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Chapter 1

CERVICAL CANCER AND HUMAN PAPILLOMAVIRUS

Cervical cancer is the second most common cancer among women worldwide. 

The number of new cases diagnosed annually is estimated around 500.000, with 

250.000 deaths. Over 80% of new cervical cancer cases occur in developing 

countries, where neither population-based routine screening nor adequate 

treatment is available. The highest incidence rates are observed in sub-Saharan 

Africa, Melanesia, Latin America and the Caribbean, South-Central Asia, and 

South-East Asia.1 In the Netherlands, despite excellent screening and treatment 

possibilities, 600-700 women are diagnosed with cervical cancer annually, and 

200-250 patients die from the disease.2;3 

The majority of cases of cervical cancer are squamous cell carcinomas, 

followed by adenocarcinomas and adenosquamous carcinomas.4 Cervical cancer 

develops from pre-existing non-invasive premalignant lesions, so-called cervical 

intraepithelial neoplasia (CIN) or squamous intraepithelial lesions (SIL). These 

lesions are classifi ed histologically on the basis of progressive atypia of epithelial 

cells. CIN I relates to mild dysplasia, CIN II to moderate dysplasia, and CIN III to 

both severe dysplasia and carcinoma in situ. CIN I is also classifi ed as low-grade 

SIL and CIN II and CIN III as high-grade SIL.5  (Figure 1)

Figure 1.  Schematic overview of the morphological alterations of normal cervical epithelial 
cells toward invasive cervical cancer. (Reproduced, with permission, from Snijders et al. J. 
Pathol 2006; 208: 152-164)
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Epidemiologic classifi cation of HPV types

Recently, cervical cancer has been recognized by the World Health Organization 

(WHO) as the fi rst cancer to be 100% attributable to infection with a virus, the 

Human Papillomavirus (HPV).6 Over 100 HPV types have been characterized 

molecularly and about 30 to 40 types are able to infect the mucosa of the genital 

tract.7 Fifteen types are considered to be high-risk types in terms of oncogenic 

potential (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82). Three 

HPV types are classifi ed as probable high-risk types (26, 53, and 66), and 12 types 

are classifi ed as low-risk (6, 11, 40,42, 44, 54, 61, 70, 72, 81, and CP6108).8 

Infection with low-risk HPV types can cause benign lesions of the anogenital 

areas known as condylomata acuminata (genital warts) or low-grade squamous 

intraepithelial lesions of the cervix (CIN I and CIN II), and recurrent respiratory 

papillomatosis.4 

Persistent infection with high-risk HPVs represents a necessary cause of 

cervical cancer. High-risk HPV DNA is detected in virtually all cases (>99%) of 

cervical cancers, and in up to 94% of women with CIN lesions.9-11 The eight most 

common high-risk types (16, 18, 45, 31, 33, 52, 58, and 35) account for 89% of 

all cervical cancer cases worldwide. HPV 16 is the cause of about 54% of invasive 

cervical cancers and HPV 18 is the cause of about 17%.8;12 (Figure 2) To a lesser 

extent, these high-risk HPV types are also found to be a cause of a substantial 

proportion of other anogenital neoplasia (penile, vaginal, vulvae, and anal) and 

oral squamous cell carcinomas.1 

Figure 2.  The cumulative frequency of high-risk HPV types present in cervical cancer
(Reproduced, with permission, from Munoz et al. Int. J. Cancer 2004; 111(2): 278-85)
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HPV biology

The Human Papillomavirus belongs to the family Papovaviridae. Papillomaviruses 

are small, nonenveloped, icosahedral DNA viruses that replicate in the nucleus of 

squamous epithelial cells. (Figure 3) The virion is composed of a double-stranded 

circular 8000-basepair DNA genome surrounded by an icosahedral protein capsid 

of about 55 nm in diameter. The HPV genome is divided into an early region, 

encoding genes required for DNA replication and cellular transformation (E1, E2, 

E4, E5, E6, and E7) and a late region, encoding the two viral capsid proteins 

L1 and L2. Papillomaviruses are able to infect the basal cells of the epithelium 

when the integrity of the epithelium is compromised by a micro-abrasion or other 

traumas. The viral genome then becomes established in the basal cells as an 

episome, and progeny virions are generated. In these basal layers of stratifi ed 

epithelium, viral early proteins are produced in undifferentiated keratinocytes. 

