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Abstract. We review our recent work on the Schur transformation for scalar
generalized Schur and Nevanlinna functions. The Schur transformation is de-
fined for these classes of functions in several situations, and it is used to solve
corresponding basic interpolation problems and problems of factorization of
rational J-unitary matrix functions into elementary factors. A key role is
played by the theory of reproducing kernel Pontryagin spaces and linear re-
lations in these spaces.
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1. Introduction

The aim of this survey paper is to review some recent development in Schur analysis
for scalar functions in an indefinite setting and, in particular, to give an overview
of the papers [7], [8], [9], [10], [11], [15], [16], [17], [18], [125], and [126].

1.1. Classical Schur analysis

In this first subsection we discuss the positive definite case. The starting point is
a function s(z) which is analytic and contractive (that is, |s(z)| ≤ 1) in the open
unit disk D; we call such functions Schur functions. If |s(0)| < 1, by Schwarz’
lemma, also the function

ŝ(z) =
1
z

s(z)− s(0)
1− s(z)s(0)∗

(1.1)

is a Schur function; here and throughout the sequel ∗ denotes the adjoint of a
matrix or an operator and also the complex conjugate of a complex number. The
transformation s(z) �→ ŝ(z) was defined and studied by I. Schur in 1917–1918 in
his papers [116] and [117] and is called the Schur transformation. It maps the set
of Schur functions which are not identically equal to a unimodular constant into
the set of Schur functions. If ŝ(z) is not a unimodular constant, the transformation
(1.1) can be repeated with ŝ(z) instead of s(z) etc. In this way, I. Schur associated
with a Schur function s(z) a finite or infinite sequence of numbers ρj in D, called
Schur coefficients, via the formulas

s0(z) = s(z), ρ0 = s0(0),

and for j = 0, 1, . . . ,

sj+1(z) = ŝj(z) =
1
z

sj(z)− sj(0)
1− sj(z)sj(0)∗

, ρj+1 = sj+1(0). (1.2)

The recursion (1.2) is called the Schur algorithm. It stops after a finite number of
steps if, for some j0, |ρj0 | = 1. This happens if and only if s(z) is a finite Blaschke
product:

s(z) = c

n∏
�=1

z − a�

1− za∗
�

, |c| = 1, and |a�| < 1, � = 1, . . . , n,

with n = j0, see [116] and [117].

If for a 2× 2 matrix M =
(

a b
c d

)
and v ∈ C we define the linear fractional

transform TM (v) by

TM (v) =
av + b

cv + d
,

the transform ŝ(z) in (1.1) can be written as

ŝ(z) = TΦ(z)(s(z)),
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where

Φ(z) =
1

z
√

1− |s(0)|2

(
1 −s(0)

−zs(0)∗ z

)
.

Then it follows that

Φ(z)−1 =
1√

1− |s(0)|2

(
1 s(0)

s(0)∗ 1

)(
z 0
0 1

)
, (1.3)

and

s(z) = TΦ(z)−1 (ŝ(z)) =
s(0) + zŝ(z)

1 + zŝ(z)s(0)∗
. (1.4)

The matrix polynomial Φ(z)−1 in (1.3) is Jc-inner with Jc =
(

1 0
0 −1

)
, that

is,

Jc − Φ(z)−1JcΦ(z)−∗
{
≤ 0, |z| < 1,

= 0, |z| = 1.

Note that Θ(z) = Φ(z)−1Φ(1) is of the form

Θ(z) = I2 + (z − 1)
uu∗Jc

u∗Jcu
, u =

(
1

s(0)∗

)
. (1.5)

Of course Φ(z)−1 in (1.4) can be replaced by Θ(z), which changes ŝ(z).
Later, see Theorem 5.10, we will see that the matrix function Θ(z) given

by (1.5) is elementary in the sense that it cannot be written as a product of two
nonconstant Jc-inner matrix polynomials.

A repeated application of the Schur transformation leads to a representation
of s(z) as a linear fractional transformation

s(z) =
a(z)s̃(z) + b(z)
c(z)s̃(z) + d(z)

, (1.6)

where s̃(z) is a Schur function and where the matrix function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
is a Jc-inner matrix polynomial. In fact, this matrix function Θ(z) can be chosen
a finite product of factors of the form (1.5) times a constant Jc-unitary factor. To
see this it is enough to recall that the linear fractional transformations TM have
the semi-group property:

TM1M2(v) = TM1(TM2 (v)),

if only the various expressions make sense.
A key fact behind the scene and which hints at the connection with interpo-

lation is the following: Given a representation (1.6) of a Schur function s(z) with
a Jc-inner matrix polynomial Θ(z) and a Schur function s̃(z), then the matrix
polynomial Θ(z) depends only on the first n = deg Θ derivatives of s(z) at the
origin. (Here deg denotes the McMillan degree, see Subsection 3.1.) To see this we
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use that det Θ(z) = eitzn with some t ∈ R and n = deg Θ, see Theorem 3.12. It
follows that

TΘ(z)(s̃(z))− TΘ(z)(0) =

(
a(z)d(z)− b(z)c(z)

)
s̃(z)(

c(z)s̃(z) + d(z)
)
d(z)

=
(det Θ(z))s̃(z)d(z)−2(
c(z)s̃(z)d(z)−1 + 1

) = znξ(z)

with

ξ(z) =
eits̃(z)d(z)−2(

c(z)s̃(z)d(z)−1 + 1
) .

For any nonconstant Jc-inner matrix polynomial Θ(z) the function d(z)−1 is ana-
lytic and contractive, and the function d(z)−1c(z) is analytic and strictly contrac-
tive, on D, see [79], hence the function ξ(z) is also analytic in the open unit disk
and therefore

TΘ(z)(s̃(z))− TΘ(z)(0) = O(zn), z → 0.

These relations imply that the Schur algorithm allows to solve recursively the
Carathéodory–Fejér interpolation problem: Given complex numbers σ0, . . . , σn−1,
find all (if any) Schur functions s(z) such that

s(z) = σ0 + zσ1 + · · ·+ zn−1σn−1 + O(zn), z → 0.

The Schur algorithm expresses the fact that one needs to know how to solve this
problem only for n = 1. We call this problem the basic interpolation problem.

The basic interpolation problem: Given σ0 ∈ C, find all Schur functions s(z) such
that s(0) = σ0.

Clearly this problem has no solution if |σ0| > 1, and, by the maximum mod-
ulus principle, it has a unique solution if |σ0| = 1, namely the constant function
s(z) ≡ σ0. If |σ0| < 1, then the solution is given by the linear fractional transfor-
mation (compare with (1.4))

s(z) =
σ0 + zs̃(z)
1 + zs̃(z)σ∗

0

, (1.7)

where s̃(z) varies in the set of Schur functions. Note that the solution s(z) is the
inverse Schur transform of the parameter s̃(z). If we differentiate both sides of
(1.7) and put z = 0 then it follows that s̃(z) satisfies the interpolation condition

s̃(0) =
σ1

1− |σ0|2
, σ1 = s′(0).

Thus if the Carathéodory–Fejér problem is solvable and has more than one solution
(this is also called the nondegenerate case), these solutions can be obtained by
repeatedly solving a basic interpolation problem (namely, first for s(z), then for
s̃(z), and so on) and are described by a linear fractional transformation of the form
(1.6) for some Jc-inner 2× 2 matrix polynomial Θ(z).
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The fact that the Carathéodory–Fejér interpolation problem can be solved it-
eratively via the Schur algorithm implies that any Jc-inner 2×2 matrix polynomial
can be written in a unique way as a product of Jc-inner 2× 2 matrix polynomials
of McMillan degree 1, namely factors of the form

1√
1− |ρ|2

(
1 ρ
ρ∗ 1

)(
z 0
0 1

)
(1.8)

with some complex number ρ, |ρ| < 1, and a Jc-unitary constant. These factors
of McMillan degree 1 are elementary, see Theorem 5.10, and can be chosen nor-
malized: If one fixes, for instance, the value at z = 1 to be I2, factors Θ(z) of the
form (1.5) come into play. Note that the factor (1.8) is not normalized in this sense
when ρ �= 0. Furthermore, the Schur algorithm is also a method which yields this
Jc-minimal factorization of a Jc-inner 2× 2 matrix polynomial Θ(z) into elemen-
tary factors. Namely, it suffices to take any number τ on the unit circle and to
apply the Schur algorithm to the function s(z) = TΘ(z)(τ); the corresponding se-
quence of elementary Jc-inner 2× 2 matrix polynomial gives the Jc-inner minimal
factorization of Θ(z).

Schur’s work was motivated by the works of Carathéodory, see [53] and [54],
and Toeplitz, see [122], on Carathéodory functions which by definition are the
analytic functions in the open unit disk which have a nonnegative real part there,
see [116, English transl., p. 55].

A sequence of Schur coefficients can also be associated with a Carathéodory
function; sometimes these numbers are called Verblunsky coefficients, see [86,
Chapter 8]. Carathéodory functions φ(z) play an important role in the study of
the trigonometric moment problem via the Herglotz representation formula

φ(z) = ia +
∫ 2π

0

eit + z

eit − z
dµ(t) = ia +

∫ 2π

0

dµ(t) + 2
∞∑

�=1

z�

∫ 2π

0

e−i�tdµ(t),

where a is a real number and dµ(t) is a positive measure on [0, 2π). A function
φ(z), defined in the open unit disk, is a Carathéodory function if and only if the
kernel

Kφ(z, w) =
φ(z) + φ(w)∗

1− zw∗ (1.9)

is nonnegative. Similarly, a function s(z), defined in the open unit disk, is a Schur
function if and only if the kernel

Ks(z, w) =
1− s(z)s(w)∗

1− zw∗

is nonnegative in D.
In this paper we do not consider Carathéodory functions with associated

kernel (1.9), but functions n(z) which are holomorphic or meromorphic in the
upper half-plane C+ and for which the Nevanlinna kernel

Ln(z, w) =
n(z)− n(w)∗

z − w∗
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has certain properties. For example, if the kernel Ln(z, w) is nonnegative in C+,
then the function n(z) is called a Nevanlinna function. The Schur transformation
(1.1) for Schur functions has an analog for Nevanlinna functions in the theory of
the Hamburger moment problem and was studied by N.I. Akhiezer, see [4, Lemma
3.3.6] and Subsection 8.1.

To summarize the previous discussion one can say that the Schur transfor-
mation, the basic interpolation problem and Jc-inner factorizations of 2×2 matrix
polynomials are three different facets of a common object of study, which can be
called Schur analysis. For more on the original works we refer to [82] and [83]. Schur
analysis is presently a very active field, we mention, for example, [75] for scalar
Schur functions and [74] and [84] for matrix Schur functions, and the references
cited there.

The Schur transform (1.1) for Schur functions is centered at z1 = 0. The
Schur transform centered at an arbitrary point z1 ∈ D is defined by

ŝ(z) =
1

bc(z)
s(z)− s(z1)

1− s(z)s(z1)∗
≡ 1

bc(z)
s(z)− σ0

1− s(z)σ∗
0

,

where bc(z) denotes the Blaschke factor related to the circle and z1:

bc(z) =
z − z1

1− zz∗1
.

This definition is obtained from (1.1) by changing the independent variable to
ζ(z) = bc(z), which leaves the class of Schur functions invariant. In this paper
we consider the generalization of this transformation to an indefinite setting, that
is, to a transformation centered at z1 of the class of generalized Schur functions
with z1 ∈ D and z1 ∈ T, and to a transformation centered at z1 of the class of
generalized Nevanlinna functions with z1 ∈ C+ and z1 = ∞ (here also the case
z1 ∈ R might be of interest, but it is not considered in this paper). We call this
generalized transformation also the Schur transformation.

1.2. Generalized Schur and Nevanlinna functions

In the present paper we consider essentially two classes of scalar functions. The
first class consists of the meromorphic functions s(z) on the open unit disc D for
which the kernel

Ks(z, w) =
1− s(z)s(w)∗

1− zw∗ , z, w ∈ hol (s),

has a finite number κ of negative squares (here hol (s) is the domain of holomorphy
of s(z)), for the definition of negative squares see Subsection 2.1. This is equivalent
to the fact that the function s(z) has κ poles in D but the metric constraint of
being not expansive on the unit circle T (in the sense of nontangential boundary
values from D), which holds for Schur functions, remains. We call these functions
s(z) generalized Schur functions with κ negative squares. The second class is the
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set of generalized Nevanlinna functions with κ negative squares: These are the
meromorphic functions n(z) on C+ for which the kernel

Ln(z, w) =
n(z)− n(w)∗

z − w∗ , z, w ∈ hol (n),

has a finite number κ of negative squares. We always suppose that they are ex-
tended to the lower half-plane by symmetry: n(z∗) = n(z)∗. Generalized Nevan-
linna functions n(z) for which the kernel Ln(z, w) has κ negative squares have at
most κ poles in the open upper half-plane C+; they can also have ‘generalized
poles of nonpositive type’ on the real axis, see [99] and [100]. Note that if the
kernels Ks(z, w) and Ln(z, w) are nonnegative the functions s(z) and n(z) are
automatically holomorphic, see, for instance, [6, Theorem 2.6.5] for the case of
Schur functions. The case of Nevanlinna functions can be deduced from this case
by using Möbius transformations on the dependent and independent variables, as
in the proof of Theorem 7.13 below.

Generalized Schur and Nevanlinna functions have been introduced indepen-
dently and with various motivations and characterizations by several mathemati-
cians. Examples of functions of bounded type with poles in D and the metric
constraint that the nontangential limits on T are bounded by 1 were already con-
sidered by T. Takagi in his 1924 paper [121] and by N.I. Akhiezer in the maybe
lesser known paper [3] of 1930. These functions are of the form

s(z) =
p(z)

znp(1/z∗)∗
,

where p(z) is a polynomial of degree n, and hence are examples of generalized
Schur functions. Independently, functions with finitely many poles in D and the
metric constraint on the circle were introduced by Ch. Chamfy, J. Dufresnoy, and
Ch. Pisot, see [55] and [78]. It is fascinating that also in the work of these authors
there appear functions of the same form, but with polynomials p(z) with integer
coefficients, see, for example, [55, p. 249]. In related works of M.-J. Bertin [41]
and Ch. Pisot [105] the Schur algorithm is considered where the complex number
field is replaced by a real quadratic field or a p-adic number field, respectively. In
none of these works any relation was mentioned with the Schur kernel Ks(z, w).
The approach using Schur and Nevanlinna kernels was initiated by M.G. Krein
and H. Langer in connection with their study of operators in Pontryagin spaces,
see [94], [95], [96], [97], [98], and [99]. Their definition in terms of kernels allows to
study the classes of generalized Schur and Nevanlinna functions with tools from
functional analysis and operator theory (in particular, the theory of reproducing
kernel spaces and the theory of operators on spaces with an indefinite inner prod-
uct), and it leads to connections with realization theory, interpolation theory and
other related topics.

1.3. Reproducing kernel Pontryagin spaces

The approach to the Schur transformation in the indefinite case in the present
paper is based on the theory of reproducing kernel Pontryagin spaces for scalar
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and matrix functions, associated, for example, in the Schur case with a Schur
function s(z) and a 2× 2 matrix function Θ(z) through the reproducing kernels

Ks(z, w) =
1− s(z)s(w)∗

1− zw∗ , KΘ(z, w) =
Jc −Θ(z)JcΘ(w)∗

1− zw∗ , Jc =
(

1 0
0 −1

)
;

these spaces are denoted by P(s) and P(Θ), respectively. In the positive case,
they have been first introduced by L. de Branges and J. Rovnyak in [50] and
[49]. They play an important role in operator models and interpolation theory,
see, for instance, [20], [79], and [81]. In the indefinite case equivalent spaces were
introduced in the papers by M.G. Krein and H. Langer mentioned earlier.

We also consider the case of generalized Nevanlinna functions n(z) and cor-
responding 2× 2 matrix functions Θ(z), where the reproducing kernels are of the
form

Ln(z, w) =
n(z)− n(w)∗

z − w∗ , KΘ(z, w) =
J� −Θ(z)J�Θ(w)∗

z − w∗ , J� =
(

0 1
−1 0

)
.

We denote by L(n) the reproducing kernel space associated with the first kernel and
by P(Θ) the reproducing kernel space associated to the second kernel. This space
P(Θ) differs from the one above, but it should be clear from the context to which
reproducing kernel KΘ(z, w) it belongs. The questions we consider in this paper are
of analytic and of geometric nature. The starting point is the Schur transformation
for generalized Schur functions centered at an inner point z1 ∈ D or at a boundary
point z1 ∈ T, and for generalized Nevanlinna functions centered at an inner point
z1 ∈ C+ or at the boundary point ∞. Generalized Schur and Nevanlinna functions
are also characteristic functions of certain colligations with a metric constraint, and
we study the effect of the Schur transformation on these underlying colligations.
We explain this in more detail for generalized Schur functions and an inner point
z1 ∈ D.

By analytic problems we mean:
• The basic interpolation problem for generalized Schur functions, that is, the

problem to determine the set of all generalized Schur functions analytic at
a point z1 ∈ D and satisfying s(z1) = σ0. The solution depends on whether
|σ0| < 1, > 1, or = 1, and thus the basic interpolation problem splits into
three different cases. It turns out that in the third case more data are needed
to get a complete description of the solutions in terms of a linear fractional
transformation.

• The problem of decomposing a rational 2 × 2 matrix function Θ(z) with a
single pole in 1/z∗1 and Jc-unitary on T as a product of elementary factors with
the same property. Here the Schur algorithm, which consists of a repeated
application of the Schur transformation, gives an explicit procedure to obtain
such a factorization. The factors are not only of the form (1.8) as in Subsection
1.1 but may have a McMillan degree > 1. These new types of factors have
first been exhibited by Ch. Chamfy in [55] and by Ph. Delsarte, Y. Genin,
and Y. Kamp in [63].
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By geometric problems we mean in particular
• to give an explicit description of the (unitary, isometric or coisometric) col-

ligation corresponding to ŝ(z) in terms of the colligation of s(z).
• To find the relation between the reproducing kernel spaces P(s) for s(z) and
P(ŝ(z)) for ŝ(z), where ŝ(z) denotes the Schur transform of s(z). In fact,
P(ŝ(z)) can be isometrically embedded into P(s) with orthogonal comple-
ment which is an isometric copy of P(Θ), for some rational Jc-unitary 2× 2
matrix function Θ(z).

1.4. The general scheme

The Schur transformation for generalized Schur and Nevanlinna functions which
we review in this paper can be explained from a general point of view as in [23],
[24], and [25]. In fact, consider two analytic functions a(z) and b(z) on a connected
set Ω ⊂ C with the property that the sets

Ω+ =
{
z ∈ Ω

∣∣ |a(z)| > |b(z)|
}
,

Ω− =
{
z ∈ Ω

∣∣ |a(z)| < |b(z)|
}
,

Ω0 =
{
z ∈ Ω

∣∣ |a(z)| = |b(z)|
}

are nonempty; it is enough to require that Ω+ and Ω− are nonempty, then Ω0 �= {∅}
and it contains at least one point z0 ∈ Ω0 for which a(z0) �= 0 and hence b(z0) �= 0,
see [24, p. 119]. The kernels Ks(z, w) and Ln(z, w) considered above are special
cases of the kernel

KX(z, w) =
X(z)JX(w)∗

a(z)a(w)∗ − b(z)b(w)∗
, (1.10)

where J is a p×p signature matrix and X(z) is a meromorphic 1×p vector function
in Ω+. Indeed, we obtain these kernels by setting Ω = C, p = 2, and

X(z) =
(
1 −s(z)

)
, a(z) = 1, b(z) = z, J = Jc, (1.11)

and

X(z) =
(
1 −n(z)

)
, a(z) =

1− iz√
2

, b(z) =
1 + iz√

2
, J = −iJ�, (1.12)

respectively, where

Jc =
(

1 0
0 −1

)
, J� =

(
0 1
−1 0

)
; (1.13)

here the letters c and � stand for circle and line. We assume that KX(z, w) has a
finite number of negative squares and denote by B(X) the associated reproducing
kernel Pontryagin space. In case of (1.11) we have B(X) = P(s) and in case
of (1.12) we have B(X) = L(n). The Schur transformation centered at a point
z1 ∈ Ω+ ∪ Ω0 in this general setting is defined by means of certain invariant
subspaces. To explain this we first restrict the discussion to the case z1 ∈ Ω+ and
then briefly discuss the case z1 ∈ Ω0. To construct these invariant subspaces we
take the following steps.
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Step 1: Build the linear space M(X) spanned by the sequence of p × 1 vector
functions

fj(z) =
1
j!

∂j

∂w∗j

JX(w)∗

a(z)a(w)∗ − b(z)b(w)∗

∣∣∣
w=z1

, j = 0, 1, 2, . . . .

Note that the spaceM(X) is invariant under the backward-shift operators Rζ :(
Rζf

)
(z) =

a(z)f(z)− a(ζ)f(ζ)
a(ζ)b(z)− b(ζ)a(z)

, f(z) ∈M(X),

where ζ ∈ Ω+ is such that b(ζ) �= 0 and the function f(z) is holomorphic at z = ζ.
For X(z) etc. as in (1.11) and (1.12) this reduces to the classical backward-shift
invariance. Furthermore a finite-dimensional space is backward-shift invariant if
and only if it is spanned by the columns of a matrix function of the form

F (z) = C
(
a(z)M − b(z)N

)−1

for suitable matrices M , N , and C.

Step 2: Define an appropriate inner product on M(X) such that the map

f(z) �→ X(z)f(z), f(z) ∈M(X),

is an isometry from M(X) into the reproducing kernel Pontryagin space B(X).

We define the inner product on M(X) by defining it on the subspaces

Mk = span
{
f0(z), . . . , fk−1(z)

}
, k = 1, 2, . . . .

The matrix function

F (z) =
(
f0(z) f1(z) · · · fk−1(z)

)
can be written in the form

F (z) = Cz1

(
a(z)Mz1− b(z)Nz1

)−1
,

where with

αj =
a(j)(z1)

j!
, βj =

b(j)(z1)
j!

, j = 0, 1, . . . , k − 1,

Mz1 =

⎛⎜⎜⎜⎜⎜⎝
α0 0 · · · 0 0
α1 α0 . . . 0 0
...

...
. . .

...
...

αk−2 αk−3 · · · α0 0
αk−1 αk−2 · · · α1 α0

⎞⎟⎟⎟⎟⎟⎠
∗

, Nz1 =

⎛⎜⎜⎜⎜⎜⎝
β0 0 · · · 0 0
β1 β0 . . . 0 0
...

...
. . .

...
...

βk−2 βk−3 · · · β0 0
βk−1 βk−2 · · · β1 β0

⎞⎟⎟⎟⎟⎟⎠
∗

and

Cz1 = J

(
X(z1)∗

X ′(z1)∗

1!
· · · X(k−1)(z1)∗

(k − 1)!

)
,
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see [23, (3.11)]. Hence Mk is backward-shift invariant. To define the restriction
of the inner product 〈 · , · 〉 to Mk we choose the Gram matrix G associated with
these k functions:

G =
(
gij

)k−1

i,j=0
, gij =

〈
fj , fi

〉
,

as the solution of the matrix equation

M∗
z1

GMz1 −N∗
z1

GNz1 = C∗
z1

JCz1 , (1.14)

see [23, (2.15)]. The solution of (1.14) is unique since |a(z1)| > |b(z1)|.
Step 3: Choose the smallest integer k ≥ 1 such that the inner product space Mk

from Step 2 is nondegenerate. It has a reproducing kernel of the form

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

a(z)a(w)∗ − b(z)b(w)∗

with the p× p matrix function Θ(z) given by the formula

Θ(z) = Ip −
(
a(z)a(z0)∗−b(z)b(z0)∗

)
F (z)G−1F (z0)∗J.

The statement is a consequence of the following theorem, which describes the
structure of certain backward-shift invariant subspaces. Now the matrices M , N ,
and C are not necessarily of the special form above.

Theorem 1.1. Let M, N, C be matrices of sizes m×m, m×m, and p×m, respec-
tively, such that

det
(
a(z0)M − b(z0)N

)
�= 0

for some point z0 ∈ Ω0 and that the columns of the p×m matrix function

F (z) = C
(
a(z)M − b(z)N

)−1

are linearly independent in a neighborhood of z0. Further, let G be an invertible
Hermitian m×m matrix and endow the space M spanned by the columns of F (z)
with the inner product defined by G:〈

Fc, Fd
〉

= d∗Gc, c,d ∈ Cm. (1.15)

Then the reproducing kernel for M is of the form

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

a(z)a(w)∗ − b(z)b(w)∗

if and only if G is a solution of the matrix equation

M∗GM −N∗GN = C∗JC.

In this case the function Θ(z) can be chosen as

Θ(z) = Ip −
(
a(z)a(z0)∗ − b(z)b(z0)∗

)
F (z)G−1F (z0)∗J. (1.16)

For the formula for Θ(z) and a proof of this theorem, see [23, (2.14)] and [24,
Theorem 4.1].

The three steps lead to the following theorem, see [23, Theorem 4.1].
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Theorem 1.2. The following orthogonal decomposition holds :

B(X) = XP(Θ)⊕ B(XΘ).

The proof of the theorem follows from the decomposition

KX(z, w) = X(z)KΘ(z, w)X(w)∗ + KXΘ(z, w)

and from the theory of complementation in reproducing kernel Pontryagin spaces,
see, for example, [19, Section 5]. We omit further details.

The existence of this minimal integer k and the backward-shift invariance of
Mk in Step 3 are essential ingredients for the definition of the Schur transforma-
tion. The matrix function Θ(z) in Step 3 is elementary in the sense that P(Θ)
does not contain any proper subspace of the same form, that is, any nontrivial
nondegenerate backward-shift invariant subspace. In the sequel we only consider
the special cases (1.11) and (1.12). In these cases the space P(Θ) is the span of one
chain of the backward-shift operator and, by definition, the Schur transformation
corresponds to the inverse of the linear fractional transformation TΘU for some
J-unitary constant U . The function X(z)Θ(z) is essentially the Schur transform
of X(z); the relation X(z1)Θ(z1) = 0 corresponds to the fact that the numerator
and the denominator in the Schur transform (1.1) are 0 at z = z1 = 0.

In the boundary case, that is, if z1 ∈ Ω0, z1 �= z0, one has to take nontan-
gential boundary values to define the matrices Mz1 and Nz1 . Then the equation
(1.14) has more than one solution; nevertheless a solution G exists such that the
required isometry holds.

Special cases of the formula (1.16) for Θ(z) appear in Section 3 below, see
the formulas (3.15), (3.16), (3.23), and (3.24). Specializing to the cases considered
in Sections 5 to 8 leads in a systematic way to the elementary Jc- or J�-unitary
factors. The case z1 = ∞ treated in Section 8 corresponds to the Hamburger
moment problem for Nevanlinna functions n(z) with finitely many moments given.
Taking the nontangential limits alluded to above leads to the fact that the space
B(X) = L(n) contains functions of the form

n(z), zjn(z) + pj(z), j = 1, . . . , k − 1,

where pj(z) is a polynomial of degree j − 1, and Mk in Step 3 is replaced by the
span of the functions (

0
1

)
,

(
−pj(z)

zj

)
, j = 1, . . . , k − 1.

