ρp,q+1 =

ρp,q+2 = . . . = ρp,N = 0, is accepted, then the estimated lag order is p and

the estimated number of factors or dim(ut) equals q.

5 Simulation

To illustrate our procedures, we run some simple simulation experiments in

MATLAB along the lines of Bai and Ng (2002). We simulate data from the
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dynamic factor model of Equation (13)

xit =

p∑
l=1

q∑
j=1

biljujt−l + σεit

for different maximum lag orders p, common factors q, and noise standard

deviation σ. The static factor model that corresponds to this dynamic one

has k = (p + 1)q factors. The elements of the loadings bilj are independent

drawings from a uniform distribution in the interval [−2, +2]. All time-series

are standardised, i.e. demeaned and scaled to unit variance. We assume

N < T , in particular T = Nα, α > 1 in line with Forni et al. (2004).

Table 1 lists the first seven eigenvalues and the last eigenvalue of the

autocovariance matrix Γ (0) for k = 4, 6, σ = 1, 5 and different values

of the number of variables N and the number of observations T ≡ N1.1,

together with the information measures KL the discrimination function of

Equation (4), information Ix as defined in Equation (1), maximum entropy

Hmax
x , the entropy of the eigenvalues Hλ̄ as defined in Equation (5), and

the maximum entropy of the eigenvalues Hmax
λ̄

. The larger the number of

variables and observations, the more information is in the factor model as

can be seen from higher values of the eigenvalues larger than one and higher

values of the information measures in the last five columns. By construction

the eigenvalues are decreasing. For σ = 1 the fifth (seventh) eigenvalue

becomes equal to or smaller than one for k = 4, 6. With high noise σ = 5,

this pattern is less clear. The fifth (and seventh) eigenvalue jumps to a

smaller value, but does not become smaller than one.
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Table 2 provides information on the dynamic factor model. Again we

simulate data from the dynamic factor model of Equation (13). For p = 2,

q = 2 and different combinations of N and T , we calculate maximum en-

tropy Hmax, the number of significant singular values nsig , the information

in the autocovariance matrix I(yt|yt−l) at the first four lags as defined in

Equation (15), and Ix, the information in Γ0. The table allows the follow-

ing observations. First, the information in Γ0 is significantly larger than

the information in the autocovariances at the first four lags. Secondly, the

information in Γ0 increases with the number of variables and observations.

At N = 50, T = 354 and σ = 1 information in the autocovariance matrix

Γ0 (Ix) is equal to 85.37, whereas Ix rises to 193.5 for N = 100, T = 1000.

However, the rather limited additional information suggests that the number

of variables need not be very large to get reasonable precise factor estimates,

as mentioned in the Introduction. Thirdly, the information in Γ0 decreases

with noise; for example with N=100 and T=1000, Ix goes from 193.5 if σ

equals one, to 54.3 and 23.2 for σ equal to three and five. Finally, the number

of significant singular values of the autocovariance matrix becomes zero after

two lags. Exceptions occur because the outcomes in each row are based on

a single simulation run.
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Table 2: Information in dynamic factor model (q = 2, p = 2, k = 6)

Hmax nsig I(yt|yt−l) nsig I(yt|yt−l) nsig I(yt|yt−l)

N = 50, T = 354
σ = 1 σ = 3 σ = 5

Ix 85.37 21.34 10.74
l = 1 141.9 5 16.41 4 7.10 4 4.57

2 141.9 2 7.89 2 3.44 2 2.14
3 141.9 0 0 1 0.66 1 0.63
4 141.9 0 0 0 0 0 0

N = 100, T = 1000
σ = 1 σ = 3 σ = 5

Ix 193.5 54.3 23.2
l = 1 283.8 4 17.9 4 9.3 4 5.8

2 283.8 2 9.2 2 4.9 2 2.9
3 283.8 0 0 0 0 0 0
4 283.8 0 0 0 0 0 0

N = 38, T = 180
σ = 1 σ = 3 σ = 5

Ix 62.75 17.77 7.61
l = 1 107.84 5 15.77 4 6.65 2 2.23

2 107.84 3 9.27 2 3.61 3 3.32
3 107.84 1 1.05 0 0 1 1.13
4 107.84 0 0 1 1.15 1 1.03

Notes: Hmax is maximum entropy; nsig is the number of significant singular values of the
autocovariance at lag l ; I(yt|yt−l) is information in the autocovariance matrix with lag
l as defined in Equation (15); Ix is the information in the autocovariance matrix Γ0 as
defined in Equation (1).
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The bottom panel of Table 2 reports information outcomes for the data set

dimensions of Inklaar et al. (2005), i.e. N = 38 and T = 180. To illustrate

the procedure for obtaining estimates of the number of dynamic factors q and

lags p, we run 1000 replications of the dynamic factor model of Equation (13)

for different combinations of (p, q, σ) for the same data set dimensions. Table

3 lists the average number of significant canonical correlation coefficients

(at the 5% significance level) for autocovariances up to and including the

fifth lag. Due to the large number of degrees of freedom the Bartlett test

statistic of Equation (18) has been replaced by the standardised z-statistic.

