

 University of Groningen

Managing the complexity of variability in software product families
Deelstra, Keimpe Sybren; Sinnema, Marco

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Deelstra, K. S., & Sinnema, M. (2008). Managing the complexity of variability in software product families.
s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-06-2022

https://research.rug.nl/en/publications/41b80709-f6b3-4ae9-8281-067e8501e7ee

189

PART IV. Evolution
The last part of our variability management framework is directed towards
evolution of product families. As we noted in the Introduction to this thesis,
an alternative approach to decreasing application engineering cost is to
make sure there are less mismatches between the variability provided by a
product family and the variability required by the products. This Part
presents the background, contents, and experiences of applying the
COVAMOF Variability Assessment Method (COSVAM). COSVAM is the
first technique for assessing variability with respect to the needs of a set of
product scenarios. The five steps of COSVAM (identify assessment goal,
specify provided variability, specify required variability, evaluate
variability, interpret assessment results) form a structured technique that
can be tuned to address a variety of situations where the question of
whether, how and when to evolve variability is applicable.

191

Chapter 11 Variability Assessment

An important aspect of software variability management is the evolution of
variability in response to changing markets, business needs, and advances
in technology. In Chapter 5, we discussed that the evolution of variability
should make sure it prevents mismatches between variability provided by
the product family, and the variability required by the products. Variability
assessment is a technique that addresses this aspect. This chapter explains
what variability assessment is, and what the issues are in the current
practice.

Based on Section numbers

S. Deelstra, M. Sinnema, J. Nijhuis, J. Bosch, COSVAM: A Technique
for Assessing Software Variability in Software Product Families,
Proceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM 2004), pp. 458-462, September 2004.

None, superseded by
article below

S. Deelstra, M. Sinnema, J. Bosch, Variability Assessment in Software
Product Families, Journal of Information, and Software Technology,
conditionally accepted, 2007

All sections in this
chapter, except the
conclusion. The
conclusion was added
to link to the next
chapter

11.1. Introduction

Before we go into the issues of variability assessment, the first question we need to
answer is: why is variability assessment necessary? To answer this question, we go
back to the work of Lehman on software evolution. He noted that as the world
around us continually changes, the resulting change in purpose and context may
render software products useless. It was therefore that Lehman formulated the
following law on software evolution: “A useful software system must undergo
continual and timely change or it risks losing market share” (Lehman et al., 1997).
This law applies to all products in a product family.

Although variability in the product family architecture and components anticipates
some of the changes in space (different products) and time (different versions of
products), not all future changes can be predicted or included in the product family.
Consequently, once the product family is in place, at some point in the lifecycle,
evolution will force the product family to handle new functionality and thus
previously discarded or unforeseen differences. In the same way that products need
to undergo continual change, variability therefore has to undergo continual and

192

timely change as well, or a product family will risk losing the ability to effectively
exploit the similarities of its members.

Figure 62. Variability assessment. To determine whether, how, and when variability
should evolve, variability assessment evaluates whether the variability in the product
family artifacts, matches the variability in the required functionality and quality.

The key challenge in this context is: “in what way can we determine whether, how,
and when variability should evolve?”. A technique that deals with answering this
question is what we refer to as variability assessment. Such a technique answers the
question above by analyzing the mismatch between (1) the variability in the
product family artifacts and (2) the variability that is demanded as necessary by the
differences in functionality and quality in a set of product scenarios (see Figure
62). We call the first type of variability, provided variability, and the second type,
required variability. We call the mismatch between them a variability mismatch.

That variability assessment is indeed relevant becomes clear from examining five
common activities for software product families in which the ‘whether-how-when’-
question appears:

Determine the ability of the product family to support a new product: The decision
to add a new product to the portfolio depends on how well the new product fits into
the product family scope. This fit depends on to which extent the required
combinations of features in the new product are supported by the provided
variability of the product family.