1.5. Outline of the paper

The following two sections have a preliminary character. In Section 2 we collect
some facts about reproducing kernel Pontryagin spaces, in particular about those
spaces which are generated by locally analytic kernels. The coefficients in the Tay-
lor expansion of such a kernel lead to the notion of the Pick matrix. We also
introduce the classes of generalized Schur and Nevanlinna functions, which are the



14 D. Alpay, A. Dijksma and H. Langer

main objects of study in this paper, the reproducing kernel Pontryagin spaces gen-
erated by these functions, and the realizations of these functions as characteristic
functions of, for example, unitary or coisometric colligations or as compressed re-
solvents of self-adjoint operators. In Section 3 we first consider, for a general p× p
signature matrix J , classes of rational J-unitary p × p matrix functions Θ(z) on
the circle T and related to the kernel

J −Θ(z)JΘ(w)∗

1− zw∗ ,

and classes of rational J-unitary p × p matrix functions Θ(z) on the line R and
related to the kernel

J −Θ(z)JΘ(w)∗

−i(z − w∗)
.

The special cases in which p = 2 and in the circle case J = Jc and in the
line case J = −iJ�, where Jc and J� are given by (1.13), play a very important
role in this paper. Since these matrix functions are rational, the Hermitian ker-
nels have a finite number of negative and positive squares, and we introduce the
finite-dimensional reproducing kernel Pontryagin spaces P(Θ) for these kernels.
Important notions are those of a factorization and of an elementary factor within
the considered classes, and we prove some general factorization theorems. In par-
ticular, having in mind the well-known fact that the existence of an invariant
subspace of a certain operator corresponds to a factorization of, for example, the
characteristic function of this operator, we formulate general factorization theo-
rems for the classes of rational matrix functions considered mainly in this paper.

As was mentioned already, we consider the Schur transformation at z1 for
generalized Schur functions for the cases that the transformation point z1 is in D
or on the boundary T of D, and for generalized Nevanlinna functions for the cases
that z1 ∈ C+ or z1 = ∞. In accordance with this, the basic interpolation problem,
the factorization problem, and the realization problem we have always to consider
for each of the four cases. Although the general scheme is in all cases the same, each
of these cases has its own features. In particular, there is an essential difference if
z1 is an inner or a boundary point of the considered domain: In the first case we
always suppose analyticity in this point, whereas in the second case only a certain
asymptotic of the function in z1 is assumed. (In this paper we only consider these
four cases, but it might be of interest to study also the case of functions mapping
the open unit disk into the upper half-plane or the upper half-plane into the open
unit disk.)

In Section 4 we study the Pick matrices at the point z1 for all the four men-
tioned cases. In the following Sections 5–8 we consider the Schur transformation,
the basic interpolation problem, the factorization of the rational matrix functions,
and the realization of the given scalar functions separately for each of these four
cases in one section, which is immediately clear from the headings.

The Schur algorithm in the indefinite case has been studied by numerous
authors, see, for example, [1], [21], [56], [57], and [62]. Our purpose here is to
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take full advantage of the scalar case and to obtain explicit analytical, and not
just general formulas. For instance, in [23] and [24] the emphasis is on a general
theory; in such a framework the special features of the scalar case and the subtle
differences between generalized Schur and generalized Nevanlinna functions remain
hidden. In the papers [9], [10], [15], and [18] we considered special cases with proofs
specified to the case at hand. The general scheme given in Subsection 1.3 allows
one to view these cases in a unified way.

With this survey paper we do not claim to give a historical account of the
topics we cover. Besides the papers and books mentioned in the forgoing subsec-
tions we suggest the historical review in the book of Shohat and Tamarkin [119]
which explains the relationships with the earlier works of Tchebycheff, Stieltjes
and Markov, and the recent paper of Z. Sasvari [115]. For more information on the
Schur algorithm in the positive scalar case we suggest Khrushchev’s paper [92],
the papers [61], [66], and [67] for the matrix case and the books [34] and [88].

We also mention that the Schur algorithm was extended to the time-varying
case, see [64] and [68], to the case of multiscale processes, see [38] and [39], and to
the case of tensor algebras, see [58], [59], and [60].

2. Kernels, classes of functions, and reproducing kernel
Pontryagin spaces

In this section we review various facts from reproducing kernel Pontryagin spaces
and we introduce the spaces of meromorphic functions needed in this paper.

2.1. Reproducing kernel Pontryagin spaces

Let p be an integer ≥ 1; in the sequel we mainly deal with p = 1 or p = 2. A p× p
matrix function K(z, w), defined for z, w in some set Ω, has κ negative squares if
it is Hermitian:

K(z, w) = K(w, z)∗, z, w ∈ Ω,

and if for every choice of the integer m ≥ 1, of p × 1 vectors c1, . . . , cm, and of
points w1, . . . , wm ∈ Ω, the Hermitian m×m matrix(

c∗i K(wi, wj)cj

)m

i,j=1

has at most κ negative eigenvalues, and exactly κ negative eigenvalues for some
choice of m, c1, . . . , cm, and w1, . . . , wm. In this situation, for K(z, w) we will use
the term kernel rather than function and speak of the number of negative squares
of the kernel K(z, w). The number of positive squares of a kernel K(z, w) is defined
accordingly. Associated to a kernel K(z, w) with κ negative squares is a Pontryagin
space P(K) of p× 1 vector functions defined on Ω, which is uniquely determined
by the following two properties: For every w ∈ Ω and p× 1 vector c, the function(
Kwc

)
(z) with (

Kwc
)
(z) = K(z, w)c, z ∈ Ω,
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belongs to P(K) and for every f(z) ∈ P(K),〈
f, Kwc

〉
P(K)

= c∗f(w).

It follows that the functions
(
Kwc

)
(z), w ∈ Ω, c ∈ Cp, are dense in P(K) and〈

Kwc, Kzd
〉
P(K)

= d∗K(z, w)c, z, w ∈ Ω, c,d ∈ Cp.

These two facts can be used to construct via completion the unique reproducing
kernel Pontryagin space P(K) from a given kernel K(z, w). If the kernel K(z, w)
has κ negative squares then ind−(P(K)) = κ, where ind−(P) is the negative index
of the Pontryagin space P . When κ = 0 the kernel is called nonnegative and the
space P(K) is a Hilbert space.

We recall that any finite-dimensional Pontryagin spaceM of functions, which
are defined on a set Ω, is a reproducing kernel space with kernel given by

KM(z, w) =
(
f1(z) · · · fm(z)

)
G−1

(
f1(w) · · · fm(w)

)∗
, (2.1)

where f1(z), . . . , fm(z) is a basis of M and G is the corresponding Gram matrix:

G =
(
gij

)m

i,j=1
, gij =

〈
fj , fi

〉
M.

For the nonnegative case, this formula already appears in the work of N. Aronszajn,
see, for example, [21, p. 143].

A kernel K(z, w) has κ negative squares if and only if it can be written as

K(z, w) = K+(z, w) + K−(z, w), (2.2)

where K+(z, w) and −K−(z, w) are nonnegative kernels on Ω and are such that

P(K+) ∩ P(−K−) = {0} .

When κ > 0 the decomposition is not unique, but for every such decomposition,

dim P(−K−) = κ.

In particular,

P(K) = P(K+)⊕ P(K−) =
{
f(z) = f+(z) + f−(z) : f±(z) ∈ P(K±)

}
(2.3)

with indefinite inner product

〈f, f〉P(K) = 〈f+, f+〉P(K+) + 〈f−, f−〉P(K−), (2.4)

see [118] and also (2.14) below for an example.

2.2. Analytic kernels and Pick matrices

In this paper we consider p× p matrix kernels K(z, w) which are defined on some
open subset Ω = D of C and are analytic in z and w∗ (Bergman kernels in
W.F. Donoghue’s terminology when K(z, w) is nonnegative); we shall call these
kernels analytic on D.
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Lemma 2.1. If the p× p matrix kernel K(z, w) is analytic on the open set D and
has a finite number of negative squares, then the elements of P(K) are analytic
p× 1 vector functions on D, and for any nonnegative integer �, any point w ∈ D
and any p× 1 vector c the function

(
∂�Kwc/∂w∗�

)
(z) with(

∂�Kwc
∂w∗�

)
(z) =

∂�K(z, w)c
∂w∗�

(2.5)

belongs to P(K) and for every f(z) ∈ P(K)〈
f,

∂�Kwc
∂w∗�

〉
P(K)

= c∗f (�)(w), f(z) ∈ P(K). (2.6)

This fact is well known when κ = 0, but a proof seems difficult to pinpoint
in the literature; we refer to [13, Proposition 1.1]. W.F. Donoghue showed that
the elements of the space associated to an analytic kernel are themselves analytic,
see [73, p. 92] and [19, Theorem 1.1.3]. The decomposition (2.2) or [89, Theorem
2.4], which characterizes norm convergence in Pontryagin spaces by means of the
indefinite inner product, allow to extend these results to the case κ > 0, as we
now explain. To simplify the notation we give a proof for the case p = 1. The case
p > 1 is treated in the same way, but taking into account the “directions” c.

Proof of Lemma 2.1. In the proof we make use of [19, pp. 4–10]. The crux of the
proof is to show that in the decomposition (2.2) the functions K±(z, w) can be
chosen analytic in z and w∗. This reduces the case κ > 0 to the case of zero
negative squares. Let w1, . . . , wm ∈ D be such that the Hermitian m ×m matrix
with ij entry equal to K(wi, wj) has κ negative eigenvalues. Since

K(wi, wj) = 〈Kwj , Kwi〉P(K)

we obtain from [19, Lemma 1.1.1′] that there is a subspace H− of the span of the
functions z �→ K(z, wi), i = 1, . . . , m, which has dimension κ and is negative. Let
f1(z), . . . , fκ(z) be a basis of H− and denote by G the Gram matrix of this basis:

G =
(
gij

)κ

i,j=1
, gij =

〈
fj , fi

〉
P(K)

.

The matrix G is strictly negative and, by formula (2.1), the reproducing kernel of
H− is equal to

K−(z, w) =
(
f1(z) · · · fκ(z)

)
G−1

(
f1(w) · · · fκ(w)

)∗
.

By [19, p. 8], the kernel

K+(z, w) = K(z, w)−K−(z, w)

is nonnegative on Ω, and the span of the functions z �→ K+(z, w), w ∈ Ω, is ortho-
gonal to H−. Thus (2.3) and (2.4) are in force. The function K−(z, w) is analytic
in z and w∗ by construction. Since K+(z, w) and −K−(z, w) are nonnegative, it
follows from, for example, [13, Proposition 1.1] that for w ∈ Ω the functions

z �→ ∂�K±(z, w)
∂w∗�
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belong to P(K±). Thus the functions

z �→ ∂�K(z, w)
∂w∗�

=
∂�K+(z, w)

∂w∗�
+

∂�K−(z, w)
∂w∗�

belong to P(K), and for f(z) = f+(z) + f−(z) ∈ P(K) we have〈
f,

∂�K(·, w)
∂w∗�

〉
P(K)

=
〈

f+,
∂�K+(·, w)

∂w∗�

〉
P(K+)

+
〈

f−,
∂�K−(·, w)

∂w∗�

〉
P(K−)

= f
(�)
+ (w) + f

(�)
− (w) = f (�)(w). �

Now let K(z, w) be an analytic scalar kernel on D ⊂ C; here D is always
supposed to be simply connected. For z1 ∈ D we consider the Taylor expansion

K(z, w) =
∞∑

i,j=0

γij(z − z1)i(w − z1)∗j . (2.7)

The infinite matrix Γ := (γij)∞i,j=0 of the coefficients in (2.7) is called the Pick
matrix of the kernel K(z, w) at z1; sometimes also its principal submatrices are
called Pick matrices at z1.
For a finite or infinite square matrix A = (aij)i,j≥0 and any integer k ≥ 1 not
exceeding the number of rows of A, by Ak we denote the principal k×k submatrix
of A. Further, for a finite Hermitian matrix A, κ−(A) is the number of negative
eigenvalues of A; if A is an infinite Hermitian matrix we set

κ−(A) = sup
{
κ−(Ak)

∣∣ k = 1, 2, . . .
}
.

We are mainly interested in situations where this number is finite. Evidently,
for any integer k ≥ 1 we have κ−(Ak) ≤ κ−(Ak+1), if only these submatrices
are defined. For a finite or infinite Hermitian matrix A by k0(A) we denote the
smallest integer k ≥ 1 for which detAk �= 0, that is, for which Ak is invertible. In
other words, if k0(A) = 1 then a00 �= 0 and if k0(A) > 1 then det A1 = detA2 =
· · · = detAk0(A)−1 = 0, detAk0(A) �= 0.

Theorem 2.2. Let K(z, w) be an analytic kernel on the simply connected domain
D and z1 ∈ D. Then the kernel K(z, w) has κ negative squares if and only if for
the corresponding Pick matrix Γ of the kernel K(z, w) at z1 ∈ D we have

κ−(Γ) = κ. (2.8)

We prove this theorem only under the additional assumption that the kernel
K(z, w) has a finite number of negative squares, since we shall apply it only in
this case, see Corollaries 4.1 and 4.7.

Proof of Theorem 2.2. The relations (2.5) and (2.6) imply for i, j = 0, 1, . . . and
z, w ∈ D,

∂i+jK(z, w)
∂zi∂w∗j

=
∂i+j

∂zi∂w∗j

〈
Kw, Kz

〉
P(K)

=
〈

∂jKw

∂w∗j
,
∂Kz

∂z∗i

〉
P(K)

,
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and for the coefficients in (2.7) we get

γij =
1

i!j!

〈
∂jKw

∂w∗j
,
∂iKz

∂z∗i

〉
P(K)

∣∣∣∣
z=w=z1

. (2.9)

It follows that κ−(Γm) coincides with the negative index of the inner product
〈 · , · 〉P(K) on the span of the elements

∂iKw

∂w∗i

∣∣∣∣
w=z1

, i = 0, 1, . . . , m− 1,

in P(K) and hence κ−(Γm) ≤ κ. The equality follows from the fact that, in view
of (2.6), P(K) is the closed linear span of these elements

∂iKw

∂w∗i

∣∣∣∣
w=z1

, i = 0, 1, . . . . �

If z1 is a boundary point of D and there exists an m such that the limits

γij = lim
z′

n→̂z1

∂i+jK(z, w)
∂zi ∂w∗j

∣∣∣∣
z=w=z′

n

, z′n ∈ D,

exist for 0 ≤ i, j ≤ m−1, then for the corresponding Pick matrix Γm of the kernel
K(z, w) at z1 we have

κ−(Γm) ≤ κ. (2.10)
This inequality follows immediately from the fact that it holds for the correspond-
ing Pick matrices of K(z, w) at the points z′n.

2.3. Generalized Schur functions and the spaces P(s)
In this and the following subsection we introduce the concrete reproducing kernel
Pontryagin spaces which will be used in this paper. For any integer κ ≥ 0 we
denote by Sκ the set of generalized Schur functions with κ negative squares. These
are the functions s(z) which are defined and meromorphic on D and for which the
kernel

Ks(z, w) =
1− s(z)s(w)∗

1− zw∗ , z, w ∈ hol (s), (2.11)

has κ negative squares on hol (s). In this case we also say that s(z) has κ negative
squares and write sq−(s) = κ. Furthermore, we set

S =
⋃
κ≥0

Sκ.

The elements of S are called generalized Schur functions.
Clearly, the kernel Ks(z, w) determines the function |s(z)| and hence also the

function s(z) up to a constant factor of modulus one. We sometimes write the
kernel as

Ks(z, w) =

(
1 −s(z)

)
Jc

(
1 −s(w)

)∗
1− zw∗ , Jc =

(
1 0
0 −1

)
.
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By [94, Satz 3.2], s(z) ∈ Sκ if and only if

s(z) = b(z)−1s0(z), (2.12)

where b(z) is a Blaschke product of order κ:

b(z) =
κ∏

i=1

z − αi

1− α∗
i z

(2.13)

with zeros αi ∈ D, i = 1, 2, . . . , κ, and s0(z) ∈ S0 such that s0(αi) �= 0, i =
1, 2, . . . , κ. Clearly, the points αi are the poles of s(z) in D, and they appear in
(2.13) according to their multiplicities. The decomposition

Ks(z, w) =
1

b(z)b(w)∗
Ks0(z, w)− 1

b(z)b(w)∗
Kb(z, w) (2.14)

is an example of a decomposition (2.2). The functions in the class S0 are the Schur
functions : these are the functions which are holomorphic and bounded by 1 on D.

For later reference we observe that

s(z) ∈ S and s(z) is rational =⇒ |s(z)| ≤ 1 for z ∈ T. (2.15)

This follows from (2.12) and the facts that |b(z)| = 1 if z ∈ T and that a rational
Schur function does not have a pole on T. More generally, if s(z) ∈ S, then for
every ε > 0 there is an r ∈ (0, 1) such that |s(z)| < 1+ ε for all z with r < |z| < 1.

As mentioned in Subsection 1.2, there is a difference between the cases κ = 0
and κ > 0: When κ = 0 then the nonnegativity of the kernel Ks(z, w) on an
nonempty open set in D implies that the function s(z) can be extended to an
analytic function on D. On the other hand, when κ > 0, there exist functions s(z)
which are not meromorphic in D and for which the kernel Ks(z, w) has a finite
number of negative squares. Such an example is the function which is zero in the
whole open unit disk except at the origin, where it takes the value 1, see [19, p.
82]. Such functions were studied in [44], [45], and [46].

We note that the number of negative squares of a function s(z) ∈ S is invari-
ant under Möbius transformations

ζ(z) =
z − z1

1− zz∗1
of the independent variable z ∈ D, where z1 ∈ D. Indeed, since

1− ζ(z)ζ(w)∗

1− zw∗ =
1− |z1|2

(1− zz∗1)(1− w∗z1)
,

we have

1− s
(
ζ(z)

)
s
(
ζ(w)

)∗
1− zw∗ =

1− s
(
ζ(z)

)
s
(
ζ(w)

)∗
1− ζ(z)ζ(w)∗

1− ζ(z)ζ(w)∗

1− zw∗

=

√
1− |z1|2
1− zz∗1

1− s
(
ζ(z)

)
s
(
ζ(w)

)∗
1− ζ(z)ζ(w)∗

√
1− |z1|2

1− w∗z1

,
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and hence sq−(s ◦ ζ) = sq−(s). Similarly, if

Θ =
(

α β
γ δ

)
is a Jc-unitary constant 2 × 2 matrix, then the functions s(z) and TΘ(s(z)) have
the same number of negative squares because

1− TΘ

(
s(z)

)
TΘ

(
s(w)

)∗
1− zw∗ =

1
γs(z) + δ

1− s(z)s(w)∗

1− zw∗
1(

γs(w) + δ
)∗ .

If z1 ∈ D, by Sz1
κ (Sz1 , respectively) we denote the functions s(z) from Sκ (S,

respectively) which are holomorphic at z1.

If z1 ∈ T we consider also functions which have an asymptotic expansion of
the form (recall that z→̂z1 means that z tends nontangentially from D to z1 ∈ T)

s(z) = τ0 +
2p−1∑
i=1

τj(z − z1)i + O
(
(z − z1)2p

)
, z→̂z1, (2.16)

where the coefficients τi, i = 0, 1, . . . , 2p− 1, satisfy the following assumptions:
(1) |τ0| = 1;
(2) at least one of the numbers τ1, . . . , τp is not 0;
(3) the matrix

P̂ = T̂ B̂Q (2.17)
with

T̂ =
(
tij
)p−1

i,j=0
, tij = τi+j+1,

B̂ =
(
bij

)p−1

i,j=0
, bij = zp+i−j

1

(
p− 1− j

i

)
(−1)p−1−j,

and
Q =

(
cij

)p−1

i,j=0
, cij = τ∗

i+j−(p−1),

is Hermitian.
Here B̂ is a left upper and Q is a right lower triangular matrix. The assumptions
(1) and (3) are necessary in order to assure that the asymptotic expansion (2.16)
of the function s(z) yields an asymptotic expansion of the kernel Ks(z, w), see
(4.15) below. The assumption (2) implies that at least one of the Pick matrices
of the kernel Ks(z, w) is invertible, see Theorem 4.6); in the present paper we are
interested only in this situation. The set of functions from Sκ (S, respectively)
which have an asymptotic expansion (2.16) at z1 ∈ T with the properties (1), (2),
and (3) we denote by Sz1;2p

κ (Sz1;2p, respectively).

For s(z) ∈ S and the corresponding Schur kernel Ks(z, w) from (2.11):

Ks(z, w) =
1− s(z)s(w)∗

1− zw∗ , z, w ∈ hol (s),

the reproducing kernel Pontryagin space P(Ks) is denoted by P(s).
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For a function s(z) ∈ Sκ there exists a realization of the form

s(z) = γ + bc(z)
〈(

1− bc(z)T
)−1

u, v
〉
, bc(z) =

z − z1

1− zz∗1
, (2.18)

with a complex number γ: γ = s(z1), a bounded operator T in some Pontryagin
space (P , 〈 · , · 〉), and elements u and v ∈ P . With the entries of (2.18) we form
the operator matrix

V =
(

T u
〈 · , v〉 γ

)
:
(
P
C

)
→

(
P
C

)
. (2.19)

Then the following statements are equivalent, see [19]:

(a) s(z) ∈ Sz1 .
(b) s(z) admits the realization (2.18) such that the operator matrix V in (2.19)

is isometric in
(
P
C

)
and closely innerconnected, that is,

P = span
{
T jv

∣∣ j = 0, 1, . . .
}
.

(c) s(z) admits the realization (2.18) such that the operator matrix V in (2.19)

is coisometric (that is, its adjoint is isometric) in
(
P
C

)
and closely outercon-

nected, which means that

P = span
{
T ∗iv

∣∣ i = 0, 1, . . .
}
.

(d) s(z) admits the realization (2.18) such that the operator matrix V in (2.19)

is unitary in
(
P
C

)
and closely connected, that is,

P = span
{
T ∗iv, T ju

∣∣ i, j = 0, 1, . . .
}
.

The realizations in (b), (c), and (d) are unique up to isomorphisms (unitary equiv-
alence) of the spaces and of the operators and elements. The connectedness con-
dition in (b), (c), and (d) implies that sq−(s) = ind−(P). For example, the closely
outerconnected coisometric realization in (b) with z1 = 0 can be chosen as follows:
P is the reproducing kernel space P(s), T is the operator(

Tf
)
(z) =

1
z

(
f(z)− f(0)

)
, f(z) ∈ P(s),

and u and v are the elements

u(z) =
1
z

(
s(z)− s(0)

)
, v(z) = Ks(z, 0).

This is the backward-shift realization but here the emphasis is on the metric struc-
ture of the realization (that is, the coisometry property) rather than the minimal-
ity, see [37] and [85].
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2.4. Generalized Nevanlinna functions and the spaces L(n)
For any integer κ ≥ 0 we denote by Nκ the set of generalized Nevanlinna functions
with κ negative squares. These are the meromorphic functions n(z) on C+ for which
the kernel

Ln(z, w) =
n(z)− n(w)∗

z − w∗ , z, w ∈ hol (n), (2.20)

has κ negative squares on hol (n). In this case we also say that n(z) has κ negative
squares and we write sq−(n) = κ. We sometimes write the kernel as

Ln(z, w) =

(
1 −n(z)

)
J�

(
1 −n(w)

)∗
z − w∗ , J� =

(
0 1
−1 0

)
.

For κ = 0 the class N0 consists of all Nevanlinna functions n(z): these are the
functions which are holomorphic on C+ and satisfy Imn(z) ≥ 0 for z ∈ C+. By a
result of [70], n(z) ∈ Nκ admits the representation

n(z) =
∏κ1

i=1(z − αi)(z − α∗
i )∏κ2

j=1(z − βj)(z − β∗
j )

n0(z),

where κ1 and κ2 are integers ≥ 0 with κ = max (κ1, κ2), αi and βj are points
from C+ ∪ R such that αi �= βj , and n0(z) ∈ N0. A function n(z) ∈ Nκ is always
considered to be extended to the open lower half-plane by symmetry:

n(z∗) = n(z)∗, z ∈ hol (n), (2.21)

and to those points of the real axis into which it can be continued analytically.
The kernel Ln(z, w) extended by (2.20) to all these points if w �= z∗ and set equal
to n′(z) when w = z∗ still has κ negative squares. Accordingly, hol (n) now stands
for the largest set on which n(z) is holomorphic. We set

N =
⋃
κ≥0

Nκ.

The elements of N are called generalized Nevanlinna functions.
If z1 ∈ C+, by Nz1

κ (Nz1 , respectively) we denote the functions n(z) from Nκ

(N, respectively) which are holomorphic at z1.

We consider also functions n(z) ∈ N which have for some integer p ≥ 1 an
asymptotic expansion at z1 = ∞ of the form

n(z) = −µ0

z
− µ1

z2
− · · · − µ2p−1

z2p
+ O

(
1

z2p+1

)
, z = iy, y ↑ ∞,

where
(1) µj ∈ R, j = 0, 1, . . . , 2p− 1, and
(2) at least one of the coefficients µ0, µ1, . . . , µp−1 is not equal to 0.

The fact that limy↑∞ n(iy) = 0, and items (1) and (2) are the analogs of items
(1), (3), and (2), respectively, in Subsection 2.3. Here the reality of the coefficients
is needed in order to assure that the asymptotic expansion of the function n(z)
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implies an asymptotic expansion of the Nevanlinna kernel (2.20). The asymptotic
expansion above is equivalent to the asymptotic expansion

n(z) = −µ0

z
− µ1

z2
− · · · − µ2p−1

z2p
− µ2p

z2p+1
+ o

(
1

z2p+1

)
, z = iy, y ↑ ∞,

for some additional real number µ2p, see [94, Bemerkung 1.11]). The set of all
functions n(z) ∈ Nκ (n(z) ∈ N, respectively) which admit expansions of the above
forms with properties (1) and (2) is denoted by N∞;2p

κ (N∞;2p, respectively). Note
that any rational function of the class N which vanishes at ∞ belongs to N∞;2p

for all sufficiently large integers p.

If n(z) ∈ N and

Ln(z, w) =
n(z)− n(w)∗

z − w∗

is the kernel from (2.20), then the reproducing kernel space P(Ln) is denoted by
L(n).

A function n(z) is a generalized Nevanlinna function if and only it admits a
representation of the form

n(z) = n(z0)∗ + (z − z∗0)
〈(

I + (z − z0)(A− z)−1
)
u0, u0

〉
P , (2.22)

where P is a Pontryagin space, A is a self-adjoint relation in P with a nonempty
resolvent set ρ(A), z0 ∈ ρ(A), and u0 ∈ P . The representation is called a self-
adjoint realization centered at z0. The realization can always be chosen such that

span
{(

I + (z − z0)(A− z)−1
)
u0

∣∣ z ∈ (C \ R) ∩ ρ(A)
}

= P .

