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Summary. In the present work we are interested on the derivation of power-based
passivity properties for a certain class of non-linear mechanical systems. While for
general mechanical systems, it is of common use to adopt a storage function related to
the system’s energy in order to show passivity and stabilize the system on a desired
equilibrium point(e.g., IDA-PBC [1]), we want here to obtain similar properties related
to the system’s power. The motivation arises from the idea that in some engineering
applications(satellite orbit motion, aircraft dynamic,etc...)seems more sensible to cope
with the power flowing into the system instead of the energy that, for stabilization
purposes, means to consider the systems’s equilibrium the state for which the energy
flow-rate(i.e.,system’s power)achieve its minimum. In this respect, we recall first the
power-based description for a certain class of (non)-linear mechanical systems given in
[2] and then we give sufficient conditions to obtain power-based passivity properties,
provided a suitable choice of port-variables. We conclude with the example of the
inverted pendulum on the cart.

1 Introduction

In a previous work of the authors [2] an electrical interpretation of the mo-
tion equations of mechanical systems moving in a plane has been provided
via the Brayton-Moser equations. In particular, it is proved that under certain
generic assumptions the system’s behavior derived from its Lagrangian func-
tion can be alternatively described through a power-based representation in an
electrical fashion. It can be viewed as an extension of the well-known analogy
mass/inductor, spring/capacitor and damper/resistor for linear mechanical sys-
tems to a larger class of (possibly) nonlinear systems. The double pendulum and
the inverted pendulum on the cart are the illustrative examples which have been
studied and electrically interpreted as nonlinear RLC circuits.

We are here interested on exploiting this power-based description for such
mechanical system class in order to achieve a new passivity property using
as port variables the external forces/torques and the linear/angular accelera-
tion,and with the storage function being related to the system’s power.

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 123–133, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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In Section 2 we will first recall the fundamentals of Euler-Lagrange(EL) and
Brayton-Moser(BM) equations in the standard form. Via the introduction of the
pseudo-inductor the Brayton-Moser equations can be extended to a large class
of non-linear mechanical systems, [2]. This is reviewed in Section 3, and followed
by the presentation of the main result. Taking inspiration from [3] we provide
a method to generate storage function candidates based on the power. We give
sufficient conditions to show the power-based passivity properties. We conclude
the paper in section 4 with the example of the the inverted pendulum on the cart
for which our passivity conditions have a clear physical meaning.

2 Preliminaries

2.1 Euler-Lagrange Systems (EL)

The standard Euler-Lagrange equations (e.g., [1]) for an r degrees of freedom
mechanical system with generalized coordinates q ∈ Rr and external forces τ ∈
Rr are given by

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= τ (1)

where

L(q, q̇) � T (q, q̇)− V(q) (2)

is the so-called Lagrangian function, T (q, q̇) is the kinetic energy which is of the
form

T (q, q̇) =
1
2
q̇T D(q)q̇, (3)

where D(q) ∈ Rr×r is a symmetric positive definite matrix, and V(q) is the
potential function which is assumed to be bounded from below. Furthermore,
dissipative elements can be included via the Rayleigh dissipation function as
part of the external forces.

2.2 RLC-Circuits: The Brayton-Moser Equations (BM)

The electrical circuits considered in this paper are complete RLC-circuits in
which all the elements can be nonlinear. The standard definitions of respectively
inductance and capacitance matrices are given by

L(iρ) =
∂φρ(iρ)

∂iρ
, C(vσ) =

∂qσ(vσ)
∂vσ

where iρ ∈ Rr represents the currents flowing through the inductors and φρ(iρ) ∈
Rr is the related magnetic flux vector. On the other hand vσ ∈ Rs defines the
voltages across the capacitors and the vector qσ(vσ) ∈ Rs represents the charges
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stored in the capacitors. From [4] we know that the differential equations of such
electrical circuits have the special form

Q(x)ẋ = ∇P (x) (4)

where x = (iρ, vσ) ∈ Rr+s, ∇ = (∂/∂iρ, ∂/∂vσ)T , and

Q(x) =
[
−L(iρ) 0

0 C(vσ)

]
. (5)

Furthermore the mixed potential function P (x) which contains the intercon-
nection and resistive structure of the circuit is defined as

