

 University of Groningen

Service QoS Composition at the Level of Part Names
Aiello, Marco; Rosenberg, Florian; Platzer, Christian; Ciabattoni, Agata; Dustdar, Schahram

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Aiello, M., Rosenberg, F., Platzer, C., Ciabattoni, A., & Dustdar, S. (2006). Service QoS Composition at the
Level of Part Names. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/99f77634-db0b-42c0-9aa1-3e08a3b74458

Service QoS Composition at the Level

of Part Names

Marco Aiello1, Florian Rosenberg1, Christian Platzer1,
Agata Ciabattoni1,2, and Schahram Dustdar1

1 VitaLab, Distributed Systems Group, Information Systems Institute
Vienna University of Technology

1040 Vienna, Argentinierstrasse 8/184-1
Austria

{aiellom, florian, christian, dustdar}@infosys.tuwien.ac.at
2 Institut für Diskrete Mathematik und Geometrie

Vienna University of Technology
1040 Vienna, Wiedner Hauptstrasse 8-10

Austria
agata@logic.at

Abstract. The cornerstone for the success of Service-Oriented Com-
puting lies in its promise to allow fast and easy composition of services
to create added-value applications. Compositions need to be described
in terms of their desired functional properties, but the non-functional
properties are of paramount importance as well. Inspired by the Web
service challenge we propose a new model for describing the Quality
of Service (QoS) of a composition which considers the information flow
and describes basic service qualities at the granularity level of service
part names, that is, operations comprised in service invocation/response
messages. In this initial investigation, we overview a number of formal
methods techniques that allow to reason with QoS composition based on
the proposed model, and propose an algorithm for determining the QoS
of a composition given the QoS associated with the individual services.

Keywords: Service-Oriented Computing, Web Services, Service Com-
position, Quality of Service.

1 Introduction

Service-Oriented Computing (SOC) is an emerging computing paradigm for
building distributed information systems in which the concepts of distribution,
openness, asynchronous messaging and loose coupling take a leading role. In
this context, applications are built out of individual services that expose func-
tionalities by publishing their interfaces into appropriate repositories, abstract-
ing entirely from the underlying implementation. Published interfaces may be
searched by other services or users and subsequently be invoked. The interest

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 24–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Service QoS Composition at the Level of Part Names 25

in Service-Oriented Computing is a consequence of the shift from a vision of a
Web based on the presentation of information to a vision of the Web as com-
putational infrastructure, where systems and services can interact in order to
fulfill user’s requests. Web services (WS), the best-known example, are the real-
ization of service-oriented systems based on open standards and infrastructures,
extending the XML syntax [4].

Web service technology is being increasingly adopted. Particularly successful
are the protocols for the transport of messages (SOAP)1 and for the description
of basic service operations (the Web service Description Language WSDL).2 The
latter protocol describes messages to be exchanged with a remote Web service.
Exchanged messages are a set of part names, that is, operation name and input
and output types. The description of functional Web service properties is thus
covered by the WSDL standard. But functional properties are not enough. In
fact, non-functional properties of any information systems are as important as
the functional ones. Having to wait too long for the output of a system can
make it as useless as not having the system at all. This is even more true when
considering loosely coupled distributed systems such as those designed following
the SOC paradigm.

Quality of Service is the set of properties of a service which have to do with
‘how’ a service is delivered rather than ‘what’ is delivered. There is no shared
agreement on what QoS is and what is not, but generally properties such as re-
sponse time, latency, availability, and costs are regarded as QoS. Classifications
of QoS features in the context of Web services have been proposed by several
authors [13,10,17]. For instance, Ran [15] proposed a QoS model and a UDDI
extension for associating QoS to a specific Web service. An approach for defining
QoS requirements is QML [9]: a language for QoS description using XML. QoS
aspects are qualified by characteristics as direction and value type. A set of mea-
sures for reliability and performance are proposed. Atzeni and Lioy [5] overview
security system assessment methods and metrics. A number of approaches to
QoS description of services rely on extensions of WSDL, e.g., [10,18]. The main
idea is simple: provide syntax to define terms which refer to non-functional prop-
erties of operations. Given such description, one can then build a framework for
the dynamic selection of Web services based on QoS requirements. In [20,1], the
description of elementary service qualities as a quality vector each component of
which is a quality parameter for the service is proposed. In [11] Lin, Xie, Guo
and Wang use fuzzy logic techniques to handle QoS requirements. The descrip-
tion of QoS of services can also be the object of the negotiation of services in
long running-transactions or repeated interactions. QoS become then the ob-
ject of Service-Level Agreement, see e.g. [12]. We investigated the use of formal
methods to describe service level agreements in [2].

