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Filament Enhancement by Non-linear Volumetric
Filtering Using Clustering-Based Connectivity

Georgios K. Ouzounis and Michael H.F. Wilkinson

Institute of Mathematics and Computing Science, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

Abstract. Shape filters are a family of connected morphological operators that
have been used for filament enhancement in biomedical imaging. They interact
with connected image regions rather than individual pixels, which can either be
removed or retained unmodified. This prevents edge distortion and noise ampli-
fication, a property particularly appreciated in filtering and segmentation. In this
paper we investigate their performance using a generalized notion of connectivity
that is referred to as ”clustering-based connectivity”. We show that we can cap-
ture thin fragmented structures which are filtered out with existing techniques.

1 Introduction

Biomedical data sets often contain curvi-linear, dendritic or other filamentous structures
of interest which are susceptible to acquisition noise. Enhancing these structures can be
of particular importance to certain medical applications and many methods have been
proposed [3]. Some common drawbacks among them is noise amplification and edge
distortion while they can also be computationally expensive.

In mathematical morphology, a family of operators called connected filters has been
developed which interact with regions characterized by some notion of connectivity.
According to these filters, connected regions can either be removed or retained unmod-
ified based on a pre-specified attribute (shape in this case) but new edges cannot emerge.
This edge and therefore shape-preserving property makes connected filters competitive
to existing morphological methods for filament enhancement such as the multi-scale
approach in [11].

The objects targeted are thin, plate-like (Fig. 1) and elongated structures which are
often fragmented at higher gray-levels according to the standard connectivity. We aim
at countering this with a further improvement of the method presented in [11]. This is
by using a more general notion of connectivity termed clustering-based connectivity
[8, 9] which models object clusters as individual connected regions. We demonstrate
our findings and compare them to the existing method using three different 3-D data
sets. In each case we study the parameters which maximize the filter’s performance in
association with the underlying clustering-based connectivity.

Following this section there is a short reference to the concept of connectivity and
connectivity openings complemented by the notion of clustering-based connectivity. In
Section 3 the shape filters and their extensions to gray-scale are presented while in Sec-
tion 4 we discuss their applications to 3-D medical data sets. The work is summarized
with some conclusions in Section 5.
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c© Springer-Verlag Berlin Heidelberg 2006



318 G.K. Ouzounis and M.H.F. Wilkinson

Fig. 1. 3-D Shape filtering using 26 connectivity: The image on the left illustrates an isosurface
projection of a human head at isolevel 208. Increasing the isolevel to visualize the skull removes
important details. The image on the right illustrates a shape filter enhancing the thin, plate-like
structures comprising the skull and all the noise at an isolevel 96.

2 Theory

2.1 Connectivity Classes and Openings

The set-theoretic notion of connectivity in discrete spaces such as Z
2 describes how

groupings are realized in digital images. Connectivity in mathematical morphology is
given by connectivity classes, a construct defined as:

Definition 1. Let E be an arbitrary (non-empty) set. A family C ⊆ P(E) is called a
connectivity class if it satisfies:

1. ∅ ∈ C and for all x ∈ E, {x} ∈ C ,
2. for any {Ai} ⊆ C for which

⋂
Ai �= ∅ ⇒

⋃
Ai ∈ C

Members of C are called connected sets [8, 9] and Definition 1 means that both the
empty set and singleton sets are connected, and any union of connected sets which have
a non-empty intersection is also connected.

Addressing objects in binary images is often more practical using connected compo-
nents or grains which are connected parts of an object of maximal extend, i.e. they are
connected and not smaller than any other connected part of the same object. Writing
this explicitly, we say that C is a connected component of a binary image X if there is
no set C′ ⊃ C such that C′ ⊆ X and C′ ∈ C.

Connected components are groupings of connected sets containing a certain point
x ∈ E in their intersection. The operator Γx to access them is called a connectivity
opening marked by x and is given by:

Γx(X) =
⋃

{Ai ∈ C | x ∈ Ai and Ai ⊆ X} . (1)
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Furthermore, ∀x /∈ X , Γx(X) = ∅. Connectivity openings are characterized by three
properties; they are anti-extensive, increasing and idempotent operators. For a given set
X each property implies the following:

1. Anti-extensiveness: Γx(X) ⊆ X ,
2. Increasingness: if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ),
3. Idempotence : Γx(Γx(X)) = Γx(X).