P (x) = −F (iρ) + G(vσ) + iρ
T Λvσ. (6)

F : Rr → R and G : Rs → R being the current potential (content) related
with the current-controlled resistors (R) and the voltage potential (co-content)
related with the voltage-controlled resistors (i.e., conductors, G), respectively.
More specifically, the content and co-content are defined by the integrals∫ iρ

0
v̂R(i′ρ)di

′
ρ,

∫ vσ

0
îG(v′σ)dv′σ,

where v̂R(iρ) and îG(vσ) are the characteristic functions of the (current-controlled)
resistors and conductors (voltage-controlled resistors), respectively. The r×s ma-
trix Λ is given by the interconnection of the inductors and capacitors, and the
elements of Λ are in {−1, 0, 1}.

2.3 Definitions

In order to introduce the electrical counter part of the position dependent mass
we introduce the so-called pseudo-inductor. This is an inductor, but now relating
the magnetic flux linkages to current and the voltage, which differs from the
“usual” electrical case, i.e.,

φ = fφ(x). (7)

where φ ∈ Rr is the flux related to the inductors. This definition lead to the
following implicit relation between voltage and current

vρ =
dφ

dt
=

∂fφ

∂iρ

diρ
dt

+
∂fφ

∂vσ

dvσ

dt
. (8)

Now, define the pseudo-inductance matrix and the co-pseudo-inductance ma-
trix as

L̃(x) =
∂fφ

∂iρ
, M̃(x) =

∂fφ

∂vσ
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respectively, then (8) can be written as

vρ = L̃(x)
diρ
dt

+ M̃(x)
dvσ

dt
. (9)

Similarly, we will consider a capacitor as a function relating the charge and
the voltage, i.e.,

qσj = fv
j (vσj) , j = 1, . . . , s. (10)

By defining the non-negative capacitance matrix

C(vσ) = diag

[
∂fv

j (vσj)
∂vσj

]
, j = 1, . . . , s,

we have from differentiation of (10) that

iσ = C(vσ)
dvσ

dt
. (11)

3 Power-Based Description for a Class of Mechanical
Systems

In [2] the authors enlarged the class of mechanical systems for which an electri-
cal interpretation can be provided replacing the generalized coordinates vector
(q̇, q) ∈ R2r by the electrical states vector (iρ, vσ) ∈ Rr+s. In order to make
the following relation a one-to-one mapping the equivalent circuit has to present
a number of inductors r equal to the capacitors s. Moreover, all conservative
forces acting on the masses should be (locally) invertible functions of its angular
or linear position. The main result of [2] is as follows.

Theorem 1. Consider the general Lagrangian function (2). Assume that:

A1.(interconnection) iρ = iσ, 1

A2.(force-position link) qσj = fv
j (vσj) ∈ C1 with j = 1, . . . , r is a set of invert-

ible functions such that:

• ∂fv
j (vσj)
∂vσj

= Cj(vσj),
• f q

j (qσj) = vσj .

Then: the Euler-Lagrange (1) equations can be rewritten in terms of the Brayton-
Moser framework as follows⎡⎣−D̃(vσ) −[D̄(x) − D̂(x)]C(vσ)

0 C(vσ)

⎤⎦⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎢⎣
∂P (x)

∂iρ

∂P (x)
∂vσ

⎤⎥⎦
1 Implying that s = r and Λ = I . See Remark 4 of [2] for the physical implications.
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with
P (x) = −F (iρ) + G(vσ) + iρ

T vσ,

being the mixed potential function P (iρ, vσ) and where

D̂(iρ, vσ) =

⎡⎢⎣
1
2 iρ

T ∂D(qρ)
∂qρ1

|qρ=fv(vσ)

. . .
1
2 iρ

T ∂D(qρ)
∂qρr

|qρ=fv(vσ)

⎤⎥⎦ (12)

C(vσ) = diag

[
∂fv

j (vσj)
∂vσj

, j = 1, . . . , r
]

(13)

D̃(vσ) = D(qρ)|qρ=fv(vσ) (14)

D̄(iρ, vσ) =

⎡⎢⎢⎢⎣
a11(iρ, vσ) · · · a1r(iρ, vσ)

...
. . .

