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Abstract-We consider the problem of designing en-

coders, decoders and controllers which stabilize feedfor-
ward nonlinear systems over a communication network
with finite bandwidth and large delay. The control scheme
guarantees minimal data-rate semi-global asymptotic and
local exponential stabilizatioln of the closed-loop system.
The analysis rests on the stability properties of a class of
cascade impulsive time-delay systems.

Index Terms-Nonlinear systems, networked control
systems, impulsive systems, quantization, delay systems,
packet drop-out.

I. INTRODUCTION

The problem of controlling systems under com-

munication constraints has attracted much interest
in the recent years. In particular, many papers have
focused on how to cope with the finite bandwidth
of the communication channel in the feedback loop.
For the case of linear systems (cf. e.g. [6], [2],
[12], [7], [25], [27]) the problem has been very

well understood, and an elegant characterization of
the minimal data rate above which stabilization is
always possible is now available. Loosely speak-
ing, the result shows that the minimal data rate is
proportional to the inverse of the product of the
unstable eigenvalues of the dynamic matrix of the
system. Controlling using the minimal data rate is
interesting not only from a theoretical point of view,
but also from a practical one, even in the presence

of communication channels with a large bandwidth.
Indeed, having control techniques which employ

a small number of bits to encode the feedback
information implies for instance that the number of

different tasks which can be simultaneously carried
out is maximized, results in explicit procedures to
convert the analog information provided by the sen-

sors into the digital form which can be transmitted,
or improves the performance of the system ([16]).
The problem for nonlinear systems has been in-
vestigated as well (cf. e.g. [17], [19], [3], [26],
[4]). In [17], the author extends the results of
[2] to nonlinear systems which are input-to-state
stabilizable. For the same class of systems, the
authors of [19] show that the approach of [27]
can be employed also for continuous-time nonlinear
systems, although in [19] no attention is paid on the
minimal data rate needed to achieve the result. In
fact, if the requirement on the data rate in not strict,
as it is implicitly assumed in [19], it is shown in [3]
that the results of [19] actually hold for the much
broader class of stabilizable systems. The paper
[26], among the other achievements, shows that a
minimal data rate theorem for local stabilizability
of nonlinear systems can be proven by exploiting
the linearized system associated to the original one.
With the exception of [4], non local results for
the problem of minimal data rate stabilization of
nonlinear systems are missing. The paper [4] has
pointed out that, if one restricts the attention to the
class of nonlinear feedforward systems, then it is
possible to find the infimal data rate above which
stabilizability is possible. We recall that feedforward
systems represent a very important class of nonlin-
ear systems, which has received much attention in
the recent years (see e.g [28], [24], [13], [21], to
cite a few), in which many physical systems fall,
and for which it is possible to design stabilizing
control laws in spite of saturation on the actuators.
A recent paper ([22]) has shown that, when no com-
munication channel is present in the feedback loop,
any feedforward nonlinear system can be stabilized



regardless of an arbitrarily large delay affecting the
control action. In this contribution, exploiting the
results of [22], we show that the minimal data rate
theorem of [4] holds when an arbitrarily large delay
affects the channel (in [4], instantaneous delivery
through the channel of the feedback packets was
assumed). Note that the communication channel not
only introduces delay, but also quantization error
and an impulsive behavior, since the packets of bits
containing the feedback information are sent only
at times when transmission is allowed. Hence, the
methods of [22], which are given for continuous-
time time-delay systems, must be modified to deal
with impulsive time-delay systems in the presence
of measurement errors. In addition, our result re-
quires an appropriate redesign, not only of the
parameters in the feedback law of [22], but also
of the encoder and the decoder of [4]. See [18] for
a different approach to the problem of delays and
quantization.
In the next section, we present the problem in more
detail. The main contribution is stated in Section
[II. Moreover, building on the coordinate transfor-
mations of [29] [22], we introduce a form for the
closed-loop system which is suitable for the analysis
(Subsection IV-A). The main arguments employed
to prove the results are given in Subsection IV-B,
although full technical details are omitted. These
can be found in [5]. In the conclusions, it is em-
phasized how the proposed solution is also robust
with respect to packet drop-out. As the results of the
paper are an outgrowth of [22], [4], our presentation
is along the lines of those papers, and only details
which differ from those therein are reported. The
rest of the section summarizes the notation adopted
in the paper.