If this holds we say that the realization is minimal. Minimality implies that the
self-adjoint realization of n(z) is unique up to unitary equivalence, and also that
hol (n) = ρ(A) and sq−(n) = ind−(P), see [69].

An example of a minimal self-adjoint realization of a generalized Nevanlinna
function n(z) is given by (2.22), where

(a) P = L(n), the reproducing kernel Pontryagin space with kernel Ln(z, w),
whose elements are locally holomorphic functions f(ζ) on hol (n),

(b) A is the self-adjoint relation in L(n) with resolvent given by (A− z)−1 = Rz ,
the difference-quotient operator defined by

(Rzf)(ζ) =

⎧⎪⎨⎪⎩
f(ζ)− f(z)

ζ − z
, ζ �= z,

f ′(z), ζ = z,

f(ζ) ∈ L(n),

(c) u0(ζ) = cLn(ζ, z∗0) or u0(ζ) = cLn(ζ, z0) with c ∈ C and |c| = 1.

For a proof and further details related to this example, we refer to [71, Theo-
rem 2.1].
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2.5. Additional remarks and references

The first comprehensive paper on the theory of reproducing kernel spaces is the
paper [29] by N. Aronszajn’s which appeared in 1943. We refer to [30] and [108] for
accounts on the theory of reproducing kernel Hilbert spaces and to [89] and [33]
for more information on Pontryagin spaces. Reproducing kernel Pontryagin spaces
(and reproducing kernel Krein spaces) appear in the general theory developed by
L. Schwartz in [118] but have been first explicitly studied by P. Sorjonen [120].

One of the first examples of kernels with a finite number of negative squares
was considered by M.G. Krein in [93]: He studied continuous functions f(t) on R
for which the kernel

Kf(s, t) = f(s− t)

has this property. Nonnegative kernels (κ = 0) were first defined by J. Mercer
in the setting of integral equations, see [104]. For a historical discussion, see, for
example, [40, p. 84].

When κ = 0 it is well known, see [118] and [108], that there is a one-to-one
correspondence between nonnegative p× p matrix kernels and reproducing kernel
Hilbert spaces of p× 1 vector functions defined in Ω. This result was extended by
P. Sorjonen [120] and L. Schwartz [118] to a one-to-one correspondence between
kernels with κ negative squares and reproducing kernel Pontryagin spaces.

If s(z) ∈ S0, the space P(s) is contractively included in the Hardy space H2

on D: this means that P(s) ⊂H2 and that the inclusion map is a contraction, see
[50]. If, moreover, s(z) is inner, that is, its boundary values on T have modulus 1
almost everywhere, then

P(s) = H2 � sH2,

see, for instance, [21, Theorem 3.5]. The theory of reproducing kernel Pontryagin
spaces of the form P(s) can be found in [19], see also [12].

3. Some classes of rational matrix functions

In this section we review the main features of the theory of rational functions
needed in the sequel. Although there we mostly deal with rational scalar or 2× 2
matrix functions, we start with the case of p× p matrix functions for any integer
p ≥ 1. In the general setting discussed in the Subsection 1.4, the results we present
correspond to the choices of a(z) and b(z) for the open unit disk and the open upper
half-plane and to F (z) of the form

F (z) = C(zI −A)−1 or F (z) = C(I − zA)−1.

We often use straightforward arguments and not the general results of [23], [24],
and [25].
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3.1. Realizations and McMillan degree of rational matrix functions

Recall that any rational matrix function R(z) which is analytic at zero can be
written as

R(z) = D + zC(I − zA)−1B, (3.1)
where A, B, C, and D are matrices of appropriate sizes; evidently, D = R(0). If
R(z) a rational matrix function which is analytic at ∞, then it can be written as

R(z) = D + C(zI −A)−1B; (3.2)

now D = R(∞). The realization (3.1) or (3.2) is called minimal if the size of the
square matrix A is as small as possible. Equivalently, see [37], it is minimal if it is
both observable, which means that

∞⋂
�=0

kerCA� = {0} ,

and controllable, that is, if A is an m×m matrix, then
∞⋃

�=0

ran A�B = Cm.

Minimal realizations are unique up to a similarity matrix: If, for example, (3.1)
is a minimal realization of R(z), then any other minimal realization of R(z) =
D + C1(zI −A1)−1B1 is related to the realization (3.1) by(

A1 B1

C1 D

)
=
(

S 0
0 I

)(
A B
C D

)(
S−1 0
0 I

)
for some uniquely defined invertible matrix S.

The size of the matrix A in a minimal representation (3.1) or (3.2) is called
the McMillan degree of R(z) and denoted by deg R. In fact, the original definition
of the McMillan degree uses the local degrees of the poles of the function: If R(z)
has a pole at w with principal part∑n

j=1

Rj

(z − w)j
,

then the local degree of R(z) at w is defined by

degw R = rank

⎛⎜⎜⎜⎜⎜⎝
Rn 0 · · · 0 0

Rn−1 Rn . . . 0 0
...

...
. . .

...
...

R2 R3 · · · Rn 0
R1 R2 · · · Rn−1 Rn

⎞⎟⎟⎟⎟⎟⎠ . (3.3)

The local degree at ∞ is by definition the local degree at z = 0 of the function
R(1/z). The McMillan degree of R(z) is equal to the sum of the local degrees at
all poles w ∈ C ∪ {∞}. In particular, if R(z) has a single pole at w (as will often
be the case in the present work) the McMillan degree of R(z) is given by (3.3).
We refer to [37, Section 4.1] and [90] for more information.
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3.2. J-unitary matrix functions and the spaces P(Θ): the line case

We begin with a characterization of P(Θ) spaces. Let J be any p × p signature
matrix, that is, J is self-adjoint and J2 = Ip. A rational p × p matrix function
Θ(z) is called J-unitary on the line, if

Θ(x)∗JΘ(x) = J, x ∈ R ∩ hol (Θ),

and J-unitary on the circle if

Θ(eit)∗JΘ(eit) = J, t ∈ [0, 2π), eit ∈ hol (Θ).

If Θ(z) is rational and J-unitary on the circle, the kernel

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

1− zw∗ (3.4)

has a finite number of positive and of negative squares and we denote by P(Θ)
the corresponding reproducing kernel Pontryagin space P(KΘ); similarly, if Θ(z)
is rational and J-unitary on the line the kernel

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

−i(z − w∗)
(3.5)

has a finite number of positive and of negative squares and the corresponding
reproducing kernel Pontryagin space is also denoted by P(Θ). Evidently, both
spaces P(Θ) are finite-dimensional, see also [21, Theorem 6.9].

Both kernels could be treated in a unified way using the framework of kernels
with denominator of the form a(z)a(w)∗ − b(z)b(w)∗ as mentioned in Subsection
1.4. We prefer, however, to consider both cases separately, and begin with the line
case. The following theorem characterizes the J-unitarity on the line of a rational
matrix function Θ(z) in terms of a minimal realization of Θ(z).

Recall that Rζ denotes the backward-shift (or the difference-quotient) opera-
tor based on the point ζ ∈ C:(

Rζf
)
(z) =

f(z)− f(ζ)
z − ζ

.

A set M of analytic vector functions on an open set Ω is called backward-shift
invariant if for all ζ ∈ Ω we have RζM⊂M.

Theorem 3.1. Let P be a finite-dimensional reproducing kernel Pontryagin space
of analytic p×1 vector functions on an open set Ω which is symmetric with respect
to the real line. Then P is a P(Θ) space with reproducing kernel KΘ(z, w) of the
form (3.5) if and only if the following conditions are satisfied.

(a) P is backward-shift invariant.
(b) For every ζ, ω ∈ Ω and f(z), g(z) ∈ P the de Branges identity holds :〈

Rζf, g
〉
P −

〈
f, Rωg

〉
P − (ζ − ω∗)

〈
Rζf, Rωg

〉
P = i g(ω)∗Jf(ζ). (3.6)

In this case dimP = deg Θ.
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The identity (3.6) first appears in [47]. A proof of the if and only if statement
in this theorem can be found in [21] and a proof of the last equality in [26]. The
finite-dimensionality and the backward-shift invariance of P force the elements of
P to be rational: A basis of P is given by the columns of a matrix function of the
form

F (z) = C(T − zA)−1.

If the elements of P are analytic in a neighborhood of the origin one can choose
T = I, that is, F (z) = C(I − zA)−1. Since R0F (z) = C(I − zA)−1A, the choice
ζ = ω = 0 in (3.6) shows that the Gram matrix G associated with F (z):〈

Fc, Fd
〉
P = d∗Gc, c,d ∈ Cm,

satisfies the Lyapunov equation

GA−A∗G = iC∗JC. (3.7)

It follows from Theorem 3.1 that Θ(z) is rational and J-unitary on the real line.
We now study these functions using realization theory.

Theorem 3.2. Let Θ(z) be a p×p matrix function which is analytic at infinity and
let Θ(z) = D + C(zI − A)−1B be a minimal realization of Θ(z). Then Θ(z) is
J-unitary on R if and only if the following conditions are satisfied.
(a) The matrix D is J-unitary : DJD∗ = J .
(b) There exists a unique Hermitian invertible matrix G such that

GA−A∗G = −iC∗JC, B = −iG−1C∗JD. (3.8)

If (a) and (b) hold, then Θ(z) can be written as

Θ(z) =
(
Ip − iC(zI −A)−1G−1C∗J

)
D, (3.9)

for z, w ∈ hol (Θ) we have

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

−i(z − w∗)
= C(zI −A)−1G−1(wI −A)−∗C∗, (3.10)

and the space P(Θ) is spanned by the columns of the matrix function

F (z) = C(zI −A)−1.

The matrix G is called the associated Hermitian matrix for the given real-
ization. It is invertible, and its numbers of negative and of positive eigenvalues
are equal to the numbers of negative and positive squares of the kernel (3.5). The
latter follows from the formula (3.10). We outline the proof of Theorem 3.2 as an
illustration of the state space method; for more information, see [26, Theorem 2.1],
where functions are considered, which are J-unitary on the imaginary axis rather
than on the real axis.

Proof of Theorem 3.2. We first rewrite the J-unitarity of Θ(z) on the real line as

Θ(z) = JΘ(z∗)−∗J. (3.11)
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By analyticity, this equality holds for all complex numbers z, with the possible
exception of finitely many. Let Θ(z) = D+C(zI−A)−1B be a minimal realization
of Θ(z). Since Θ(∞) is J-unitary we have D∗JD = J and, in particular, D is
invertible. A minimal realization of Θ(z)−1 is given by

Θ(z)−1 = D−1 −D−1C(zI − zA×)−1BD−1, with A× = A−BD−1C,

see [37, pp. 6,7]. Thus (3.11) can be rewritten as

D + C(zI −A)−1B = JD−∗J − JD−∗B∗(zI − (A×)∗
)−1

C∗D−∗J.

This is an equality between two minimal realizations of a given rational function
and hence there exists a unique matrix S such that(

A B
C D

)
=
(

S−1 0
0 Ip

)(
A∗ − C∗D−∗B∗ C∗D−∗J
−JD−∗B∗ JD−∗J

)(
S 0
0 Ip

)
.

This equation is equivalent to the J-unitarity of D together with the equations

SA−A∗S = −C∗D−∗B∗S,

SB = C∗D−∗J,

C = −JD−∗B∗S.

The first two equations lead to

SA−A∗S = C∗JC.

Both S and −S∗ are solution of the above equations, and hence, since S is unique,
S = −S∗. Setting S = i G, we obtain G = G∗, the equalities (3.8) and the
equality (3.9).

To prove the converse statement we prove (3.10) using (3.9). We have

Θ(z)JΘ(w)∗ − J

=
(
Ip − i C(zI −A)−1G−1C∗J

)
J
(
Ip + i JCG−1(wI −A)−∗C∗)− J

= −i C(zI −A)−1G−1C∗ + i CG−1(wI −A)−∗C∗

− i C(zI −A)−1G−1i C∗JCG−1(wI −A)−∗C∗

= C(zI −A)−1
{
−i G−1(w∗I −A∗) + i (zI −A)G−1

+G−1C∗JCG−1
}

(wI −A)−∗C∗.

By (3.8), the sum insides the curly brackets is equal to

−i w∗G−1 + i G−1A∗ + i zG−1 + i AG−1 − iG−1(GA−A∗G)G−1 = i (z −w∗)G−1,

and equation (3.10) follows. That P(Θ) is spanned by the columns of F (z) follows
from (3.10) and the minimality of the realization of Θ(z). �

In Section 8 we will need the analog of Theorem 3.2 for spaces of polynomials
(which in particular are analytic at the origin but not at infinity). Note that the
equations in (3.12) and (3.13) below differ by a minus sign from their counterparts
(3.8) and (3.9) above.
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Theorem 3.3. Let Θ(z) be a p× p matrix function which is analytic at the origin
and let Θ(z) = D + zC(I − zA)−1B be a minimal realization of Θ(z). Then Θ(z)
is J-unitary on R if and only if the following conditions are satisfied.
(a) The matrix D is J-unitary : DJD∗ = J .
(b) There exists a unique Hermitian invertible matrix G such that

GA−A∗G = iC∗JC, B = iG−1C∗JD. (3.12)

In this case, Θ(z) can be written as

Θ(z) =
(
Ip + ziC(I − zA)−1G−1C∗J

)
D, (3.13)

for z, w ∈ hol (Θ) we have

KΘ(z, w) =
J −Θ(z)JΘ(w)∗

−i(z − w∗)
= C(I − zA)−1G−1(I − wA)−∗C∗, (3.14)

and the space P(Θ) is spanned by the columns of F (z) = C(I − zA)−1.

The proof is a direct consequence of Theorem 3.2. Indeed, consider Ψ(z) = Θ(1/z).
It is analytic at infinity and admits the minimal realization

Ψ(z) = D + C(zI −A)−1B.

Furthermore, Ψ(z) and Θ(z) are simultaneously J-unitary on the real line. If we
apply Theorem 3.2 to Ψ(z), we obtain an invertible Hermitian matrix G′ such that
both equalities in (3.8) hold. Replacing z, w, and Θ in (3.10) by 1/z, 1/w, and Ψ
we obtain:

KΘ(z, w) = −C(I − zA)−1(G′)−1(I − wA)−∗C∗.
It remains to set G = −G′. Then, evidently, the number of negative and positive
squares of the kernel KΘ(z, w) is equal to the number of negative and positive
eigenvalues of the matrix G.

The next two theorems are special cases of Theorem 1.1. The first theorem
is also a consequence of formula (3.10). It concerns spaces spanned by functions
which are holomorphic at ∞.

Theorem 3.4. Let (C, A) be an observable pair of matrices of sizes p×m and m×m
respectively, denote by M the space spanned by the columns of the p ×m matrix
function F (z) = C(zI−A)−1, and let G be a nonsingular Hermitian m×m matrix
which defines the inner product (1.15) :〈

Fc, Fd
〉
M = d∗Gc, c,d ∈ Cm.

Then M is a P(Θ) space with kernel KΘ(z, w) of the form (3.5) if and only if G
is a solution of the Lyapunov equation in (3.8). In this case, a possible choice of
Θ(z) is given by the formula

Θz0(z) = Ip + i(z − z0)C(zI −A)−1G−1(z0I −A)−∗C∗J, (3.15)

where z0 ∈ hol (Θ)∩R. Any other choice of Θ(z) differs from Θz0(z) by a J-unitary
constant factor on the right.

Letting z0 →∞ we obtain from (3.15) formula (3.9) with D = Ip.
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Similarly, the next theorem is also a consequence of (3.14) and Theorem 3.3.
Its formulation is almost the same as the one of the previous theorem except that,
since now we consider spaces of functions which are holomorphic at z = 0, the
Lyapunov equation in (3.8) is replaced by the Lyapunov equation (3.7), which
differs from it by a minus sign.

Theorem 3.5. Let (C, A) be an observable pair of matrices of sizes p×m and m×m
respectively, denote by M the space spanned by the columns of the p ×m matrix
function F (z) = C(I−zA)−1, and let G be a nonsingular Hermitian m×m matrix
which defines the inner product (1.15) :〈

Fc, Fd
〉
M = d∗Gc, c,d ∈ Cm.

Then M is a P(Θ) space with kernel KΘ(z, w) of the form (3.5) if and only if
G is a solution of the Lyapunov equation (3.7). In this case, a possible choice of
Θ(z) is given by the formula

Θz0(z) = Ip + i(z − z0)C(I − zA)−1G−1(I − z0A)−∗C∗J, (3.16)

where z0 ∈ hol (Θ)∩R. Any other choice of Θ(z) differs from Θz0(z) by a J-unitary
constant factor on the right.

If we set z0 = 0 we obtain from (3.16) formula (3.13) with D = Ip.

The following theorem will be used to prove factorization results in Subsec-
tion 3.4.

Theorem 3.6. Let Θ(z) be a rational p × p matrix function which is analytic at
infinity and J-unitary on R and let Θ(z) = D + C(zI − A)−1B be a minimal
realization of Θ(z). Then

detΘ(z) =
det(zI −A∗)
det(zI −A)

detD. (3.17)

In particular, if Θ(z) has only one pole w ∈ C, then

detΘ(z) = c

(
z − w∗

z − w

)deg Θ

for some unimodular constant c.

Proof. By Theorem 3.2, det D �= 0, and thus we have

detΘ(z) = det
(
I + C(zI −A)−1BD−1

)
detD

= det
(
I + (zI −A)−1BD−1C

)
detD

= det (zI −A)−1 det
(
zI −A + BD−1C

)
detD

=
det (zI −A×)
det (zI −A)

detD.
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In view of (3.8),

A× = A−BD−1C

= A + iG−1C∗JDD−1C

= A + G−1(GA−A∗G)

= G−1A∗G,

and hence
det (zI −A×) = det (zI −A∗),

which proves (3.17). To prove the second statement, it suffices to note that the
minimality implies that if Θ(z) has only one pole in w then A is similar to a direct
sum of Jordan blocks all based on the same point and the size of A is the degree
of Θ(z). �

3.3. J-unitary matrix functions and the spaces P(Θ): the circle case

We now turn to the characterization of a reproducing kernel Pontryagin space as
a P(Θ) space in the circle case.

Theorem 3.7. Let P be a finite-dimensional reproducing kernel space of analytic
vector functions on an open set Ω, which is symmetric with respect to the unit
circle. Then it is a P(Θ) space with reproducing kernel KΘ(z, w) of the form (3.4)
if and only if the following conditions are satisfied.

(a) P is backward-shift invariant.
(b) For every ζ, ω ∈ Ω and f(z), g(z) ∈ P the de Branges–Rovnyak identity

holds :〈
f, g

〉
P+ζ

〈
Rζf, g

〉
P+ω∗〈f, Rωg

〉
P−(1−ζω∗)

〈
Rζf, Rωg

〉
P = g(ω)∗Jf(ζ). (3.18)

In this case dimP = deg Θ.

The identity (3.18) first appears in [107]. A proof of this theorem can be
found in [21] and [26]. If the elements of P are analytic in a neighborhood of the
origin, a basis of the space is given by the columns of a matrix function of the
form F (z) = C(I − zA)−1 and the choice ζ = ω = 0 in (3.18) leads to the Stein
equation

G−A∗GA = C∗JC (3.19)

for the Gram matrix G associated with F (z).
The function Θ(z) in Theorem 3.7 is rational and J-unitary on the circle. To

get a simple characterization in terms of minimal realizations of such functions
Θ(z) we assume analyticity both at the origin and at infinity. This implies in
particular that the matrix A in the next theorem is invertible. The theorem is the
circle analog of Theorems 3.2 and 3.3; for a proof see [26, Theorem 3.1].

Theorem 3.8. Let Θ(z) be a rational p × p matrix function analytic both at the
origin and at infinity and let Θ(z) = D + C(zI −A)−1B be a minimal realization
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of Θ(z). Then Θ(z) is J-unitary on the unit circle if and only if there exists an
invertible Hermitian matrix G such that(

G 0
0 −J

)
=
(

A B
C D

)∗(
G 0
0 −J

)(
A B
C D

)
. (3.20)

We note that the matrix G in (3.20) satisfies the Stein equation

G−A∗GA = −C∗JC, (3.21)

and that the formula

KΘ(z, w) = C(zI −A)−1G−1(wI −A)−∗C∗ (3.22)

holds, see [26, (3.17)]. This formula and the minimality of the realization of Θ
imply that the space P(Θ) is spanned by the columns of the matrix function
F (z) = C(zI −A)−1.

The next two theorems are particular cases of Theorem 1.1. They are the
analogs of Theorems 3.4 and 3.5, respectively. The first one concerns spaces of
functions which are holomorphic at∞, the second one concerns spaces of functions
which are holomorphic at 0. Their formulations are the same, except for the Stein
equations: they differ by a minus sign.

Theorem 3.9. Let (C, A) be an observable pair of matrices of sizes p×m and m×m
respectively, and let G be an invertible Hermitian m×m matrix. Then the linear
span M of the columns of the p×m matrix function F (z) = C(zI−A)−1 endowed
with the inner product 〈

Fc, Fd
〉

= d∗Gc, c,d ∈ Cm,

is a P(Θ) space with reproducing kernel KΘ(z, w) of the form in (3.4) if and only
if G is a solution of the Stein equation (3.21) :

G−A∗GA = −C∗JC.

In this case, one can choose

Θ(z) = Ip − (1− zz∗0)C(zI −A)−1G−1(z0I −A)−∗C∗J, (3.23)

where z0 ∈ T ∩ ρ(A).

If A is invertible, Theorem 3.9 can also be proved using Theorem 3.8 and
formula (3.22). Theorem 3.9 cannot be applied to backward-shift invariant spaces
of polynomials; these are the spaces spanned by the columns of the matrix function
F (z) = C(I − zA)−1 where A is a nilpotent matrix. The next theorem holds in
particular for such spaces.

Theorem 3.10. Let (C, A) be an observable pair of matrices of sixes p × m and
m×m respectively, and let G be an invertible Hermitian m×m matrix. Then the
linear span M of the columns of the p×m matrix function F (z) = C(I − zA)−1

endowed with the inner product〈
Fc, Fd

〉
= d∗Gc, c,d ∈ Cm,
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is a P(Θ) space with reproducing kernel KΘ(z, w) of the form in (3.4) if and only
if G is a solution of the Stein equation (3.19) :

G−A∗GA = C∗JC.

If this is the case, one can choose

Θ(z) = Ip − (1− zz∗0)C(I − zA)−1G−1(I − z0A)−∗C∗J, (3.24)

where z0 ∈ T is such that z∗0 ∈ ρ(A).

Assume that the spectral radius of A is strictly less than 1. Then the Stein
equation (3.19) has a unique solution which can be written as

G =
∞∑

i=0

A∗iC∗JCAi.

This means that the space M is isometrically included in the Krein space H2,J of
p × 1 vector functions with entries in the Hardy space H2 of the open unit disk
equipped with the indefinite inner product〈

f, g
〉
H2,J

=
〈
f, Jg

〉
H2

.

The above discussion provides the key to the following theorem.

Theorem 3.11. Let J be a p× p signature matrix and let Θ(z) be a rational p× p
matrix function which is J-unitary on the unit circle and has no poles on the closed
unit disk. Then

P(Θ) = H2,J � ΘH2,J .

The McMillan degree is invariant under Möbius transformations, see [37].
This allows to state the counterpart of Theorem 3.6.

Theorem 3.12. Let Θ(z) be a rational p× p matrix function which is J-unitary on
the unit circle and has a unique pole at the point 1/w∗ including, possibly, w = 0.
Then

detΘ(z) = c

(
z − w

1− zw∗

)deg Θ

,

where c is a unimodular constant.

In the sequel we shall need only the case p = 2. Then the signature matrices
are J = Jc for the circle and J = −iJ� for the line, where Jc and J� are given
by (1.13). The above formulas for Θ(z) are the starting point of our approach in
this paper. In each of the cases we consider, the matrix A is a Jordan block and
the space P(Θ) has no G-nondegenerate A invariant subspaces (besides the trivial
ones). Under these assumptions we obtain analytic formulas for the functions Θ(z).
Thus in the Sections 5 to 8 using the reproducing kernel space methods we obtain
explicit formulas for Θ(z) in special cases.
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3.4. Factorizations of J-unitary matrix functions

The product or the factorization (depending on the point of view)

R(z) = R1(z)R2(z),

where R(z), R1(z), and R2(z) are rational p×p matrix functions is called minimal if

deg R1R2 = deg R1 + deg R2.

The factorization is called trivial, if at least one of the factors is a constant matrix.
The rational function R(z) is called elementary, if it does not admit nontrivial min-
imal factorizations. One of the problems studied in this paper is the factorization
of certain classes of rational matrix functions into elementary factors. Note that:
• A given rational matrix function may lack nontrivial factorizations, even if

its McMillan degree is greater than 1.
• The factorization, if it exists, need not be unique.

As an example for the first assertion, consider the function

R(z) =
(

1 z2

0 1

)
.

Its McMillan degree equals 2. One can check that it does not admit nontrivial
minimal factorization by using the characterization of such factorizations proved
in [37]. We give here a direct argument. Assume it admits a nontrivial factorization
into factors of degree 1: R(z) = R1(z)R2(z). In view of (3.1) these are of the form

Ri(z) = Di +
zcib∗

i

1− zai
, i = 1, 2,

where ai ∈ C, bi and ci are 2× 1 vectors, i = 1, 2. We can assume without loss of
generality that Di = I2. Then a1 = a2 = 0 since the factorization is minimal (or
by direct inspection of the product) and so we have(

1 z2

0 1

)
=
(
I2 + zc1b∗

1

)(
I2 + zc2b∗

2

)
= I2 + z

(
c1b∗

1 + c2b∗
2

)
+ z2

(
b∗

1c2

)
c1b∗

2.

Thus b∗
1c2 �= 0 and

c1b∗
1 + c2b∗

2 = 02×2. (3.25)
On the other hand, taking determinants of both sides of the above factorization
leads to

1 =
(
1 + zb∗

1c1

)(
1 + zb∗

2c2

)
and so

b∗
1c1 = b∗

2c2 = 0.

Multiplying (3.25) by c2 on the right we obtain c1 = 0, and thus R(z) = R2(z),
which is a contradiction to the fact that there is a nontrivial factorization.

If, additionally, the function R(z) is J-unitary (on the real axis or on the unit
circle) the factorization R(z) = R1(z)R2(z) is called J-unitary if both factors are
J-unitary. Then the following problems arise:
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• Describe all rational elementary J-unitary matrix functions, these are the
rational J-unitary matrix functions which do not admit nontrivial minimal
J-unitary factorizations.

• Factor a given rational J-unitary matrix function into a minimal product of
rational elementary J-unitary matrix functions.

We note that a rational J-unitary matrix function may admit nontrivial minimal
factorizations, but lack nontrivial minimal J-unitary factorizations. Examples can
be found in [5], [21, pp. 148–149], and [26, p. 191]. One such example is presented
after Theorem 3.14. In the positive case, the first instance of uniqueness is the
famous result of L. de Branges on the representation of J-inner entire functions
when J is a 2× 2 matrix with signature (1, 1), see [48]. Related uniqueness results
in the matrix case have been proved by D. Arov and H. Dym, see [31] and [32].