In this paper we focus on the composition of services especially considering
Quality of Service aspects. A service composition is a set of services together with
rules specifying how the various service work together to perform a common

1 http://www.w3.org/TR/soap
2 http://www.w3.org/TR/wsdl

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl

26 M. Aiello et al.

task. There are various issues related to QoS composition. One could have a
design of a composition with information regarding QoS of individual elements
and wish to know the resulting QoS of the composition. One could have an
abstract composition and might need to decide which services to select when
implementing the composition in order to fulfill some QoS desiderata, e.g., [14].
In [20,19], the authors propose a QoS model and a middleware approach for
dynamic QoS-driven service composition. They investigate a global planning
approach to determine optimal service execution plans for composite service
based on QoS criteria. Another interesting question is that of determining the
QoS of a composition given basic QoS information of single service operations.
In [6], a method is proposed to assess the QoS of a workflow, given the QoS
of the individual tasks of the workflow. The methodology consists of a set of
rewrite rules for the workflow aiming at arriving at the description of the QoS
of the whole workflow.

In this paper, we consider the problem of QoS composition from a different per-
spective. Instead of resorting to a state based representation giving emphasis to
tasks and the flow of control, as e.g. in [6], we take a stateless representation of
composition, with individual services as elementary components, and WSDL mes-
sage part names to represent the data flow. This choice is motivated by the Web
service challenge (see http://www.comp.hkbu.edu.hk/∼ctr/wschallenge/and
http://insel.flp.cs.tu-berlin.de/wsc06/) that consists in finding a compo-
sition of services which satisfies a given query. The granularity level of the query is
at the level of message part names and the composition is modeled as a multigraph
of services with part names as edges. In the present work, we generalize the simple
model of the Web service challenge to include Quality of Service attributes, but
also to allow defining different patterns in the composition by introducing input
service expressions, built using logical operators. The resulting model turns out to
be a compact form in which services have a central role and one can appreciate the
message exchanged among services.

The rest of the paper is organized as follows. In Section 2, we introduce a
simple running example of an application to know the temperature at a given
location based on several services. In Section 3, we introduce the QoS model.
Formal methods to reason about the QoS of the composition are discussed
in Section 4, where we also give an algorithm for establishing the QoS of a
composition. Concluding remarks and open research issues are summarized in
Section 5.

2 A Service Composition Example

Suppose one wants to build an application for knowing the temperature at a
given location. The application should be built using existing services. The non-
functional requirements of the application consider the response time and cost
of each run of the system. A design of the application is having a program in-
voking three services: Google to find out the longitude and latitude of the desired

http://www.comp.hkbu.edu.hk/~ctr/wschallenge/
http://insel.flp.cs.tu-berlin.de/wsc06/

Service QoS Composition at the Level of Part Names 27

location,3 a weather service to find the temperature,4 and a temperature con-
verter for having the temperature in either Fahrenheit or Celsius.5 In addition,
some processing will be done internally, e.g., extracting the coordinate infor-
mation from Google result snippets. The example services should be considered
only as motivation for the present work, for the ease of presentation we take the
liberty of simplifying part names and messages of the services. We also assume
that part names of services match, e.g., the output name of Google matches
the input part name of Weather.org, even though this is not true in practice.
Matching can be achieved resorting to semantic web, or more generally, ontology
techniques (see for instance [1]) or by syntactic matching (see for instance [8]).

The input of the application is a text string identifying the location and a
date. The output is a temperature in Celsius. Next, we consider how this simple
example is formally modeled taking into account both the functional and the
non-functional properties of the services, of the composition and the query.

3 Service Model

Web services standards originated from the industrial need for loosely coupled
interprocess communication, there is very little formality beyond the mere XML
schema definitions. Here we provide a formalization which allows us to represent
both the functional and non-functional properties of services, of service compo-
sitions and of queries. Let us begin by the domain of our information system.

Definition 1 (functional service model). A functional service model is a
tuple 〈S, P, M, in, out〉 defined in the following way:

– S is a set of services,
– P is a set of part names,
– M ∈ P(P) is a set of messages consisting of part names
– in is a function S → P(P), the set of input part names of a service,
– out is a function S → P(P), the set of output part names of a service.