During product derivation, determine whether mismatches should be implemented
in product specific artifacts or integrated in the product family: As product
families are focused around a reuse infrastructure, changes can be applied product
specifically, or to the reusable product family artifacts. Solving a variability
mismatch by changing the reusable product family artifacts is beneficial if the short
term and potentially more expensive investment in comparison to product specific
adaptation, is outweighed by a decrease in cost of development effort in other
products (e.g. due to a decrease in the number and severity of variability

193

mismatches in the future). Solving a variability mismatch in the product family
furthermore depends on whether it is possible or desirable to apply changes to the
product family artifacts. A solution may, for example, change dependencies in such
a way that dependency values for existing products cannot be met anymore.
Variability assessment in this context therefore involves assessing which
combinations of features of a new product are not supported by the provided
variability, and where potential mismatches need to be solved.

Collecting input data for release planning: During the lifecycle of a product
family, organizations collect characteristics (such as functionality and quality) that
are required and desired for new and existing products. These characteristics are
retrieved from, for example, customers, market analysis and technology
forecasting. The result of this collection is typically a long list of required and
desired characteristics per product. Due to organizational, economical and
technical constraints, however, not all of these characteristics can be implemented
in the next release of the products or reuse infrastructure. Release planning is
therefore concerned with deciding when to release different versions of the
products, including the selection of characteristics offered in specific versions as
well as decisions concerning the inclusion of these characteristics in the reuse
infrastructure. Release planning involves balancing the objectives regarding the
organizational (e.g. staff restrictions), economical (e.g. cost and revenue), and
technical (e.g. technical feasibility of feature combinations) constraints. The
accuracy of the answer to this problem is, amongst others, influenced by the
accuracy of the effort estimates for integrating characteristics product specifically
and in the product family, as well as the accuracy of determining in which
combinations characteristics can be integrated in the product family artifacts.
Variability assessment in this context thus involves identifying mismatches as a
result of a set of new product releases, as well as determining how mismatches
should be solved.

Assess the impact of new features that cross-cut the existing product portfolio.
Some organizations develop a product portfolio that consists of a set of products
that interact with each other (e.g. an organization providing systems at both server-
and client-side). Rather than focusing on adding entire products or product
versions, the focus of variability assessment in this context is on assessing the
impact of adding one or more features that influence multiple products in the
product family.

Determine whether all provided variability is still necessary. Variation points and
variants become obsolete when the need to support different alternatives disappears
during evolution, or when predictions made during proactive evolution turn out to
be incorrect. In Chapter 5, we identified that the existence and lack of removing
obsolete variability was one of the underlying causes of complexity, and had a
detrimental effect on the efficiency of product derivation. The aim of assessment in

194

this context is to identify provided variability that is obsolete with respect to the
variability required by products that have been or will be developed, and to
determine how the product family should respond.

As software product families in industry have been widely adopted and evolve
constantly, organizations that employ product families already perform some form
of variability assessment. In the two sections below, we discuss the issues with
current approaches (both in practice and related work).

11.2. Variability Assessment Issues

Before a new product is derived, for example, a specification of the product
functionality and quality is handed to, typically, software architects. The task of
these architects is to assess how much effort will be associated in delivering the
product with this specific set of functionality and quality. From what we have seen
in several case studies that our group has participated over the years (e.g. as
described in Chapter 3-5, or the Dacolian case described in the Chapter 4), current
approaches that are used to determine whether, when, and how variability should
evolve, are associated to a number of methodological and knowledge issues.

The methodological issues refer to the problems associated to the principles and
procedures of current approaches.

Unstructured: Variability assessment is often done by architects without explicit
methodological guidance. Instead, they employ an informal process based on their
own common sense and experience. These informal processes are typically highly
unpredictable with respect to their outcome and required effort.

Reactive instead of proactive: Assessments are furthermore often only applied in
case of immediate problems or needs. As a consequence, these assessments suffer
from time-pressure and lack of availability of experts; both for the assessment
process, and for applying solutions.

Generalized instead of optimal decisions: A third issue is that, in some cases,
decisions with respect to evolving variability are generalized over a number of
features. In Chapter 4, we presented some extreme forms of generalization we
found in industry. For example, one business unit would apply all necessary
changes product specifically for each release of the product family, while another
business unit would incorporate all necessary changes in the reusable product
family artifacts. Both cases lead to problems. Where in the first case the full reuse
potential of the product family is not utilized (they re-implement similar
functionality in each single product), the second case leads to an unnecessary
increase of complexity.