Notation. Given an integer 1 < 1 < v, the vector
(ai,... a.) E R2-i+R will be succinctly denoted
by the corresponding uppercase letter indexed by
t i.e. Ai. or - 1, we will equivalently use
the symbol Al or simply a. I denotes the i x I

identity matrix. 0ixj (respectively, ixj9 denote an
t x matrix whose entries are all 0 (respectively,
1). When only one index is present, it is intended
that the matrix is a (row or column) vector. If x is
a vector, £x denotes the standard Euclidean norm,
i.e. vTx, while £x denotes the infinity

norm max1<i<nxi. The vector (xi y')< will be
more simply denoted as (x,y). + (respectively,
R+) is the set of nonnegative integers (real num-
bers), Rn is the positive orthant of R. A matrix
M is said to be Schur stable if all its eigenvalues
are strictly inside the unit circle. The sign function
sgn(x), with x a scalar variable, denotes the function
which is equal to I if x > 0, 0 if x 0O, and
equal to -1 otherwise. If x is an n-dimensional
vector, then sgn(x) is an n-dimensional vector
whose tth component is given by sgn(xi). Moreover,
diag(x) is an n x n diagonal matrix whose element
(i, ) is xi. Given a vector-valued function of time
(I~) : iR+R, the symbol I)Illo<)denotes
the supremum norm x (.) = SUptR+ X(t)I ,
whereas Xt sup_ <,<o X (t + S) or xr
SUP£T<,7<OIx(r + oT) 1, depending on the context.
Moreover, x (t-) represents the limit limt-- x (t).
Forn 1,... , n, the functions pi,q, Rnfi+l R
are defined as [29], [22]

n (na i)!aj
Pi (ai *. I an) = ( j)!(j )!

qi(<i, an =n (- 1)+ (n i)! aj

with Pi (qi (ai, ) I qn (an)) ai

qi (pi (i, , a,), p(p(an)) ai. The saturation
function [22] a :R -* R is an odd C' function

such that 0 < '(s) < 1 for all s c R, a(s) =1 for
all s > 21/20, and cr(s) = s for all 0 < s < 19/20.
Furthermore, Ti(s) =ET 9(SEi), withEi a positive
real number.

II PRELIMINARIES AND PROBLEM
FO:R\MIULATICON

We are concerned with the problem of controlling
a nonlinear system in feedforward form [28], [24],
[13] [21], that is

1~(t) f(x(t), u(t))

2(t) I (X2(t))
...

9 ~~u(t)
where xi(f) E , Xi () is the vector of state

variables x1(t) xi (t) rx(t), u(t) c R, each
function hi is C2, and there exists a positive real

(1)



number M > O such that for all X = 1, 2, ..., n -

if maxi<j<n £xjl < 1, then |hj(X+j)|<) M1Xi+1
The communication channel which appears in
feedback loop has finite bandwidth and arbitra.
large constant delay, hereafter denoted as 0. In
ticular, there exists {tk} k,Z+, a sequence of strie
increasing transmission times, satisfying

Tm < tk+ - tk < TAI, k C E+

for some positive and known constants Tm TM
which a packet of N(tk) bits encoding the feedb'
information is transmitted, and received at the ot
end of the channel 0 units of time later. The tir
at which the packets are received are denoted
0k tk 0. As a measure of the data rate emplo,
by the communication scheme we adopt the avert
data rate [27] defined as

k

Rav lim SupkUPk o r- N(tj) / (tk -to)
j=O

where E =o N(tj) is the total number of bits tra
mitted in the time interval [to tkl. To deal with
constraints imposed by the channel, the addition
an encoder and a decoder to process the feedbq
information has proven very effective [27], [
[19]. As we focus on semi-global results for the s
of simplicity, a bound on the compact set of ini
conditions is assumed to be available to both
encoder and the decoder, namely a vector f C
is kknown for which

i(to)I < i 12,... ,.