By this definition, a service is thus a collection of input and output part names
grouped into messages. In the present treatment, we do not consider part types
and we use the message information to classify part names into input and output
for the various services.

Example 1. Considering the weather example of Section 2, S consists of the ser-
vices {Google, Weather.org, IT empConverter}, P consists of many part names,
such as the following ones:

Google:
<xsd:element name="searchQuery" type="xsd:string"/>
<xsd:element name="searchTime" type="xsd:double"/>

3 http://www.Google.com/apis/
4 http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl
5 http://developerdays.com/cgi-bin/tempconverter.exe/soap/ITempConverter

http://www.Google.com/apis/
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl
http://developerdays.com/cgi-bin/tempconverter.exe/soap/ITempConverter

28 M. Aiello et al.

Fig. 1. The weather example modeled

Weather.org:
<xsd:element name="temp" type="xsd:boolean"/>
<part name="dwmlOut" type="xsd:string" />

ITempConverter:
<part name="temp" type="xs:int"/>

an example of a message in M is given by the message of Google consisting of
an input and an output message

<operation name="doGoogleSearch">
<input message="typens:doGoogleSearch"/>
<output message="typens:doGoogleSearchResponse"/>

</operation>

Service QoS Composition at the Level of Part Names 29

Finally, an example of an output function for the Google Web service is, omitting
the XML syntactic sugar, out(Google)={searchQuery, searchTime}.
Let us now consider the non-functional properties by introducing our QoS model.

Definition 2 (QoS service model). A Quality of Service model is an or-
dered set of groupoids 〈(Gi, �̌i�̂i)i=1,...,n〉, where each groupoid i consist of a
set Gi with two operations �̂i and �̌i. A QoS element with respect to a QoS
model is a vector 〈q1 . . . qn〉 were qi ∈ Gi, for each i = 1, . . . , n. We denote
by �̌(qa, qb) and �̂(qa, qb) the componentwise operations (qa1 �̌1 qb1 . . . qan �̌n qbn)
and (qa1 �̂1 qb1 . . . qan �̂n qbn) among two services a and b with QoS elements qa =
〈qa1 . . . qan〉 and qb = 〈qb1 . . . qbn〉.

Notice that each groupoid models a QoS requirement and the groupoid oper-
ations, interpreting the operators in Definition 4, will be used to compute the
QoS of a given composition.

Example 2. The weather example presented in Section 2 considers two QoS re-
quirements. One tied to execution time and one to costs. Therefore, the QoS
service model consists of two groupoids, e.g., the real numbers with the addition
and the average for considering time and the integers with addition and max for
the cost. Then we have that any part name associated with Google has a qual-
ity cost which is zero, while an execution time which is in the range of the few
seconds. The latter can be modeled in various ways. One can take the average of
the execution times experienced in the past, one can consider the value returned
by Google itself as output in searchTime for a given request. One may even look
at a finer granularity of the execution time as we do in [16]. The choice is not
relevant for the present treatment.

Having defined what a service is from a functional and a from a non-functional
point of view, let us consider collections of services populating the same network
which can be invoked as parts of a same composition process. Such a composition
can be the result of a design process or of a search to satisfy a service query. Let
us define the latter concept formally.

Definition 3 (service query). A service query over a set of services S is an
expression of the form i∗, o+ where i ∈ P are the optional input query part
names, o ∈ P are the query output part names, and ∗,+ are the usual Kleene
string operators.

Example 3. The service query SearchText Date, Temp means that the requester
provides a text and a date, and desires to get a temperature.

Definition 4 (input service expressions). An input service expression as-
sociated to a service S1 is a string built over the input part names of S1 (called
atoms) using the binary, associative, and commutative operators ∧̄ and ∨̄ and
the auxiliary symbols (,).

30 M. Aiello et al.

Example 4. An input service expression associated to a “transform address into
zip code” service which has in ={address, city, zip code}, out ={zip code,time}
is (address∧̄city)∨̄zip code whose intended semantics is that either a zip code or
an address and a city are provided.

We are now in the position of defining a service composition.

Definition 5 (service composition). A service composition over a service
collection C = 〈S, P, M, in, out〉 and QoS model 〈(Gi, �̌i�̂i)i=1,...,n〉, is a labeled
multigraph 〈V, E, ExpI, QV 〉 with the following properties:

1. each element v ∈ V , is either in S or ∃ v′ ∈ V ∩ S such that the services v
and v′ differ only for their names.