As a consequence of Theorems 3.6 and 3.12, in special cases products of
rational J-unitary matrix functions are automatically minimal.

Theorem 3.13. Let z1 ∈ C+ (∈ D, respectively) and let Θ1(z), Θ2(z) be 2×2 matrix
functions which both are J-unitary on the real line (the unit circle, respectively)
and have a single pole at z1. Then the product Θ1(z)Θ2(z) is minimal and

P(Θ1Θ2) = P(Θ1)⊕Θ1P(Θ2), (3.26)

where the sum is direct and orthogonal.

Proof. We prove the theorem only for the line case; the proof for the circle case is
similar. According to Theorem 3.6, with c = cΘ,

cΘ1Θ2

(
z − z1

z − z∗1

)deg Θ1Θ2

= det (Θ1Θ2)(z)

=
(
det Θ1(z)

)(
det Θ2(z)

)
= cΘ1

(
z − z1

z − z∗1

)deg Θ1

cΘ2

(
z − z1

z − z∗1

)deg Θ2

= cΘ1cΘ2

(
z − z1

z − z∗1

)deg Θ1+deg Θ2

.

Therefore
deg Θ1Θ2 = deg Θ1 + deg Θ2,

and the product Θ1(z)Θ2(z) is minimal. The formula (3.26) follows from the kernel
decomposition

KΘ1Θ2(z, w) = KΘ1(z, w) + Θ1(z)KΘ2(z, w)Θ1(w)∗

and the minimality of the product, which implies that the dimensions of the spaces
on both sides of the equality (3.26) coincide (recall that dim P(Θ) = deg Θ, see
Theorem 3.1). �

The following theorem is crucial for the proofs of the factorization theorems
we give in the sequel, see Theorems 5.2, 6.4, 7.9, and 8.4.
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Theorem 3.14. Let Θ(z) be a rational p× p matrix function which is J-unitary on
the unit circle or on the real axis. Then there is a one-to-one correspondence (up
to constant J-unitary factors) between J-unitary minimal factorizations of Θ(z)
and nondegenerate subspaces of P(Θ) which are backward-shift invariant.

For proofs see [21, Theorem 8.2] and [26]. Since we are in the finite-dimen-
sional case, if dimP(Θ) > 1, the backward-shift operator Rζ always has proper
invariant subspaces. However, they can be all degenerated with respect to the
inner product of P(Θ). Furthermore, Rζ may have different increasing sequences
of nondegenerate subspaces, leading to different J-unitary decompositions.

We give an example of a function lacking J-unitary factorizations. Let J be
a p× p signature matrix (with nontrivial signature) and take two p× 1 vectors u1

and u2 such that
u∗

1Ju1 = u∗
2Ju2 = 0, u∗

1Ju2 �= 0.

Furthermore, choose α, β ∈ D such that α �= β and define the p× p matrices

Wij =
uiu∗

j

u∗
jJui

, i, j = 1, 2, i �= j.

Then the p× p matrix function

Θ(z) =
(

Ip −
1− z(1− α∗β)

(1 − zα∗)(1− β)
W12

)(
Ip −

1− z(1 − β∗α)
(1− zβ∗)(1− α)

W21

)
is J-unitary on the unit circle and admits a nontrivial factorization but has no
nontrivial J-unitary factorizations. The fact behind this is that the space P(Θ) is
spanned by the functions

u1

1− zα∗ ,
u2

1− zβ∗

and does not admit nondegenerate Rζ invariant subspaces.

The four types of J-unitary rational matrix functions Θ(z), which are studied
in the present paper, see Subsections 5.3, 6.3, 7.3, and 8.3, have a single singularity
and are 2× 2 matrix-valued. This implies that the underlying spaces P(Θ) have a
unique sequence of backward-shift invariant subspaces. Therefore the factorization
into elementary factors is in all these cases either trivial or unique. We shall make
this more explicit in the rest of this subsection. To this end we introduce some
more notation. All the matrix functions Θ(z) in the following sections are rational
2 × 2 matrix functions; we denote the set of these functions by U . Recall from
(1.13) that

Jc =
(

1 0
0 −1

)
, J� =

(
0 1
−1 0

)
.

Further, Uc denotes the set of all Θ(z) ∈ U which are Jc-unitary on the circle, that
is, they satisfy

Θ(z)JcΘ(z)∗ = Jc, z ∈ T ∩ hol (Θ),
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and U� denotes the set of all Θ(z) ∈ U which are J�-unitary on the line, that is,
they satisfy

Θ(z)J�Θ(z)∗ = J�, z ∈ R ∩ hol (Θ).
Finally, if z1 ∈ C ∪ {∞}, then Uz1

c stands for the set of those matrix functions in
Uc which have a unique pole at 1/z∗1 , and Uz1

� stands for the set of those matrix
functions from U� which have a unique pole at z∗1 . Here we adhere to the convention
that 1/0 = ∞ and 1/∞ = 0. Thus the elements of these classes admit the following
representations:

(i) If Θ(z) ∈ U0
c ∪ U∞

� , then Θ(z) is a polynomial in z:

Θ(z) =
n∑

j=0

Tjz
j.

(ii) If Θ(z) ∈ Uz1
c with z1 �= 0,∞, then it is of the form

Θ(z) =
n∑

j=0

Tj

(1− zz∗1)j
.

(iii) If Θ(z) ∈ Uz1
� with z1 �= ∞, then it is of the form

Θ(z) =
n∑

j=0

Tj

(z − z∗1)j
.

In all these cases n is an integer ≥ 0 and Tj are 2×2 matrices, j = 0, 1, . . . , n. The
sets Uz1

c etc. are all closed under multiplication. Moreover, the McMillan degree
of Θ(z) in (i)–(iii) is given by (3.3) (with Rj replaced by Tj).

It is well known that the Jc-unitary constants, that is, the constant Jc-unitary
matrices, are of the form

1
1− |ρ|2

(
1 ρ
ρ∗ 1

)(
c1 0
0 c2

)
with ρ, c1, c2 ∈ C such that |ρ| < 1 and |c1| = |c2| = 1, and the J�-unitary
constants are of the form

eiθ

(
α β
γ δ

)
with θ, α, β, γ, δ ∈ R such that αδ − βγ = 1.

By Theorem 3.13, products in the sets Uz1
� with z1 ∈ C+ and Uz1

c with z1 ∈ D
are automatically minimal. This is not the case with products in the sets Uz1

� with
z1 ∈ R ∪ {∞} and Uz1

c with z1 ∈ T, since these sets are closed under taking
inverses. One can say more, but first a definition: We say that the matrix function
Θ(z) ∈ U is normalized at the point z0 if Θ(z0) = I2, the 2× 2 identity matrix. In
the sequel we normalize

Θ(z) ∈ Uz1
c , z1 ∈ D, in z0 ∈ T,

Θ(z) ∈ Uz1
c , z1 ∈ T, in z0 ∈ T \ {z1},

Θ(z) ∈ U∞
� in z0 = 0,

Θ(z) ∈ Uz1
� , z1 ∈ C+, in z0 = ∞.
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For each of the four classes of matrix functions in the forthcoming sections we de-
scribe the normalized elementary factors and the essentially unique factorizations
in terms of these factors. The factorizations are unique in that the constant matrix
U is the last factor in the product. It could be positioned at any other place of the
product, then, however, the elementary factors may change. In this sense we use
the term essential uniqueness.

Theorem 3.15. Let z1 ∈ D (∈ C+, respectively) and let Θ(z) ∈ Uz1
c (∈ Uz1

� ,
respectively) be normalized and such that Θ(z1) �= 02×2. Then Θ(z) admits a unique
minimal factorization into normalized elementary factors.

Proof. We consider the line case, the circle case is treated in the same way. It is
enough to check that the space P(Θ) is made of one chain and then to use Theorem
3.14. The space P(Θ) consists of rational 2× 1 vector functions which have only a
pole in z∗1 , see Lemma 2.1. It is backward-shift invariant and therefore has a basis
of elements of Jordan chains based on the point z∗1 . The beginning of each such
chain is of the form

u
z − z∗1

for some 2 × 1 vector u. Assume that there is more than one chain, that is, that
there are two chains with first elements

f(z) =
u

z − z∗1
, g(z) =

v
z − z∗1

,

such that the 2×1 vectors u and v are linearly independent. Equation (3.6) implies
that we have for c, d, c′, d′ ∈ C,〈

cf + dg, c′f + d′g
〉
P(Θ)

= i
(c′u + d′v)∗J(cu + dv)

z1 − z∗1
.

Hence the space spanned by f(z) and g(z) is a nondegenerate backward-shift
invariant subspace of P(Θ), and therefore a P(Θ1) space, where Θ1(z) is a factor
of Θ(z). The special forms of f(z) and g(z) imply that

Θ1(z) =
z − z1

z − z∗1
I2.

Hence Θ(z1) = 0, which contradicts the hypothesis. �

The last argument in the proof can be shortened. One can show that

u∗JΘ(z1) = v∗JΘ(z1) = 0,

and hence that Θ(z1) = 0 by using the following theorem, which is the analog of
Theorem 3.11. Now H2,J denotes the Krein space of p × 1 vector functions with
entries in the Hardy space H2 of the open upper half-plane equipped with the
indefinite inner product 〈

f, g
〉
H2,J

=
〈
f, Jg

〉
H2

. (3.27)
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Theorem 3.16. Let Θ(z) be a rational p× p matrix function which is J-unitary on
R, and assume that Θ(z) does not have any poles in the closed upper half-plane.
Then

P(Θ) = H2,J �ΘH2,J (3.28)

in the sense that the spaces are equal as vector spaces and that, moreover,〈
f, g

〉
P(Θ)

=
1
2π

〈
f, g

〉
H2,J

Even though, as mentioned above, products need not be minimal in Uz1
� with

z1 ∈ R ∪ {∞} and in Uz1
c with z1 ∈ T, the analog of Theorem 3.15 holds true:

Theorem 3.17. Let z1 ∈ T (∈ R ∪ {∞}, respectively) and let Θ(z) be a normal-
ized element in Uz1

c (in Uz1
� , respectively). Then Θ(z) admits a unique minimal

factorization into normalized elementary factors.

Proof. As in the case of Theorem 3.15 we consider the line case and z1 ∈ R. We
show that the space P(Θ) is spanned by the elements of only one chain. Suppose,
on the contrary, that it is spanned by the elements of more than one chain. Then
it contains elements of the form

u
z − z1

,
v

z − z1
,

where u and v are 2× 1 vectors. Then, by equation (3.6),

u∗Jv = u∗Ju = v∗Jv = 0.

Thus u and v span a neutral space of the space C2 endowed with the inner product
y∗Jx, x,y ∈ C2. Since J = −iJ�, it follows that every nontrivial neutral subspace
has dimension 1 and thus there is only one chain in P(Θ). The rest is plain from
Theorem 3.14. �

3.5. Additional remarks and references

We refer to [37] for more information on realization and minimal factorization of
rational matrix functions. Rational matrix functions which are J-unitary on the
unit circle or on the real line were studied in [21] and [26].

For connections between the structural identities (3.6) and (3.18) and the
Lyapunov and Stein equations, see [13] and [80].

As remarked in [22, §8] most of the computations related to finite-dimensional
spaces P(Θ) would still make sense if one replaces the complex numbers by an
arbitrary field and conjugation by a field isomorphism. For possible applications
to coding theory, see the discussion in Subsection 8.5 and see also the already
mentioned papers of M.-J. Bertin [41] and Ch. Pisot [105].
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4. Pick matrices

In this section we introduce the Pick matrices at the point z1 for the four classes of
generalized Schur and Nevanlinna functions: Sz1 with z1 ∈ D, Sz1;2p with z1 ∈ T
and an integer p ≥ 1, Nz1 with z1 ∈ C+, and N∞;2p with an integer p ≥ 1. In
fact, in each case only the smallest nondegenerate Pick matrix at z1 is of actual
interest.

4.1. Generalized Schur functions: z1 ∈ D

We consider a function s(z) ∈ Sz1 . Recall that this means that s(z) belongs to some
generalized Schur class Sκ and is holomorphic at z1 ∈ D. The Taylor expansion of
s(z) at z1 we write as

s(z) =
∞∑

i=0

σi(z − z1)i. (4.1)

The kernel Ks(z, w) =
1− s(z)s(w)∗

1− zw∗ is holomorphic in z and w∗ at z = w = z1

with Taylor expansion

Ks(z, w) =
1− s(z)s(w)∗

1− zw∗ =
∞∑

i,j=0

γij(z − z1)i(w − z1)j . (4.2)

Here and elsewhere in the paper where we consider a Taylor expansion we are only
interested in the Taylor coefficients, so we do not (need to) specify the domain of
convergence of the expansion. Recall that the Pick matrix of the kernel Ks(z, w)
at z1 is Γ = (γij)

∞
i,j=0 , which we call also the Pick matrix of the function s(z) at

z1. As a consequence of Theorem 2.7 we have the following result.

Corollary 4.1. For s(z) ∈ Sz1 it holds that

s(z) ∈ Sz1
κ ⇐⇒ κ−(Γ) = κ.

If we write (4.2) as

1− s(z)s(w)∗ =
(
1− |z1|2 − (z − z1)z∗1 − z1(w − z1)∗ − (z − z1)(w − z1)∗

)
×

∞∑
i,j=0

γij(z − z1)i(w − z1)∗j ,

insert for s(z) the expansion (4.1), and compare coefficients we see that (4.2) is
equivalent to the following equations for the numbers γij :(

1− |z1|2
)
γij − z∗1γi−1,j − z1γi,j−1 − γi−1,j−1 = −σiσ

∗
j , (4.3)

i, j = 0, 1, . . . , i + j > 0,

and the “initial conditions”

γ00 =
1− |σ0|2
1− |z1|2

; γi,−1 = γ−1,j = 0, i, j = 0, 1, . . . . (4.4)
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With the shift matrix

S =

⎛⎜⎜⎜⎜⎝
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0

. . ....
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ ,

the Toeplitz matrix

Σ = (σj−k)∞j,k=0 =

⎛⎜⎜⎜⎜⎜⎝
σ0 0 0 0 · · ·
σ1 σ0 0 0 · · ·
σ2 σ1 σ0 0 · · ·
σ3 σ2 σ1 σ0 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠
of the Taylor coefficients σj of the generalized Schur function s(z) in (4.1) (setting
σj = 0 if j < 0), and the vectors

s =
(
σ0 σ1 σ2 · · ·

)�
, e0 =

(
1 0 0 · · ·

)�
,

the relations (4.3), (4.4) can be written as the Stein equation

(1−|z1|2)Γ−z∗1S∗Γ−z1ΓS−S∗ΓS =
(
e0 s

)
Jc

(
e0 s

)∗ (
= e0e∗0−s s∗

)
. (4.5)

To obtain an explicit formula for the Pick matrix Γ we first consider the corre-

sponding expansion for the particular case s(z) = 0, that is, for the kernel
1

1− zw∗ :

1
1− zw∗ =

∑∞
i,j=0

γ0
ij(z − z1)i(w − z1)∗j , z, w ∈ D.

Specifying (4.3), (4.4) for s(z) = 0, we obtain that the coefficients γ0
ij are the

unique solutions of the difference equations(
1−|z1|2

)
γ0

ij−z∗1γ0
i−1,j−z1γ

0
i,j−1−γ0

i−1,j−1 = 0, i, j = 0, 1, . . . , i+j > 0, (4.6)

with the initial conditions

γ0
00 =

1
1− |z1|2

; γ0
i,−1 = γ0

−1,j = 0, i, j = 0, 1, . . . .

or, in matrix form,(
1− |z1|2

)
Γ0 − z∗1S∗Γ0 − z1Γ0S − S∗Γ0S = e0e0

∗. (4.7)

Lemma 4.2. The entries of the matrix Γ0 =
(
γ0

ij

)∞
i,j=0

are given by

γ0
ij =

(
1− |z1|2

)−(i+j+1)(
D∗D

)
ij

,

where D is the matrix

D =
(
dij

)∞
i,j=0

with dij =
(

j

i

)
zj−i
1 , i, j = 0, 1, . . . .

The matrix Γ0 is positive in the sense that all its principal submatrices are positive.
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Since the binomial coefficients
(

j

i

)
vanish for j < i the matrix D is right

upper triangular.

Proof of Lemma 4.2. We introduce the numbers

βij =
(
1− |z1|2

)i+j+1
γ0

ij , i, j = 0, 1, . . . .

Then β00 = 1, βi,−1 = β−1,j = 0, i, j = 0, 1, . . . , and the difference equations (4.6)
imply

βij = βi−1,j z∗1 + βi,j−1 z1

(
1− |z1|2

)
βi−1,j−1, i, j = 0, 1, . . . , i + j > 0. (4.8)

We show that the numbers βij =
(
D∗D

)
ij

satisfy the relations (4.8). We have

βij =
j∑

k=0

d∗ki dkj =
j∑

k=0

(
i

k

)
z∗i−k
1

(
j

k

)
zj−k
1 ,

and it is to be shown that this expression equals
j∑

k=0

(
i− 1

k

)
(z∗1)i−k

(
j

k

)
zj−k
1 +

j−1∑
k=0

(
i

k

)
(z∗1)i−k

(
j − 1

k

)
zj−k
1

+
(
1− |z1|2

) j−1∑
k=0

(
i− 1

k

)
(z∗1)i−1−k

(
j − 1

k

)
zj−1−k
1 .

Comparing coefficients of (z∗1)i−kzj−k
1 it turns out that we have to prove the rela-

tion(
i− 1

k

)(
j

k

)
+
(

i

k

)(
j − 1

k

)
+
(

i− 1
k − 1

)(
j − 1
k − 1

)
−
(

i− 1
k

)(
j − 1

k

)
=
(

i

k

)(
j

k

)
.

If the identity (
µ

ν

)
−
(

µ− 1
ν

)
=
(

µ− 1
ν − 1

)
(4.9)

is applied to the first and the last term of the left-hand side, and to the second
term of the left-hand side and the term on the right-hand side we get(

i− 1
k

)(
j − 1
k − 1

)
−
(

i

k

)(
j − 1
k − 1

)
+
(

i− 1
k − 1

)(
j

k − 1

)
= 0,

and another application of (4.9) gives the desired result.
To prove the last statement we use that a Hermitian matrix is positive if and

only if the determinant of each of its principal submatrices is positive. Applying
the elementary rules to calculate determinants, we find that for all integers j ≥ 1,

det Γ0
j =

(
1− |z1|2

)k2

det
(
D∗

j Dj

)
=
(
1− |z1|2

)k2

> 0.

It follows that all principal submatrices of Γ0 are positive. �
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Clearly, for the special case z1 = 0 we obtain Γ0 = I, the infinite identity
matrix.

Now it is easy to give an explicit expression for the Pick matrix Γ.

Theorem 4.3. The Pick matrix Γ of the function s(z) ∈ Sz1 at the point z1, that
is, the solution of the Stein equation (4.5), is given by the relation

Γ = Γ0 − Σ Γ0Σ∗. (4.10)

Proof. Inserting Γ = Γ0 − Σ Γ0Σ∗ in (4.5) the left-hand side becomes(
1− |z1|2

)
Γ0 − z∗1S∗Γ0 − z1Γ0S − S∗Γ0S

−
(
1− |z1|2

)
ΣΓ0Σ∗ + z∗1S∗ΣΓ0Σ∗ + z1ΣΓ0Σ∗S + S∗ΣΓ0Σ∗S.

By (4.7), the terms on the first line add up to e0e0
∗. If we observe the relations

S∗Σ = ΣS∗, Σe0e0
∗Σ∗ = ss∗, and again (4.7), the second line becomes

−Σ
((

1− |z1|2
)
Γ0 − z∗1S∗Γ0 − z1Γ0S − S∗Γ0S

)
Σ∗ = −s s∗. �

In the particular case z1 = 0 the Pick matrix Γ for s(z) ∈ S0 at 0 becomes

Γ = I − Σ Σ∗, (4.11)

and the Stein equation (4.5) reads as

Γ− S∗ΓS =
(
e0 s

)
Jc

(
e0 s

)∗ (
= e0e∗0 − s s∗

)
. (4.12)

The relations (4.11) and (4.12) imply for m = 1, 2, . . .

Γm = Im − Σm Σ∗
m, and Γm − S∗

mΓmSm = C∗JcC;

here Sm is the principal m×m submatrix of the shift matrix S and C is the 2×m
matrix

C =

(
1 0 · · · 0

σ∗
0 σ∗

1 · · · σ∗
m−1

)
.

Recall that for the Pick matrix Γ the smallest positive integer j such that
the principal submatrix Γj is invertible is denoted by k0(Γ):

k0(Γ) := min
{
j
∣∣ det Γj �= 0

}
.

Theorem 4.4. For the function s(z) ∈ Sz1 which is not identically equal to a
unimodular constant and its Pick matrix Γ at z1 we have

|σ0| �= 1 ⇐⇒ k0(Γ) = 1;

if |σ0| = 1 then k0(Γ) = 2k where k is the smallest integer k ≥ 1 such that σk �= 0.

Proof. The first claim follows from the relation

γ00 =
1− |σ0|2
1 − |z1|2

. (4.13)
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If |σ0| = 1 and k is the smallest positive integer such that σk �= 0 then we write
the principal 2k × 2k submatrices of Γ0 and of Σ as 2× 2 block matrices:

Γ0
2k =

(
A B

B∗ D

)
, Σ2k =

(
σ0Ik 0

∆ σ0Ik

)
,

where all blocks are k × k matrices, A = A∗ = Γ0
k, D = D∗, Ik is the k × k unit

matrix, and

∆ =

⎛⎜⎜⎜⎜⎜⎝
σk 0 · · · 0 0

σk+1 σk . . . 0 0
...

...
. . .

...
...

σ2k−2 σ2k−3 · · · σk 0
σ2k−1 σ2k−2 · · · σk+1 σk

⎞⎟⎟⎟⎟⎟⎠ .

Then

Γ2k =

(
0 σ0A∆∗

σ∗
0∆A ∆A∆∗ + σ0B

∗∆∗ + σ∗
0∆B

)
and, since A, by Lemma 4.2, and ∆ are invertible, Γ2k is invertible and no principal
submatrix of Γ2k is invertible. Hence k0(Γ) = 2k. �

4.2. Generalized Schur functions: z1 ∈ T

We consider a function s(z) ∈ S which for some integer p ≥ 1 has at z1 ∈ T an
asymptotic expansion of the form

s(z) = τ0 +
2p−1∑
i=1

τi(z − z1)i + O
(
(z − z1)2p

)
, z→̂z1. (4.14)

Theorem 4.5. Suppose that the function s(z) ∈ S has the asymptotic expansion
(4.14) with |τ0| = 1. Then the following statements are equivalent.

(1) The matrix P̂ in (2.17) is Hermitian.
(2) The kernel Ks(z, w) has an asymptotic expansion of the form

Ks(z, w) =
∑

0≤i+j≤2p−2 γij(z − z1)i(w − z1)∗j

+O
(
(max{|z − z1|, |w − z1|})2p−1

)
, z, w→̂z1.

(4.15)

If (1) and (2) hold, then for the Pick matrix Γp =
(
γij

)p−1

i,j=0
at z1 we have Γp = P̂ .

For a proof, see [18, Lemma 2.1]. We mention that the coefficients γij satisfy
the relations (compare with (4.3))

z∗1γi−1,j +z1γi,j−1+γi−1,j−1 =τiτ
∗
j , i, j=0, 1, . . . , 2p−2, 1≤ i+j≤2p−2,

where, if i or j = −1, γij is set equal to zero, and that the Pick matrix Γp satisfies
the Stein equation

Γp −A∗
pΓpAp = C∗JcC,
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where Ap = z∗1Ip + Sp and C is the 2× p matrix

C =

(
1 0 · · · 0

τ∗
0 τ∗

1 · · · τ∗
p−1

)
.

If statements (1) and (2) of Theorem 4.5 hold, we are interested in the smallest
integer k0 := k0(Γp) ≥ 1, for which the principal k0 × k0 submatrix Γk0 := (Γp)k0

of Γp is invertible. Recall that Sz1;2p is the class of functions s(z) ∈ S which have
an asymptotic expansion of the form (4.14) with the properties that |τ0| = 1, not
all coefficients τ1, . . . , τp vanish, and the statements (1) and (2) of Theorem 4.5
hold. The second property implies that k0 exists and 1 ≤ k0 ≤ p.

Theorem 4.6. Suppose that the function s(z) ∈ Sz1;2p has the asymptotic expansion
(4.14). Then k0 = k0(Γp) coincides with the smallest integer k ≥ 1 such that
τk �= 0, and we have

Γk0 = Γk = τ∗
0 ∆B, (4.16)

where

∆ =

⎛⎜⎜⎜⎜⎜⎝
τk 0 · · · 0 0

τk+1 τk . . . 0 0
...

...
. . .

...
...

τ2k−2 τ2k−3 · · · τk 0
τ2k−1 τ2k−2 · · · τk+1 τk

⎞⎟⎟⎟⎟⎟⎠
and B is the right lower matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 (−1)k−1
(
k−1

0

)
z2k−1
1

0 0 · · · (−1)k−2
(
k−2
0

)
z2k−3
1 (−1)k−1

(
k−1

1

)
z2k−2
1

...
...

...
...

...

0 −
(
1
0

)
z3
1 · · · (−1)k−2

(
k−2
k−3

)
zk
1 (−1)k−1

(
k−1
k−2

)
zk+1
1

z1 −
(
1
1

)
z2
1 · · · (−1)k−2

(
k−2
k−2

)
zk−1
1 (−1)k−1

(
k−1
k−1

)
zk
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This theorem is proved in [18, Lemma 2.1]. The matrix Γk in (4.16) is right
lower triangular. The entries on the second main diagonal are given by

γi,k−1−i = (−1)k−1−iz2k−1−2i
1 τ∗

0 τk, i = 0, 1, . . . , k − 1, (4.17)

hence, because τ0, τk, z1 �= 0, Γk is invertible. Since Γk is Hermitian, by (4.17),
zk
1 τ∗

0 τk is purely imaginary if k is even and real if k is odd, and the number of
negative eigenvalues of Γk is equal to

κ−(Γk) =

⎧⎪⎪⎨⎪⎪⎩
k/2, k is even,

(k − 1)/2, k is odd and (−1)(k−1)/2zk
1 τ∗

0 τk > 0,

(k + 1)/2, k is odd and (−1)(k−1)/2zk
1 τ∗

0 τk < 0.

(4.18)
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Under the assumptions of the theorem we have

sq−(s) ≥ κ−(Γk). (4.19)

This follows from the asymptotic expansion (4.15) of the kernel Ks(z, w) and the
inequality (2.10).

4.3. Generalized Nevanlinna functions: z1 ∈ C+

We consider n(z) ∈ Nz1 and write its Taylor expansion at z1 as

n(z) =
∞∑

i=0

νi(z − z1)i; (4.20)

the series converges in a neighborhood of z1, which we need not specify, because
we are only interested in the Taylor coefficients of n(z). The kernel Ln(z, w) is
holomorphic in z and in w∗ at z = w = z1 with Taylor expansion

Ln(z, w) =
n(z)− n(w)∗

z − w∗ =
∞∑

i,j=0

γij(z − z1)i(w − z1)∗j .