The operator Γx is explicitly related to a connectivity class C if satisfying the set of
conditions given by Serra [8] (also in [6]) in the following theorem:

Theorem 1. The datum of a connectivity class C on P(E) is equivalent to the family
{Γx | x ∈ E} of openings on x such that:

1. every Γx is an algebraic opening,
2. for all x ∈ E, we have Γx(X) = {x},
3. for all X ⊆ E, x, y ∈ E, Γx(X) and Γy(X) are equal or disjoint,
4. for all X ⊆ E, and all x ∈ E, we have x /∈ X ⇒ Γx(X) = ∅.

Connectivity openings characterize uniquely the connectivity class they are associated
with and there is a one-to-one correspondence between the two.

2.2 Clustering-Based Connectivity

Connected components of X according to C are separated by elements of the back-
ground. If however the distance separating them is smaller than the size of a given
structuring element (SE), it is possible to define a cluster [1,6,9] in a child connectivity
class Cψ, where ψ denotes a structural operator referred to as clustering. Following is a
list summarizing the properties required to define a clustering:

1. ψ is increasing and extensive.
2. ψ(C) ⊆ C.
3. For a family {Xi} in P(E) such that ψ(Xi) ∈ C, ∀ i, and

⋂
i Xi �= ∅ ⇒

ψ(
⋃

Xi) ∈ C.
4. ψ does not create connected components; i.e., if ∀x ∈ C, C = Γx(ψ(X)) ⇒

X ∩ C �= ∅.
5. ψ treats the clusters of X independently; i.e., if ∀x ∈ C, C = Γx(ψ(X)) ⇒

ψ(X ∩ C) = C.

More details on each item are given in [1]. Typically, ψ is either a dilation or a closing
and generates a mask image, called the connectivity mask by expanding X .

Definition 2. Let C be a connectivity class in P(E) and ψ be an increasing and exten-
sive operator on P(E). Then

Cψ = {X ∈ P(E) | ψ(X) ∈ C} (2)

is a clustering-based connectivity class for which C ⊆ Cψ.
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If, for ψ the above five properties hold, and furthermore, ψ(∅) = ∅ and

ψ(X ∩ Γx(ψ(X))) = Γx(ψ(X)), (3)

we have a strong clustering [1].

Definition 3. Let {Γx | x ∈ E} be the connectivity openings associated with C. If ψ
is a strong clustering on P(E), the family of connectivity openings {Γ ψ

x | x ∈ E}
associated to Cψ are given by

Γ ψ
x (X) =

{
Γx(ψ(X)) ∩ X, if x ∈ X (4a)

∅, otherwise (4b)

In the following, every time we use the term clustering we mean a strong clustering.

3 Shape Filters

Filtering a binary image based on the attributes of its connected components requires a
criterion T commonly given by:

T (C) = (Attr(C) ≥ λ) (5)

where Attr is some attribute value of a connected component C and λ a pre-selected
threshold. Components that satisfy (5) are retained while the rest are removed. Binary
attribute filters in the anti-extensive case can be categorized to attribute openings or
thinnings depending on whether the attribute criterion is increasing or not. The case
that Attr(C) is non-increasing implies that for any two nested components C1 and C2,

C1 ⊆ C2 � Attr(C1) ≤ Attr(C2), (6)

i.e. their attributes need not be ordered in the same way. Comparing the attribute value
of a connected component against λ is by means of a trivial thinning ΦT on the output
of the connectivity opening of (1). The trivial thinning is an anti-extensive, idempotent
and non-increasing operator defined as ΦT : C → C which for a connected component
C ∈ C yields C if T (C) is true, and ∅ otherwise. Furthermore, ΦT (∅) = ∅. For a binary
image X , the attribute thinning is given by:

ΦT (X) =
⋃

x∈E

ΦT (Γx(X)). (7)

Attribute thinnings sensitive to structures of a given shape are called shape filters.
The filamentous structures that we investigate, are thin elongated structures that are
characterized by a high trace of the moment of inertia tensor I(C) compared to their
volume V (C). For 3-D data sets, I(C) has a minimum for a sphere and increases rapidly
as the object becomes more elongated [11]. It is defined as:

I(C) =
V (C)

4
+

∑

x∈C

(x − x)2 (8)



Filament Enhancement by Non-linear Volumetric Filtering 321

and scales with size to the fifth power whereas the volume scales with the third power
of the size. Therefore the ratio

Attr(C) =
I(C)

V 5/3(C)
(9)

is a purely shape dependent attribute which together with (7) defines a filter sensitive to
elongated shapes.