Infected daughter cells then begin to migrate up and differentiate in the outer 

layers of the epithelium. In these outer layers late proteins are produced and 

capsids are formed. Subsequently, virions are shed into the genital tract from 

desquamated epithelial cells.10;13 The viral DNA is mostly in an episomal form 

in low-grade lesions, but it is integrated into the host cell chromosome in high-

grade lesions and cancer.14 Integration disrupts the E2 open reading frame (ORF), 

resulting in deregulation of E6 and E7 gene products, which may lead to cellular 

transformation.15-17 

The E6 and E7 genes are both required and cooperate to induce immortalization 

of human genital keratinocytes. The E7 protein functions in cellular transformation 

through interactions with the retinoblastoma protein (pRB) and the other pRB-

related ‘pocket proteins’, which leads to the expression of proteins necessary for 

DNA replication. The viral E6 protein complements the role of E7, and prevents 

the induction of apoptosis.  E6 is able to interact with many cellular factors. The 

Figure 3. A model of the papil-
lomavirus capsid. (Reproduced, 
with permission from Elsevier, from 
Stanley et al. Vaccine 2006;24 
Suppl 3: S106-S113)
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Figure 4.  The biology of HPV infection
(a) Human papillomavirus (HPV) virions infect basal cells of stratifi ed mucosal epithelium 
at the junction between the vagina and ectocervix. Limited viral replication is accompanied 
by expression of ‘early’ proteins E1 and E2 in the basal layers. In more distal layers, E6 
and E7 are expressed. These proteins promote cell proliferation and delay differentiation. 
As infected cells differentiate into squamous cells, the E4 protein, and the late proteins L1 
and L2 (which form the capsid), are expressed. Viral capsids are shed into the genital tract 
within desquamated epithelial cells. (b) Rarely, the DNA of oncogenic HPVs linearizes rand-
omly and integrates into the host cell genome. When the break occurs in the E2 region, the 
lifting of E2-mediated transcriptional repression of E6 and E7 oncogenes predisposes infec-
ted cells to cellular transformation (dysplasia). (c) Invasive tumor ruptures the basement 
membrane and invades the sub-epidermal tissue. Inset shows the HPV genome. The ~8 
kilobase double-stranded DNA genome encodes eight open reading frames (ORF): six ‘early’ 
proteins (E1, E2, E4, E5, E6 and E7), and two ‘late’ proteins (L1 and L2) L1 and L2 encode 
capsid proteins; E1 and E2 are involved in DNA replication and transcriptional control; E4 
might aggregate cytokeratins or form intermediate-fi lament-like structures; E5 inhibits aci-
difi cation of endosomes and down regulates major histocompatibility complex (MHC) class I 
expression. (Reproduced, with permission from Macmillan Publishers Ltd, from Tindle et al. 
Nat Rev Cancer 2002;2(1):59-64)
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major target of E6 is p53, with E6 binding to p53 resulting in inactivation of p53-

mediated growth suppression and/or apoptosis. Continued production of these 

two oncoproteins is required for the maintenance of the transformed phenotype 

of (pre)malignant cells.18;19 (Figure 4) 

Prevalence of HPV infection and risk-factors 

HPV infections are the most commonly diagnosed sexually transmitted diseases 

today. Acquisition of HPV occurs soon after sexual initiation.20 Estimates of the 

population prevalence of HPV infection among women around the world range 

from 2% to 44%. The prevalence of HPV infection is highest among young sexually 

active women and appears to drop with increasing age.21;22  It is estimated that 

it takes on average 12-15 years before a persistent infection with high-risk HPV 

develops into cervical carcinoma.23;24 Progression from clinically detectable infection 

to invasive cervical carcinoma occurs in less than 1% of the infected women. 

At fi rst it was thought that cervical cancer would always evolve from infected 

normal cervical epithelium via consecutive CIN I, CIN II, and CIN III lesions. 

However, most CIN I and CIN II lesions are manifestations of a normal productive 

infection, and in the majority of cases are caused by low-risk HPV types. Over 

90% of these lesions will regress spontaneously.5 Recently, Winer et al.25 showed 

that many of the clinically relevant CIN II/III lesions may be rapidly induced within 

2 years following infection with high-risk HPV. However, notably, also in these 

cases only a minority of the lesions will develop into invasive cervical cancer. The 

mean age of women with CIN III is approximately 28 years, while the mean age 

of women with invasive cervical cancer is approximately 50 years. Given this long 

precancerous state and the predominating transient nature of the HPV infection it 

is suggested that other factors also play a role in the carcinogenic process. 

