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Abstract

Level sets are isosurfaces of an implicit function
F : R

3 → R, that is the set of points satisfying F (x, y, z) =
θ. In this paper we introduce an algorithm to move at inter-
active speed through the different level sets. Furthermore
the meshes of the level sets are isotopic to the isosurface it-
self, as long as the surface stays away from singularities.
When the surface moves close to singularities, the algo-
rithm indicates arbitrarily small boxes where the topology
is not certified. In this case, the user can decide to de-
crease the size of the boxes by further refinement. For spe-
cial classes of functions, such as algebraic surfaces, other
methods could be used to determine the topology inside the
singular boxes.

1 Introduction

Recently a number of algorithms for regular isotopic
meshing of implicit surfaces has appeared [10, 11, 1, 2, 4].
Due to singularities for generic level sets, no such results
exist for examining level sets of implicit functions. Topol-
ogy of isosurfaces is used to examine the clustering of mat-
ter in the universe [12], by computing topological properties
of level sets of density functions. The display of level sets
is also a fundamental technique for visualization of scalar
fields [9]. In medical MRI scans isosurfaces indicate the
seperation between bones and soft tissues. In this case the
topology is known, and can be used to determine an appro-
priate isovalue.

In this paper we extend our algorithm for isotopic mesh-
ing of implicit surfaces to the meshing of level sets. As far
as we know this is the first meshing algorithm for level sets
giving topological guarantees for the resulting mesh. Fur-
thermore, the meshes generated for different isovalues are
disjoint. The algorithm has been implemented and is fast
enough to examine level sets interactively. The static iso-
topic meshing algorithm was first presented in [10]. In this
paper we will use an improved meshing scheme based on
tetrahedral subdivision [11], resulting in less complex mesh

generation.
Other meshing algorithms with topological correctness

have been suggested. The algorithm in [1] is based on
Morse theory and uses information about the critical points
of the function to determine the topology.

Morse theory is also used in [13] and [3], where the
topology of a mesh is determined by starting an isovalue
with trivial mesh topology, and updating the mesh as the
isosurface passes through singularities.

It is not clear whether these algorithms can be extended
to meshing of level sets. In particular, details about the sin-
gular points are required, and there is no fixed spatial sub-
division that can be maintained and reused for the different
level sets.

Sampling based algorithms for isotopic meshing of static
implicit surfaces construct a sufficiently dense sample of
points on the surface, such that surface reconstruction re-
sults in a homeomorphic approximation. To construct such
a sample, in [2] bounds on the distance to the medial axis
are needed, while [4] requires the critical points of height-
functions on the surface and on intersection curves. Even
if these requirements are met, the point sample cannot be
reused for different isovalues.

In Section 2 we summarize the isotopic meshing algo-
rithm for static surfaces. In Section 3 we show how the
same data structure can be used for meshing level sets with
topological guarantees. Results of this algorithm are shown
in Section 4. Finally, in Section 5 we discuss possible im-
provements to the current implementation.

2 Isotopic meshing

In this section we give an overview of the isotopic mesh-
ing algorithm for an implicit surface F (x, y, z) = 0. For
full details see [11].

Enumeration methods for approximation subdivide
space into smaller regions where the surface is ‘simple
enough’ to create a local mesh for this region. The union
of these local meshes forms the final approximation. A fa-
mous example is Marching Cubes [8]. These enumeration
algorithms usualy depend on a user-defined resolution to
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trade off accuracy and speed. Marching Cubes uses a fixed
size for all cells. For implicit curves quadtrees have been
used, where the level of subdivision depends on the local
curvature [7]. However, the user has to predetermine what
amount of curvature is allowed for a good approximation.

The isotopic meshing algorithm [11] uses an octree
based subdivision to allow for local refinement where re-
quired, in particular in regions with high curvature. Interval
arithmetic is used to test which leaves need further subdivi-
sion to guarantee an isotopic approximation. The main idea
is firstly to test which regions do not contain part of the sur-
face. These regions do not need further subdivision. Sec-
ondly, the variation in the gradient is tested. A test based
on interval arithmetic determines if this variation is small
enough to determine the local topology of the implicit sur-
face.