In this paper (cf. [19], [10]), the encoder is an

impulsive delay system ([t], [15], [19], [10]):

(t) = f (b (t), C ( (t-0) ) ) t z& Ok

g (t) f J t) a:
0J

(t) t t' tyk
(t)t - 0/r t 5ztbk

wu(t)

(t)

0(t)

wi(t ) + g8 (x(t- 0), 4(t- 0)

f(t- -0)) t 0O
4(t-) g(x(t- )(t) f(t -))

t = tk
Af(t-) t- tk

with (b, ~f) C R xRlxR+,and\A, d) C R ,and
L < WI, > 1 respectively matrices and parameters
to design. Moreover,

Aliy LfP Cna I

()ar (L) (M 01 \ Yo~~p MKw T a JJ JJn

k\\\L LL /

+

and gs(x, , £) = (4 )-diag [sgn (D(x- ))].
The encoder initial conditions are chosen as:

+1ga- =KO, ((to) = 0 f.() 24 . (6)

A brief discussion on the structure of the encoder
is in order. The encoder plays the role of converting
the feedback value into data packets t{Y(tk)}kZ+
of finite length, transmitted through the channel at
times ttk{k1+ set by the communication line. In
the present setting, it further processes the data to
cope with the transmission delay, and make it sure
that the delivered information with delay is still
useful to provide a stabilizing control action, as it
will be proven in the sequel of the paper. It is well
known that the equations of the encoder specify the
quantization region at each time. Moreover, such
region must be known to the decoder as well, and
therefore the state variables for the encoder and the
decoder must coincide at any time. This justifies
the presence of the delay in the first equation of the
encoder, and the reason why its state is reset after 0
units of time from the transmission time tk. Indeed,
the packet containing the feedback information is
delivered with delay 0, and the delayed input and
reset in the decoder equations (see below) reflects
this. Nevertheless, encoding must be carried out at
the times tk when the channel allows transmission,
and for this reason the 4 equations are requested
to work synchronously with the transmission times.
As usual, the jump equations take into account the
reset of the state due to transmission/reception of
a new feedback packet. Finally, the control law av
is the well-known nested saturated feedback [28],
[24], [13].
Remark. The sampled output y(tk) takes values
in the finite set { 0o 1}, and as such it can be
transmitted through the finite data-rate channel by" (t) Sgn ((D (X (t-) .(t-))) t tk ,



employing 2 bits per each state component. It is not
difficult, although tedious, to modify the function
which defines Y (tk) in such a way that the latter
actually ranges in the set {O 1}1f(tk), N(tk) being
constantly equal to o102\n] const. This is
omitted for the sake of simplicity. We also notice
that, employing a tri-state encoding for each com-
ponent of the vector, rather than a bi-state encoding
as in [4], is only dictated by the need to preserve
the null solution as an equilibrium solution for the
closed-loop impulsive system, since the stability is
established by Lyapunov-based arguments cf. [1],
[15].

The sequence {Y(tk)}k1Z, generated by the en-
coder is received at the other end of the commu-
nication channel at times Ok and here processed
by the decoder, which loosely speaking constructs
an estimate of the state of the process based on
the received symbol, and exploits it to provide the
control action during the interval [0k, Ok+l). The
decoder is an impulsive system as well:

(t) = (V) (t),~C(fb (t - OM)
v~(t) = ( ) t Ok

~b(t) = b(t ) + 9'D(Y(t -0), 7(t ))
vJ(t) = Av(t-) t =Ok

u(t) = a((tb ,
(7)

with ,D(y, v) = (4 ))- diag(y)n, and initial condi-
tions set equal to

0l0-| | = ° 'lJ(O ) 2-C (8)
Before proceeding, we observe that in the analy-

sis to come it is enough to consider the equations
describing the process and the decoder only, as we
exactly reconstruct the state of the encoder from the
state of the decoder. In fact, we can prove:
Lemma

(i) w(t)
(ii) 0 t -
t 0.