Studies reviewing the risk of CIN III or cervical cancer among HPV-positive 

women have classifi ed smoking as a co-risk factor.26 This has been confi rmed in 

recent prospective studies.27;28 The long-term use of oral contraceptive in relation 

to the development of high-grade cervical lesions among HPV-positive women 

is more ambivalent.29 No association between oral contraceptive use and CIN 

III in HPV-positive women could be found in several prospective studies.30;31 

Co-infection with Chlamydia trachomatis and herpes simplex virus type-2, 

immunosuppression, and certain dietary defi ciencies have been suggested as 

other probable co-factors. However the currently available evidence for these co-

factors is not convincing.26;29;32 
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Current screening and treatment options

In the developed world, as a result of intensive screening programs, cervical cancer 

or preceding CIN lesions are usually detected at an early stage. Cytomorphological 

examination of cervical smears is the most widely applied screening-method for 

cervical cancer and it precursors. Cervical smears are classifi ed according to a 

modifi ed Papanicolaou system or the Bethesda classifi cation system. Other 

methods used for screening are liquid based cytology, HPV testing, and combined 

testing.

The most common techniques for treatment of CIN II/III are loop electrosurgical 

excision procedure (LEEP), cryotherapy, carbon dioxide laser ablation or conization 

(cold knife or laser). These techniques have been shown equally effective, 

averaging approximately 90% cure, and an overall rate of recurrent or persistent 

disease of 5 to 17%.33 

With cervical cancer, clinical stage is the most important prognostic parameter 

and, therefore, determines the choice of treatment. The International Federation 

of Gynecology & Obstetrics (FIGO) has established criteria for clinical staging 

of cervical cancer in which tumor-size and involvement of the vagina and 

parametrium are estimated.34 Microinvasive cancer (FIGO stage IA) can be treated 

by LEEP or conization to maintain fertility or by simple hysterectomy. Therapy 

options for early stage cervical cancer (FIGO stage IB1, nonbulky IIA) are radical 

hysterectomy with or without adjuvant therapy, defi nitive radiation therapy or 

radical trachelectomy. Randomized trials suggest that survival is similar with 

radical hysterectomy with or without postoperative radiation therapy or defi nitive 

radiation therapy in these patients.35;36 Women with bulky stage IB or IIA can be 

treated by chemoradiotherapy, initial surgery followed by chemoradiotherapy or 

primary radical hysterectomy with complete lymphadenectomy. For the treatment 

of women with locally advanced (greater than stage IIA) cervical cancer, 

chemoradiotherapy is preferred. It has been shown that women undergoing 

radiation therapy and concomitant chemotherapy have up to 50% reduction in 

the risk of death from cervical cancer compared to radiation therapy alone.37;38 

The fi ve-year relative survival rates for cervical cancer patients vary from 

approximately 80% for patients with localized disease to 55% for those with 

lymph node metastases.39 Survival rates for patients with more advanced disease 

at diagnosis are considerably worse.40;41 
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IMMUNE CONTROL OF HPV-INDUCED CERVICAL LESIONS

The life-time risk of a women to ever become infected with one or more HPVs is 

estimated to be 80%.42 Yet, the majority of the HPV infections are transient, not 

even resulting in detectable cervical lesions. Most women infected with a specifi c 

HPV type will have cleared the virus in the 6 to 12 months following infection.43-

46 In cases where the immune response fails to clear or control the infection, 

a persistent infection, often with high levels of high-risk HPV DNA replication, 

may be established. These persistent infections have an increased probability 

for clinical progression and thus the development of high-grade CIN lesions and 

invasive carcinoma.46-48 

In general, protective immunity results from the interaction of nonspecifi c 

innate immunity and antigen-specifi c adaptive immunity. The fi rst line of defense 

is the innate immune system, which is activated by cell injury or cell death, so-

called danger signals. It is able to clear the majority of pathogens. The innate 

immune response is aspecifi c with no memory, but is responsible for activating 

the adaptive immune response. The adaptive immune response is specifi c for 

the antigen(s) involved. Antibody-mediated humoral immunity neutralizes free 

virus particles and can prevent re-infection. Cell-mediated immune responses, 

especially cytotoxic T-lymphocytes (CTL), are important for clearance of virus-

infected cells and generation of immune memory. Antigen-presenting cells (APC), 

mainly dendritic cells (DC), appear to be key factors in activating the T-cells, by 

directing  the T-helper cells to either a Th1 or Th2 pathway.49 

Natural HPV immunity

The exact role which the immune system plays in HPV clearance is unknown. 