In addition, we print the signal-to-noise ratio (SN) for each component xi,t,

which is defined as the ratio of the common variance due to the factors and

the variance due to the noise, i.e, SN = 4(p + 1)q/3σ2 and information Ix in

the autocovariance matrix Γ0 as defined in Equation (1).

Table 3 shows that for most of the combinations of p and q with low

noise the procedure performs well especially in the estimation of the lag

order (a drop after lag p) with for lag p + 1 an average of significant singular

values less than one. For example, the average number of singular values for

(p, q, σ) = (1, 1, 1) drops from 1.31 for autocovariances at one lag to 0.41 at

lag two.

As explained in the test procedure, one expects a drop in the number

of significant singular values from ((p − i)q + q) to (p − i)q which equals

q, the number of dynamic factors, if the lag is increased from from i to

(i + 1) (for i not greater than p). So, subtracting the number of significant

singular values at lag (i + 1) from the number at lag i provides a method

to estimate q. Consider for example the combination (q = 2, p = 3, σ = 1
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Table 3: Dynamic factor model: Monte Carlo simulations (N = 38, T = 180,
1000 replications)

q p σ avg. of sign. sing. vals at autocov. with lag SN Ix

1 2 3 4 5

1 1 1 1.31 0.41 0.55 0.65 0.74 2.67 38.76
2 1 1 2.25 0.45 0.55 0.66 0.78 5.33 55.82
3 1 1 3.29 0.41 0.52 0.62 0.76 8.00 58.98
4 1 1 4.26 0.44 0.51 0.63 0.78 10.67 64.8
5 1 1 5.22 0.41 0.53 0.62 0.77 13.33 67.12
6 1 1 6.22 0.43 0.54 0.63 0.74 16.00 67.70

2 1 1 2.25 0.45 0.55 0.66 0.78 5.33 55.82
2 2 1 4.27 2.40 0.52 0.65 0.78 8.00 64.92
2 3 1 6.20 4.33 2.46 0.61 0.80 10.67 70.36
2 4 1 8.19 6.29 4.41 2.57 0.76 13.33 65.30

2 4 3 7.76 5.94 4.20 2.39 0.77 1.48 18.18
2 4 5 5.90 4.52 3.37 2.08 0.79 0.53 10.90
2 4 7 3.69 2.90 2.21 1.53 0.76 0.27 6.64

Notes: p is the maximum lag order; q is number of common factors; σ is the variance of the
noise; SN is the signal-to-noise ratio of the variance due to the factors and the variance
due to the noise, SN = 4(p + 1)q/3σ2: and I is information as defined in Equation (1).
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in Table 3. Subtracting the number of singular values at lag i from those

at lag (i + 1) results in (1.87 1.87 1.85 -0.19), producing an estimate of

two dynamic factors. The estimation of the number of factors shows a slight

overestimation in case of low noise and a serious systematic underestimation

in case of increased noise. Take for example (p, q) equal to (2,4). A noise level

of 1 leads on average to 8.19 singular values which is close to the expected

value pq = 8, whereas a higher noise level of 7 gives 3.69 singular values on

average, as expected because of the very low signal-to-noise ratio.

6 Conclusion

This paper has shown that concepts from information theory can fruitfully

be applied in the analysis of factor models. The information in the data

set can be obtained from the autocovariance matrix. Using Kullback-Leibler

numbers we demonstrated that the whole distribution of the eigenvalues of

the autocovariance matrix contributes to the information and not only the

largest ones. In addition we calculated information in static and dynamic

factor models, which enabled us to work out whether an additional variable

adds information and to estimate the optimal number of dynamic factors q

and lag p. To illustrate the concepts we run simulation experiments with

static and dynamic factor models for some ad hoc data set dimensions.

Kullback-Leibler numbers are related to the Akaike information criterion

(AIC). Future research will look into the relation between our methods and

the information criteria of Bai and Ng (2002). Besides we plan to address

asymptotics, i.e. N and T going to infinity, and put our methods to the test
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with ‘real’ data sets like for example the Morkmon (Den Reijer, 2005) or

Eurocoin (Altissimo et al., 2001) data sets. A practical complication of both

data sets is that the number of variables exceeds the number of observations.

This can in principle be handled by the least squares procedure given in

Section 3. Another option is to order the variables according to correlation,

doing the analysis on the first forty, say, variables, and checking whether ad-

ditional variables contain information using the relative information formulas

mentioned in the same section.
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