195

Lack of removing obsolete variability: After a while, the purpose of certain
variation points and variants may disappear. Functionality specific to some
products can become part of the core functionality of all product family members
(Bosch et al., 2001), or perceived alternatives may not be needed after all.
Assessments, however, usually only consider the necessity and feasibility of
including new functionality, but do not evaluate existing variability with respect to
its actual use. The result is an abundance of obsolete variation points and variants.
They lead to a situation in which the complexity of the product family only
increases during evolution, and the predictability and traceability only decreases. In
addition, obsolete variation points result in a situation where engineers start to
forget about the provided variability. During the case studies we described in
Chapter 5, for example, the interviewees indicated the existence of obsolete
parameters from which no one knew what they are for, let alone what the optimal
value was.

Addressing only one layer of abstraction: Most existing assessment techniques
only focus on one layer of abstraction, i.e. either the architecture (e.g. Clements et
al. (2001), Folmer et al. (2004)), or its implementation in code (e.g. Bohner (2001)
and Kung et al. (1994)). However, variability is a concern that crosscuts all layers
of abstraction. In case a detailed list of changes to the product family artifacts (both
architecture and components) is required, this issue therefore drives the need for a
technique that is able to address all these layers in a uniform fashion.

The knowledge issues refer to the problems associated to the information on which
decisions in an assessment are based.

Implicit variability: The last methodological issue (addressing only one layer of
abstraction) suggests using a variability model that relates variability information
across different abstraction layers. In many organizations, however, no complete
and explicit model is available that covers all these layers. As the time and effort
that is available for an assessment is limited, specifying a complete explicit model
is often not an option. Not using a model at all also proofs problematic, however,
as it is difficult to keep an overview of all variation points and their relations (see
Chapter 5).

Neglecting implementation dependencies: Even if particular options for
functionality and quality are independent from a problem space perspective, the
design and implementation of a product family can create additional dependencies
between them. The consequence of dependencies as a result of implementation is
twofold. First, not all combinations of options provided by a product family can be
offered in one product without modification. This means that even if all required
options are provided by the product family, the required combination of options
may not be available. Second, effort estimates for new functionality and quality

196

cannot be considered independent from other changes, as those may also have
implementation dependencies.

Insufficient number of alternative solutions: When a variability mismatch
occurs, several solution strategies may exist to address this mismatch. For example,
the software architect has to decide whether to solve a mismatch product
specifically, in the reuse infrastructure, or not at all. In addition, he or she can
choose from different mechanisms to solve the mismatch. The choice for a
particular solution depends on a trade-off between pros and cons of the potential
solutions. Examples of pros and cons of a solution are: whether it introduces
incompatibilities in the asset base due to new dependencies, whether it imposes the
use of immature or unstable technology, and how it affects the effort associated
with other changes. The issue we address here involves software architects that
only consider a very small number of alternatives, rather than carefully looking for
the optimal solution (Bosch et al., 2001).

These knowledge issues cause assessments to produce non-optimal and inaccurate
results. The consequence is that, during product derivation, unexpected
incompatibilities are identified. Chapter 5 explains that these incompatibilities have
a profound impact on the total effort and time-to-market for the product at hand.

11.3. Related work

Existing techniques have been suggested for variability assessment. In the
discussion on related work below, we relate variability assessment to existing work
on product families, and discuss why existing approaches are not suited to address
all variability assessment issues we discussed above.

FAST and SEI’s Product Line Practice. Weiss and Lai (1999) formulate basic
assumptions with respect to product families, from which two are particularly
important in the context of this article: “it is possible to predict the changes that are
likely to be needed to a system over its lifecycle”, and “it is possible to take
advantage of these predicted changes”. When it comes to actually determining
changes to variability, however, the book lacks precision (p. 198): “… You can
adapt standard change management techniques to FAST projects, so the FAST
PASTA model does not elaborate on those aspects in any great detail”. Also in the
SEI’s Product Line Practices and Patterns book, the evaluation of variability is
quoted as an example of an important evaluation. The book, however, does not
present a technique to perform these evaluations. Rather, it suggests modifying
existing architecture assessment methods to accomplish this goal (pp. 77-83).