Serum-neutralizing antibody levels are low in natural HPV infections, even the 

peak titers just after seroconversion.50 These low levels of antibodies may provide 

protection against reinfection by the same type. Humoral immunity is generated 

in most, but not all, infected individuals and is directed against conformational 

epitope(s) of the major capsid protein L1.51;52 Recent results with prophylactic 

vaccines show that vaccinated women are resistant to infection with the HPV 

types incorporated in the vaccine for at least 48 months post vaccination.53;54 

While antibody-mediated neutralization of virus plays an important role in 

preventing infection, cell-mediated immune responses are suggested to be 

important in controlling established HPV infections as well as HPV-induced (pre)

malignant lesions. A longitudinal study of patients who had cleared an HPV infection 

showed that these patients had strong HPV16 E7-induced T-cell responses around 
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the time of viral clearance.55 Scott et al. demonstrated that a Th1 cytokine response 

is associated with subsequent clearance of cervical HPV infection.56 In addition, 

strong proliferative cell-mediated immune responses specifi c for HPV16 E7 

peptides are found more often in patients with regression of pre-malignant cervical 

lesions.57 Also the correlation between presence of HPV E6-specifi c CTL and the 

absence of CIN in women with HPV16 infection indicate that CTL responses may 

be protective.58  The importance of cell-mediated immune responses in clearance 

of established infections has been further indicated by the increased incidence 

and progression of HPV infections in individuals with immunosuppression, such 

as transplant recipients or AIDS patients.59-62 Thus the key factors of a successful 

immune response to HPV infection, are a strong, local, cell-mediated immunity 

that is associated with lesion regression and the generation of serum neutralizing 

antibody, which protects against re-infection.

HPV and immune evasion

Why the immune system fails to detect and clear HPV infection in some cases is 

not yet fully clear. Various direct and indirect mechanisms used by HPV to evade 

host immunity have been described. First, the infectious cycle of HPV itself is an 

immune evasion mechanism. HPV infection does not elicit any danger signals, 

circumventing the innate immune system. There is no detectable viraemia and the 

infected cells are not lysed, limiting antigen uptake, delivery to the lymph node, 

and presentation to naïve B- and T- cells.63;64 Next, high-risk HPVs down-regulate 

interferon-responsive gene expression, and the E6 and E7 oncoproteins prevent 

the immuno-regulatory effects of IFN-α- and IFN-β-antiviral responses.19;65;66 

HPVs minimize the levels of expression of capsid proteins and/or delay expression 

of these proteins to differentiated epithelium. In this way they avoid Langerhans 

cells, the APC of the skin. Moreover, it was demonstrated that Langerhans cells 

are not activated by uptake of HPV capsids. As a result, Langerhans cell migration 

and maturation, and subsequently the priming of the immune response against 

the capsid proteins is inhibited.67 

As a consequence of these immune evasion mechanisms, APC are exposed to 

low levels of viral proteins in a noninfl ammatory milieu, leading to local immune 

nonresponsiveness. HPV antigen-specifi c effector cells are either not recruited to 

the infected area, or their activity is down-regulated.63 

Immune response in patients with CIN and cervical cancer

Low levels of cellular immunity against the HPV E7 oncoprotein can be detected 

in women with CIN lesions or cervical cancer, as demonstrated in several studies. 
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Yet, these responses seem unable to clear HPV infections and/or lesions.68-71 Other 

studies showed that women with persistent HPV16 infection had no detectable or 

impaired immune responses against HPV16 E6.58;72 In contrast, in healthy subjects, 

frequently an abundant memory Th response against E6 can be observed.73 These 

observations suggest that E6-specifi c CTLs play an important role in protection 

against persistent HPV infection and associated development of malignancies. 

Furthermore, it has been shown that in CIN lesions there is a relative down-

regulation of TNF-α by the epithelium and up-regulation of the Th2 cytokine IL-10 

compared to normal cervix.74 

Altogether, these observations indeed suggest that patients with CIN lesions 

or cervical cancer have mounted a certain degree of immunological tolerance or 

ignorance for the HPV-derived antigens. It is possible that this tolerance arises 

peripherally at the level of the epithelial keratinocytes, the target cells for HPV. 