2. E ⊆ V × V × P , and e = 〈v1, v2, p〉 ∈ E if out(v1) = in(v2) = p ∈ P

3. ExpI is a function associating to each element v ∈ V an input service ex-
pression associated to v.

4. QV is a function associating to each element v ∈ V a QoS element.

Condition 1. in the above definition says that multiple occurrences of a service
in the multigraph are identified using different node names. Condition 2. says
that there is an edge in the graph connecting two services only if a part name is
output and input of the two services, respectively. Condition 3. and 4. specify the
labels assigned to each node v: an input expression (ExpI(v)) and an element
of QoS (QV (v)) that is, the quality of the individual service.

Example 5. Following the above definition, the composition presented in Sec-
tion 2 is then modeled as shown in Figure 1. Where the query is SearchText
Date, Temp. Consider the service Weather.org: its associated input expression can
be SearchQuery∧̄Date ”meaning” that both a SearchQuery and a Date must be
provided while (23ms,2cent) stands for its QoS values of time and cost.

4 Model Inspection, Checking, Construction

Having a formal model of services and their compositions from a functional and
non-functional point of view enables the use of a number of formal methods
techniques to reason about services. The main methods to be used range from
the simple model inspection to determine the QoS of a given composition, to
the model checking of a composition, up to the more complex task of model
construction. Figure 2 summarizes the most interesting methods and the tasks
they address. In the present treatment we take a closer look at the first one, that
is, the model inspection for determining the QoS of a given composition.

In [3], we provided algorithms for dealing with the model construction problem
where we do not consider input expressions for QoS. The same problem is solved
using a partial order planner in [7].

Service QoS Composition at the Level of Part Names 31

method input task output

model inspection a composition
and a query

know the QoS for
the query

an element of the
QoS model

model checking a composition, a
query, and a QoS
property

find if the query
satisfies the QoS

yes/no

(directed) model
checking

a composition, a
query, and a QoS
property

find, if it exists,
the proof which
is optimal w.r.t.
QoS

optimal proof

model construction a query, a func-
tional and QoS
service models

create a compo-
sition

the composition,
if it exists, satis-
fying the query

Fig. 2. Methods to reason about QoS service composition

4.1 Modeling at the Level of Part Names

Given a composition of services (that is, a multigraph like the one in Figure 1
together with input, and QoS values) and a query stating which part names are
available and which are the desired ones, we want to arrive at the determination
of the QoS of the composition for the given query. But first we need to lift the
QV function, that associates qualities of services with services (nodes v in the
labeled multigraph) in the composition, to input service expressions. We do so
using the following recursive definition.

Definition 6. (input expression QoS) Given a service composition 〈V, E, ExpI,
QV 〉, let v ∈ V and e, e1, e2 ∈ ExpI(v), then the input expression QoS function
Q over an input service expression e is defined in the following way:

– if e is an atom, Q(e) = QV (w), where 〈w, v, e〉 is in E;
– Q(e1∧̄e2) = �̂(Q(e1), Q(e2)) where e1, e2 are input expressions and � are the

first operators of the respective QoS groupoids;
– Q(e1∨̄e2) = �̌(Q(e1), Q(e2)) where e1, e2 are input expressions and �̂ are the

second operators of the respective QoS groupoids.

We remark that the �̂ and �̌ operators are chosen when designing the
composition.

Example 6. If we are interested in QoS time, then it could be modeled by a
groupoid whose universe is the set of real numbers and whose operations �̂ and �̌

32 M. Aiello et al.

could be the addition and the max function. The operations’s choice depends
on the considered web service composition and on the goal of the QoS model as
defined by the composition designer or user. E.g., addition and max allow both
sequential and parallel arcs to be modeled in the service composition graph. On
the other hand, when parallel arcs do not occur in the service composition graph
and we are interested in the average QoS of the composition, then the function
max could be replaced by the function average.

Notice that in our model, the information on how services relate/interact are con-
tained both in the arcs and in the input service expressions associated to nodes
of the labeled multigraphs. This renders the modeling of composition provided a
more compact and flexible form for representing Web service compositions than,
e.g., workflows. For instance, the sequential composition at the task level of Fig. 3
(assume the operations between S1 and S2 consist of the three part names pa, pb

and pc and the considered QoS is time) can be represented by the labeled compo-
sition multigraph of Fig. 4. in which ExpI(S2) = pa∧̄pb∧̄pc and the operator ∧̄

Fig. 3. Sequential flow

is interpreted as real numbers addition. Taking however ExpI(S2) = pa∨̄pb∨̄pc,
where ∨̄ is interpreted as the maximum between real numbers, the composition
multigraph of Fig. 4 . would then correspond to the parallel composition at the
task level of Fig. 5.