...

ar1(iρ, vσ) · · · arr(iρ, vσ)

⎤⎥⎥⎥⎦ (15)

with aij(iρ, vσ) = iρ
T C−1(vσ)∇vσD̃ij(vσ) for i, j ∈ {1, r}.

Corollary 1. As a consequence of Theorem 1, recalling the definitions of the
pseudo-inductor and the capacitor adopted in (9) and (11) respectively, the BM
equations can be then re-written in the following more compact form

Q̃(x)ẋ = ∇P (x) (16)

with

Q̃(x) =

⎡⎣−L̃(vσ) −M̃(iρ, vσ)

0 C(vσ)

⎤⎦
and where L̃(vσ) = D̃(vσ), M̃(iρ, vσ) =

[ ˙̃
D(vσ)− D̂(iρ, vσ)

]
C(vσ).

Remark 1. The former result can been interpreted in two ways. From one side
we established under which conditions–A1 and A2–a mechanical systems de-
scribed by EL equations, through derivation of an energy-based function called
Lagrangian, has a clear electrical counterpart based on the classical states anal-
ogy force/voltage and speed/current. On the other side, we state that this class
of mechanical systems that can be electrically interpretable yields a power-based
description in the BM framework. Under this second perspective we will present,
in the further section, our main result.

3.1 Power-Based Passivity Properties

This section is dedicated to the derivation of passivity sufficient conditions for
that class of mechanical systems that admits the power-based description given



128 A. de Rinaldis, J.M.A. Scherpen, and R. Ortega

in (16). For that we have to find a storage function candidate and a corresponding
set of port variables. It is then instrumental for the derivation of the next theorem
to re-define the mixed-potential function P (x) extracting the voltage sources
vs ∈ Rl with l ≤ r, from the content term F (iρ) as follows

P (x) = P̃ (x) − xT Bvs (17)

with B = (Bs, 0)T and Bs ∈ Rr×l.

Remark 2. In equation (4) we restricted our analysis to circuits having only volt-
age sources in series with inductors. This choice seems to be sensible considering
that the mechanical counterpart of a current source is a velocity source which
have no clear sense from a physical view point.

Storage Function Candidate

Following the procedure of [3], we can pre-multiply (16) by ẋT obtaining

ẋT Q̃(x)ẋ = ẋT∇xP̃ (x) − ẋT Bvs

that can be re-arranged as follows

dP̃

dt
(x) = ẋT Bvs + ẋT Q̃(x)ẋ (18)

and which consists of the sum of two terms. The first one represents the inner
product of the source variables in the suited form ẋT Bvs = vT

s
˙̂
is, where we

assume the vector is ∈ Rl indicating the correspondent current terms flowing
from each inductor series-connected voltage source.

The second one is a quadratic term. In general Q̃(x) is not symmetric and its
symmetric part is sign indefinite making difficult the derivation of the power-
balance inequality we are looking for. In order to overcome this drawback we
follow the same procedure exploited in [3],[4],[5] that basically provides a method
to describe the system (16) by another admissible pair, say Q̃a(x) and Pa(x).
For instance, if the new pair fulfills the following conditions:

C1.Q̃T
a (x) + Q̃a(x) ≤ 0

C2. P̃a(x) : Rs+r → R is positive semi-definite scalar function

we may state that

dP̃a

dt
(x) ≤ ẋT Bvs (19)

being P̃a(x) the storage function candidate related to Pa(x) by (17), the pair

(vs,
˙̂
is) is passive and can serve as port-variables.
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Power-Balance Inequality and Passivity Requirements

In the next theorem we will provide some conditions for passivity that may
be useful for control in the power-based framework. In particular, we refer to
a previous work of the second author [3] where the storage function has the
dimension of power and is defined as a re-shaped mixed potential function P̃a(x).
This new function is then related to a new matrix Q̃a(x) and both, having
common solutions for (16), are related to the original pair Q̃(x), P̃ (x) by the
following relations2

Q̃a(x) =
{
λI + 1

2∇2P̃ (x)Π(x) + 1
2∇[∇T P̃ (x)Π(x)]

}
Q̃(x)

P̃a(x) = λP̃ (x) + 1
2∇T P̃ (x)Π(x)∇P̃ (x)

with Π(x) ∈ Rr×r a symmetric matrix and λ ∈ R any constant.