These keratinocytes lack costimulatory molecules such that presentation of viral 

antigens in the context of MHC class I molecules may result in the induction of 

anergy in relevant T cells, thus causing immunological tolerance. Steinman and 

Nussenzweig proposed that peripheral tolerance can also be induced by immature 

DCs, which silence the T cell repertoire to self and environmental antigens captured 

in the steady state, that is, in the absence of an acute infection or infl ammation. 

This induction of tolerance by immature DCs would be mediated by peripheral T 

cell deletion.75 Immunological tolerance for persistent HPV infection, might develop 

in a similar manner. 

Currently, there is increasing evidence for a possible role of regulatory T cells 

(Tregs) in the immune evasion mechanisms, contributing to impaired immunity 

against HPV infection. Tregs form a third subset of CD4+ T cells, beside the two 

major subsets known as Th2 or Th1 cells, and are characterised by co-expression 

of CD4, CD25, Foxp3, and lacking CD127 expression (IL-7 receptor). Tregs 

are thought to recognize self-antigens and function to prevent autoimmunity. 

However, they also regulate responses to exogenous antigens, and may play a 

role in controlling chronic and viral infections.76-78 Increased proportion of Tregs are 

found in tumor-draining lymph nodes in cervical cancer patients. Lymphocytes in 

tumor-draining lymph nodes from these patients show a less effi cient response to 

polyclonal activation.79 TGF-β-producing CD4+/CD25+ T cells were demonstrated 

in stroma of CIN II/III samples, which suggests that Tregs are recruited to these 

lesions and may contribute to an immunosuppressive milieu.80 Visser et al. showed 

that patients with CIN and cervical cancer have increased Treg frequencies in their 

peripheral blood compared to healthy controls.81 More importantly, they showed 

that depletion of CD25+ T cells enhanced the in vitro HPV16 E6 and/or E7-
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specifi c T cell responses in PBMC of half the HPV16-DNA positive cervical cancer 

patients. These results indicate that Tregs are, at least partially, responsible for 

the suppression of HPV16 E6/E7-specifi c T cell responses.   

VACCINATION STRATEGIES FOR THE PREVENTION OR THERAPY OF HPV-

INDUCED CERVICAL LESIONS

 

Routine vaccination programs have had an enormous impact on the prevalence 

of a variety of infectious diseases. The eradication of smallpox 82 and the success 

of the polio eradication campaign that has reduced the global incidence of this 

disease impressively, from 350000 polio cases in 1988 to 1948 cases in 2005,83 

illustrate the benefi t of vaccination. In light of the fact that HPV is a requirement for 

essentially every case of cervical cancer and genital warts worldwide, vaccination 

is likely to be the most effective mechanism to prevent HPV infection and to 

control HPV-associated disease. 

Two different modalities of HPV vaccines are being developed. Firstly, prophylactic 

vaccines that aim at prevention of an HPV infection are designed primarily to 

induce virus-neutralizing antibody directed against the capsid proteins of the virus, 

mainly the L1. Secondly, therapeutic (curative) vaccines that aim at regression of 

established HPV infections and (pre)malignant cervical lesions. These vaccines 

are designed to elicit a strong cell-mediated cytotoxic T-lymphocytes response, 

leading to elimination of cells expressing the oncoproteins of HPV, predominantly 

E6 and E7. Therapeutic vaccines present far more challenges than prophylactic 

vaccines. As mentioned earlier, these challenges include the immunocompromised 

state of cancer patients, diffi culty in stimulating the immune system, immune 

escape mechanisms used by tumors and virally infected cells, and safety issues.

Prophylactic vaccines

An important step forward in the HPV vaccine development came in 1991, 

when Zhou et al. 84 demonstrated that HPV16 L1 capsid proteins expressed in a 

recombinant system form virus-like particles, so-called VLPs. These VLPs lack the 

viral DNA, but are morphologically similar to native virus, in that they present all 

viral conformational epitopes that are highly immunogenic (Figure 5).