We call the Pick matrix Γ =
(
γij

)∞
i,j=0

of this kernel also the Pick matrix for the
function n(z) at z1. We readily obtain the following corollary of Theorem 2.7.

Corollary 4.7. If n(z) ∈ Nz1 , then

n(z) ∈ Nz1
κ ⇐⇒ κ−(Γ) = κ.

The entries γij of the Pick matrix of n(z) at z1 satisfy the equations

γ00 =
ν0 − ν∗

0

z1 − z∗1
= Im ν0/Im z1,

(z1 − z∗1)γi0 + γi−1,0 = νi, i ≥ 1, (z1 − z∗1)γ0j − γ0,j−1 = −ν∗
j , j ≥ 1,

and
(z1 − z∗1)γij + γi−1,j − γi,j−1 = 0, i, j ≥ 1.

In matrix form these equations can be written as the Lyapunov equation

(z1 − z∗1)Γ + S∗Γ− ΓS =
(
n e0

)
J�

(
n e0

)∗ (
= ne∗0 − e0n∗), (4.21)

where
n =

(
ν0 ν1 ν2 · · ·

)�
, e0 =

(
1 0 0 · · ·

)�
.

To find a formula for the Pick matrix Γ, in analogy to Subsection 4.1, we first
consider the Taylor expansion of the simpler kernel for the function n(z) ∈ N0

with n(z) ≡ i, Im z > 0:

2 i
z − w∗ =

∞∑
i,j=0

γ0
ij(z − z1)i(w − z1)∗j .

We obtain
γ0
00 =

2 i
z1 − z∗1

= 1/Im z1 (4.22)
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and

(z1 − z∗1)γ0
ij + γ0

i−1,j − γ0
i,j−1 = 0, i, j = 0, 1, . . . , i + j ≥ 1, (4.23)

where γ0
ij = 0 if i = −1 or j = −1, or, in explicit form,

γ0
ij =

∂i+j

∂zi∂w∗j

2 i
z − w∗

∣∣∣∣∣
z=w=z1

=
(

i + j

i

)
2 i(−1)i

(z1 − z∗1)i+j+1
, i, j = 0, 1, . . . .

From this formula one can derive the following result.

Lemma 4.8. All principal submatrices of Γ0 =
(
γ0

ij

)∞
i,j=0

are positive.

Proof. By induction one can prove that the determinant of the �× � matrix

A� =
(
aij

)�−1

i,j=0
, aij =

(
i + j

i

)
,

is equal to 1. Using elementary rules for calculating determinants we find that for
all integers � ≥ 1,

Γ0
� = (−1)[�/2] (2 i)�

(z1 − z∗1)�2
detA� =

1
2�(�−1)(Im z1)�2

,

and hence, see the proof of Lemma 4.2, Γ0 is positive. �

The relations (4.22) and (4.23) can be written in matrix form as (compare
with (4.21))

(z1 − z∗1)Γ0 + S∗Γ0 − Γ0S = 2ie0e∗0.

Now the Pick matrix Γ in (4.21) becomes

Γ =
1
2 i
(
Σ Γ0 − Γ0Σ∗),

where

Σ =

⎛⎜⎜⎜⎜⎜⎝
ν0 0 0 0 · · ·
ν1 ν0 0 0 · · ·
ν2 ν1 ν0 0 · · ·
ν3 ν2 ν1 ν0 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ .

We also need the analog of Theorem 4.4, that is, the smallest positive integer
k0 = k0(Γ) such that for n(z) ∈ N the principal submatrix Γk0 is invertible.

Theorem 4.9. For the function n(z) ∈ Nz1 which is not identically equal to a real
constant and its Pick matrix Γ at z1 we have

Im ν0 �= 0 ⇐⇒ k0(Γ) = 1;

if ν0 ∈ R and k is the smallest integer ≥ 1 such that νk �= 0, then k0(Γ) = 2k.
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Proof. The first statement follows from the formula

Γ1 = γ00 = Im ν0/Im z1.

We prove the second statement. Assume ν0 ∈ R and let k be the smallest integer
≥ 1 such that νk �= 0. Then the principal 2k× 2k submatrices of Γ0 and Σ can be
written as the block matrices

Γ0
2k =

(
A B

B∗ D

)
, Σ2k =

(
ν0Ik 0

∆ ν0Ik

)
,

where all blocks are k×k matrices, A = A∗ = Γ0
k, D = D∗, and ∆ is the triangular

matrix

∆ =

⎛⎜⎜⎜⎜⎜⎝
νk 0 · · · 0 0

νk+1 νk . . . 0 0
...

...
. . .

...
...

ν2k−2 ν2k−3 · · · νk 0
ν2k−1 ν2k−2 · · · νk+1 νk

⎞⎟⎟⎟⎟⎟⎠ .

Then

Γ2k =
1
2i

(
0 −A∆∗

∆A ∆B −B∗∆∗

)
, (4.24)

and, since A, by Lemma 4.8, and ∆ are invertible, Γ2k is invertible and no principal
submatrix of Γ2k is invertible. �
4.4. Generalized Nevanlinna functions: z1 = ∞
In this subsection we consider a function n(z) from the class N∞;2p for some integer
p ≥ 1. This means, see Subsection 2.4, that n(z) belongs to the class N and has
an asymptotic expansion of the form

n(z) = −µ0

z
− µ1

z2
− · · · − µ2p−1

z2p
− µ2p

z2p+1
+ o

(
1

z2p+1

)
, z = iy, y ↑ ∞,

with
(i) µj ∈ R, j = 0, 1, . . . , 2p, and
(ii) not all coefficients µ0, µ1, . . . , µp−1 vanish.

The asymptotic expansion of n(z) yields an asymptotic expansion for the kernel
Ln(z, w):

Ln(z, w) =
n(z)− n(w)∗

z − w∗

=
∑

0≤i+j≤2p

γij

zi+1w∗(j+1)
+ o

(
max

(
|z|−(2p+2), |w|−(2p+2)

))
, (4.25)

z = iy, w = iη, y, η ↑ ∞,

with γij = µi+j , 0 ≤ i + j ≤ 2p. The Pick matrix is therefore the (p + 1)× (p + 1)
Hankel matrix

Γp+1 =
(
γij

)p

0
with γij = µi+j , 0 ≤ i, j ≤ p.
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This implies the following theorem. Recall that k0(Γp+1) is the smallest integer
k ≥ 1 for which the principal k × k submatrix Γk = (Γp+1)k of Γp+1 is invertible.
Condition (ii) implies that 1 ≤ k0(Γp+1) ≤ p.

Theorem 4.10. The index k0(Γp+1) is determined by the relation

k0(Γp+1) = k ≥ 1 ⇐⇒ µ0 = µ1 = · · · = µk−2 = 0, µk−1 �= 0.

If k = 1 in the theorem, then the first condition on the right-hand side of the
arrow should be discarded. With k = k0(Γp+1) and ε = sgn µk−1 we have

κ−(Γk) =

{
[k/2], εk−1 > 0,

[(k + 1)/2] , εk−1 < 0.
(4.26)

The analog of the inequality (4.19) for Nevanlinna functions reads: If n(z) ∈ N∞:2p

and k is as in Theorem 4.10, then

ind−(n) ≥ κ−(Γk). (4.27)

This follows from the asymptotic expansion (4.25) of the kernel Ln(z, w) and the
inequality (2.10). A geometric proof can be given via formula (8.15) in Subsection
8.4 below.

4.5. Additional remarks and references

If Rij , i, j = 0, 1, 2, . . . , is the covariance �× � matrix function of a discrete second
order �× 1 vector-valued stochastic process, the �× � matrix function

S(z, w) =
∑
i,j≥0

Rijz
iw∗j

is called the covariance generating function. It is a nonnegative kernel in the open
unit disk but in general it has no special structure. T. Kailath and H. Lev-Ari, see
[101], [102], and [103], considered such functions when they are of the form∑

i,j≥0

Rijz
iw∗j =

X(z)JX(w)∗

1− zw∗ ,

where X(z) is a � × p matrix function and J is a p × p signature matrix. The
corresponding stochastic processes contain as special cases the class of second
order wide sense stationary stochastic processes, and are in some sense close to
stationary stochastic processes. The case where X(z)JX(w)∗ = ϕ(z) + ϕ(w)∗

(compare with (1.9)) corresponds to the case of wide sense stationary stochastic
processes. Without loss of generality we may assume that

J =
(
Ir −Is

)
, p = r + s.

If X(z) is of bounded type and written as

X(z) =
(
A(z) B(z)

)
,

where A(z) and B(z) are � × r and � × s matrix functions, then we have using
Leech’s theorem

X(z) = A(z)
(
Ir −S(z)

)
,
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where S(z) is a Schur r × s matrix function, which allows to write the kernel

X(z)JX(w)∗

1− zw∗ = α(z)
ϕ(z) + ϕ(w)∗

1− zw∗ α(w)∗

for functions α(z) and ϕ(z) of appropriate sizes, that is, the process is α(z)-
stationary in the sense of T. Kailath and H. Lev-Ari. For further details and
more see [14, Section 4]. The assumption that X(z) is of bounded type is in fact
superfluous. Using Nevanlinna–Pick interpolation one also gets to the factorization
B(z) = −A(z)S(z).

In [21, Theorem 2.1] the following result is proved: Let J be a p×p signature
matrix and let X(z) be a �×p matrix function which is analytic in a neighborhood
of the origin. Then the kernel

X(z)JX(w)∗

1− zw∗ =
∑

i,j≥0

Rijz
iw∗j

is nonnegative if and only if all the finite sections (Rij)i,j=0,...,n, n = 0, 1, . . . , are
nonnegative, compare with Theorem 2.2.

We also mention the following result.

Theorem 4.11. If z1 ∈ D, the formal power series
∞∑

i=0

σi(z − z1)i

is the Taylor expansion of a generalized Schur function s(z) ∈ Sz1
κ if and only if

the matrix Γ, determined by the coefficients σi, i = 0, 1, . . . , according to (4.10),
has the property κ−(Γ) = κ.

For κ = 0, this result goes back to I. Schur ([116] and [117]) who proved
it using the Schur transformation. If κ > 0 and the power series is convergent,
this was proved in [96]. The general result for κ ≥ 0 was proved by M. Pathiaux-
Delefosse in [42, Theorem 3.4.1]) who used a generalized Schur transformation for
generalized Schur functions, which we define in Subsection 5.1. Theorem 4.11 also
appears in a slightly different form in [57, Theorem 3.1].

5. Generalized Schur functions: z1 ∈ D

5.1. The Schur transformation

Recall that Jc and bc(z) stand for the 2 × 2 signature matrix and the Blaschke
factor related to the circle and z1 ∈ D:

Jc =

(
1 0

0 −1

)
, bc(z) =

z − z1

1− zz∗1
.

Suppose that s(z) ∈ S is not identically equal to a unimodular constant. The Schur
transform ŝ(z) of s(z) depends on whether s(z) has a pole or not at the point z1,
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and, if s(z) is holomorphic at z1, that is, s(z) ∈ Sz1 , also on the first terms of the
Taylor expansion (4.1)

s(z) =
∞∑

i=0

σi(z − z1)i

of s(z). It is defined as follows.
(i) If s(z) ∈ Sz1 and |σ0| < 1, then

ŝ(z) =
1

bc(z)
s(z)− σ0

1− s(z)σ∗
0

. (5.1)

(ii) If s(z) ∈ Sz1 and |σ0| > 1, then

ŝ(z) = bc(z)
1− s(z)σ∗

0

s(z)− σ0
. (5.2)

(iii) If s(z) ∈ Sz1 and |σ0| = 1, then

ŝ(z) =

(
q(z)− (z − z1)k(1− zz∗1)k

)
s(z)− σ0q(z)

σ∗
0q(z)s(z)−

(
q(z) + (z − z1)k(1− zz∗1)k

) , (5.3)

where k is the smallest integer ≥ 1 such that σk �= 0, and the polynomial
q(z) of degree 2k is defined as follows. Consider the polynomial p(z) of degree
≤ k − 1 determined by

p(z)
(
s(z)− σ0

)
= σ0(z − z1)k(1− zz∗1)k + O

(
(z − z1)2k

)
, z → z1, (5.4)

and set q(z) = p(z)− z2kp(1/z∗)∗.
(iv) If s(z) ∈ S \ Sz1 , that is, if s(z) ∈ S has a pole at z1, then

ŝ(z) = bc(z)s(z). (5.5)

This definition for z1 = 0 of the Schur transformation first appears in the works
[55], [63], [76], [78], and [42, Definition 3.3.1]. Note that ŝ(z) in (5.1) is holomorphic
at z1 whereas in the other cases ŝ(z) may have a pole at z1. The function ŝ(z) in
(5.2) is holomorphic at z1 if and only if σ1 �= 0; it has a pole of order q ≥ 1 if and
only if σ1 = · · · = σq = 0 and σq+1 �= 0. As to item (iii): The integer k ≥ 1 with
σk �= 0 exists because, by hypothesis, s(z) �≡ σ0. The polynomial q(z) satisfies

q(z) + z2kq(1/z∗)∗ = 0. (5.6)

By substituting

p(z) = c0 + c1(z − z1) + · · ·+ ck−1(z − z1)k−1

we see that it can equivalently and more directly be defined as follows:

q(z) = c0 + c1(z − z1) + · · ·+ ck−1(z − z1)k−1

−
(
c∗k−1z

k+1(1− zz∗1)k−1 + c∗k−2z
k+2(1− zz∗1)k−2 + · · ·+ c∗0z

2k
)

with the coefficients c0, c1, . . . , ck−1 given by

c0σk+i + · · ·+ ciσk = σ0

(
k

i

)
(−z∗1)i(1− |z1|2)k−i, i = 0, 1, . . . , k − 1. (5.7)
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Note that c0 �= 0. The denominator of the quotient in (5.3) has the asymptotic
expansion:

σ∗
0q(z)

(
s(z)− σ0

)
− (z − z1)k(1− zz∗1)k = O

(
(z − z1)2k

)
, z → z1. (5.8)

We claim that it is not identically equal to 0. Indeed, otherwise we would have

s(z) = σ0

(
1 +

(1− z−1z1)k(1− zz∗1)k

z−kp(z)− zkp(1/z∗)∗

)
and therefore, since the quotient on the right-hand side is purely imaginary on
|z| = 1, the function s(z) would not be bounded by 1 on T, see (2.15). Hence ŝ(z)
in (5.3) is well defined. From writing it in the form

ŝ(z) = σ0 −
(z − z1)k(1 − zz∗1)k(s(z)− σ0)

σ∗
0q(z)(s(z)− σ0)− (z − z1)k(1 − zz∗1)k

and using that

s(z)− σ0 = σk(z − z1)k + O
(
(z − z1)k+1

)
, z → z1,

where σk �= 0, we readily see that it has a pole at z1 of order q if and only if the
denominator has the Taylor expansion

σ∗
0q(z)(s(z)− σ0)− (z − z1)k(1− zz∗1)k = t2k+q(z − z1)2k+q + · · · (5.9)

in which the coefficient t2k+q is a nonzero complex number. The Schur transform
ŝ(z) is holomorphic at z1 if and only if the expansion (5.9) holds with q = 0 or,
equivalently, if

t2k = σ∗
0

k−1∑
l=0

clσ2k−l �= 0. (5.10)

It can be shown that necessarily 1 ≤ k ≤ κ and 0 ≤ q ≤ κ− k.

If in the cases (ii) and (iii) the Schur transform ŝ(z) of s(z) has a pole at z1

of order q then by q times applying the Schur transformation to it according to
case (iv), that is, by multiplying it by bc(z)q, we obtain a function

bc(z)q ŝ(z)

which is holomorphic at z1. We shall call this function the q+1-fold composite Schur
transform of s(z). In this definition we allow setting q = 0: the 1-fold composite
Schur transform of s(z) exists if ŝ(z) is holomorphic at z1 and then it equals ŝ(z).

The following theorem implies that the Schur transformation maps the set
of functions of S, which are not unimodular constants, into S. In the cases (i) the
negative index is retained, in the cases (ii)–(iv) it is reduced.

Theorem 5.1. Let s(z) ∈ S and assume that it is not a unimodular constant. For
its Schur transform ŝ(z) the following holds in the cases (i)–(iv) as above.

(i) s(z) ∈ Sz1
κ =⇒ ŝ(z) ∈ Sz1

κ .
(ii) s(z) ∈ Sz1

κ =⇒ κ ≥ 1 and ŝ(z) ∈ Sκ−1.
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(iii) s(z) ∈ Sz1
κ =⇒ 1 ≤ k ≤ κ and ŝ(z) ∈ Sκ−k.

(iv) s(z) ∈ Sκ \ Sz1 =⇒ κ ≥ 1 and ŝ(z) ∈ Sκ−1.

This theorem appears without proof in [76]. In [7] the theorem is proved by
using realization theorems as in Subsection 5.5 and in [10] it is proved by applying
Theorem 1.2 with X(z) etc. given by (1.11).

The formulas (5.1)–(5.5) are all of the form

ŝ(z) = TΦ(z)(s(z))

for some rational 2×2 matrix function Φ(z). Indeed, in case (i) the matrix function
Φ(z) can be chosen as

Φ(z) =

⎛⎜⎝ 1
bc(z)

− σ0

bc(z)

−σ∗
0 1

⎞⎟⎠ ,

in case (ii) as

Φ(z) =

⎛⎝ −σ∗
0 1

1
bc(z)

− σ0

bc(z)

⎞⎠ ,

in case (iii) as

Φ(z) =
1

(z − z1)2k

(−q(z) + (z − z1)k(1− zz∗1)k σ0q(z)

−σ∗
0q(z) q(z)− (z − z1)k(1− zz∗1)k

)

=
1

bc(z)k
I2 −

q(z)
(z − z1)2k

(
1 −σ0

σ∗
0 −1

)
,

and, finally, in case (iv) as

Φ(z) =

⎛⎜⎝1 0

0
1

bc(z)

⎞⎟⎠ .

In the following it is mostly not the Schur transformation itself but the matrix
function Φ(z) and its inverse, normalized at some point z0 ∈ T and chosen such
that it has a pole at z∗1 , which plays a decisive role. Recall that for a 2× 2 matrix
function Ψ(z) the range of the linear fractional transformation TΨ(z), when applied
to all elements of a class Sκ, is invariant if Ψ(z) is replaced by α(z)Ψ(z)U where
α(z) is a nonzero scalar function and U is a Jc-unitary constant. We normalize
the four matrix functions Φ(z) considered above with some z0 ∈ T and set

Θ(z) = Φ(z)−1Φ(z0).

Theorem 5.2. In cases (i) and (ii)

Θ(z) = I2 +
(

bc(z)
bc(z0)

− 1
)

uu∗Jc

u∗Jcu
, u =

(
1
σ∗

0

)
, (5.11)
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in case (iii)

Θ(z) =
(

bc(z)
bc(z0)

)k

I2 +
q1(z)

(1− zz∗1)2k
uu∗Jc, u =

(
1
σ∗

0

)
, (5.12)

where

q1(z) =
1

bc(z0)k
q(z)− q(z0)

(z0 − z1)2k
(z − z1)k(1− zz∗1)k

is a polynomial of degree ≤ 2k having the properties q1(z0) = 0 and

bc(z0)kq1(z) + bc(z0)∗kz2kq1 (1/z∗)∗ = 0, (5.13)

and, finally, in case (iv)

Θ(z) =

⎛⎜⎝1 0

0
bc(z)
bc(z0)

⎞⎟⎠ = I2 +
(

bc(z)
bc(z0)

− 1
)

uu∗Jc

u∗Jcu
, u =

(
1
0

)
. (5.14)

The proof of the theorem is straightforward. Property (5.13) of the polyno-
mial q1(z) follows from (5.6). Note that in the cases (i), (ii), and (iii) in Theorem
5.2, we have

u∗Jcu = 1− |σ0|2,
which is positive, negative, and = 0, respectively. In the latter case we have that
if a and b are complex numbers with a �= 0, then(

aI2 + buu∗Jc

)−1 =
1
a
I2 −

b

a2
uu∗Jc

and this equality can be useful in proving formula (5.12). In case (iv) we have
u∗Jcu = −1 and note that the formula for Θ(z) is the same as in cases (i) and
(ii), but with a different 2× 1 vector u. The connection between Θ(z) and s(z) in
the next theorem follows from Theorem 1.1 with X(z) etc. defined by (1.11):

X(z) =
(
1 −s(z)

)
, a(z) = 1, b(z) = z, J = Jc,

and hence from Theorem 3.10.

Theorem 5.3. The four matrix functions Θ(z) in Theorem 5.2 can be chosen ac-
cording to (3.24) as

Θ(z) = I2 − (1− zz∗0)C(I − zA)−1G−1(I − z0A)−∗C∗Jc,

with in cases (i) and (ii)

C =
(

1
σ∗

0

)
, A = z∗1 , G =

1− |σ0|2
1− |z1|2

,

in case (iii), where σ1 = σ2 = · · · = σk−1 = 0 and σk �= 0,

C =

(
1 0 · · · 0 0 · · · 0

σ∗
0 0 · · · 0 σ∗

k · · · σ∗
2k−1

)
, A = z∗1I2k + S2k,
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S2k being the 2k × 2k shift matrix

S2k =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ ,

and G = Γ2k the 2k × 2k principal minor of the Pick matrix Γ in (4.10), and
finally, in case (iv)

C =
(

1
0

)
, A = z∗1 , G =

−1
1− |z1|2

.

The proof of this theorem can be found in [9]. In cases (i), (ii), and (iii) G
is the smallest invertible submatrix of the Pick matrix Γ, see Theorem 4.4 and
formula (4.13). Clearly, the matrix functions Θ(z) in Theorems 5.2 and 5.3 are
normalized elements in the class Uz1

c .

5.2. The basic interpolation problem

The basic interpolation problem for the class Sz1
κ in its simplest form can be for-

mulated as follows:

Problem 5.4. Given σ0 ∈ C and an integer κ ≥ 0. Determine all functions s(z) ∈
Sz1

κ with s(z1) = σ0.

However, in this paper we seek the solution of this problem by means of
the generalized Schur transformation of Subsection 5.1. Therefore it is natural to
formulate it in a more complicated form in the cases (ii) and (iii) of Subsection 5.1.

In case (i), that is, if |σ0| < 1, a formula for the set of all solutions s(z) ∈ Sz1

of Problem 5.4 can be given, see Theorem 5.5 below. If |σ0| ≥ 1 more information
can be (or has to be) prescribed in order to get a compact solution formula. For
example, in the case |σ0| > 1 also an integer k ≥ 1, and in the case |σ0| = 1
additionally the following first 2k − 1 Taylor coefficients of the solution s(z) with
k−1 among them being zero and another nonnegative integer q can be prescribed.
Therefore sometimes we shall speak of an interpolation problem with augmented
data. In the following we always assume that the solution s(z) ∈ Sz1 has the Taylor
expansion (4.1). We start with the simplest case.

Case (i): |σ0| < 1.
For every integer κ ≥ 0 the Problem 5.4 has infinitely many solutions s(z) ∈ Sz1

κ

as the following theorem shows.

Theorem 5.5. If |σ0| < 1 and κ is a nonnegative integer, then the formula

s(z) =
bc(z)s̃(z) + σ0

bc(z)σ∗
0 s̃(z) + 1

(5.15)
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gives a one-to-one correspondence between all solutions s(z) ∈ Sz1
κ of Problem 5.4

and all parameters s̃(z) ∈ Sz1
κ .

If s(z) and s̃(z) are related by (5.15), from the relation

s(z)− σ0 =

(
1− |σ0|2

)
bc(z)s̃(z)

bc(z)σ∗
0 s̃(z) + 1

it follows that the function s(z) − σ0 has a zero of order k at z = z1 if and only
if s̃(z) has a zero of order k − 1 at z = z1. From this and the fact, that for any
integer k ≥ 1 we have

s̃(z) ∈ Sz1
κ ⇐⇒ bc(z)ks̃(z) ∈ Sz1

κ ,

it follows that the formula

s(z) =
bc(z)ks̃(z) + σ0

bc(z)kσ∗
0 s̃(z) + 1

gives a one-to-one correspondence between all solutions s(z) ∈ Sz1
κ for which σ1 =

σ2 = · · · = σk−1 = 0, σk �= 0, and all parameters s̃(z) ∈ Sz1
κ with s̃(z1) �= 0.

Case (ii): |σ0| > 1.
There are no solutions to Problem 5.4 in S0, since the functions in this class are
bounded by 1. The following theorem shows that for each κ ≥ 1 there are infinitely
many solutions s(z) ∈ Sz1

κ . If s(z) is one of them then s(z)−σ0 has a zero of order
k ≥ 1 at z = z1 and it can be shown that k ≤ κ. To get a compact solution formula
it is natural to consider k as an additional parameter.

Theorem 5.6. If |σ0| > 1, then for each integer k with 1 ≤ k ≤ κ, the formula

s(z) =
σ0s̃(z) + bc(z)k

s̃(z) + σ∗
0bc(z)k

(5.16)

gives a one-to-one correspondence between all solutions s(z) ∈ Sz1
κ of Problem 5.4

with σ1 = σ2 = · · · = σk−1 = 0 and σk �= 0 and all parameters s̃(z) ∈ Sz1
κ−k with

s̃(z1) �= 0.

Case (iii): |σ0| = 1.
By the maximum modulus principle, the constant function s(z) ≡ σ0 is the only
solution in S0. Before we describe the solutions in the classes Sz1

κ with κ ≥ 1, we
formulate the problem again in full with all the augmented parameters.

Problem 5.7. Given σ0 ∈ C with |σ0| = 1, an integer k with 1 ≤ k ≤ κ, and
numbers s0, s1, . . . , sk−1 ∈ C with s0 �= 0. Determine all functions s(z) ∈ Sz1

κ with
s(z1) = σ0, σ1 = s0 if k = 1, and s(z1) = σ0, σ1 = · · · = σk−1 = 0, σk+j = sj , j =
0, 1, . . . , k − 1, if k > 1.

To describe the solutions to this problem we need some notation, compare
with case (iii) of the definition of the Schur transformation in Subsection 5.1. We
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associate with any k complex numbers s0 �= 0, s1, . . . , sk−1 the polynomial

q(z) = q(z; s0, s1, . . . , sk−1)

= c0 + c1(z − z1) + · · ·+ ck−1(z − z1)k−1

−
(
c∗k−1z

k+1(1− zz∗1)k−1 + c∗k−2z
k+2(1 − zz∗1)

k−2 + · · ·+ c∗0z
2k
)

of degree 2k, where the coefficients c0, c1, . . . , ck−1 are determined by the formula

c0s� + · · ·+ c�s0 = σ0

(
k

�

)
(−z∗1)�

(
1− |z1|2

)k−�
, � = 0, 1, . . . , k − 1. (5.17)

Theorem 5.8. If |σ0| = 1, for all integers κ and k with 1 ≤ k ≤ κ and any choice
of complex numbers s0 �= 0, s1, . . . , sk−1, the formula

s(z) =

(
q(z) + (z − z1)k(1− zz∗1)

k
)
s̃(z) − σ0q(z)

σ∗
0q(z)s̃(z) −

(
q(z)− (z − z1)k(1− zz∗1)k

) (5.18)

with q(z) = q(z; s0, s1, . . . , sk−1) gives a one-to-one correspondence between all
solutions s(z) ∈ Sz1

κ of Problem 5.7 and all parameters s̃(z) ∈ Sκ−k with s̃(z1) �= σ0

if s̃(z) ∈ Sz1
κ−k.