Theorem 2. Consider an electrical system for which the dynamics is described
by (16) and assume A1 and A2 hold. Moreover, Assume that

A3.(positivity) pseudo-inductors and capacitors matrices are positive definite
A4.(linearity in the content) F (iρ) = −(1/2)iρT Rρiρ with the current-controlled

resistor matrix Rρ being constant and positive definite
A5.(damping condition)∥∥∥−2R−1

ρ M̃(x)C−1(vσ) + M̃T (x)L̃−1(vσ)M̃(x)C−1(vσ) + β(x)
∥∥∥ ≤ 1

with
β(x) =

∂

∂vσ

[
iρ

T L̃(vσ)R−1
ρ C−1(vσ)

]
.

A6.(technical assumption)

L̃(vσ)R−1
ρ C−1(vσ) ≥ 0

then

∫ t

0
vT

s (t′)
dis
dt′

dt′ ≥ P̃a(x(t)) − P̃a(x(0)). (20)

Proof. First, we set the matrix Π(x) and the scalar λ in order to guarantee the
semi-definite positivity of the storage function P̃a(x) and to satisfy the following
requirement3

Q̃a(x)T + Q̃a(x) ≤ 0. (21)
2 See [5] for a detailed proof of this statement.
3 If these two conditions are matched the overall system, for which the dynamics

can be written as �Q−1(x)∇P (x) = − �Q−1
a (x)∇Pa(x) = (diρ/dt, dvσ/dt)T , is then

asymptotically stable.
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Define

λ = −1,
Π(x) = diag[2R−1

ρ , 2L̃(vσ)R−1
ρ C−1(vσ)].

Considering a mixed potential function P (x) fitting the Assumption A4 and
reminding that Assumption A1 ⇒ Λ = I, we obtain

Q̃a(x) =

⎡⎣ −L̃(vσ) −M̃(x) + 2L(vσ)R−1
ρ

−2R−1
ρ L̃(vσ) − [I − β(x)]C(vσ)− 2R−1

ρ M̃(x)

⎤⎦
that, under Assumptions A3 and A5, satisfies (21). We refer to the appendix
for a detailed development of the former statement. Furthermore, the storage
function candidate becomes

P̃a(x) =
1
2
(Rρiρ + vσ)T R−1

ρ (Rρiρ + vσ) +

+
1
2
vσ

T R−1
ρ vσ + iρ

T L̃(vσ)R−1
ρ C−1(vσ)iρ (22)

that, under Assumption A6, is clearly positive definite.

Remark 3. Assumption A5 is an important condition that can be satisfied for
small values of the matrix R−1

ρ —which represent the LTI resistors placed in
series to each inductor— and/or with a weak mutual-coupling action provided
by the presence of the matrix M̃(x). Since M̃(x) depends linearly on the current
vector iρ—see M̃(x) definition provided in Theorem 1—, we can state that for
slow motion or well-damped dynamics, A5 holds.

4 The Inverted Pendulum on a Cart

An interesting example of mechanical system to study is the inverted pendulum
with rigid massless rod (of length l) placed on a cart as shown if Fig. 1. It is
often used to test the performance of controllers that stabilize the pendulum
mass m2 to its natural unstable equilibrium point through a force F acting just
on the cart of mass m1. The equations describing the dynamics of the to masses
could be computed considering as state variables the angular position of the row
with the vertical axis θ and the cart distance z−z0 to a fixed reference (z0 = 0).
The motion dynamic of each mass can be determined via the Euler-Lagrange
equations

(m1 + m2)z̈ + m2l cos θθ̈ −m2l sin θθ̇2 = F −R1ż

m2l
2θ̈ + m2l cos θz̈ −m2gl sin θ = −R2θ̇ (23)

where the generalized coordinates related to the position of each mass and its
derivative representing the corresponding velocities are respectively
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Fig. 1. Inverted pendulum on a cart

q = (z, θ)T , q̇ = (ż, θ̇)T .