1 We have:
ipt) for all t >to
0) - bt) and v(t-0) £(t) for all

In this paper we design the encoder and the
decoder (hence the controller) in such a way that
the resulting (delay impulsive) closed-loop system
is semi-globally asymptotically and locally expo-

nentially stable, and this is achieved employing an

average data rate which is arbitrarily close to the
infimal one. The precise formulation of the problem
we solve is as follows:

Definition. System (2) is semi-globally asymptoti-
cally and locally exponentially stabilizable with an
average data rate arbitrarily close to the infimal one
if, for any C R+, 0 > 0, R > 0, an encoder (5),
(6), and a decoder (7), (8) exist such that for the
closed-loop system with state X := (xwWI £. 6.v),
we have:
(i) There exist a compact set C containing the
origin, and T > 30, such that X(t) C for all
t lT.
(ii) For all t > , for some positive real numbers
kj,

IX(t)I < k1IXTI exp(-(t -T)) . (9)

(iii) Ray< R.

Remark. Item (iii) points out that the average data
rate used to achieve the stabilizability result can be
made arbitrarily close to zero, which of course is the
infimal data rate. This result can be put in relation
with the dynamics of the system in the following
way. The linearization of the feedforward system at
the origin is a chain of integrators, for which the
minimal data rate theorem for linear systems draws
the same conclusion we have drawn for the original
nonlinear system.

In view of the recursive nature of the controller,
encoder and decoder design [29], [28], [24], [13],
[22], [4], it is convenient to introduce additional
notation.

( i+xI(t) + hi(Xi+ (t))
...

Xnr (t) + hn_ I ( Cl (t))
< ~~u(t)

H-1i(Xi+I (t)au(t))

X X.2 ... X I

(10)

III. MAIN RESULT

The main result of the paper is as follows:
Theorem 1. System (2) is semi-globally asymp-

totically and locally exponentially stable with an
average data rate arbitrarily close to the infimal one

Remark. The proof is constructive and explicit
values for A,4D and Ei's, a L*, which appear in



the encoder and in the decoder, are determined. For
instance, we have

the state coordinate change Zi (r)
transforms (1:0) into [22]

1 80E, =802E_1 = . .. =80'Ej , (1 1)

and t, L* take the following expressions:

= 0 max {4 (80)n+1n(n + 2),
16n2(8n(1 + n2)n-r + 1)2
32(1+ 22n

L min {2 8Ot ,i ,n ,,,

8(1 + a2)nl-1 3(n!)3

M}

(12)
Compared with the analogous expressions in [22], it
is seen that, the control law employed here requires
an appropriate parameter redesign to cope with the
presence of the quantization error and state resets.

IV. SKETCH OF PROOFS

A. Coordinate transformnations
Building on the coordinate transformations in

[22], [29], we put the closed-loop system in a

convenient form, namely equations (13), (17)-(18),
(19) below. As far as the equations of the process

are concerned, the following linear change of coor-

dinates is very useful. For given positive constants
L < M, , > 1, we define the non singular positive
matrices' bD as:

Zi(r) = ,i(Zi+ (r), v(r))
-i+ zj((r) +

j=i+2Zj(r) + v(r) +

v(.r)

- fi (Zi+ (r) )
fi+1 (Zi+2 (r) )

(13)
where, if Zi+, 1 <(M) /((L(n + 1)!), then

jfi(Z )I < pIZ 12 P = n3(n!)3Lr-
(14)

Because of the recursive design, in addition to (10),
we also consider the following equations associated
to the decoder:

Ni (t)