If s(z) is a given by (5.18), then

s(z)− σ0 =
(z − z1)k(1− zz∗1)k(s̃(z)− σ0)

σ∗
0q(z)s̃(z) −

(
q(z)− (z − z1)k(1 − zz∗1)k

) ,

which shows that k is the order of the zero of s(z)− σ0 at z = z1 and hence

σ∗
0q(z; s1, . . . , sk1)(s(z)− σ0)− (z − z1)k(1− zz∗1)k

=
(z − z1)k(1− zz∗1)k(s(z)− σ0)

s̃(z)− σ0
= O

(
(z − z1)2k

)
, z → z1.

By comparing this relation with (5.8), we find that

q(z; s0, . . . , sk−1) = q(z; σk, . . . , σ2k−1)

and hence, on account of (5.7) and (5.17), that σk+j = sj , j = 0, . . . , k − 1, that
is, s(z) is a solution. If the parameter s̃(z) is holomorphic at z1 and s̃(z1) �= σ0,
then σ2k satisfies an inequality, because of the inequality (5.10). If s̃(z) has a pole
of order q ≥ 1, then q ≤ κ− k and the coefficients σ2k, σ2k+1, . . . , σ2k+q−1 of s(z)
are determined by s0, s1, . . . , sk−1, and σ2k+q satisfies an inequality.

Detailed proofs of the three theorems above can be found in [10]. The connec-
tion that exists between the basic interpolation problem on the one hand and cases
(i), (ii), and (iii) of the Schur transformation on the other hand can be summed
up as follows. Assume s(z) belongs to Sz1 and is not identically equal to a uni-
modular constant, then it is a solution of a basic interpolation problem with its
Taylor coefficients σj as data and hence can be written in the form (5.15), (5.16),
or (5.18) depending on |σ0| < 1, > 1, or = 1. The parameter s̃(z) in these formulas
is the Schur transform of s(z) in the cases (i), (ii) with k = 1 and (iii). Indeed, the
parametrization formulas (5.15), (5.16), and (5.18) are simply the inverses of the
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formulas in the cases (i), (ii) with k = 1, and (iii) of the definition of the Schur
transformation. In case (ii) with k > 1, s̃(z)/bc(z)k−1 is the Schur transform of
s(z) and hence s̃(z) is the k-fold composite Schur transform of s(z).

In the next theorem we rewrite the parametrization formulas as linear frac-
tional transformations in terms of the function Θ(z) described in Theorem 5.2.

Theorem 5.9. The parametrization formulas (5.15), (5.16), and (5.18) can be writ-
ten in the form

s(z) = TΨ(z)(s̃(z)),
where in case of formula (5.15) : Ψ(z) = Θ(z)U in which Θ(z) is given by (5.11)
and U is the Jc-unitary constant

U =
1√

1− |σ0|2

(
bc(z0) σ0

bc(z0)σ∗
0 1

)
;

in case of formula (5.16) : Ψ(z) = Θ(z)U Θ′(z)k−1 V in which Θ(z) and Θ′(z) are
given by (5.11) and (5.14), respectively, and U and V are the Jc-unitary constants

U =
1√

|σ0|2 − 1

(
σ0 bc(z0)

1 bc(z0)σ∗
0

)
, V =

(
1 0

0 bc(z0)k−1

)
;

and, finally, in case of formula (5.18) : Ψ(z) = Θ(z)U in which Θ(z) is given by
(5.12) and U is the Jc-unitary constant

U = bc(z0)kI2 +
q(z0)

(1− z0z∗1)2k
uu∗Jc, u =

(
1
σ∗

0

)
.

5.3. Factorization in the class Uz1
c

Recall that, with z1 ∈ D, Uz1
c stands for the class of those rational 2 × 2 matrix

functions which are Jc-unitary on T and which have a unique pole at 1/z∗1 . This
class is closed under taking products, and by Theorem 3.13, products are auto-
matically minimal. In the following theorem we describe the elementary factors
of this class and the factorization of an arbitrary element of Uz1

c into elementary
factors. To this end, in this subsection we fix a point z0 ∈ T in which the ma-
trix functions will be normalized, see Subsection 3.4. Recall that bc(z) denotes the
Blaschke factor

bc(z) =
z − z1

1− zz∗1
.

Theorem 5.10. (i) A rational matrix function Θ(z) ∈ Uz1
c , which is normalized by

Θ(z0) = I2 for some z0 ∈ T, is elementary if and only if it is of the form

Θ(z) = I2 +
(

bc(z)
bc(z0)

− 1
)

uu∗Jc

u∗Jcu

for 2× 1 vector u with u∗Jcu �= 0, or of the form

Θ(z) =
(

bc(z)
bc(z0)

)k

I2 +
q1(z)

(1− zz∗1)2k
uu∗Jc,
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where k ≥ 1, u is a Jc-neutral nonzero 2× 1 vector, and q1(z) is a polynomial of
degree ≤ 2k with the properties q1(z0) = 0 and

bc(z0)kq1(z) + bc(z0)∗kz2kq1 (1/z∗)∗ = 0.

(ii) Every Θ(z) ∈ Uz1
c can be written in a unique way as

Θ(z) =
(

bc(z)
bc(z0)

)n

Θ1(z) · · ·Θm(z)U, (5.19)

where n, m are nonnegative integers, the Θj(z), j = 1, 2, . . . , m, are elementary
factors in Uz1

c , normalized by Θj(z0) = I2, and U = Θ(z0) is a Jc-unitary constant.

The proof of this theorem, which can be found in [9, Theorem 5.4], is based
on Theorems 5.3 for part (i) and on Theorem 3.15 for part (ii). If Θ(z) is ele-
mentary and has one of the forms given in part (i) of the theorem and U is a
Jc-unitary constant, then U Θ(z)U∗ is elementary and has the same form with u
replaced by Uu.

We now outline how the factorization (5.19) of a matrix function Θ(z) ∈ Uz1
c

can be obtained using the Schur algorithm. For further details and proofs we refer
to [9, Section 6].

(a) First we normalize Θ(z) by writing Θ(z) = Θ(z)Θ(z0)−1Θ(z0). Then we take
out a scalar factor

(
bc(z)/bc(z0)

)n from Θ(z)Θ(z0)−1 so that the remaining factor
is not the zero matrix at z1. Finally we split off a factor of the form⎛⎜⎝1 0

0
bc(z)
bc(z0)

⎞⎟⎠
r

to get the factorization

Θ(z) =
( bc(z)

bc(z0)

)n

⎛⎜⎝1 0

0
bc(z)
bc(z0)

⎞⎟⎠
r

Ψ(z)Θ(z0) (5.20)

with Ψ(z) ∈ Uz1
c having the properties Ψ(z0) = I2, Ψ(z1) �= 0, and, if

Ψ(z) =

(
a(z) b(z)

c(z) d(z)

)
,

then |c(z1)| + |d(z1)| �= 0. If Ψ(z) is constant, then (5.20) with Ψ(z) = I2 is the
desired factorization.

(b) Now assume that Ψ(z) is not constant: deg Ψ > 0. Choose a number τ ∈ T
such that

(b1) c(z1)τ + d(z1) �= 0 and

(b2) the function s(z) =
a(z)τ + b(z)
c(z)τ + d(z)

is not a constant.
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Condition (b1) implies that s(z) is holomorphic at z1. Since |c(z1)| + |d(z1)| �= 0,
there is at most one τ ∈ T for which (b1) does not hold. We claim that there are
at most two unimodular values of τ for which condition (b2) does not hold. To
see this assume that there are three different points τ1, τ2, τ3 ∈ T such that s(z) is
constant for τ = τ1, τ2, τ3. Then, since Ψ(z0) = I2, we have

a(z)τj + b(z)
c(z)τj + d(z)

≡ τj , j = 1, 2, 3,

that is, the quadratic equation c(z)τ2+(d(z)−a(z))τ−b(z) ≡ 0 has three different
solutions. It follows that c(z) ≡ b(z) ≡ 0 and a(z) ≡ d(z), hence

a(z)2 = d(z)2 = detΨ(z).

Since, by Theorem 3.12, for some unimodular complex number c

detΨ(z) = c bc(z)degΨ

and, by assumption, deg Ψ > 0 we see that Ψ(z1) = 0 which is in contradiction
with one of the properties of Ψ(z). This proves the claim. We conclude that s(z)
has the properties (b1) and (b2) for all but three values of τ ∈ T.

Since Ψ(z) ∈ Uz1
c , the function s(z) belongs to the class Sz1 . It is not identi-

cally equal to a unimodular constant, so we can apply the Schur algorithm:

s0(z) = s(z), s1(z) = TΨ1(z)−1(s0(z)), s2(z) = TΨ2(z)−1(s1(z)), . . . ,

sq(z) = TΨq(z)−1(sq−1(z))

where the Ψj(z)’s are as in Theorem 5.9 and, hence, apart from constant Jc-unitary
factors, elementary factors or products of elementary factors. The algorithm stops,
because after finitely many, say q, iterations the function sq(z) is a unimodular
constant. Moreover, it can be shown that

Ψ(z) = Ψ1(z)Ψ2(z) · · ·Ψq(z)V, (5.21)

where V is a Jc-unitary constant.

(c) Via Steps (a) and (b) we have obtained a factorization of Θ(z) of the form

Θ(z) = Ω1(z)Ω2(z) · · ·Ωm(z)V Θ(z0),

in which each of the factors Ωj(z) is elementary but not necessarily normalized.
The desired normalized factorization can now be obtained by the formulas

Θ1(z) = Ω1(z)Ω1(z0)−1,

Θ2(z) = Ω1(z0)Ω2(z)Ω2(z0)−1Ω1(z0)−1,

Θ3(z) = Ω1(z0)Ω2(z0)Ω3(z)Ω3(z0)−1Ω2(z0)−1Ω1(z0)−1

etc., ending with Ωm(z0)−1 · · ·Ω1(z0)−1V = I2.
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The basic idea why the above procedure works is that, by Theorem 1.2,(
1 −s

)
P(Ψ) = P(s)

=
(
1 −s

)
P(Ψ1)⊕ (a1 − c1s)P(s1)

...

=
(
1 −s

) (
P(Ψ1)⊕Ψ1P(Ψ2)

)
⊕ (a1 − c1s)(a2 − c2s1)P(s2)

=
(
1 −s

) (
P(Ψ1)⊕Ψ1P(Ψ2)⊕Ψ1Ψ2P(Ψ3)⊕ · · ·

)
=
(
1 −s

)
P(Ψ1Ψ2 · · ·Ψq),

where

Ψj(z) =

(
aj(z) bj(z)

cj(z) dj(z)

)
, j = 1, 2, . . . .

Hence P(Ψ) = P(Ψ1Ψ2 · · ·Ψq) and this implies (5.21).

5.4. Realization

The realizations of functions s(z) ∈ Sz1 which we consider in this section are given
by formula (2.18):

s(z) = γ + bc(z)
〈
(1− bc(z)T )−1u, v

〉
, bc(z) =

z − z1

1− zz∗1
; (5.22)

here γ is a complex number: γ = s(z1), T is a bounded operator in some Pontryagin
space (P , 〈 · , · 〉), u and v are elements from P . With the entries of (5.22) we form
the operator matrix (2.19)

V =

(
T u

〈 · , v〉 γ

)
:
(
P
C

)
→

(
P
C

)
.

In the rest of this section we are interested in the effect of the Schur transformation
on the realizations, that is, we describe the realizations V̂ of the Schur transform
ŝ(z) of s(z) or the realizations Ṽ of the composite Schur transform s̃(z) by means
of the realizations V of the given s(z). The composite Schur transform is defined
in Subsection 5.1. By definition it is holomorphic at z1, in particular the 1-fold
composite Schur transform of s(z) is defined if ŝ(z) is holomorphic at z1 and then
it is equal to ŝ(z).

We consider only the closely outerconnected coisometric case and formulate
the results related to the cases (i), (ii), and (iii) of the definition of the Schur
transformation as separate theorems. For proofs of these theorems and of the
theorems for the closely innerconnected isometric and the closely connected unitary
cases, see [7], [8], [11], [125], and [126]. Recall that if s(z) ∈ Sz1 , we denote its
Taylor expansion around z1 by (4.1):

s(z) =
∞∑

i=0

σi(z − z1)i.
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Theorem 5.11. Assume s(z) ∈ Sz1 with |σ0| < 1 and let ŝ(z) be the Schur transform
of s(z). If (5.22) is the closely outerconnected coisometric realization of s(z), then

(i) span {v} is a 1-dimensional positive subspace of P, so that the space

P̂ = P � span {v}
and the orthogonal projection P in P onto P̂ are well defined, and

(ii) with

T̂ = PTP, û =
1√

1− |γ|2
Pu,

v̂ =
1√

1− |γ|2
PT ∗v, γ̂ =

〈u, v〉
1− |γ|2

the formula
ŝ(z) = γ̂ + bc(z)

〈
(1− bc(z)T̂ )−1û, v̂

〉
is the closely outerconnected coisometric realization of ŝ(z).

Moreover, ind−(P̂) = ind−(P).

Theorem 5.12. Assume s(z) ∈ Sz1 with |σ0| > 1, denote by k the smallest integer
≥ 1 such that σk �= 0, and let s̃(z) be the k-fold composite Schur transform of s(z).
If (5.22) is the closely outerconnected coisometric realization of s(z), then

(i) span
{
v, T ∗v, . . . , T ∗(k−1)v

}
is a k-dimensional negative subspace of P, so

that the space

P̃ = P � span
{
v, T ∗v, . . . , T ∗(k−1)v

}
and the orthogonal projection P in P onto P̃ are well defined, and

(ii) with

T̃ = PTP −
〈
· , PT ∗kv

〉
σk

Pu, ũ =

√
|γ|2 − 1
σk

Pu,

ṽ =

√
|γ|2 − 1
σ∗

k

PT ∗kv, γ̂ =
1− |γ|2

σk

the formula
s̃(z) = γ̃ + bc(z)

〈
(1− bc(z)T̃ )−1ũ, ṽ

〉
is the closely outerconnected coisometric realization of ŝ(z).

Moreover, ind−(P̃) = ind−(P)− k.

The complex number t2k+q in the next theorem is the nonzero coefficient in
the expansion (5.9); if q = 0, then t2k is given by (5.10).

Theorem 5.13. Assume s(z) ∈ Sz1 with |σ0| = 1, denote by k the smallest integer
≥ 1 such that σk �= 0 and let s̃(z) be the q + 1-fold composite Schur transform of
s(z), where q is the order of the pole of the Schur transform of s(z). If (2.18) is
the closely outerconnected coisometric realization of s(z), then
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(i) the space span
{
v, T ∗v, . . . , T ∗(2k+q−1)v

}
is a (2k+q)-dimensional Pontryagin

subspace of P with negative index equal to k + q, so that the space

P̃ = P � span
{
v, T ∗v, . . . , T ∗(2k+q−1)v

}
and the orthogonal projection P in P onto P̃ are well defined, and

(ii) with

T̃ = PTP +
1

σkt2k+q

〈
· , PT ∗(2k+q)v

〉
Pu, ũ =

1
t2k+q

P2k+qu,

ṽ =
1

t∗2k+q

PT ∗(2k+q)v, γ̃ =
σk

t2k+q

the formula
s̃(z) = γ̃ + bc(z)

〈
(1− bc(z)T̃ )−1ũ, ṽ

〉
is the closely outerconnected coisometric realization of s̃(z).

Moreover, ind−(P̃) = ind−(P)− k − q. If q = 0, then (i) and (ii) hold with q = 0
and γ̃ replaced by

γ̃ = σ0 −
σk

t2k
.

Theorem 5.1 follows from the last statements in the previous theorems. These
theorems can also be used to give a geometric proof of the following result, see
[7, Section 9]. It first appeared in [42, Lemma 3.4.5] with an analytic proof and
implies that after finitely many steps the Schur algorithm applied to s(z) ∈ S only
yields classical Schur functions.

Theorem 5.14. Let s(z) be a generalized Schur function which is not a unimodular
constant and set

s0(z) = s(z), sj(z) = ŝj−1(z), j = 1, 2, . . . .

Then there is an index j0 such that sj(z) ∈ S0 for all integers j ≥ j0.

5.5. Additional remarks and references

It is well known that there is one-to-one correspondence between the class of Schur
functions s(z) and the set of sequences of Schur parameters (ρj)j ≥ 0 defined via
the Schur algorithm centered at z = 0 applied to s(z) by the formulas

s0(z) = s(z), ρ0 = s0(0)

and for j = 0, 1, . . . , by (1.2):

sj+1(z) = ŝj(z) =
1
z

sj(z)− sj(0)
1− sj(z)sj(0)∗

, ρj+1 = sj+1(0),

see for example [82, Section 9]. This has been generalized to generalized Schur
functions and sequences of augmented Schur parameters in [72].
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The Schur algorithm is also related to the study of inverse problems, see [87],
[52], and [51], and to the theory of discrete first order systems of the form

Xn+1(z) =

(
1 −ρn

−ρ∗n 1

)(
z 0
0 1

)
Xn(z),

see [2], [27], and [28]. All these works should have counterparts in the indefinite
settings; we leave this question to a forthcoming publication.

A real algebraic integer θ > 1 is called a Pisot–Vijayaraghavan number if
all its conjugates are in the open unit disk (note that the definition is for an
algebraic integer, and so in the minimal polynomial equation which defines θ and its
conjugates the coefficient of the highest power of the indeterminate is equal to 1). If
at least one of the conjugates of θ lies on the unit circle, θ is called a Salem number.
These numbers were studied first by Ch. Pisot, R. Salem and J. Dufresnoy1; they
have various important properties which play a role, for instance, in the study of
uniqueness sets for trigonometric series, see [109], [110], [112], and [111]. After the
paper [77] J. Dufresnoy and Ch. Pisot introduced in [78] new methods, and, in
particular, relations with meromorphic functions and generalized Schur functions.

6. Generalized Schur functions: z1 ∈ T

6.1. The Schur transformation

The Schur transformation centered at the point z1 ∈ T will be defined for the
functions from the class Sz1;2p, where p is an integer ≥ 1. First we introduce some
notation and recall some facts along the way.

Assume s(z) belongs to Sz1;2p with asymptotic expansion (2.16):

s(z) = τ0 +
2p−1∑
i=1

τj(z − z1)i + O
(
(z − z1)2p

)
, z→̂z1,

where the coefficients τj satisfy the conditions (1)–(3) of Subsection 2.3. Denote
by Γp the Hermitian p× p Pick matrix associated with the kernel Ks(z, w) at z1,
see Theorem 4.5. Let k be the smallest integer ≥ 1 such that τk �= 0. Then k ≤ p
and k = k0(Γp), that is, k is the smallest integer j ≥ 1 for which the j×j principal
submatrix Γj := (Γp)j of Γp is invertible, and the Hermitian k × k matrix Γk has
the form (4.16). Whereas the Schur transformation with an interior point z1 ∈ D
in the cases (i): Γ1 > 0, (ii) Γ1 < 0, and (iii) Γ1 = 0 had different forms, in the
case z1 ∈ T (and for Nevanlinna functions in the case z1 = ∞, see Subsection 8.1),
the transformation formula can be written in the same form in all three cases.

We define the vector function

R(z) =
(

1
1− zz∗1

z

(1− zz∗1)2
. . .

zk−1

(1 − zz∗1)k

)
,

1They were first discovered by A. Thue and G. Hardy, see [42, Preface].



66 D. Alpay, A. Dijksma and H. Langer

fix some normalization point z0 ∈ T, z0 �= z1, and introduce the polynomial p(z) by

p(z) = (1− zz∗1)k R(z)Γ−1
k R(z0)∗.

It has the properties
deg p(z) ≤ k − 1, p(z1) �= 0,

and
p(z)− z0(−z∗1)kzk−1p(1/z∗)∗ = 0.

The asymptotic formula

τ0
(1− zz∗1)k

(1− zz∗0)p(z)
= −

2k−1∑
i=k

τi(z − z1)i + O
(
(z − z1)2k

)
, z→̂z1,

shown in [18, Lemma 3.1], is the analog of (5.4). Now the Schur transform ŝ(z) of
s(z) is defined by the formula

ŝ(z) =

(
(1− zz∗1)k + (1− zz∗0)p(z)

)
s(z) − τ0(1 − zz∗0)p(z)

τ∗
0 (1 − zz∗0)p(z)s(z) +

(
(1− zz∗1)k − (1− zz∗0)p(z)

) . (6.1)

Note that the numerator and the denominator both tend to 0 when z→̂z1. The
denominator cannot be identically equal to 0. Indeed, if it would be then

s(z) = τ0

(
1− (1− zz∗1)k

(1 − zz∗0)p(z)

)
and hence s(z) would have a pole at z0 in contradiction with (2.15). In the par-
ticular case k = 1 we have that Γ1 = γ00 = τ∗

0 τ1z1, see (4.17), is a nonzero real
number and the polynomial p(z) is a constant:

p(z) =
1

τ∗
0 τ1z1(1− z∗0z1)

.

Recall that the number κ−(Γk) of negative eigenvalues of the Hermitian matrix
Γk is given by (4.18).

Theorem 6.1. Assume s(z) ∈ Sz1;2p
κ is not equal to a unimodular constant and let

k be the smallest integer ≥ 1 such that τk �= 0. Then κ−(Γk) ≤ κ and for the Schur
transform ŝ(z) from (6.1) it holds ŝ(z) ∈ Sκ̂ with

κ̂ = κ− κ−(Γk).

This theorem follows from Theorem 6.3 and the relation (6.5) in the next
subsection. Formula (6.1) for the Schur transformation can be written as the linear
fractional transformation

ŝ(z) = TΦ(z)(s(z))
with

Φ(z) =
1

(1− zz∗1)k

(
(1− zz∗1)k + (1− zz∗0)p(z) τ0(1− zz∗0)p(z)

τ∗
0 (1− zz∗0)p(z) (1− zz∗1)k − (1− zz∗0)p(z)

)

= I2 +
(1− zz∗0)p(z)
(1− zz∗1)k

uu∗Jc, u =
(

τ∗
0

1

)
, Jc =

(
1 0
0 −1

)
.
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Hence the inverse Schur transformation of (6.1) is given by

s(z) = TΘ(z)(ŝ(z)),

where

Θ(z) = Φ(z)−1 = I2 −
(1− zz∗0)p(z)
(1− zz∗1)k

uu∗Jc, u =
(

τ∗
0

1

)
.

The connection between Θ(z) and s(z) follows from Theorem 1.1 with z1 ∈ T
and X(z) etc. given by (1.11), and Theorem 3.10. This implies that Θ(z) can be
written in the form (3.24):

Θ(z) = I2 − (1 − zz∗0)C(I − zA)−1G−1(I − z0A)−∗C∗Jc

with

C =

(
1 0 · · · 0

σ∗
0 0 · · · 0

)
, A = z∗1Ik + Sk, G = Γk. (6.2)

It follows that Θ(z) is normalized and belongs to Uz1
c .

6.2. The basic boundary interpolation problem

The basic boundary interpolation problem for generalized Schur functions can be
formulated as follows.

Problem 6.2. Given z1 ∈ T, an integer k ≥ 1, and complex numbers τ0, τk,
τk+1, . . . , τ2k−1 with |τ0| = 1, τk �= 0 and such that the k × k matrix Γk in (4.16)
is Hermitian. Determine all functions s(z) ∈ S such that

s(z) = τ0 +
2k−1∑
i=k

τi(z − z1)i + O((z − z1)2k), z→̂z1.

If s(z) is a solution of the problem, then it belongs to some class Sz1;2k
κ where

κ is an integer ≥ κ−(Γk), see (4.19). With the data of the problem and a fixed
point z0 ∈ T \ {z1}, we define the polynomial p(z) as in Subsection 6.1.

Theorem 6.3. The linear fractional transformation

s(z) =

(
(1− zz∗1)k − (1 − zz0)p(z)

)
s̃(z) + τ0(1− zz∗0)

−τ∗
0 (1− zz∗0)p(z)s̃(z) + (1− zz∗1)k + (1− zz∗0)p(z)

(6.3)

establishes a one-to-one correspondence between all solutions s(z) ∈ Sz1;2k
κ of Prob-

lem 6.2 and all parameters s̃(z) ∈ Sκ̃ with the property

lim inf
z→̂z1

|s̃(z)− τ0| > 0, (6.4)

where
κ̃ = κ− κ−(Γk).
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For a proof of this theorem and a generalization of it to multipoint boundary
interpolation, see [18, Theorem 3.2]. In the particular case that the parameter
s̃(z) is rational the inequality (6.4) is equivalent to the fact that the denominator
in (6.3):

−τ∗
0 (1− zz∗0)p(z)(s̃(z)− τ0) + (1− zz∗1)k

is not zero at z = z1.
Note that the linear fractional transformation (6.3) is the inverse of the Schur

transformation and
s̃(z) = TΘ(z)−1(s(z)) = ŝ(z). (6.5)

6.3. Factorization in the class Uz1
c

We repeat that Uz1
c with z1 ∈ T is the class of all rational 2× 2 matrix functions

which are Jc-unitary on T \ {z1} and have a unique pole in z1. Since Uz1
c is closed

under taking inverses, products of elements from this class need not be minimal. To
describe the elementary factors of Uz1

c we fix a normalization point z0 in T \ {z1}.

Theorem 6.4.
(i) A normalized matrix function Θ(z) ∈ Uz1

c is elementary if and only if it is of
the form

Θ(z) = I2 −
(1− zz∗0)p(z)
(1 − zz∗1)k

uu∗Jc, Jc =
(

1 0
0 −1

)
,

where k is an integer ≥ 1, u is a Jc-neutral nonzero 2×1 vector : u∗Jcu = 0,
and p(z) is a polynomial of degree ≤ k − 1 satisfying p(z1) �= 0 and

p(z) = z0(−z∗1)kzk−1p(1/z∗)∗.

(ii) Every Θ(z) ∈ Uz1
c admits a unique minimal factorization

Θ(z) = Θ1(z) · · ·Θn(z)U,

in which each factor Θj(z) is a normalized elementary matrix function from
Uz1

c and U = Θ(z0) is a Jc-unitary constant.

A proof of this theorem is given in [18, Theorem 5.2]. Part (ii) follows from
Theorem 3.17. Part (i) is related to (3.24) with C, A and G as in (6.2). It shows
that the function Θ(z) associated with the Schur transformation and the basic
interpolation problem in the previous subsections is a normalized elementary factor
in Uz1

c . In the positive case the factors of degree 1 are called Brune sections or
Potapov–Blaschke sections of the third kind, see [67].