Therefore, by changing the input service expressions associated to S2 (while
the interpretations of ∧̄ and ∨̄ remain the same), the composition multigraph of
Fig. 4 would correspond to 23 different workflows.

Of course, there are other differences among the modeling we propose at
the part name level and workflows beside the compact representation of the
former with respect to the latter. The most notable differences include: stateless
vs. statefull representation and data centered representation vs. control flow
representation, respectively.

4.2 Model Inspection

In the following we assume there are no loops and that the compositions are cor-
rectly designed with respect to the queries. Relaxing the former assumption
requires appropriate algorithms in the spirit of [6], while relaxing the latter as-
sumption brings us to the terrain of model checking, rather than model inspection.

Service QoS Composition at the Level of Part Names 33

Fig. 4. Composition at the part name level

Algorithm 1. Model Inspection(composition 〈V, E, ExpI, QV 〉, query i, o)

V = V
�{query QuI , QuO nodes created using i, o}

active parts = i
QoS associated with QuI set to the default value
loop

consider a node v ∈ V such that in(v) ∈active parts
active parts = active parts

�
out(v)

Q(v) = �̂(Q(v),Q(ExpI(v))) according to Definition 6
if v = QuO return Q(QuO)

end loop

The algorithm (Algorithm 1) for model inspection works by traversing the
composition graph and computing the QoS of the composition. The algorithm
takes a composition graph and a query. It uses the query for determining the set
of initial active parts and builds two extra nodes to represent the query input
QI and output QO. Active parts are the messages which are available for the
composition. The vector QoS keeps the value of the QoS during the computation
and is initially set to the default values (for instance cost is set to 0). The loop
of the algorithm takes nondeterministically a node for which all input parts are
active. Given the assumption of correct design there is always such a node, or we
have reached the end of the computation. Then the output part of the considered
node are added to the set of active parts. We are now in the position of computing
the new QoS for the considered node. The computation of the service QoS in the

34 M. Aiello et al.

Fig. 5. Parallel flow

given composition is performed by computing the QoS of its input expression
and ‘adding’ �̂ the QoS of the service. Of the two groupoid operation sets �̂
and �̌, the former is in the algorithm as this is the one which should model the
logical and, i.e., the addition of the quality of service computed so far and the
quality of service of the specific service. Given the absence of loops we notice
that the non-deterministic choice of a node does not affect the correctness of the
algorithm. Finally, if the node considered was the final node of the composition
we exit the loop returning the computed QoS.

4.3 A Run on the Weather Example

Let us consider again the weather example of Section 2, shown in Figure 1, and
apply Algorithm 1. We start by setting the active parts to the query SearchText
and Date, adding the node QI to which we associate the default quality of service
of (0,0): no time and no costs. We also add the node QO to represent the end
of the query which has as input parts the queried Temp, its input expression is
simply Temp. Then the loop begins.

At the first iteration we can only consider the Google service. In fact, its
input part names are all active, on the other hand Weather.org has one input
part name active (Date) but not the other one (SearchQuery). We then add the
output part (SearchQuery) of Google to the active part names and update its

Service QoS Composition at the Level of Part Names 35

quality of service. The quality of service associated with this service was (3,0)—
it takes Google 3 milliseconds and it is for free—which is combined with the
evaluation of the input expression of SearchText which is (0,0). In this case, the
quality of service does not change.

At the following iteration we can choose the Weather.org service. We add
its output part to the active part names and then we compute the quality of
service for its two inputs. We have (3,0) and (0,0), respectively. Supposing that
the input expression is SearchQuery∧̄Date, that �̂ is modeled as real numbers
addition and integer addition, and that its QoS is (23,2), then we update the
QoS of Weather org with (26,2). At the final iteration iTempConverter is chosen
yielding a final QoS associated with it of (40,3). We then conclude that the QoS
of the composition is 40 milliseconds and 3 cents. Again these could be minimum,
maximal, average values or something else, depending on the choice made in the
composition design.

5 Concluding Remarks

We have presented preliminary work aimed at modeling Web service composi-
tions from a functional and non-functional point of view at the granularity level
of the part names. Following this modeling, we overview a number of formal
methods techniques that allow to reason with QoS composition based on the
proposed model, and propose an algorithm for determining the QoS of a given
composition given the QoS associated with the individual services.