Ni (t)
IFi (t)
Ni (t)

Hi(,i+ I(t)I, Nji(t - OM
On-i+l t Ok,
4'i(t ) + (4i ) -'diag(Yi(t -0)) Ni(t- )

AiNi(t-) t Ok,

where Ni denotes the components from i to ra of v,
and it is convenient to express (ATi) as

a(T (t)) =

Ui (Pi (1

L ( ,n-I MA(t)I

(Sn- 2 LA On- I (t), 4 - I AI
On (t) +

1 O 2(t), 1(t L n(t)) + I (t)) ..))

with obvious significance of Ai I(t). For i = 1,
the equations above coincide with (7). In addition
to Zi, new state coordinates are introduced, namely

L

-IXn 1 )

~p (M ;i-±x
biXi~~:=KZ- i ...

(M,} ~ ~ ~ n

i - I ~... .: L

where the functions pt are those introduced in (1).
Along with the change of time scale t = r, and

input coordinate change

v(r)-NmK-n-IU(r :_G pn, L i

'The matrix will be simply referred to as D.

Wi(r)
Ei(r)
Pi (r)

biVTi(r,) ,

1(4' (ar)X-Xi(a(r -T))) ,

Ni(ar),
(15)

with T /,, and we let Krk = tk and Pkp Ok.

In these new coordinates being u -a (b), we have

v(r) = {pn ( K aOiD wi(r))) =

- (7n(Wn(r +(TnC-1Wn-1 (r T * * * T ai(wi(r) Tj/-1 (0J ...J

-ge(n,r) T Znt(r - T) T (n-rCn-)(r) TZn-+r(r - )T

+ (e(r) +z(r -)+ 1 (r)) ))
(16)

with Ai-1(r) -Ai-1(ar) -at1(wi- 1(r) +... +

T (w1 (,r)) ). Moreover while the variable Z. sat

isfies (J3), with v(r) as in (16), the variable Ei

XjXjr(Kr)



obeys the equation

TT)) _

j(r- ), v(r -))

F
-o
0

0
- o
fi(Ei

fi+I (E

1 1 ... 1 1-
0 1 ... 1 1

O 0 ... 0 1
0 0 ... 0 0
j+j (r) + Zi+l (r - T))- fi (Zi+l (r- T))
i+2 (rX) + Zi+2 (r- T))-fi+l (Zi+2 (r-)T)

(E. (r) + Z1 (r- T)) 1(Zn (r - T))
0 j

(17)
for r f Pk, and

Ei (r) = Ei(r-, + 4-1diag(sgn(-E1(r-)))PT(r-) ,

(18)
for r =p,P, where the variable Pi which appears in
the last equality satisfies

Pi(r)
P1(r)

On-i+l r

AiPi(r-) r
Pk

Pk

B. Sketch ofproofs

The proofs consist of a step-by-step construction,
where at each step i, we consider the subsystem
(13), (16)-(19). In particular, following [4], one can
first show that the decoder asymptotically tracks the
state of the subsystem, and then that the control law
(16) stabilizes the subsystem, despite of the error
due to the coding. In this section we only provide
the line of reasoning which underlies the proof
of the main result, omitting most of the technical
details. That the decoder asymptotically tracks the
state of the process is proven by the following result:
Lemma 2: Suppose (4) is true. For some index

i 1, 2,... n,, if there exists a positive real number
Z+j such that 2 Z < Z(_, and, for all

o jr)I < pfr/2 forj -+1 i+2 ,n
with3 P+I (p) AAi+I Pi+I (p- ), for p =p,P, and Ai+
a Schur stable matrix, then for all r >po,e (r)
pi(r)/ , withpi(r) p(r )/, forr P, ifi n,

2The conditions are void for i
n

3In the statement, the continuous dynamics of the impulsive
systems are trivial - the associated vector fields are identically zero
and hence omitted.

and
Pip(r) _ 1/2 Pip(r)
Pi+I(r) Oi-lxi Ai+, Pi+, ('r)

r Pk
(20)

if {1 2 ...,n 1}.