Connected filters in general rely on some notion of connectivity. In the case of (7)
the term Γx(X) relates the filter to the connectivity class C and the connected compo-
nents it returns are unique. Extending connected filters to sets characterized by second-
generation connectivity is by replacing the connectivity opening with the associated
operator. For clustering-based connectivity this is Γ ψ

x .
The cases in which the attribute criterion of a filter is increasing, like the volume

of a 3-D connected component V (C), extend to gray-scale trivially [4, 5] based on the
principle of threshold superposition [2]. For the non-increasing, translation and shift
invariant shape descriptor of (9), gray-scale attribute filters based on either type of con-
nectivity can be computed efficiently using the subtractive filtering rule [10]. This is
a non-pruning, tree-based filtering strategy in which if a tree node (corresponding to a
connected component of the thresholded image at level h) is reduced in gray-scale, its
descendants are lower by the same amount. It is realized on a tree structure for second-
generation connectivity representation termed the Dual-Input Max-Tree algorithm that
is based on [7] and extended details can be found in [4,5]. The experiments that follow
are based on this arrangement.

4 Experiments

In this section we experiment with the 3-D shape filter discussed in Section 3, using
clustering-based connectivity. In this first approach to non-linear volumetric filtering
using this specific type of second-generation connectivity, the objective is to enhance
and extract filamentous details from a number of noisy biomedical data sets. The present
study investigates the factors that affect the performance of the proposed filter. We iden-
tify five critical parameters namely: (i) the neighborhood of each volume element in 3-
D, (ii) the size of the structuring element to be used, (iii) the type of clustering operator
ψ, i.e. a dilation or a closing, (iv) the way the attributes are calculated (on X or ψ(X))
and (v) the attribute threshold used with the filter.

The first data set is an isosurface projection of an 8 bit, 256 × 256 × 256 rotational
b-plane CT-angiogram (CTA) of the arteries of the right half of a human head (Fig. 2).
A contrast agent was used and an aneurysm is present. The volume contains a dense
cloud of low intensity noise centered within the structures of interest. To generate the
connectivity mask we consider the first three parameters listed earlier. For volume sets
it is common to use a 26 neighborhood since a 6 neighborhood often results in ”loosely”
connected components. Masks generated by a dilation expand the original set creating
a number of structures of previously disconnected elements. In noisy backgrounds, this
can result in grouping the noise elements to high attribute structures and create con-
nections with the structures of interest. Using structural closings instead, the unwanted
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Fig. 2. Isosurface projections of a CTA scan containing an aneurysm and the output of the elon-
gation filter based on standard connectivity (both at isolevel 0). The middle row shows the filtered
outputs using a mask based on a dilation and a closing respectively. The bottom row shows the
difference volumes between the filter outputs using clustering-based connectivity based on a clos-
ing vs. a dilation and based on a closing vs. the standard connectivity. Most vessel-like structures
are preserved using a closing-based connectivity.
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connections between small objects tend to break apart while structures merged by wide
bridging regions are maintained. This is illustrated at the middle row of Fig. 2 where the
image on the left shows the response of an elongation filter with λ=3 using a mask based
on a dilation with a cubic SE of size 3 × 3 × 3. The image on the right is the response
of the same filter using a mask by a structural closing instead. It is evident that a dila-
tion even with a relatively small SE merges most of the noise together with the blood
vessels creating a structure with large overall volume and small elongation. Filtering
removes all but certain regions disconnected from the clustered volume. The results can
be compared with the filter response using standard, 26-connectivity - top right image.
The bottom row shows the difference volumes between the filter responses. In the left
image we compare the responses using a closing and a dilation. It can be seen that most
of the structure of interested is lost. The right image shows the difference in the re-
sponse using a closing-based clustering connectivity and the standard connectivity. We
see a number of elongated structures missed by the filter using standard connectivity.
With the closing-based connectivity, these vessel fragments are merged with the overall
structure and hence they are retained.

The second data set shown at the top left image of Fig. 3, is a 256 × 342 × 243,
8-bit confocal microscopy volume of a pyramidal neuron. The noise density here is
not as high as the previous data set, but the filamentous structures (the dendrites in
this case) are fragmented at low levels. Filtering using standard connectivity removes
noise together with a considerable fraction of the dendrites. If the volume is clustered
however, nearby fragments are connected into a single entity with overall elongation
greater than the threshold λ and hence are retained. The top right image shows the result
of an elongation filter with λ=2 using the standard connectivity at a 26 neighborhood.

Creating a mask with a structural closing is often not sufficient to counter the issue
of noise clustering. Noise can be clustered in arbitrary arrangements and along arbitrary
orientations. Two examples are illustrated at the first two images of Fig. 4 where both
clustered arrangements have a similar elongation measure (attributes computed on the
clustered sets are referred to as C-attributes). If the elongation measure is computed
based on the expanded sets as illustrated at the corresponding connectivity masks at
the last two images, the attributes of the two clustered arrangements are separated by
a larger margin that distinguishes easier compact from elongated clusters. Attributes
computed on the expanded sets of the mask are referred to as M-attributes.