Recently, two companies, Merck and GlaxoSmithKline (GSK), have developed 

commercially HPV VLP vaccines. The Merck vaccine (Gardasil®) is tetravalent. It 

contains a mixture of four different VLPs of the HPV types 6, 11, 16 and 18. The 

fi rst two HPV types are considered non-oncogenic but cause approximately 90% of 

cutaneous genital warts. The latter two types of HPV are found in 70% of cervical 
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cancer worldwide. Therefore, the Gardasil targets two distinct diseases. The 

Gardasil VLPs are produced in the yeast Saccharomyces cerevisiae and immersed 

a simple aluminum salt adjuvant. The GSK vaccine (Cervarix®) is bivalent, 

containing VLPs of HPV16 and HPV18. The L1 protein is produced in recombinant 

baculovirus-infected insect cells and the vaccine contains the proprietary adjuvant 

AS04. This adjuvant contains aluminum salts plus monophosphoryl lipid A. Results 

have been reported of fi ve randomized, placebo-controlled, phase II clinical trials. 

Both vaccines are given through three intramuscular injections over a six-month 

period. Both vaccines are well tolerated, not causing vaccine-related serious 

adverse events. More than 99% seroconversion against each HPV type in the 

vaccines was induced, and peak antibody titers were at least 50-fold higher than 

the titers detected after natural infection. In fully vaccinated women, both the 

vaccines induced full protection from cervical dysplasia associated with the HPV 

types included in the vaccine and an almost 100% protection against confi rmed 

persistent infections by the same types.50;53;54;85;86 As of November 2006, the 

Gardasil® vaccine from Merck is available in the Netherlands. Subsequently, in 

2007, Cervarix® is approved in Australia and Europe. Two of the large Phase 

III trials of the tetravalent vaccine and one of the bivalent vaccine have been 

completed, and other Phase III trials are still underway.87-90 Although these highly 

effective and apparently safe vaccines have great potential for reducing cervical 

cancer rates and the number of surgical treatments for pre-malignant cervical 

lesions, several unresolved issues remain. Only limited follow-up in the Phase 

II and III trials has been undertaken. Therefore, the duration of protection after 

vaccination is unknown. Given that vaccination will not protect against the HPV 

Figure 5.  (A) Human papillomavirus particles. (B) HPV-16 L1 virus-like particles made 
by expressing HPV-16 L1 in baculovirus. (Reproduced, with permission from Elsevier, from 
Stanley et al. Vaccine 2006;24 Suppl 3: S106-S113) 
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types not included in the vaccines, around one third of the cervical cancers will 

still develop despite vaccination. Screening will therefore need to be continued. 

Besides, it will take decades before the impact of the vaccine on cervical cancer is 

observed, as the target population for vaccination will be 9-13-year old females. 

Some “catch-up” vaccination of older, sexually-active women will occur in many 

countries. However, this will presumably involve much lower rates of coverage 

compared to cohort vaccination of young adolescents.  It is likely that the current 

approach of frequent screening will prove to be too expensive and ineffi cient for 

many countries. Education of physicians, government and general public will be 

essential for a successful implementation of the prophylactic HPV vaccines. Finally, 

the high cost of the fi rst generation HPV vaccines will be a major barrier for 

their introduction in the world’s poorest countries, where the vaccines are needed 

most. To achieve HPV vaccination in developing countries, it will be essential that 

vaccine manufacturers, governments and non-governmental organizations work 

together to provide vaccination at an affordable cost.91;92  

Therapeutic vaccines

As explained earlier, even if prophylactic vaccination were introduced on a 

worldwide scale today, it will take decades before the incidences of HPV-induced 

premalignant lesions and invasive cervical cancer will decrease. Therapeutic 

vaccines are needed to fi ll in this niche, by attacking already established HPV 

infections and HPV-induced disease.

Whereas most tumor-specifi c antigens are derived form normal or mutated 

“self” proteins, E6 and E7 are completely foreign, viral, proteins, and thus 

they harbor more antigenic peptides/epitopes than a mutant “self” protein. 

Furthermore, the expression of E6 and E7 occurs in cells in which the viral genome 

has integrated into the cellular DNA, and is necessary for the virus-infected cell to 

escape apoptosis and cell-cycle arrest. Therefore, constitutive production of these 

oncoproteins is required for the maintenance of the transformed phenotype of 

(pre)malignant cells. As a consequence, cervical cancer cells are unlikely to evade 

an immune response through antigen loss. Thus, E6 and E7 represent attractive 

targets for developing immunotherapies or vaccines against cervical cancer.