Applying the following coordinates transformation4

[
z
θ

]
=

⎡⎣ C1vσ1

fv
2 (vσ2) = arcsin

( vσ2
K

)
⎤⎦ ,

[
ż

θ̇

]
=

⎡⎣ iρ1

iρ2

⎤⎦ (24)

with K = −m2gl and considering that Assumptions A1 and A2 are clearly satis-
fied we can express the motion equations (23) via the Brayton-Moser framework

Q̃(x)ẋ = ∇P (x) (25)

with

Q̃(x) =

⎡⎢⎢⎣
−(m1 + m2) −m2l cos fv

2 (vσ2) 0 m2l sin fv
2 (vσ2)iρ2C2(vσ2)

−m2l cos fv
2 (vσ2) −m2l

2 0 0
0 0 C1 0
0 0 0 C2(vσ2)

⎤⎥⎥⎦
and

P (x) = −vT
s iρ +

1
2
iρ

T Rρiρ + iρ
T vσ,

being

vs = (F, 0)T , Rρ = diag(R1, R2) , C2(vσ) =
∂fv

2 (vσ2)
∂vσ2

and C1 ∈ R+ an arbitrary constant. Now that we have expressed the mechanical
system model by (25) we can use the Theorem 2 in order to get the explicit
passivity condition. By choosing
4 The relation(q̇, q) ⇔ (iρ, vσ) is one-to-one only when θ belongs to the open interval

(−π
2 , π

2 ).
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λ = −1 , Π(x) = diag[2R−1
ρ , 2L̃(vσ)R−1

ρ C−1(vσ)],

after some algebraic computations we get the final local condition

∥∥∥∥∥∥∥
⎡⎢⎣ 0 2m2l sin fv

2 (vσ2)iρ2R
−1
1

0 [m2l sin fv
2 (vσ2)]

2

m1+m2−m2 cos2 fv
2 (vσ2)

+ iρ1
iρ2

m2l sin fv
2 (vσ2)C2(vσ2)R

−1
2

⎤⎥⎦
∥∥∥∥∥∥∥ ≤ 1 (26)

achieved for C1 → ∞. The former suitable choice of C1 parameter is arbitrary
because it depends on the coordinates transformation we arbitrary fixed. Of
course, in order to apply Theorem 2 we have to verify, together with condition
(26), that Assumption 6 holds, that means

∥∥∥∥∥∥
⎡⎣ 0 m2l cos fv

2 (vσ2)R
−1
2 C−1

2

0 m2l
2R−1

2 C−1
2 (vσ2)

⎤⎦∥∥∥∥∥∥ ≥ 0. (27)

From the overlap of (26) and (27), we deduce that∫ t

0
F

˙̂
iρ1(τ)dτ ≥ P̃a(t)− P̃a(0)

with P̃a(x) given by (22), holds.

5 Conclusion and Outlooks

Our main purpose in this document was to present an alternative way to describe
the dynamics of a large class of (possibly non-)linear mechanical systems within
a framework–the Bryton-Moser equations–that relates the power to the trajec-
tories of the system instead of energy, and derive from it sufficient conditions for
passivity. This should be consider as a preliminary step towards stabilization of
mechanical and electromechanical systems using passivity arguments–as already
suggested in [5])–.
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Appendix

Here, we show that given Assumptions A3 and A5 of Theorem 2, the positivity
of Qa(x) is established, i.e., (21) holds. Indeed, computing the symmetric part
of Qa(x) we obtain

Ha(x) =

⎡⎣ L̃(vσ) M̃(x)

M̃T (x) [I − β(x)]C(vσ) + 2R−1
ρ M̃(x)

⎤⎦ .

Then, provided the positivity of L̃(vσ) by A3, we compute the Schur’s com-
plement of Ha(x) and imposing its positivity we obtain

[I − β(x)]C(vσ) + 2R−1
ρ M̃(x) ≥ M̃T (x)L̃−1(vσ)M̃(x)

Let’s re-write the above inequality as follows

I ≥ −2R−1
ρ M̃(x)C−1(vσ) + M̃T (x)L̃−1(vσ)M̃(x)C−1(vσ) + β(x),

as a consequence of Perron’s theorem5 and reminding that the spectral norm
applying on any squared matrix A ∈ Rr×r is defined as

||A|| =
√

ρ(AT A)

we have

1 ≥
∥∥∥−2R−1

ρ M̃(x)C−1(vσ) + M̃T (x)L̃−1(vσ)M̃(x)C−1(vσ) + β(x)
∥∥∥

which is true by Assumption A5.

5 See lemma 8.4.2 of [6].