The two images of the middle row of Fig. 3 illustrate the filter response with a con-
nectivity mask generated by a structural closing with a cubic SE of size 5 × 5 × 5
and corresponding C- and M-attributes respectively. The difference volumes computed
between the responses with C-attributes, and M-attributes vs. 26-connected filtering,
respectively, are shown at the bottom row. It can be seen that together with a consid-
erable fraction of the dendrites claimed by the filter based on clustering connectivity,
computing M-attributes outperforms the output based C-attributes which fails to deal
with clustered noise effectively. The top first four images are isosurface projections at
level 1 and the last two at level 0.

The last data set is a 256 × 256 × 124, 8-bit, phase contrast magnetic resonance
angiogram (MRA) of a human head. In this experiment we target the blood vessels and
experiment with the size of the SE to be used along ψ in generating the connectivity
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Fig. 3. Isosurface projections of the neuron and the output of the elongation filter based on the
standard connectivity, both at isolevel 1. The middle row illustrates the filter performance by
computing the structure attributes based on the clustered volume and based on the expanded
volume which constitutes the mask. The bottom row shows the difference volumes between the
C-attributes vs. 26-connected filtering, and between the M-attributes vs. 26-connected filtering.
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Fig. 4. The elongation measures of the clustered sets X and Y (first and second image from the
left) are similar if the we compute the C-attributes. The M-attributes instead are computed on
ψ(X) and ψ(Y ) (third and fourth image from the left respectively) and obviously the elongation
of ψ(X) is smaller compared to that of ψ(Y ).

mask. The top left image of Fig. 5 shows the input volume at isolevel 50 (details start
to appear only after this threshold). The top right image and the two at the middle
row (starting from the left) show the responses of an elongation filter with λ = 2 using
standard connectivity, and clustering connectivity based on masks by a 3 × 3 × 3 and
5× 5× 5 cubic SE respectively (at isolevel 5). The filter uses M-attributes and from the
difference volumes between the responses of the filter using clustering connectivity
with 33-based mask vs. standard connectivity and with 53-based mask vs. standard
connectivity, it can be seen that both deal relatively well with clustered noise (isolevel
1) and they both capture vessel fragments but at a varying detail. To examine their in-
between differences we also compute the difference volume between the output with
33-based mask vs. 53-based mask and the reverse (Fig. 6). The left image illustrates
that with an increasing size of SE, the overall signal intensity in the vessels is reduced,
though there is no distortion. On the other hand as the size of the SE increases the
number of fragments captured increases as well, as shown in the righthand image. This
also contributes to some additional clustered noise. In general the size of the SE can
only be determined by the amount of detail required and a quantitative evaluation is
only possible given the ground truth.

5 Discussion

In this paper we compared the performance of connected filters for filament enhance-
ment, based on classical connectivity and clustering-based connectivity. From the dif-
ference volumes produced in the previous section it can be seen that the 3-D shape filter,
sensitive to elongated structures, captures filamentous details in greater accuracy when
dependent upon an underlying clustering-based connectivity. This is because fragments
of the filamentous structures are clustered with their original body, contributing to an
overall elongation attribute greater than their own if treated separately.

The parameters influencing the performance of the filter have also been studied and
we demonstrated how each one affects the filter response and in what way. A compari-
son with different elongation thresholds has not been carried out since it is obvious that
as the value of λ increases the more elements will be filtered out. This can be useful
for capturing highly elongated structures. In the case of blood vessels the handling of
each vessel separately involves a different type of second-generation connectivity called
contraction-based connectivity which is not studied here.

A drawback of filters relying on a clustering-based connectivity is that of noise clus-
tering. We minimize this effect by considering the structure attributes based on the
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Fig. 5. Isosurface projection of the MRA at isolevel 50 and the output of the elongation filter
based on the standard connectivity at isolevel 5. The middle row illustrates the filter outputs
using a clustering-based connectivity with masks generated by a structural closing with a cubic
SE of size 3 × 3 × 3 and 5 × 5 × 5 respectively. The bottom row shows the difference volumes
between the two filter outputs compared against the volume generated by the filter based on
standard connectivity.
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Fig. 6. The difference volumes between a filter based on the 33-based mask vs. the 53-based
mask, and the reverse, at isolevel 1

connectivity mask instead of the clustered volume. We are currently working on fur-
ther improvements by creating connectivity masks with adaptive structuring elements
sensitive only to the direction of elongation.
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