Remark. From the proof of the lemma, it becomes
evident that, if z(.) oc < Z. for some Z > 0, then
the evolutions of e( ) and p(.) obey the equations4

e(r) = A(r)e(r)
O ai2(r) a13(r)
O O a23 (r)

o o 0
o o 0O O

.. al n-1L(r) aln(r)

... a2 n- I (r) a2n (r)
(e(r)

.. O an-1 n(r)
... O O

p(r) # P4
e(r) e(r-) + 4- diag[sgn(-e(r- ))p(r-)
p(r) Ap(r ) r = pk

(21)
where the off-diagonal components of A rather than
being seen as functions of (r, e(r), Z(r- T)), are
interpreted as bounded (unknown) functions of r,
whose absolute value can be assumed without loss
of generality to be upper bounded by a positive
constant depending on Z,( and TM.
The next lemma points out that, as expected, Lemma
1 in [22] holds even in the presence of a "mea-
surement" disturbance induced by the quantization,
which can be possibly large during the transient but
it is decaying to zero asymptotically. The lemma is
needed to prove that, at each step, the state of the
subsystem eventually converges to zero if so does
the encoding error.
Lemma 3: Consider the system

Z(r) [1 Z r T9 ecr) +A r))j + ir)

where Z C R, E is a positive real number, and
additionally:

* A( ) and p() are continuous functions for
which positive real numbersAN, and p., exist
such that respectively, A(r) < A*, <(r)
II. for all r o.
c (.) is a piecewise-continuous function for
which a positive time r* and a positive number
c exist such that e(r) e , for all r > r

4Again, we adopt the symbol A rather than A1.

Ei (r) Fi (Wi+ 1 (r), v (r
Fi (Zi+l

fn-1



A (.0,801

then there exist positive real numbers Z*, and R
such that IIZ( :)O < Z*, and for all r > R,

0

IZ(r)I < 4(AX +t, + e)

Remark. The upper bounds on A, e , ptt could be
lowered to /40 and the result would still hold. The
more conservative bounds are needed in forthcom-
ing applications of the lemma.

In view of the inductive argument to be used, the
follow ing is very useful (cf. [22]):

Inductive Hypothesis There exists Zi >
Zi ( ) < Zi. Moreover, for each =
e2j(r)l < pj(r) 2, for all r > po, and
Ri > i such that for all r > ft,

IZj(r) < I£j ej(r) <
-2Ta

0 such that
t+l ... , n,
there exists

I
80i-i

First step The inductive hypothesis is true for 1n,
provided that T < 1/24 and the saturation levels Ej
are as in (1 ). Indeed, consider the system (1 3),
(16)-(19) with i nT, and An = 1/2. It is a
consequence of Lemma 2 that e6 (r) < En /80 from
a certain time R'r on. Applying Lemma 3 to the zrl
sub-system, we conclude that IlZn() II < Znr and
there exists a time Rf, > Rt' such that lzn (r)I <
En/4, and |Cn(r)l < En-l/(n12 160) for all r > R,,
the latter again by Lemma 2.
Inductive step Further we have:
Lemma 4 Let

evolving according to the equations

z(r) = A1z(r) + A2z(r r)-+ A2e(r)+
f (z(r))

e(r)
p(A
z(r)

A(r)e(r)

z(r-)
r 7e Pk

e(r+) e(r-) + 4-'diag[sgn(-e(r-))]p(r-)
p(r) Ap(r) r Pk,

(23)
where: (i) A1, A2 are matrices for which there exist
q = (1 + n2)n-1, a = n, and Q = QT > Ois such
that(A1+A2)TQ+Q(Al+A2) <-I, with IQIQ < q
and IIAl IIA211 < a; (ii) There exists > 0 such
that fJ( (r)) f, (Z2(r)) ... fn _IZ(,r)) U]
satisfies ff(z) < z (iii) A(r) is as in (21); (iv)
A is the Schur stable matrix designed following the
proof of Lemma 2.
Concisely rewrite the (e, p equations of the system
above as ([1])