2.1 Interval arithmetic

One way to prevent rounding errors due to finite preci-
sion numbers is the use of interval arithmetic. These in-
tervals can be considered as a value, together with an error
bound.

An inclusion function �f for a function f : R
m → R

n

computes for each m-dimensional interval I (i.e., an m-
box) an n-dimensional interval �f(I) such that

x ∈ I ⇒ f(x) ∈ �f(I)

An inclusion function is said to be convergent if the width of
the output interval converges to 0 when the (largest) width
of the input interval shrinks to 0. For example, if f : R →
R is the squaring function f(x) = x2, then a convergent
inclusion function �f([a, b]) is given by

�f([a, b]) =
{

[min(a2, b2), max(a2, b2)], a · b < 0
[0, max(a2, b2)], a · b ≥ 0

When using interval arithmetic to prevent rounding er-
rors, the width of the intervals should be as small as pos-
sible in order to give accurate results. We will use another
application of interval arithmetic, and compute function val-
ues over large intervals. For example, if the function value
computed over a large box results in a strictly positive inter-
val, we can conclude that the function has no zeroes within
that interval. In other words, the implicit manifold does not
intersect this box.

Convergent inclusion functions exist for the basic op-
erators and functions. To compute an inclusion function
it is often sufficient to replace the standard number type
(e.g., double) by an interval type (Interval), using an
appropriate interval library, such as Filib++ [6].

2.2 Meshing algorithm

Our isotopic meshing algorithm is based on an octree
subdivision. Leaves of the octree are subdivided until we
have determined that either it does not contain part of the
surface (0 /∈ �F (C)), or the variation in the gradient is
small enough to determine the local topology. The latter
condition is given by the interval inequality:

〈�∇F (C), �∇F (C)〉 > 0.

It implies that for all x, y ∈ C we have 〈∇F (x),∇F (y)〉 >
0, so the gradient variation is less than π/2.

To fascilitate the meshing of the resulting octree, we bal-
ance it first, and then tetrahedrize it. Balancing means that
we perform extra subdivision until neighbouring leaves dif-
fer at most one level in depth, and therefore at most a factor
of two in size. Balancing does not increase the complexity
of the octree size. For the tetrahedrization we triangulate
the faces of the octree in a non-ambiguous way. A vertex
is added at the centre of each leaf, and tetrahedra are con-
structed by connecting this centre vertex with the triangles
on the boundary of the leaf.

Algorithm APPROXIMATESURFACE(F, B)
Input. An implicit function F , and a cubic bounding box B.
Output. A piecewise linear approximation of the implicit

surface F = 0.
1. Initialize an octree T to the bounding box B of F = 0.
2. Subdivide T until for all leaves C we have 0 /∈

�F (C) ∨ 〈�∇F (C), �∇F (C)〉 > 0.
3. BALANCEOCTREE(T )
4. for each face of the octree T
5. do triangulate the face according to the subdivision

of its edges
6. for each leaf of the octree
7. do add a centre vertex and create tetrahedra by

connecting it to the triangles on the boundary
of the leaf

8. for each tetrahedron
9. do determine the function sign of its vertices and

mesh the tetrahedron using linear interpolation

The sides of each face of the octree can consist of either
one octree edge or of two octree edges in case of a subdi-
vided side. We walk around an octree face in a fixed direc-
tion, for example counterclockwise as seen from the posi-
tive axis perpendicular to that face, and starting at the corner
vertex with largest coordinates. By checking whether the
four sides are subdivided, this results in one of 16 unique
sign patterns. We then triangulate the face according to the
table in Figure 1.

