

 University of Groningen

Visualizing Debugging Activity in Source Code Repositories
Voinea, Lucian; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Voinea, L., & Telea, A. (2007). Visualizing Debugging Activity in Source Code Repositories. In EPRINTS-
BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-06-2022

https://research.rug.nl/en/publications/c4563d42-0274-4250-9f1a-c12390167222

Visualizing Debugging Activity in Source Code Repositories

Lucian Voinea and Alexandru Telea
Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, the Netherlands

l.voinea@tue.nl, alext@win.tue.nl

Abstract

We present the use of the CVSgrab visualization tool for un-
derstanding the debugging activity in the Mozilla project.
We show how to display the distribution of different bug
types over the project structure, locate project components
which undergo heavy debugging activity, and get insight in
the bug evolution in time.

1 Introduction

We consider understanding the debugging activity of the
Firefox browser, part of the Open Source project Mozilla.
Firefox has 659 files written by 108 authors over 4 years.
The Bugzilla database for this project contains fixes for
4497 bugs from the total number of bugs reported.

We show how to use the CVSgrab visualization tool [1] to
examine how the different bug types are spread across the
project, which files are the most heavily influenced by bugs,
and how do these correlate with authors. CVSgrab contains
integrated facilities to connect to remote CVS repositories
and acquire evolution data, such as file versions, commit
times, authors, commit logs, and debugging data. This func-
tionality is described in detail elsewhere [1]. The complete
data acquisition process took about 45 minutes.

CVSgrab visualizes the evolution of large software projects.
Figure 1 is a snapshot of the CVSgrab tool interface after
we loaded the complete project. The first listbox in the GUI
(Fig. 1 A) shows that, out of several available attributes (au-
thors, file type, searched text, folders, and debugging activ-
ity), the last one was chosen for display. The second list-
box (Fig. 1 B) shows the possible values for this attribute:
enhancements, trivial, minor, normal, major, critical, and
blocker, as reported by Bugzilla. For every value, this list-
box shows a user-editable color and a metric bar with the
number of occurrences of that value. We immediately see
that the normal bugs are the highest majority (80%). The
tree view (Fig. 1 C) allows classical navigation to the folder
or file of interest. The main view (Fig. 1 D) shows the evo-

lution of all files in the project. Each file is drawn as a hor-
izontal pixel line split into segments, one per version. Seg-
ment colors show version properties, e.g. bug data, author
ID, or file size. Given our attribute selection, color shows
bug types. Gray indicates files with no debugging activity.
Files are stacked vertically, sorted on user-defined criteria.
By default, the order of files in folders is used.

Figure 1. The CVSgrab tool showing the
Mozilla project. Color shows bug types

This image already shows that most files undergo sustained
debugging activity from a very early stage. This indicates
a very active, dynamic project. We turn now our interest
to those files drawn in red shades, i.e. showing critical or
blocker bugs.

2 Showing Critical Development Areas

The first task we want to complete is to show critical devel-
opment areas, i.e. files affected by critical or major bugs.
For this, we first click on such a file (red pixel line) in the
main view. The tool displays now its full path and name

1

(Fig. 1 E). That file is called /mozilla/browser/locales/en-
US/chrome/browser/openLocation.dtd. Next, we use CVS-
grab’s ’sort by similarity’ functionality. Given a target file
ft , in our case the clicked one, and any other file f in the
project, this computes the distance d(ft , f) ∈ R+, which
shows how close in time the commit moments of ft and
f are. The implementation of this technique is given in [1].
Next, we sort the files on the vertical axis in increasing dis-
tance, i.e. decreasing, similarity, order. The result (Fig. 2)
shows a clear concentration of red file stripes at the top of
the image (A). This is interesting, as it means that most files
which evolve similarly (are committed at roughly the same
moments) with our selected file, also contain major bugs.
However, we see something else here. The red color ap-
pears suddenly at a given point t0 in time, and then dis-
appears quite quickly as we move to the right, i.e. fur-
ther from that moment. This is more visible in the zoom-
in view (Fig. 2 top). Looking at the timeline above the
zoom-in view, we see that the time of removal is roughly
six months from the appearance moment t0. Brushing with
the mouse over the red zones, we see in the commit log
window that all the red areas refer to the same critical bug:
Merge changes from the aviary branch to start centralizing
locale files (bug 250672). The meaning of the red stripes’
length is now clear: Short stripes indicate files where the
respective changes were quickly merged. Long stripes, like
the one marked C in Fig. 2, indicate files where the merge
happened very later, or did not happen at all, for those bars
extending all the way to the right, i.e. until the current mo-
ment.

Figure 2. Files containing major bugs, sorted
by similarity

The next question we have is: Are all those files with ma-

jor blocker bugs close to each other in the project organi-
zation, or not? To answer this, we switch to a different
color scheme. We select folders as the attribute of interest in
the first lisbox (Fig. 3 A). Now every different folder in the
project is shown by a different color, shown in the second
listbox (Fig. 3 B). Looking at the main view, we see that the
top files, which are the ones containing major blockers, have
now basically two colors: brown (folder /mozilla/browser/-
locales/en-US/chrome/browser and green (folder /mozilla/-
browser/locales/en-US/chrome/browser/bookmarks). We
conclude that there are only a few bugs marked as major
blockers, localized in just two folders, a few of which have
not been removed until the current date.

Figure 3. Folders containing major bugs

3 Conclusions

We have shown how the CVSgrab tool can be used to get in-
sight in debugging-related activities in a large code project.
CVSgrab offers only a few simple mechanisms: A file-
versus-time layout, attributes shown by colors, and sorting
files on various metrics. It is the orthogonal and interac-
tive combination of these mechanisms that makes CVSgrab
a powerful tool. The scenarios presented in this paper were
done with a few (under 10) sorting and attribute selection
operations, and took approximatively 10-15 minutes from
the first try. CVSgrab can support many similar analysis
tasks in a similar way.

CVSgrab is available at www.win.tue.nl/∼lvoinea/VCN.html

References

[1] L. Voinea and A. Telea. Multiscale and multivariate visual-
ization of software evolution. In Proc. ACM SoftVis, pages
115–124. ACM Press, 2006.