There are substantial numbers of publications describing preclinical model 

studies of therapeutic vaccination strategies and several candidate vaccines made 

it into Phases I and II clinical trials. Below, a brief overview is given of the various 

forms of HPV vaccines that have been evaluated clinically.

Peptide vaccines. 

Peptide vaccines have the advantages of safety, ease of production, and cost 
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effectiveness. However, these vaccines are weakly immunogenic and require HLA 

compatibility. It is possible to predict immunodominant or subdominant peptides 

of viral antigens that would associate with a particular HLA allelic product and 

that are recognized by human T cells. Since 40% of Caucasians carry the HLA-A2 

allele, HPV16 E7 peptides presented by this allele have been the antigen in several 

phase I/II clinical trials. Upon peptide vaccination no adverse side-effects were 

observed, Th responses were induced, enhancement in cytokine release and CTL 

activity could be measured in a majority of the patients. Yet, less than 20% of the 

patients had partial clearance of virus and regression of lesions, and the studies 

were performed on a limited number of patients (<20).93-96 

Zwaveling et al.97 showed that vaccination with longer peptides resulted in more 

potent CTL responses than vaccination with exact minimal CTL epitope length. By 

increasing the size of the peptide, it is forced to be presented by professional APC, 

like protein vaccines, which enhances the vaccination effi cacy. A clinical trial is 

underway in patients with HPV16 associated neoplasia. 

Protein vaccines. 

The advantage of recombinant proteins over peptide approaches is that they 

deliver all potential epitopes to the APC of the immune system. Since these APC 

process and present one or more peptide epitopes in association with host HLA 

molecules, these vaccines can be used regardless of the individual’s tissue type. 

In addition, protein vaccines offer certain safety advantages as potential concern 

with certain recombinant virus vaccines and DNA vaccines related to integration of 

genetic material into the host genome and cell transformation are not an issue.

A fusion protein consisting of HPV16 L2 fused to E7 protein (TA-GW), has been 

tested for clinical treatment of genital warts. Vaccination with TA-GW appeared 

safe, well-tolerated and immunogenic.98;99  Immunization with another fusion 

protein, which consists of HPV16 L2/E6/E7 (TA-CIN) resulted in E7-specifi c CD8+ 

T-cell immune responses and tumor protection in mice.100  Immunization with 

TA-CIN fusion protein was well-tolerated by patients and induced both humoral 

and T-cell mediated immune responses.101 Phase I/II trials have been conducted 

with another fusion protein,  containing a mutated HPV16 E7 linked to the fi rst 

108 amino acids of Haemophilus infl uenzae protein D. Vaccination led to limited 

regression of lesions in 3 of the 5 patients with CIN III, it was well tolerated and 

led to signifi cant CD4 and CD8 T-cell lymphocytic infi ltration.102 

The potency of protein vaccines may be further enhanced through the use of 

adjuvants or fusion with heat-shock proteins. It was demonstrated that a vaccine 

containing heat-shock protein and E7 protein protected mice against challenge 

and rechallenge with an E7-expressing murine tumor cell line.103
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Reconstituted viral envelopes (virosomes) appear to be ideally suited for 

delivery of protein antigens to the cytosol of APC, and thus for introduction of 

antigenic peptides into the MHC class I presentation pathway.104;105 Virosome-

mediated delivery of protein antigens circumvent problems associated with MHC 

restriction and HLA polymorphism in the human population, since the APC would 

select its own peptides. Recently, Bungener et al. in our laboratory showed that 

upon immunization with virosome-encapsulated HPV16 E7 protein, induced 

strong CTL responses, and tumor protection could be induced in a murine model 

system.106  Chapter 8 of this thesis presents a study in which E7-containing 

virosomes are used in conjunction with recombinant SFV in a heterologous prime-

boost immunization strategy.

Chimeric HPV VLP vaccines represent innovative protein-based HPV vaccines. 

Generally, in these vaccines, a fragmented E7 protein is attached to the L1 VLP.  It 

has been shown that VLPs can induce high-titer neutralizing antibodies, activate 

DCs, and prime T-cell mediated immune responses.107-111 Several of these vaccine 

candidates are in the early stages of clinical evaluation.10 

DNA vaccines. 

DNA vaccines are useful because of their purity, ease of preparation and stability. 