Once all faces of an octree cell are triangulated, we can
tetrahedrize a cell by constructing a tetrahedron for each tri-
angle on its boundary, by connecting it to the centre of the
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Figure 1. Triangulation of octree faces. The
eight possible vertex positions are labeled
0 through 7 in counterclockwise direction
around the positive axis.

cell. Since the triangulation of octree faces is determined
uniquely, this results in a tetrahedrization of the entire oc-
tree (Figure 2).

To generate the mesh, we construct at most two triangles
for each tetrahedron. If one of the four vertices has an oppo-
site sign we construct one triangle, if two vertices have the
opposite sign of the other two, we construct two triangles
forming a 4-gon (Figure 3). The vertices of these triangles
are placed using linear interpolation of the function values
at the endpoints of the corresponding octree edges.

For the proof of isotopic correctness of an octree based
mesh we refer to [11].

3 Level sets

Introduction In this section we extend the isotopic ap-
proximation algorithm to mesh level sets of an implicit
function. Changing the isovalue means that the isosurface
moves through the singularities of the implicit function.
Our static algorithm only works for regular surfaces.

For the isotopic approximation algorithm, we required
as little information about the implicit function as possible.
We used a black box approach, where we can only com-
pute function values and derivatives at points and over in-
tervals. With this approach it is not possible to determine
when and where exactly singularities occur. Note that the
surface passing through a singularity of F only depends on
the value of F at that point. Higher order derivatives do

not give any more information. This implies that we would
need to know the exact location and function value of sin-
gularities points. With the black box approach this is not
possible. However, we can construct arbitrarily small boxes
around the singularities, by terminating the subdivision at
a predetermined maximum level. The leaves at the maxi-
mum level for which the gradient variation bound does not
hold could contain singularities of the implicit function. We
call these singular boxes, although they do not necessarily
have to contain a singularity of F . Outside these singular
boxes the topology is already guaranteed. For the singu-
lar boxes and a particular isovalue θ, we can test whether
θ /∈ �F (C). If this is the case, then also inside the singu-
lar box we have correct topology, since the level set does
not intersect this box. If not, we do not know what happens
inside this box. We could subdivide further until the iso-
topy class is determined, but since we do not know if the
isosurface for the current value of θ is regular there is no
guarantee that this process terminates. Instead, we choose
to simply mark the box as red. For visualization purposes,
this means that we can easily identify for which isovalues
we have small areas with uncertain topology, and where in
space those singularities occur. Depending on the require-
ments of the user, we could choose to do further octree re-
finement of red boxes, which might remove the topological
uncertainty. For specific classes of surfaces, such as alge-
braic surfaces, we could also examine the function itself to
study the possible singularities inside a red box.

Algorithm Instead of looking at the zero set F = 0 we
now consider the level set F = θ. For the subdivision pro-
cess this means we have to examine the interval condition

θ /∈ �F (C) ∨ 〈�∇F (C), �∇F (C)〉 > 0.

The lefthand clause is dependent on the specific level set
θ. We therefore subdivide the initial octree until the right-
hand clause holds for each leaf, or until a predetermined
maximum octree depth is reached. For a better Hausdorff
accuracy we could also perform extra subdivision until all
leaves have a given minimum depth. As in the static case
we balance the tree for convenience. For the resulting oc-
tree we now precompute �F (C) for all leaves for which
the gradient variation bound does not hold. This way we
can easily check whether θ /∈ �F (C), and therefore deter-
mine quickly if the topology inside a cell is guaranteed.

If we also store the function values at the octree vertices,
the resulting data structure contains all the information we
need to create the meshes for different level sets. Also, if
the isovalue changes only by a small amount we can locally
update the structure of the mesh.

Starting with an isovalue outside the range of function
values at octree vertices, the initial mesh is empty. If we
change the isovalue θ, the combinatory of the mesh only
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changes in cells for which θ passes the function value of
one of the vertices on the boundary of that cell. Otherwise
we only have to move existing mesh vertices to maintain
linear interpolation. For the cells where the combinatory
does change we simply remesh these octree leaves. Mesh-
ing of a single cell is done by tetrahedrizing the cell (if the
tetrahedrization is not precomputed and stored), and subse-
quently meshing the tetrahedra.