(r)
E(r )

BT(r)c(r) r
gk (E(r) ) r

Pk
Pk

with c (e,p), gk( > Jej/2, and notice the
following consequence of Lemma 2:

Corollary 1 There exists a function V(r,)E
V(r, e,p) R+ x R IX R"T R+ such that, for all
r E R+ and for all c = (e,p) E R' X R for which
lel < Ip2/2, satisfies

c1c12 < V(r,c) 1c2c
dv OV
.~+ (?B(r)c(r) < cl,ec

V(r,gk()) <V(r,6
OV(r, *) C4 E

r

r Pk

for some positive constants ci, = 1, .... 4.
We now state that the entire cascade impulsive

system (23) is exponentially stable.
Lemma 5: Consider system (23). If

TP1 < <m 20 (80)<t ]-'
T < [4 * 80nl1n(n + 2)] -

(22)

If the induction hypothesis is true for some i.
{2, ... , nr, then it is also true for - 1.

Applying this lemma repeatedly, one can prove that,
after a finite time, the closed-loop system starts

1

8q7 and

T m< j 16a (8aq + 1)232q a JI

then, for all r >p, for some positive real numbers
k, 6, we have

( (zr), c Pr))< k (z,c),po exp( 6(r po)) .

if

T(' 24]
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We can now state the intermediate result be-
low, where we assume without loss of generality
(cf. (12)) that L < (M,)/(n + 1)!

Proposition 1: Consider the closed-loop system
(13), (16)-(19) and let jIr(p-)I < pi(P)/2 for all
= 1,2,..., rn. If (11) holds and

0 < T < Tm = maxf{4 (80)n+'n(n + 2),
16n2 (8n(1 + n 2)nt-1 + 1)2
32(1 + T,2)2(7T-1)n41]-l

0 < P < Pm = [max{20 80n+1,n
8(1 + n 2)nl 1 1(n )

(24)
then:
(i) For each j 1, 2,. . ., n, for all r > po, Iej(r) <
pj(r)/2, and there exists R > T such that, for all
r > R,

4gJ, |e(r)|

1

1 1
212n 802+ '

n 803j+
Rf for some positive real numbers

(z (r), e(r), p(r)) < (z, e, P)Et exp( (r-R)
(25)

The proof of the main result simply amounts
to rephrase the statement of the latter proposition
in terms of the original system coordinates. To

prove the last part of the statement, notice that
by definition of Rfav, Re,V < R provided that
Tj > 2n/Rf. Now, this can always be achieved by
discarding feedback packets without affecting the
stability property of the closed-loop system. Indeed,
the choice of Tm affects the entries of A(r) and A,

but the exponential stability of the (e,p) equations
(and therefore of system (21)) remains true (this is
evident from the proof of Lemma 2).

V. CONCLUSION
We have shown that minimal data rate stabiliza-

tion of nonlinear systems is possible even when
the communication channel is affected by an ar-

bitrarily large transmission delay. The system has
been modeled as the feedback interconnection of a

couple of impulsive nonlinear control systems with
the delay affecting the feedback loop. In suitable
coordinates, the closed-loop system turns out to be

described by a cascade of impulsive delay nonlinear
control systems, and semi-global asymptotic plus
local exponential stability can been shown. If the
encoder is endowed with a device able to detect
abrupt changes in the rate of growth of xr, or if a
dedicated channel is available to inform the encoder
about the transmission delays, then it is not difficult
to derive the same kind of stability result for the
case when the delays are time-varying and upper-
bounded by 0. Similarly, by adjusting TAf in (3), it
is possible to show that the solution proposed in this
paper is also robust with respect to packet drop-outs.
The same kind of approach appears to be suitable
for other problems of control over communication
channel with finite data rate, delays and packet drop-
out.
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