Investment analysis. James Whitey (1996) provides an investment analysis
approach that focuses on maximizing ROI of product line assets. Robertson and

197

Ulrich (1998) also evaluate economical aspects of a product family and deal with
planning and scoping the product family architecture. DeBaud and Schmid (2003)
provide a similar but more general approach. They also claim that product-centric
commonality and variability analysis is better than a domain based view, as the
latter provides a flawed economic model for making scoping decisions (DeBaud
and Schmid, 2003). The approaches, however, are all based on rough estimates,
and focus on the question if certain features, assets or products should be part of
the product family rather than how required variability should be realized in the
product family artifacts.

Assessment. Assessments typically consist of five steps, i.e. goal specification,
specification of the provided aspect, specification of the required aspect, analyzing
the difference between the provided and required aspect, and interpreting the
results. Examples of these approaches are ATAM (Clements et al., 2001), ALMA
(Bengtsson et al., 2004), and SALUTA (Folmer et al., 2004). These three
approaches respectively assess trade-offs between quality attributes,
maintainability, and usability in software architectures. The approaches differ with
respect to the required information, elicitation and specification of the scenarios.
They focus on analyzing the architecture of single systems, rather than being
suitable for all layers of abstraction in a product family.

An approach that does address variability, is the approach presented by Wijnstra
(2003). The approach presents a high-level discussion on extracting variability
information, and, based on this information, evaluates the provided variability with
respect to best practices. However, it is restricted to end-user variability, does not
provide specific steps for building up a provided variability specification, and is
not focused on specific variability needs of the product family members.

Change management. Change management is a process for ensuring that changes
to a software system or product family are traceable, carefully planned, and
motivated. The change management process is typically a high-level description of
how a change should be handled, defines standard deliverables, as well as an
organizational structure. Variability assessment neatly fits into the change
management process in product families. Where the descriptions in change
management process usually do not go further then saying there are steps such as
‘propose change’, or ‘evaluate change’, variability assessment provides the details
that are required to actually propose and evaluate changes to the variability.

11.4. Conclusion

The variability assessment issues we identified above, prevent giving a good
answer to the question whether, when, and how variability should evolve. As a

198

response, we have developed the COVAMOF Software Variability Assessment
Method (COSVAM). We present this method in the next chapter.

11.5. References

Bengtsson, P.O., Lassing, N., Bosch, J., van Vliet, H., 2004. “Architecture-level Modifiability
Analysis (ALMA)”, Journal of Systems and Software, Vol. 69(1-2), pp. 129-147.

Bohner, S.A., 1991. Software Change Impact Analysis for Design Evolution, In Proceedings of 8th
International Conference on Maintenance and Re-engineering (ICMR’91), Los Alamitos, California,
pp. 292-301.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K., 2001. Variability Issues in
Software Product Lines, Proceedings of the Fourth International Workshop on Product Family
Engineering (PFE-4), pp. 11–19.

Clements, P., Kazman, R., Klein, M., 2001, Evaluating Software Architectures, Methods and Case
Studies, Addison-Wesley, ISBN 0-201-70482-X.

DeBaud, J.M., Schmid, K., 1999. “A systematic approach to derive the scope of software product
lines”, Proceedings of the 21st Int. Conf. on Software Engineering, California, USA, pp. 34-43.

Folmer, E., Gurp, J., Bosch, J., 2004, “Architecture-Level Usability Assessment”, accepted for EHCI.

Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and Chen, C., 1994. Change Impact
Identification in Object Oriented Software Maintenance, Proceedings of the International Conference
on Software Maintenance (ICSM’94), IEEE CS Press, Los Alamitos, California, pp. 202-211.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M., 1997. "Metrics and Laws of
Software Evolution - The Nineties View", Proceedings of the Fourth International Software Metrics
Symposium, USA.

Robertson, D. Ulrich, K., 1998, “Planning for product platforms”, Sloan Mgt. Review, Vol. 39 (4),
pp. 19-31.

Weiss, D.M., Lai, C.T.R., 1999, Software Product-Line Engineering: A Family Based Software
Development Process, Addison-Wesley, ISBN 0-201-694387.

Whitey, J., 1996. “Investment analysis of software assets for product lines”, Technical report
CMU/SEI-96-TR-010, Software Engineering Institute.

Wijnstra, J.G., 2003. Evolving a Product Family in a Changing Context, Proceedings of the 5th
International Workshop on Software Product-Family Engineering (PFE-5), pp. 111-128.