After (or during) updating the mesh, we examine all sin-
gular boxes. Recall that these are the octree leaves of max-
imal depth for which the gradient variation bound does not
hold. If for such a leave θ ∈ �F (C), we mark the leave
as ‘red’. In our implementation we display small red boxes
for these leaves, indication that there is an uncertainty in
topology. For nonempty leaves having vertices with func-
tion values both larger and smaller than θ, we could also
construct a local triangle mesh, displaying these triangles in
another colour to indicate the topological uncertainty.

In practice we can now move interactively through the
level sets of an implicit function. For regular surfaces the
mesh will be isotopic to the implicit surface, except for
small red boxes appearing if the surface moves close to or
through a singular box of the octree. If the maximum subdi-
vision level is large enough, these singular boxes will only
appear in a small neighbourhood of singularities of the im-
plicit function.

After further user input we could do a temporary refine-
ment of the octree inside these red boxes, or perform some
kind of analysis of the implicit function. For almost all θ the
corresponding isosurface is regular, and a few extra levels
of subdivision should remove most of the red boxes.

4 Results

For the implemention we computed the tetrahedrization
immediately after balancing of the octree. We stored the
information about the implicit function (such as function
range, gradient variation bound and vertex values) in the
tetrahedron structure. By storing this information of the oc-
tree leaves in the tetrahedron structure, the octree itself is
not needed anymore. Unfortunately, storing the entire tetra-
hedrization of the octree takes up a large amount of memory
space, resulting in fairly low maximum subdivision levels.

We tested the implentation on several implicit functions.
In this section we show some results for the Tangle Cube,
the Chair surface and for a non-algebraic surface (Figure 4).

In Figure 5 two isosurfaces of the tangle cube are shown.
This surface is defined by:

F (x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 − 5z2

Figure 6 shows a series of close-ups as the isosurface
passes a singularity. With a maximum subdivision level of

9, the red boxes are small, and only appear when the sur-
face is fairly close to the singular boxes. They could easily
be removed by further subdivision, but this would require
intervention by the user.

Figure 7 shows the ‘chair’ function:

F (x, y, z) = (x2+y2+z2−ak2)2−b((z−k)2−2x2)((z+k)2−2y2),

with k = 5, a = 0.95 and b = 0.8. Due to the higher
number of computations, the interval arithmetic converges
slower, and the bound on the variation of the gradient is only
satisfied at a higher level of subdivision. The maximum
subdivision level used for Figure 7 is 6, resulting in large
areas of red boxes. Although they could be removed with
extra subdivision, it seems that in this case a higher initial
subdivision level would perform better. However, due to the
large tetrahedron structure this requires an implementation
that does not store the entire tetrahedrization, or stores it on
external memory.

The non-algebraic surface is given by the function:

F (x, y, z) = −4 (sin(5x) + sin(5y) + cos(5z))+x2+3y2+2z2

This surface consists of many components and passes
through a lot of singularities. Approximation the entire sur-
face requires a large initial subdivision level. Since most
of the detail is too small on a computer screen to examine
singularities, it makes sense to zoom in on the surface. We
approximated the part of the surface defined by the bound-
ing box [2, 2.5] × [2, 2.5] × [2, 2.5] with a maximum sub-
division level of 8. Results are shown in Figure 8, giving
a good indication of the stages where red boxes appear and
disappear. Notice in particular how red boxes appear just
before a new component appears and again before it merges
with the main surface component.