In this initial work, we made a number of simplifying assumptions which we
will remove in future work. In particular, we have not considered loops in the
compositions while these could be present and need to be modeled. We have
not presented output expressions (the natural counterpart of input expressions
for services), and we have not considered limitations on the use of part names
(for instance, one could impose that a part name is used only once by any
service). Furthermore, we have only provided an algorithm for the case of model
inspection, leaving open the challenge of finding algorithms for model checking
and model constructions.

Acknowledgments

We thank Ganna Frankova for comments on a previous version of this paper and
discussion on related work.

References

1. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven Web Ser-
vice Composition in METEOR-S. In Proceedings of the 2004 IEEE International
Conference on Services Computing, Shanghai, China, September 2004.

36 M. Aiello et al.

2. M. Aiello, G. Frankova, and D. Malfatti. What’s in an agreement? A formal analysis
and an extension of WS-Agreement. In Int. Conf. on Service-Oriented Computing
(ICSOC 2005), 2005.

3. M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M. Vasko, and S. Dustdar. Web
service indexing for efficient retrieval and composition. In In Joint 8th IEEE
Conference on E-Commerce Technology (CEC’06) and the 3rd IEEE Conference
on Enterprise Computing, E-Commerce and E-Services. IEEE Computer, 2006. To
appear.

4. G. Alonso, F. Casati, H Kuno, and V. Machiraju. Web Services. Springer-Verlag,
2004.

5. A. Atzeni and A. Lioy. Why to Adopt a Security Metric? A Brief Survey. In Pro-
ceedings of the First Workshop on Quality of Protection, Milan, Italy, September
2005.

6. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Journal of Web Semantics, 1(3):281–308,
2004.

7. J. Dorn, P. Hrastnik, and A. Rainer. Web service discovery and composition for
virtual enterprises. International Journal of Web Services Research, 2006. To
appear.

8. I. Elgedawy, Z. Tari, and M. Winikoff. Exact functional context matching for web
services. In M. Aiello, M. Aoyama, F. Curbera, and M. P. Papazoglou, editors, Int.
Conf. on Service-Oriented Computing (ICSOC 2004), pages 143–152. ACM, 2004.

9. S. Frølund and J. Koistinen. Quality-of-Service Specification in Distributed Object
Systems. Distributed Systems Engineering, 5(4):179–202, December 1998.

10. D. Gouscos, M. Kalikakis, and P. Georgiadis. An approach to modeling web service
QoS and provision price. In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

11. M. Lin, J. Xie, H. Guo, and H. Wang. Solving QoS-Driven Web Service Dynamic
Composition as Fuzzy Constraint Satisfaction. In Proceedings of the IEEE In-
ternational Conference on e-Technology, e-Commerce and e-Service, Hong Kong,
China, March-April 2005.

12. H. Ludwig. Web services QoS: External SLAs and internal policies or: How do we
deliver what we promise? In 1st Web Services Quality Workshop (WQW2003) at
WISE, 2003.

13. D.A. Menasce. QoS issues in Web services. IEEE Internet Computing, 6(6):72–75,
November/December 2002.

14. D.A. Menasce. Composing Web Services: A QoS View. IEEE Internet Computing,
8(6):88–90, November/December 2004.

15. S. Ran. A model for web services discovery with QoS. SIGecom Exchanges, 4(1):
1–10, 2003.

16. F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping performance and de-
pendability attributes of web services. In Proceedings of the IEEE International
Conference on Web Services (ICWS’06). IEEE Computer, 2006. To appear.

17. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller. A concept for QoS
integration in web services. In 1st Web Services Quality Workshop (WQW2003)
at WISE, 2003.

18. M. Tian, A. Gramm, H. Ritter, and J. Schiller. Efficient Selection and Monitoring
of QoS-aware Web Services with the WS-QoS Framework. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, Beijing, China,
September 2004.

Service QoS Composition at the Level of Part Names 37

19. L. Zeng, B. Benatallah, Ngu; A.H.H., M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering, 30(5):311–327, May 2004.

20. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng. Quality driven
web services composition. In Proceedings of the 12th International Conference on
World Wide Web (WWW’03), pages 411–421, New York, NY, USA, 2003. ACM
Press.

	Introduction
	A Service Composition Example
	Service Model
	Model Inspection, Checking, Construction
	Modeling at the Level of Part Names
	Model Inspection
	A Run on the Weather Example

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