We sketch how to obtain the factorization of an arbitrary Θ(z) ∈ Uz1
c via the

Schur algorithm. A proof that the procedure works can be found in [18, Section 6].

(a) We first normalize Θ(z) and write

Θ(z) = Ψ(z)Θ(z0), Ψ(z) = Θ(z)Θ(z0)−1 =

(
a(z) b(z)

c(z) d(z)

)
.
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Assume that Ψ(z) is not a Jc-unitary constant, otherwise the procedure stops
right here. We denote by oz1(g) the order of the pole of the function g(z) at z1.
We choose τ ∈ T such that

(a1) c(0)τ + d(0) �= 0,

(a2) oz1(aτ + b) = max {oz1(a), oz1(b)},
(a3) oz1(cτ + d) = max {oz1(c), oz1(d)}, and

(a4) the function s(z) =
a(z)τ + b(z)
c(z)τ + d(z)

is not identically equal to a constant.

Each of the first three conditions holds for all but at most one value of τ . The
fourth condition holds for all except two values. The argument here is similar to
the one given in Subsection 5.3; now one uses that detΨ(z) = 1, see Theorem 3.12.
So all in all there are at most five forbidden values for τ ∈ T. Since Ψ(z) ∈ Uz1

c ,
s(z) is a rational generalized Schur function and therefore it is holomorphic on T
and satisfies |s(z)| = 1 for all z ∈ T, that is, s(z) is the quotient of two Blaschke
factors. It follows that the kernel Ks(z, w) has an asymptotic expansion (4.15) for
any integer p ≥ 1. Since it is symmetric in the sense that Ks(z, w)∗ = Ks(w, z),
the corresponding Pick matrices Γ of all sizes are Hermitian. Thus we can apply
the Schur algorithm to s(z) and continue as in Steps (b) and (c) in Subsection 5.3.

6.4. Additional remarks and references

The analogs of the realization theorems as in, for instance, Subsection 5.5 have
yet to be worked out. The results of the present section can be found in greater
details in [18]. For boundary interpolation in the setting of Schur functions we
mention the book [36] and the paper [114]. The case of boundary interpolation for
generalized Schur functions was studied in [35].

A nonconstant function s(z) ∈ S0 has in z1 ∈ T a Carathéodory derivative,
if the limits

τ0 = lim
z→̂z1

s(z) with |τ0| = 1, τ1 = lim
z→̂z1

s(z)− τ0

z − z1
(6.6)

exist, and then
lim

z→̂z1
s′(z) = τ1.

The relation (6.6) is equivalent to the fact that the limit

lim
z→̂z1

1− |s(z)|
1− |z|

exists and is finite and positive; in this case it equals

Γ1 = τ∗
0 τ1z1,

see [113, p. 48]. Thus Theorem 6.3 is a generalization of the interpolation results
in [36] and [114] to an indefinite setting.
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7. Generalized Nevanlinna functions: z1 ∈ C+

7.1. The Schur transformation

Throughout this section the 2× 2 matrix J� and the Blaschke factor b�(z) related
to the real line and z1 ∈ C+ are defined by

J� =
(

0 1
−1 0

)
, b�(z) =

z − z1

z − z∗1
.

The Taylor expansion of a function n(z) ∈ Nz1 will be written as in (4.20):

n(z) =
∞∑

j=0

νj(z − z1)j , and we set µ =
ν0 − ν∗

0

z1 − z∗1
.

If n(z) ∈ N is not identically equal to a real constant, we define its Schur transform
n̂(z) as follows.

(i) Assume n(z) ∈ Nz1 and Im ν0 �= 0. Then n̂(z) = ∞ if n(z) is linear and
otherwise

n̂(z) =
β(z)n(z)− |ν0|2

n(z)− α(z)
, (7.1)

where
α(z) = ν0 + µ(z − z1), β(z) = ν∗

0 − µ(z − z1).

(ii) Assume n(z) ∈ Nz1 and Im ν0 = 0. Then, since, by assumption, n(z) �≡ ν0,
the function

1
n(z)− ν0

has a poles at z1 and z∗1 . Since n(z)∗ = n(z∗), the orders of the poles are
the same and equal to the smallest integer k ≥ 1 such that νk �= 0. Denote
by Hz1(z) and Hz∗

1
(z) the principal parts of the Laurent expansion of the

function 1/(n(z)− ν0) at z1 and z∗1 . Then Hz∗
1
(z) = Hz1(z∗)∗ and

1
n(z)− ν0

= Hz1(z) + Hz∗
1
(z) + a(z) =

p(z)
(z − z1)k(z − z∗1)k

+ a(z) (7.2)

with a function a(z) which is holomorphic at z1 and a polynomial p(z) which
is real: p(z)∗ = p(z∗), of degree ≤ 2k − 1, and such that p(z1) �= 0. If the
function 1/(n(z)− ν0) only has poles at z1 and z∗1 and vanishes at ∞, that
is, if (7.2) holds with a(z) ≡ 0, then n̂(z) = ∞. If (7.2) holds with a(z) �≡ 0,
then

n̂(z) =
β(z)n(z)− ν2

0

n(z)− α(z)
, (7.3)

where

α(z) = ν0 +
(z − z1)k(z − z∗1)k

p(z)
, β(z) = ν0 −

(z − z1)k(z − z∗1)k

p(z)
.



The Transformation of Issai Schur 71

(iii) If n(z) has a pole at z1 then

n̂(z) = n(z)− hz1(z)− hz∗
1
(z), (7.4)

where hz1(z) and hz∗
1
(z) = hz1(z∗)∗ are the principal parts of the Laurent

expansion of n(z) at the points z1 and z∗1 respectively.
If in case (i) n(z) is linear, that is, if n(z) = a + bz, z ∈ C, with a, b ∈ R, then it
follows that n(z) = ν0 + µ(z − z1) = α(z). In this case the right-hand side of (7.1)
is not defined, and the definition of the Schur transformation has been split into
two parts.

The real polynomial p(z) of degree ≤ 2k− 1 in case (ii) is determined by the
asymptotic relation

p(z)(n(z)− ν0) = (z − z1)k(z − z∗1)k + O
(
(z − z1)2k

)
, z → z1, (7.5)

and can be expressed in terms of the k Taylor coefficients νk, . . . , ν2k−1 of n(z) in
the following way: If written in the form

p(z) =
k−1∑
j=0

aj(z − z1)j +
2k−1∑
j=k

bj(z − z1)j (7.6)

then the coefficients a0, . . . , ak−1 are determined by the relations

ajνk + aj−1νk+1 + · · ·+ a0νk+j =
(

k

j

)
(z1 − z∗1)k−j , j = 0, 1, . . . , k − 1. (7.7)

The other coefficients bj , j = k, k + 1, . . . , 2k − 1, are uniquely determined by the
fact that p(z) is real: p(z) = p(z∗)∗. Indeed, this equality implies

2k−1∑
j=k

bj(z − z1)j =
k−1∑
j=0

a∗
j (z − z∗1)j −

k−1∑
j=0

aj(z − z1)j +
2k−1∑
j=k

b∗j (z − z∗1)j .

By taking the ith derivatives of the functions on both sides, i = 0, 1, . . . , k−1, and
then evaluating them at z∗1 we get a system of k equations for the k unknowns bj ,
j = k, k + 1, . . . , 2k − 1:
2k−1∑
j=k

bj
j!

(j − i)!
(z∗1 − z1)j−i = i!a∗

i −
k−1∑
j=i

aj
j!

(j − i)!
(z∗1 − z1)j−i, i = 0, 1, . . . , k− 1.

Since the coefficient matrix of this system is invertible, these unknowns are uniquely
determined.

Theorem 7.1. Let n(z) ∈ N and assume it is not identically equal to a real constant.
For its Schur transformation the following holds in the cases (i), (ii), and (iii) and
with the integer k in (ii) as above:

(i) n(z) ∈ Nz1
κ =⇒ n̂(z) ∈ Nκ̂ with κ̂ = κ if Im ν0 > 0 and κ̂ = κ − 1 if

Im ν0 < 0.
(ii) n(z) ∈ Nz1

κ =⇒ 1 ≤ k ≤ κ, n̂(z) ∈ Nκ−k.
(iii) n(z) ∈ Nκ and n(z) has a pole at z1 of order q ≥ 1 =⇒ q ≤ κ and n̂(z) ∈

Nz1
κ−q.
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This theorem is proved in [16, Theorem 7.3]; the proof uses the decomposition
in Theorem 1.2 applied to X(z) etc. as in (1.12). A proof can also be given by
means of the realization results in Subsection 7.4.

The Schur transform n̂(z) of n(z) may have a pole at z1 in cases (i) and (ii);
evidently, in case (iii) it is holomorphic at z1. In case (i) the Schur transform is
holomorphic at z1 if and only if ν1 = µ and it has a pole of order q ≥ if and only if

ν1 = µ, ν2 = · · · = νq = 0, νq+1 �= 0.

In case (ii) n̂(z) is holomorphic at z1 if and only if

ak = bk, (7.8)

where ak is the number in (7.7) with j = k and bk is the coefficient of p(z) in (7.6);
otherwise it has a pole and the order of the pole is equal to the order of the zero
at z1 of n(z)− α(z) minus 2k. If in these cases n̂(z) has a pole, then by applying
the Schur transformation case (iii) to n̂(z), we obtain a function which we shall
call the composite Schur transform of n(z). By definition it is holomorphic at z1.

The formulas (7.1), (7.3), and (7.4) are of the form

n̂(z) = TΦ(z)(n(z))

with in case (i)

Φ(z) =
1

z − z1

(
β(z) −|ν0|2

1 −α(z)

)
,

in case (ii)

Φ(z) =
p(z)

b�(z)k(z − z1)k(z − z∗1)k

(
β(z) −ν2

0

1 −α(z)

)

=
1

b�(z)k

(
I2 −

p(z)
(z − z1)k(z − z∗1)k

uu∗J�

)
, u =

(
ν0

1

)
,

and in case (iii)

Φ(z) =
1

b�(z)q

(
1 −hz1(z)− hz∗

1
(z)

0 1

)

=
1

b�(z)q

(
I2 − (hz1(z) + hz∗

1
(z))uu∗J�)

)
, u =

(
1
0

)
,

where q is the order of the pole of n(z) at z1. As in the case for Schur functions,
the interest often lies in the normalized inverse transformation, and therefore we
set

Θ(z) = Φ(z)−1Φ(∞).

Theorem 7.2. In case (i)

Θ(z) = I2 +
(
b�(z)− 1

)uu∗J�

u∗J�u
, u =

(
ν∗
0

1

)
,
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in case (ii),

Θ(z) = b�(z)kI2 +
p(z)

(z − z∗1)2k
uu∗J�, u =

(
ν0

1

)
, (7.9)

and in case (iii)

Θ(z) = b�(z)qI2 + b�(z)q
(
hz1(z) + hz∗

1
(z)

)
uu∗J�, u =

(
1
0

)
, (7.10)

where q is the order of the pole at z1 of n(z) and hz1(z) and hz∗
1
(z) = hz1(z∗)∗

are the principal parts of the Laurent expansion of n(z) at the points z1 and z∗1 ,
respectively.

The first statement in the following theorem is a consequence of Theorem 3.2.

Theorem 7.3. In all three cases Θ(z) can be written in the form (3.9) :

Θ(z) = I2 − C(zI −A)−1G−1C∗J�. (7.11)

The matrices A, C, and G are given by the following formulas.
In case (i) :

C =
(

ν∗
0

1

)
, A = z∗1 , G = µ =

ν0 − ν∗
0

z1 − z∗1
.

In case (ii) :

C =

(
ν∗
0 0 · · · 0 ν∗

k · · · ν∗
2k−1

1 0 · · · 0 0 · · · 0

)
, A = z∗1I2k + S2k, G = Γ2k,

where k is the smallest integer ≥ 1 such that νk �= 0 and Γ2k is the 2k×2k principal
submatrix of the Pick matrix Γ of n(z) at z1.
In case (iii) :

C =

(
−1 0 · · · 0 0 · · · 0
0 0 · · · 0 ρ∗q · · · ρ∗2q−1

)
, A = z∗1I2q + S2q, G = Γ′

2q,

where, if
hz1(z) =

ν−q

(z − z1)q
+

ν−q+1

(z − z1)q−1
+ · · ·+ ν−1

z − z1

is the principal part of the Laurent expansion of n(z) at z1, the complex numbers
ρq, . . . , ρ2q−1 are given by the relation⎛⎜⎜⎜⎜⎜⎝

ρq 0 · · · 0 0
ρq+1 ρq . . . 0 0

...
...

. . .
...

...
ρ2q−2 ρ2q−3 · · · ρq 0
ρ2q−1 ρ2q−2 · · · ρq+1 ρq

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ν−q 0 · · · 0 0

ν−q+1 ν−q . . . 0 0
...

...
. . .

...
...

ν−2 ν−3 · · · ν−q 0
ν−1 ν−2 · · · ν−q+1 ν−q

⎞⎟⎟⎟⎟⎟⎠
−1

(7.12)
and Γ′

2q is obtained from formula (4.24) by replacing k by q and ∆ by the matrix
on the left-hand side of (7.12).
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In the cases (i) and (ii) the matrix G in the theorem is the smallest invertible
principal submatrix of Γ, see Theorem 4.9. The proof of the theorem for these two
cases can be found in [16, (5.5) and Theorem 6.3]. We derive the formula (7.11)
for case (iii) from the one of case (ii) as follows. From (7.10) we obtain

−J�Θ(z)J� = b�(z)qI2 +
r(z)

(z − z∗1)2k
vv∗J�, v =

(
0
1

)
, (7.13)

where r(z) is the polynomial

r(z) = (z − z1)q(z − z∗1)q
(
hz1(z) + hz1(z

∗)∗
)

= (z − z∗1)q
(
ν−q + ν−q+1(z − z1) + · · ·+ ν−1(z − z1)q−1

)
+(z − z1)q

(
ν∗
−q + ν∗

−q+1(z − z∗1) + · · ·+ ν∗
−1(z − z∗1)q−1

)
= (z − z∗1)q

(
ν−q + ν−q+1(z − z1) + · · ·+ ν−1(z − z1)q−1

)
+ O

(
(z − z1)q

)
,

as z → z1. The right-hand side of (7.13) has the same form as the right-hand side
of (7.9) with ν0 = 0 and polynomial p(z) satisfying (7.5). The analog of (7.5) for
the polynomial r(z) reads as

r(z)
(
ρq + ρq+1(z − z1) + · · ·+ ρ2q−1(z − z1)q−1

)
= (z − z∗1)q + O

(
(z − z1)q

)
,

as z → z1. Equating coefficients we obtain the relation (7.12), and the formula for
−J�Θ(z)J� now follows from case (ii):

−J�Θ(z)J� = I2 − C′(zI −A)−1 (G′)−1 (C′)∗ J�

with

C′ =

(
0 0 · · · 0 ρ∗q · · · ρ∗2q−1

1 0 · · · 0 0 · · · 0

)
and A and G′ = Γ′

2q as in the theorem. The asserted formula for Θ(z) now follows
by setting C = −J�C

′.

Evidently, from the forms of the functions Θ(z) in Theorems 7.2 and 7.3 we
see that they belong to the class Uz1

� and are normalized by Θ(∞) = I2.

7.2. The basic interpolation problem

The basic interpolation problem at z = z1 ∈ C+ for generalized Nevanlinna func-
tions reads as follows.

Problem 7.4. Given ν0 ∈ C and an integer κ ≥ 0. Determine all n(z) ∈ Nz1
κ with

n(z1) = ν0.

To describe the solutions of this basic interpolation problem we consider two
cases. As in Subsection 5.2 in the second case we reformulate the problem in
adaptation to our method with augmented parameters.

Case (i): Im ν0 �= 0. If κ = 0 and Im ν0 < 0, then the problem does not have a
solution, because Im n(z1) ≥ 0 for all functions n(z) ∈ N0. If Im ν0 > 0, then for
each κ ≥ 0 and if Im ν0 < 0 then for each κ ≥ 1 there are infinitely many solutions
as the following theorem shows.
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Theorem 7.5. If Im ν0 �= 0, the formula

n(z) =
α(z)ñ(z)− |ν0|2

ñ(z)− β(z)
(7.14)

with
α(z) = ν0 + µ(z − z1), β(z) = ν∗

0 − µ(z − z1), µ =
ν0 − ν∗

0

z1 − z∗1
,

gives a one-to-one correspondence between all solutions n(z) ∈ Nz1
κ of Problem 7.4

and all parameters ñ(z) ∈ Nκ̃ which, if holomorphic at z1, satisfy the inequality
ñ(z1) �= ν∗

0 , where

κ̃ =

{
κ, Im ν0 > 0,

κ− 1, Im ν0 < 0.

Note that for all parameters ñ(z) ∈ N which have a pole at z1 the solution
satisfies

n′(z1) =
ν0 − ν∗

0

z1 − z∗1
.

This follows from

n(z1)− ν0 = (z − z1)
ν0 − ν∗

0

z1 − z∗1

Ñ(z)− ν0

Ñ(z)− β(z)
.

Case (ii): Im ν0 = 0. By the maximum modulus principle there is a unique solution
in the class N0, namely n(z) ≡ ν0. There are infinitely many solutions in Nz1

κ for
κ ≥ 1. To describe them we reformulate the problem with augmented parameters.

Problem 7.6. Given ν0 ∈ C with Im ν0 = 0, integers κ and k with 1 ≤ k ≤ κ, and
numbers s0, s1, . . . , sk−1 ∈ C with s0 �= 0. Determine all functions n(z) ∈ Nz1

κ with
n(z1) = ν0, and νk+j = sj , j = 0, 1, . . . , k − 1, and, if k > 1, ν1 = · · · = νk−1 = 0.

With the data of the problem we associate the polynomial p(z) = p(z, s0, . . . , sk−1)
of degree ≤ 2k − 1 with the properties:
(1) The coefficients aj = p(j)(z1)/j!, j = 0, . . . , k − 1 satisfy the relations

ajsk + aj−1sk+1 + · · ·+ a0sk+j =
(

k

j

)
(z1 − z∗1)k−j , j = 0, 1, . . . , k − 1.

(2) p(z) is real, that is, p(z) = p(z∗)∗.
That p(z) is uniquely determined follows from considerations as in Subsection 7.1.

Theorem 7.7. If Im ν0 = 0, for each integer k with 1 ≤ k ≤ κ and any choice of
the complex numbers s0 �= 0, s1, . . . , sk−1 the formula

n(z) =
α(z)ñ(z)− ν2

0

ñ(z)− β(z)
with

α(z) = ν0 +
(z − z1)k(z − z∗1)k

p(z)
, β(z) = ν0 −

(z − z1)k(z − z∗1)k

p(z)
gives a one-to-one correspondence between all solutions n(z) ∈ Nz1

κ of Problem 7.6
and all parameters ñ(z) ∈ Nκ−k such that ñ(z1) �= ν0 if ñ(z) is holomorphic at z1.
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The parametrization formulas are the inverse of the Schur transformation,
that is, the parameter ñ(z) corresponding to the solution n(z) is the Schur trans-
form of n(z): ñ(z) = n̂(z). This can be seen from the following theorem. Recall
that

b�(z) =
z − z1

z − z∗1
.

Theorem 7.8. The parametrization formula can be written as the linear fractional
transformation

n(z) = TΘ(z)(ñ(z)),

where in case (i)

Θ(z) = I2 + (b�(z)− 1)
uu∗J�

u∗J�u
, u =

(
ν∗
0

1

)
.

and in case (ii)

Θ(z) =
(

b�(z)kI2 −
p(z)

(z − z∗1)2k
uu∗J�

)
, u =

(
ν0

1

)
.

7.3. Factorization in the class Uz1
�

Recall that the class Uz1
� consists of all rational J�-unitary 2× 2 matrix functions,

which have a pole only in 1/z∗1 , and that Θ(z) ∈ Uz1
� is called normalized if

Θ(∞) = I2. By Theorem 3.13, products in the class Uz1
� are always minimal. The

following result is from [16, Theorems 6.2 and 6.4]. Part (i) is closely connected
with Theorem 7.3 and part (ii) with Theorem 3.15.

Theorem 7.9. (i) A normalized matrix function Θ(z) in Uz1
� is elementary if and

only if it has either of the following two forms :

Θ(z) = I2 + (b�(z)− 1)
uu∗J�

u∗J�u
,

where u is a 2× 1 vector such that u∗J�u �= 0, or

Θ(z) = b�(z)kI2 −
p(z)

(z − z∗1)2k
uu∗J� ,

where u is a J�-neutral nonzero 2× 1 vector : u∗J�u = 0, k is an integer ≥ 1, and
p(z) is a real polynomial of degree ≤ 2k − 1 with p(z1) �= 0.

(ii) Every Θ(z) ∈ Uz1
� has the unique minimal factorization :

Θ(z) = b�(z)nΘ1(z) · · ·Θm(z)U,

where n is the largest nonnegative integer such that b�(z)−nΘ(z) ∈ Uz1
� , Θj(z),

j = 1, . . . , m, is a normalized elementary factor from Uz1
� , and U = Θ(∞) is a

J�-unitary constant.

The theorem implies that the coefficient matrices Θ(z) of the inverse Schur
transformation for generalized Nevanlinna functions are elementary factors in Uz1

� .



The Transformation of Issai Schur 77

We describe how this fact can be used in a procedure to obtain the unique factor-
ization of an element Θ(z) in Uz1

� into elementary factors. Proofs of the various
statements can be found in [16, Section 8].

(a) First we normalize and extract a power b�(z)n of Θ(z): Θ(z)=b�(z)nΨ(z)Θ(∞),
so that Ψ(z) ∈ Uz∗

1
� , Ψ(z1) �= 0 and Ψ(∞) = I2. If Ψ(z) is a constant matrix stop

the procedure. In this case the factorization is simply

Θ(z) = b�(z)nΘ(∞).

So we assume from now that Ψ(z) is not a constant matrix. We write

Ψ(z) =

(
a(z) b(z)

c(z) d(z)

)
.

(b) Choose a real number τ �= 0 such that the function

a(z)τ + b(z)
c(z)τ + d(z)

(7.15)

is not a constant, and such that

(b1) c(z1)τ + d(z1) �= 0,

or, if (b1) is not possible (which is the case, for example, if c(z1) = 0 and d(z1) = 0),
then such that

(b2) a(z1)τ + b(z1) �= 0.

Except for at most three values of τ these conditions can be satisfied: The same
argument as in Subsection 5.3, shows that there are at most two real numbers τ
for which the function in (7.15) is a constant. The choice (b1) or (b2) is possible,
because for at most one τ ∈ R we have that

c(z1)τ + d(z1) = 0, a(z1)τ + b(z1) = 0.

Indeed assume on the contrary that both a(z1)τ + b(z1) and c(z1)τ + d(z1) vanish
for at least two different real numbers τ1 and τ2. Then

Ψ(z1)
(

τ1 τ2

1 1

)
=
(

0 0
0 0

)
,

which implies Ψ(z1) = 0, contradicting the hypothesis.

(c) If (b1) holds, form the function

n(z) = TΨ(z)(τ) =
a(z)τ + b(z)
c(z)τ + d(z)

.

Since Ψ ∈ Uz1
� , n(z) is a rational generalized Nevanlinna function. Moreover, it is

holomorphic at z1 and not identically equal to a real constant. From

lim
z→∞n(z) = τ

and the definition of the Schur transformation, it follows that also

lim
z→∞ n̂(z) = τ.
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Thus n̂(z) is a rational generalized Schur function which is either a real constant or
has a Schur transform. Hence the Schur algorithm can be applied to n(z) and like
in Subsection 5.3 it leads to a factorization of Ψ(z) and to the desired factorization
of Θ(z).

(d) If (b2) holds form the function

n(z) = TJ�Ψ(z)(τ) = −c(z)τ + d(z)
a(z)τ + b(z)

.

As in (c) the Schur algorithm can be applied to n(z) and yields the factorization,
say

J�Ψ(z) = Ψ1(z)Ψ2(z) · · ·Ψq(z)J�,

where the factors Ψj(z) are elementary and normalized. Then

Ψ(z) = (−J�Ψ1(z)J�)(−J�Ψ2(z)J�) · · · (−J�Ψq(z)J�),

is the factorization of Ψ(z) into normalized elementary factors. Substituting this
in the formula for Θ(z) we obtain the desired factorization of Θ(z).

7.4. Realization

We assume that n(z) belongs to Nz1 with Taylor expansion (4.20):

n(z) =
∞∑

i=0

ν1(z − z1)i

and that it has the minimal self-adjoint realization

n(z) = n(z1)∗ + (z − z∗1)
〈
(1 + (z − z0)(A − z)−1)u, u

〉
P , (7.16)

The Taylor coefficients of n(z) can be written as ν0 = n(z1),

νi =
〈
(A− z1)−i+1(I + (z1 − z∗1)(A− z1)−1)u, u

〉
P , i = 1, 2, . . . , (7.17)

and, moreover, 〈
u, u

〉
P = µ

(
= (ν0 − ν∗

0 )/(z1 − z∗1)
)
. (7.18)

We study the effect of the Schur transformation on this realization and ex-
press the minimal self-adjoint realization of the Schur transform n̂(z) or the com-
posite Schur transform ñ(z) of n(z) in terms of the realization (7.16). In the fol-
lowing theorems we may take q = 0: Then by saying n̂(z) has a pole at z1 of order
0 we mean that n̂(z) is holomorphic at z1, and the composite Schur transform is
the Schur transform itself.

Case (i): Im ν0 �= 0. We recall that the Schur transform in part (i) of the definition
is holomorphic at z1 if and only if µ �= ν1 and that it has a pole of order q if and only
if q is the smallest nonnegative integer such that νq+1 �= 0 (hence ν1 = · · · = νq = 0
if q > 0).
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Theorem 7.10. Assume that n(z) ∈ Nz1 has the Taylor expansion (4.20) at z1

with Im ν0 �= 0 and that n̂(z) is defined and has a pole of order q at z1. Then the
minimal self-adjoint realization of the composite Schur transform ñ(z) of n(z) is
given by

ñ(z) = ñ(z1)∗ + (z − z∗1)
〈(

I + (z − z1)(Ã− z)−1
)
ũ, ũ

〉
P̃

with
P̃ = P � L, Ã = P̃A

∣∣
P̃ , ũ = ν̃(q) P̃ (A− z1)−q−1u,

where L is the nondegenerate subspace

L = span
{
u, (A− z1)−1u, . . . , (A− z1)−qu, (A− z∗1)−1u, . . . , (A− z∗1)−qu

}
of P, P̃ is the orthogonal projection in P onto P̃, and

ν̃(q) =
〈u, u〉P〈

(A− z1)−q−1u, u
〉
P

=

⎧⎪⎪⎨⎪⎪⎩
ν0 − ν∗

0

ν1 − µ
, q = 0,

ν0 − ν∗
0

νq+1
, q > 0.

(7.19)

The space P̃ is a Pontryagin space with negative index

ind−(P) =
{

ind−(P)− q, Im ν0 > 0,
ind−(P)− q − 1, Im ν0 < 0.