The algorithm was tested on a Pentium 1.8 GHz com-
puter running Linux. The timing results for the preprocess-
ing are given in the following table. The time required for
updating the mesh when the isovalue θ changes is depen-
dent on the function and on the values of the previous and
new θ. In our experiments the updating typically takes a few
tenths of a second, fast enough for interactive examination
of the level sets. The table shows the time for computing
the octree and the tetrahedrization, and the size of the oc-
tree (number of leaves), the balanced octree and the number
of tetrahedra. The numbers in parentheses indicate the max-
imum subdivision level used.

tangle (9) chair (6) non-alg. (8)
Octree subdiv 0.43s 0.48s 0.47s
Tetrahedrization 3.04s 5.47s 6.98s
Octree size 45032 66592 34987
Balanced size 46544 66760 49253
Tetrahedra 696432 862800 792638

Our experiments show that a maximal subdivision level
of 8 or 9 results in a small number of red boxes. Since
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the tetrahedrization uses much more memory than the oc-
tree, an implementation that computes the tetrahedrization
locally on demand should perform better. For small changes
in the isovalue θ the number of octree leaves that require
tetrahedrization is small. Comparing the time required for
complete tetrahedrization with the size of the octree sug-
gests that the time for updating the mesh would increase
only slightly, since only a small fraction of the tetrahedra
need to be reconstructed.

5 Conclusion and future work

Depending on the specific requirements there are many
options in implementing the algorithm. For example, to
move through an entire range of level sets, we could sort
the vertices of the octree on function value. This list can
be used to determine quickly where the next combinatorial
changes in the mesh will occur.

From our results it is clear that we have to make a trade-
off between speed and memory use. Storing only the oc-
tree requires much less memory space, allowing a greater
maximum depth of the initial tree. However, updating the
mesh will take slightly more time due to the tetrahedriza-
tion and recomputation of function values. Another option
is to precompute the tetrahedrization, and store it in external
memory.

It is not yet clear how to deal with the red boxes.
The static algorithm for implicit functions terminates fairly
quickly for regular surfaces. We expect that a few extra
levels of subdivision would remove most of the red boxes.
Again there is a trade-off between a lower initial subdivision
combined with extra subdivision of red boxes, or starting
with a higher initial subdivision level.

Another open problem is whether changing from inter-
val arithmetic to affine arithmetic (AA) [5] will speed up
the algorithm. AA computations are slower, but the results
converge faster. Another option that we used in our imple-
mentation is to use standard interval arithmetic with extra
levels of subdivision, to get more accurate inclusion inter-
vals.

References

[1] J. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic im-
plicit surface meshing. In Proceedings Thirty-Sixth Annual
ACM Symposium on Theory of Computing, pages 301–309,
Chicago, 2004.

[2] J. Boissonnat and S. Oudot. Provably good sampling
and meshing of surfaces. Graphical Models, 67:405–451,
September 2005.

[3] A. Bottino, W. Nuij, and K. van Overveld. How to
shrinkwrap through a critical point: an algorithm for the
adaptive triangulation of iso-surfaces with arbitrary topol-
ogy. In Proc. Implicit Surfaces, pages 55–72, 1996.

[4] S. Cheng, T. Dey, E. Ramos, and T.Ray. Sampling and
meshing a surface with guaranteed topology and geome-
try. In Proceedings Symposium on Computational Geom-
etry, pages 280–289, 2004.

[5] J. L. D. Comba and J. Stolfi. Affine arithmetic and its ap-
plications to computer graphics. In Proc. VI Brazilian Sym-
posium on Computer Graphics and Image Processing (SIB-
GRAPI’93), pages 9–18, 1993.

[6] M. Lerch, G. Tischler, J. W. von Gu-
denberg, W. Hofschuster, and W. Krämer.
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Figure 2. Tetrahedrization of a cell by triangu-
lating its boundary. One of the 22 tetrahedra
is shown in the bottom figure.

Figure 3. Meshing the tetrahedra.

Figure 4. The tangle cube, the chair, and the
non-algebraic surface.
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Figure 5. Level sets of the tangle cube.

Figure 6. Close up of the ‘red’ boxes for level
sets of the tangle cube. The maximum subdi-
vision level is 9.
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Figure 7. Level sets of the chair, with a maxi-
mum subdivision level of 6.

Figure 8. Level sets of part of the non-
algebraic surface, with a maximum subdivi-
sion level of 8.
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