The theorem is a combination of Corollaries 4.3 and 6.4 in [17]. Note that if
q = 0, then L is just a 1-dimensional space spanned by u and then also

n̂(z1) = ñ(z1) =
ν∗
0ν1 − ν0µ

ν1 − µ
.

This and the second equality in (7.19) readily follows from the formulas (7.17) and
(7.18).

Case (ii): Im ν0 = 0. We assume that n̂(z) exists according to part (ii) of the
definition. We recall that k, the smallest integer ≥ 1 such that νk �= 0, exists
because we assume that n(z) is not a real constant. We also recall that n̂(z) has a
pole if and only if ak = bk, see (7.8). In this case the order of the pole is q if and
only if n(z) has the asymptotic expansion

n(z)− α(z) = cq(z − z1)2k+q + O
(
(z − z1)2k+q+1

)
, cq �= 0.

This q is finite, because n(z) �≡ α(z).

Theorem 7.11. Assume that n(z) ∈ Nz1 has Taylor expansion (4.20) at z1 with
Im ν0 = 0 and let k ≥ 1 be the smallest integer such that νk �= 0. Assume also
that n̂(z) is defined and has a pole of order q at z1. Then the minimal self-adjoint
realization of the composite Schur transform ñ(z) centered at z1 is given by

ñ(z) = ñ(z1)∗ + (z − z∗1)
〈(

I + (z − z1)(Ã− z)−1
)
ũ, ũ

〉
P̃ ,

with
P̃ = P � L, Ã = P̃A

∣∣
P̃ , ũ = ν̃(q)P̃ (A− z1)−k−qu
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where L is the nondegenerate subspace

L = span
{
u, (A− z1)−1u, . . . , (A− z1)−k−q+1u, (A− z∗1)−1u, . . . , (A− z∗1)−k−qu

}
of P, P̃ is the orthogonal projection in P onto P̃, and

ν̃(q) =

⎧⎪⎪⎨⎪⎪⎩
(z1 − z∗1)k

νk(bk − ak)
, q = 0,

νk

cq
, q > 0.

(7.20)

Moreover, P̃ is a Pontryagin space with negative index

ind−(P̃) = ind−(P)− k − q. (7.21)

This theorem is a combination of Corollaries 5.3 and 6.6 of [17]. If q = 0,
then

n̂(z1) = ñ(z1) = ν0 −
(z1 − z∗1)k

(bk − ak)
,

otherwise

ñ(z1) = lim
z→z1

(
n̂(z)− ĥz1(z)

)
− ĥz∗

1
(z1),

where ĥz1(z) and ĥz∗
1
(z) = ĥz1(z∗)∗ are the principal parts of the Laurent expan-

sions of n̂(z) at z1 and z∗1 .

The analog of Theorem 5.14 reads as follows, see [17, Theorem 7.1].

Theorem 7.12. If n(z) ∈ N is not a real constant and the Schur algorithm applied
to n(z) yields the functions

n0(z) = n(z), nj(z) = n̂j−1(z), j = 1, 2, . . . ,

then there exists an index j0 such that nj(z) ∈ N0 for all integers j ≥ j0.

The basic idea of the geometric proof of this theorem in [17], in terms of the
minimal self-adjoint realization (7.16) of n(z), is that (i) for each integer j ≥ 0 the
linear space

Hj = span
{
u, (A− z1)−1u, (A− z1)−2u, . . . , (A− z1)−ju

}
is a subspace of the orthogonal complement of the state space in the minimal
self-adjoint realization of nj+1(z) and (ii) that for sufficiently large j the space Hj

contains a negative subspace of dimension sq−(n). Since this negative subspace
then is maximal negative, it follows that for sufficiently large j the state space in
the realization of nj+1(z) is a Hilbert space, which means that nj+1(z) is classical
Nevanlinna function.
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7.5. Additional remarks and references

It is well known that the class of Schur functions can be transformed into the class
of Nevanlinna functions by applying the Möbius transformation to the dependent
and independent variables. The question arises if this idea can be carried over to the
Schur transform: Do items (i)–(iv) in the definition of the Schur transformation
of Schur functions in Subsection 5.1 via the Möbius transformation correspond
in some way to items (i)–(iii) in the definition of the Schur transformation of
Nevanlinna functions in Subsection 7.1? We did not pursue this question, partly
because the more complicated formulas in Subsection 5.1 do not seem to transform
easily to the ones in Subsection 7.1, and partly because this was not the way
we arrived at the definition of the Schur transform for Nevanlinna functions. We
obtained this definition by constructing suitable subspaces in L(n) in the same way
as was done in the space P(s) and as explained in the three steps in Subsection 1.4.
The basic idea is that the matrix function Θ(z) which minimizes the dimension
of the space P(Θ) in the decomposition in Theorem 1.2 with X(z) etc. given by
(1.11) and (1.12) is the matrix function that appears in the description of the
inverse of the Schur transformation.

That in the positive case it is possible to use the Möbius transformation
to make a reduction to the case of Schur function was remarked already by P.I.
Richards in 1948. He considered functions ϕ(s) which are analytic in Re s > 0 and
such that

Re ϕ(s) ≥ 0 for Re s > 0. (7.22)

This case is of special importance in network theory. We reformulate P.I. Richard’s
result in the setting of Nevanlinna functions.

Theorem 7.13. Let n(z) a Nevanlinna function and assume that n(ik) is purely
imaginary for k > 0. Then for every k > 0, the function

n̂(z) = i
z n(ik)− ik n(z)
z n(z)− ik n(ik)

(7.23)

is a Nevanlinna function. If n(z) is rational, then

deg n = 1 + deg n̂.

It appears that equation (7.23) is just the Schur transformation after two
changes of variables. This is mentioned, without proof, in the paper [123]. We give
a proof for completeness.

Proof. Define ζ and functions s(ζ) and ŝ(ζ) via:

z = i
1− ζ

1 + ζ
, n(z) = i

1− s(ζ)
1 + s(ζ)

, n̂(z) = i
1− ŝ(ζ)
1 + ŝ(ζ)

.

Then ζ ∈ D if and only if z ∈ C+. Equation (7.23) is equivalent to:

i
1− ŝ(ζ)
1 + ŝ(ζ)

=
z n(ik)− ik n(z)
z n(z)− ik n(ik)

,
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that is, with a =
1− k

1 + k
,

ŝ(ζ) =
z + ik
z − ik

n(z)− n(ik)
n(z) + n(ik)

=
i
1− ζ

1 + ζ
+ ik

i
1− ζ

1 + ζ
− ik

·
i
1− s(ζ)
1 + s(ζ)

− i
1− s(a)
1 + s(a)

i
1− s(ζ)
1 + s(ζ)

+ i
1− s(a)
1 + s(a)

=
(1− ζ) + (1 + ζ)k
(1− ζ)− (1 + ζ)k

s(ζ)− s(a)
1− s(ζ)s(a)

=
1− ζa

ζ − a

s(ζ)− s(a)
1− s(ζ)s(a)

.

By hypothesis, n(ik) is purely imaginary and so s(a) is real. Thus, the last equation
is the Schur transformation centered at the point a. The last claim can be found
in [124, p. 173] and [127, pp. 455, 461–462]. �

Following [124, (7.40)] we rewrite (7.23) as

n(z) = n(ik)
z + k n̂(z)
ik − iz n̂(z)

.

This linear fractional transformation provides a description of all Nevanlinna func-
tions such that n(ik) is preassigned, and is a particular case of the linear fractional
transformation (7.14) with n(ik) = ν0 ∈ iR.

8. Generalized Nevanlinna functions with asymptotic at ∞
8.1. The Schur transformation

The Schur transformation centered at the point ∞ is defined for the generalized
Nevanlinna functions from the class N∞;2p, where p is an integer ≥ 1. We recall
from Subsection 2.4 that a function n(z) ∈ N belongs to N∞;2p if it has an
asymptotic expansion at ∞ of the form

n(z) = −µ0

z
− µ1

z2
− · · · − µ2p−1

z2p
+ O

(
1

z2p+1

)
, z = iy, y ↑ ∞, (8.1)

where
(1) µj ∈ R, j = 0, 1, . . . , 2p− 1, and
(2) at least one of the coefficients µ0, µ1, . . . , µp−1 is not equal to 0.

As remarked in Subsection 2.4, if this holds then there exists a real number µ2p

such that

n(z) = −µ0

z
− µ1

z2
− · · · − µ2p

z2p+1
+ o

(
1

z2p+1

)
, z = iy, y ↑ ∞. (8.2)
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For 0 ≤ m ≤ p + 1 the m×m Hankel matrix Γm is defined by

Γm =

⎛⎜⎜⎜⎝
µ0 µ1 · · · µm−1

µ1 µ2 · · · µm

...
...

...
µm−1 µm · · · µ2m−2

⎞⎟⎟⎟⎠ (8.3)

and we set
γm = det Γm.

By k we denote the smallest integer ≥ 1 such that µk−1 �= 0 and set

εk−1 = sgn µk−1. (8.4)

Then 1 ≤ k ≤ p, γk = (−1)[k/2]µk
k−1, and κ−(Γk) is given by (4.26):

κ−(Γk) =

{
[k/2], εk−1 > 0,

[(k + 1)/2] , εk−1 < 0.

With the polynomial

ek(z) =
1
γk

det

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . µk−1 µk

0 0 . . . µk µk+1

...
...

...
...

µk−1 µk . . . µ2k−2 µ2k−1

1 z . . . zk−1 zk

⎞⎟⎟⎟⎟⎟⎠ (8.5)

we define the Schur transform n̂(z) of the function n(z) ∈ N∞;2p by

n̂(z) = −ek(z)n(z) + µk−1

εk−1n(z)
. (8.6)

Theorem 8.1. If n(z) ∈ N∞;2p
κ has expansion (8.2) and k is the smallest integer

≥ 1 such that µk−1 �= 0, then κ−(Γk) ≤ κ and n̂(z) ∈ Nκ̂ with

κ̂ = κ− κ−(Γk).

This theorem is [65, Theorem 3.2]. If, under the assumptions of Theorem 8.1,
γp+1 �= 0, then n̂(z) has an asymptotic expansion of the form (8.2) with p replaced
by p − k and explicit formulas for the coefficients in this expansion are given in
[65, Lemma 2.4]. If the asymptotic expansion of n̂(z) is such that n̂(z) belongs to
the class N∞;2(k−p) then the Schur transformation can be applied to n̂(z), and so
on, and we speak of the Schur algorithm.

Evidently, the inverse of the transformation (8.6) is given by

n(z) = − µk−1

εk−1n̂(z) + ek(z)
. (8.7)

This is a generalization of the transformation considered in [4, Lemma 3.3.6].
Indeed, if n(z) ∈ N0 has the asymptotic expansion

n(z) = −µ0

z
− µ1

z2
+ o

(
1
z2

)
, z = iy, y ↑ ∞, (8.8)
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and does not vanish identically, then µ0 > 0, hence k = 1, ε0 = 1, and the relation
(8.7) becomes

n(z) = − µ0

n̂(z) + z − µ1

µ0

. (8.9)

In [4, Lemma 3.3.6] it was shown that n̂(z) is again a function of class N0 and
that n̂(z) = o(1), z = iy, y ↑ ∞. If (8.8) holds with the term o(1/z2) replaced
by O(1/z3), that is, if n(z) ∈ N∞;2

0 , then n̂(z) = O(1/z), z = iy, y ↑ ∞. The
relations (8.9) and (8.7) can also be considered as the first step in a continuous
fraction expansion of n(z).

The transformation (8.7) can be written in the form

n(z) = TΦ(z)(n̂(z)), (8.10)

where

Φ(z) =
1√
|µk−1|

(
0 −µk−1

εk−1 ek(z)

)
,

which belongs to U∞
� . It we normalize the matrix function Φ(z) we obtain

Θ(z) = Φ(z)Φ(0)−1,

where Φ(0) is a J�-unitary constant, and the transformation (8.10) becomes

n(z) = TΘ(z)U (n̂(z)), U = Φ(0).

The matrix function Θ(z) also belongs to U∞
� and we have

Θ(z) =

⎛⎝ 1 0
ek(0)− ek(z)

µk−1
1

⎞⎠ = I2 + p(z)uu∗J�

with

p(z) =
1

µk−1

(
ek(z)− ek(0)

)
, u =

(
0
1

)
, J� =

(
0 1
−1 0

)
.

The connection between the given function n(z) and Θ(z) can be explained
by applying the general setting of Subsection 1.4 to X(z) etc. given by (1.12). Then
B(X) = L(n) and by letting z1 →∞ we find that this space contains elements of
the form

f0(z) = n(z), fj(z) = zjn(z) + zj−1µ0 + · · ·+ µj−1, j = 1, . . . , k − 1,

see [15, Lemma 5.2]. If in Steps 2 and 3 in Subsection 1.4 we replace Mk by the
span of the vector functions(

0
1

)
, zj

(
0
1

)
+ zj−1

(
µ0

0

)
+ · · ·+

(
µj−1

0

)
, j = 1, . . . , k − 1,

we obtain a function Θ(z) of the above form and we find that it can be written
according to formula (3.13) as

Θ(z) = I2 − zC(I − zA)−1G−1C∗J�
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with

C =
(

0 µ0 µ1 · · · µk−2

−1 0 0 · · · 0

)
, A = Sk, G = Γk,

where Sk is the k × k principal submatrix of the shift S and Γk, given by (8.3),
is the k × k principal submatrix of the Pick matrix Γ of n(z) at z1 = ∞, see
Subsection 4.4. (The formula for C differs from the one in [15] because in that
paper we consider −J� instead of J� and for X(z) the vector

(
1 n(z)

)
instead of(

1 −n(z)
)
.)

8.2. The basic boundary interpolation problem at ∞
The basic boundary interpolation problem which we consider here corresponds to
the basic boundary interpolation Problem 6.2. It reads as follows.

Problem 8.2. Given an integer k ≥ 1, real numbers µk−1, . . . , µ2k−1 with µk−1 �= 0.
Determine all functions n(z) ∈ N such that

n(z) = −µk−1

zk
− · · · − µ2k−1

z2k
+ O

(
1

z2k+1

)
, z = iy, y ↑ ∞.

With the data of the problem we define the matrix Γk, the number εk−1, and
the polynomial ek(z) by (8.3), (8.4), and (8.5). Evidently, if n(z) is a solution,
then it belongs to the class N∞;2k

κ with κ ≥ κ−(Γk), see the inequality (4.27).

Theorem 8.3. The formula

n(z) = − µk−1

εk−1ñ(z) + ek(z)
(8.11)

gives a bijective correspondence between all solutions n(z) ∈ N∞;2k
κ of Problem 8.2

and all parameters ñ(z) in the class Nκ̃ with ñ(z) = O (1/z), z = iy, y ↑ ∞, where

κ̃ = κ− κ−(Γk).

Proof. If n(z) is a solution, then (8.2) holds with p = k and some real number µ2k

and we may apply [65, Lemma 2.4]. It follows that n(z) can be expressed as the
linear fractional transformation (8.11) with a scalar function ñ(z) which behaves
as O(1/z), z = iy, y ↑ ∞. To show that this function is a generalized Nevanlinna
function we use the relation

Ln(z, w) = n(z)
(
Lek/µk−1(z, w) + Lñ(z, w)

)
n(w)∗, (8.12)

which follows directly from (8.11). The polynomial ek(z)/µk−1 has real coefficients
and hence is a generalized Nevanlinna function. The number of negative squares of
the kernel Lek/µk−1 (z, w) is equal to κ−(Γk) given by (4.26). We assume that n(z)
is a solution and hence it is a generalized Nevanlinna function. From the relation
(8.12) it follows that ñ(z) also is a generalized Nevanlinna function. Since ek(z)
and ñ(z) behave differently near z = ∞, and using well-known results from the
theory of reproducing kernel spaces, see, for instance, [19, Section 1.5], we find
that

L(n) ∼= L(ek/µk−1)⊕ L(ñ),
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that is, the spaces on the left and right are unitarily equivalent. (This can also be
proved using Theorem 1.2 in the present setting.) Hence

κ = κ−(Γk) + κ̃.

As to the converse, assume n(z) is given by (8.11) with parameter ñ(z) from Nκ̃

satisfying ñ(z) = O (1/z), z = iy, y ↑ ∞. Then, since the degree of the polynomial
ek(z) is k,

n(z) +
µk−1

ek(z)
=

|µk−1|ñ(z)
ek(z)

(
εk−1ñ(z) + ek(z)

) = O
(

1
z2k+1

)
, z = iy, y ↑ ∞.

By [15, Lemma 5.2],

µk−1

ek(z)
=

µk−1

zk
+ · · ·+ µ2k−1

z2k
+ O

(
1

z2k+1

)
, z = iy, y ↑ ∞,

and hence n(z) has the asymptotic expansion (8.1). That it is a generalized Nevan-
linna function with κ negative squares follows from (8.12) and arguments similar
to the ones following it. �

8.3. Factorization in the class U∞
�

Recall from Subsection 3.4 that the class U∞
� , which consists of the J�-unitary

2× 2 matrix polynomials, is closed under multiplication and taking inverses. The
latter implies that a product need not be minimal. Nevertheless, by Theorem 3.17,
each element in U∞

� admits a unique minimal factorization. An element Θ(z) of
this class is called normalized if Θ(0) = I2.

Theorem 8.4.

(i) A normalized Θ(z) ∈ U∞
� is elementary if and only if it is of the form

Θ(z) = I2 + p(z)uu∗J, (8.13)

where u is 2 × 1 vector satisfying u∗Ju = 0 and p(z) is a real polynomial
with p(0) = 0.

(ii) Θ(z) admits a unique minimal factorization

Θ(z) = Θ1(z) · · ·Θm(z)U

with normalized elementary factors Θj(z) from U∞
� , j = 1, 2, . . . , m, and the

J�-unitary constant U = Θ(0).

This theorem is proved in [15, Theorem 6.4]. For part (i) see also formula
(3.13). We note that if Θ(z) is of the form (8.13) and p(z) = tkzk + · · ·+ t1z with
tk �= 0, then k = dimP(Θ) and the negative index κ of the Pontryagin space P(Θ)
is given by

κ =

{
[k/2], tk > 0,

[(k + 1)/2] , tk < 0.

We now describe in four constructive steps how the Schur algorithm can be applied
to obtain the factorization of Theorem 8.4(ii). For the details see [15, Section 6].
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Assume Θ(z) belongs to U∞
� and is not equal to a J�-unitary constant.

(a) Determine a J�-unitary constant V0 such that if

Ψ(z) = V0Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
,

then
max (deg a, deg b) < max (deg c, deg d).

The matrix function Ψ(z) also belongs to the class U∞
� . For a proof that such a

V0 exists we refer to [15, Lemma 6.1].

(b) Choose τ ∈ R such that

deg (aτ + b) = max {deg a, deg b}, deg (cτ + d) = max {deg c, deg d},
and consider the function

n(z) =
a(z)τ + b(z)
c(z)τ + d(z)

= TΨ(z)(τ).

If deg c < deg a we can also choose τ = ∞ and

n(z) = a(z)/c(z) = TΨ(z)(∞).

Since Ψ(z) ∈ U∞
� , n(z) is a generalized Nevanlinna function and the kernels

KΨ(z, w) and Ln(z, w) have the same number of negative squares. Evidently, in
both cases n(z) is rational and has the property

limy→∞n(iy) = 0.

This implies that n(z) belongs to N∞;2p for any sufficiently large integer p and
that its Schur transform n̂(z) is well defined and has the same properties, and so
on, in other words, the Schur algorithm can be applied to n(z).

(c) Apply, as in Subsection 5.3, the Schur algorithm to n(z) to obtain the minimal
factorization

Ψ(z) = Ψ1(z)Ψ2(z) · · ·Ψm(z)V1

with normalized factors Ψj(z) and V1 = Ψ(0), and hence

Θ(z) = V −1
0 Ψ1(z)Ψ2(z) · · ·Ψm(z)V1. (8.14)

(d) Normalize the factors in (8.14) to obtain the factorization

Θ(z) = Θ1(z)Θ2(z) · · ·Θm(z)Θ(0)

with normalized elementary factors. This factorization is obtained from (8.14) via
the formulas

Θ1(z) = V −1
0 Ψ1(z)Ψ1(0)−1V0,

Θ2(z) = V −1
0 Ψ1(0)Ψ2(z)Ψ2(0)−1Ψ1(0)−1V0,

Θ3(z) = V −1
0 Ψ1(0)Ψ2(0)Ψ3(z)Ψ3(0)−1Ψ2(0)−1Ψ1(0)−1V0,

and so on.
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In [91] it is shown that the factorization in Theorem 8.4(ii) can also be ob-
tained using purely algebraic tools, without the Schur transformation and the
more geometric considerations in reproducing kernel Pontryagin spaces used in
this paper.

8.4. Realization

With the function n(z) ∈ N∞;2p the following Pontryagin space Π(n) can be
associated. We consider the linear span of the functions rz , z ∈ hol (n), z �= z∗,
defined by

rz(t) =
1

t− z
, t ∈ C.

Equipped with the inner product

〈rz , rζ〉 =
n(z)− n(ζ)∗

z − ζ∗
, z, ζ ∈ hol (n), z �= ζ∗,

this linear span becomes a pre-Pontryagin space, the completion of which is by
definition the space Π(n). It follows from the asymptotic expansion (8.2) of n(z)
that Π(n) contains the functions

tj(t) := tj , j = 0, 1, . . . , p,

and that
〈tj , tk〉 = µj+k, 0 ≤ j, k ≤ p, j + k ≤ 2p , (8.15)

see [94, Satz 1.10]. In Π(n) the operator of multiplication by the independent
variable t can be defined, which is self-adjoint and possibly unbounded; we denote
it by A. Let u ≡ e0(t) := t0(t) ≡ 1, t ∈ C. Then u ∈ dom (Aj) and tj = Aju, j =
0, 1, . . . , p, and the function n(z) admits the representation

n(z) =
〈
(A− z)−1u, u

〉
, z ∈ hol (n).

Now let k (≤ p) be again the smallest positive integer such that µk−1 �= 0. We
introduce the subspace

Hk = span{t0, t1, . . . , tk−1} (8.16)

of Π(n). It is nondegenerate since µk−1 �= 0 and its negative index equals

ind−(Hk) =

{
[k/2], µk−1 > 0,

[(k + 1)/2] , µk−1 < 0.

Denote by Ĥk the orthogonal complement of Hk in Π(n):

Π(n) = Hk ⊕ Ĥk, (8.17)

and let P̂ be the orthogonal projection onto Ĥk in Π(n).

Theorem 8.5. Let n(z) ∈ N∞;2p
κ have the asymptotic expansion (8.2) and let k be

the smallest integer ≥ 1 such that µk−1 �= 0. If

n(z) =
〈
(A− z)−1u, u

〉
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with a densely defined self-adjoint operator A and an element u in the Pontryagin
space Π(n) is a minimal realization of n(z), then a minimal realization of the Schur
transform n̂(z) from (8.6) is

n̂(z) =
〈
(Â− z)−1û, û

〉
, z ∈ ρ(Â),

where Â is the densely defined self-adjoint operator Â = P̂AP̂ in Ĥk and û =
P̂Aku.

Proof. Clearly, the function ek(t) from (8.4) belongs to the space Π(n), and it is
easy to see that it belongs even to Ĥk. We write ek(t) in the form

ek(t) = tk + ηk−1t
k−1 + · · ·+ η1t + η0

with coefficients ηj given by the corresponding submatrices from (8.4). The relation

tk = −
(
ηk−1tk−1 + · · ·+ η1t + η0t0

)
+ ek

gives the decomposition of the element tk ∈ Π(n) according to (8.17). The elements
of the space Hk in the decomposition (8.17) we write as vectors with respect to
the basis t0, t1, . . . , tk−1. If we observe that Atk−1 = tk, the operator A in the
realization of n(z) in Π(n) becomes

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 η0

∣∣ ε0[·, ek]
1 0 · · · 0 η1

∣∣∣ 0
...

...
...

...
∣∣∣ ...

0 0 · · · 1 ηk−1

∣∣∣ 0

0 0 · · · 0 ek(t)
∣∣∣ Â

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Next we find the component ξk−1 of the solution vector x of the equation (A−z)x =
u, that is,

(A− z)

⎛⎜⎜⎜⎜⎜⎝
ξ0

ξ1

...
ξk−1

x̂

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
...
0
0

⎞⎟⎟⎟⎟⎟⎠ .

An easy calculation yields

ξk−1 = − 1

ε0

〈
(Â− z)−1ek, ek

〉
+ ek(z)

,

and we obtain finally〈
(A− z)−1u, u

〉
= ξk−1µk−1 = − µk−1

ε0

〈
(Â− z)−1ek, ek

〉
+ ek(z)

. �
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8.5. Additional remarks and references

The Akhiezer transformation (8.9) is the analog of the classical Schur transforma-
tion in the positive case and is proved, as already mentioned, in [4, Lemma 3.3.6].
The proof that the Schur transform of a Schur function is again a Schur func-
tion can be proved using the maximum modulus principle, whereas the analog for
Nevanlinna functions follows easily from the integral representations of Nevanlinna
functions.

The self-adjoint realization in Subsection 8.4 is more concrete than the re-
alizations considered in the corresponding Subsections 5.4 and 7.4. The approach
here seems simpler, because we could exhibit explicitly elements that belong to
the domain of the self-adjoint operator in the realization. The realizations and
the effect of the Schur transformation on them, exhibited in the Subsections 5.4,
7.4, and 8.4 can also be formulated in terms of backward-shift operators in the
reproducing kernel Pontryagin spaces P(s) and L(n), see, for example, [125], [126],
and [16, Section 8].

In this section the main role was played by Hankel matrices. Such matrices,
but with coefficients in a finite field, appear in a completely different area, namely
in the theory of error correcting codes. A recursive fast algorithm to invert a
Hankel matrix with coefficients in a finite field was developed by E.R. Bekerlamp
and J.L. Massey in the decoding of Bose–Chauduri–Hocquenghem codes, see [43,
chapter 7, §7.4 and §7.5]. Since the above formulas for elementary factors do not
depend on the field and make sense if the field of complex numbers is replaced
by any finite field, there should be connections between the Bekerlamp–Massey
algorithm and the present section.
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in both nondegenerate and degenerate cases, Operator Theory: Adv. Appl. 165,
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[89] I.S. Iohvidov, M.G. Krein, and H. Langer, Introduction to the spectral theory of
operators in spaces with an indefinite metric, Akademie-Verlag, Berlin, 1982.

[90] M. Kaashoek, State space theory of rational matrix functions and applications,
Fields Institute Monographs 3, Amer. Math. Soc., 1996, 235–333.
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[94] M.G. Krein and H. Langer, Über die verallgemeinerten Resolventen und die charak-
teristische Funktion eines isometrischen Operators im Raume Πk, Colloquia Math.
Soc. Janos Bolyai, Tihany (Hungary), 5, Hilbert space operators and operator al-
gebras, North-Holland, Amsterdam, 1972, 353–399.
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[115] Z. Sasvári, The extension problem for positive definite functions. A short historical
survey, Operator Theory: Adv. Appl. 163, Birkhäuser Verlag, Basel, 2006, 365–379.
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