Immunization with DNA vaccines results in extended expression of antigen on 

MHC-peptide complexes over a longer period of time compared with peptide 

or protein vaccines. By directly transducing DNA coding for antigen into APC, 

proteins are synthesized and antigenic peptides presented by the patient’s own 

HLA molecules. DNA vaccines can be administered by intramuscular injection, 

intradermal injection via hypodermic needle or gene gun, intravenous injection, 

intranasal delivery or biojector delivery.112;113 

Since naked DNA vaccines are weakly immunogenic, various strategies have 

been developed to enhance their immunogenicity. Co-administration of E7-DNA 

with DNA encoding anti-apoptotic proteins has been demonstrated to enhance, E7-

specifi c immune responses and anti-tumor effects.114 Another strategy to improve 

the antigenicity of HPV DNA vaccines involves encapsulation of the DNA in the 

delivery system. Garcia et al.115 reported on the use of encapsulated plasmid DNA-

encoding fragments derived form E6 and E7 of HPV16 and HPV18 in biodegradable 

particles (ZYC101a). In a randomized double-blind controlled trial they showed 

signifi cantly higher rates of CIN II/III resolution in the treated groups under the 

age of 25 years. However, there was no difference in resolution rates between 

vaccine and placebo in the group older than 25 years of age. Another way to 

enhance the potency of DNA vaccines is through linking E7 to HSV-1 VP22 or one 

of its homologues, thereby facilitating the spreading of the E7. In mice vaccination 
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with VP22/E7 DNA resulted in signifi cantly higher number of E7-specifi c precursor 

CD8+ T-cells and a stronger antitumor effect compared to wild-type E7 DNA116-118 

DC-based vaccines. 

DC-based vaccines are highly immunogenic. On the other hand, labor-intensive 

individualized cell processing is required. In three patients with cervical cancer it 

was demonstrated that recombinant, full-length, E7-pulsed, autologous DCs could 

induce both E7-specifi c CD4+ T-cell responses and strong CD8+ CTL responses 

capable of lysing autologous HPV-infected cancer cells.119 A Phase II trial of an 

HPV16 and 18 E7-pulsed DC-based vaccine demonstrated that it induced E7-

specifi c humoral and cell-mediated immunity. Yet this response did not lead to a 

clinical response.120 In another trial, HPV E7 antigen-loaded autologous DCs were 

evaluated in stage IV cervical cancer patients. Again, though vaccination induced 

T-cell responses in some patients, no clinical response was observed.121 

Tumor cell-based vaccines. 

Tumor cell-based vaccines represent genetically modifi ed tumor cells encoding 

co-stimulatory molecules or cytokines that may enhance immunogenicity, which 

may lead to T-cell activation and antitumor effect after vaccination.122 Several 

preclinical studies showed that vaccines using HPV-transformed tumor cells 

transduced with cytokine genes, such as interleukin-12, interleukin-2, or GM-CSF, 

are able to induce strong antitumor effects.123;124 

Bacterial vector vaccines. 

Bacterial vector vaccines have the advantage of being highly immunogenic and are 

able to deliver plasmids or express proteins. Drawbacks are the potential safety 

concerns, and possible pre-existing immunity limiting their clinical application. 

Different attenuated bacteria (e.g., Listeria monocytogenes, Salmonella, Shigella, 

Escherichia Coli, Mycobacterium bovis) can be used as bacterial vectors to deliver 

either plasmids encoding genes of interest or proteins of interest to APC.

Gunn et al.125 was the fi rst to demonstrate that vaccination with recombinant 

L. monocytogenes secreting HPV16 E7 can lead to regression of pre-existing 

E7-expressing tumors using an E7-expressing murine tumor model. Orally 

administered antigen-specifi c L. monocytogenes vaccines may also induce potent 

immune responses and antitumor effects in murine models.126 

Viral vector vaccines. 

Viral vector vaccines have the advantage of being highly immunogenic, as they 

express the different immunogenic properties of viruses which the vectors are 

derived from. Drawbacks include potential toxicity and pre-existing viral immunity 

in the recipient.

Several preclinical studies demonstrated that immunotherapy using vaccinia 



25

General introduction

vectors generated strong CTL activity and antitumor responses against E6 and/or 

E7. Phase I and II clinical trials using recombinant vaccinia virus encoding HPV16 

and 18 E6/E7 (also called TA-HPV) established the safety and indicated that some 

patients with CIN lesions or advanced cervical cancer developed T-cell immune 

responses upon vaccination.127-129 TA-HPV has also been used in the treatment of 

high grade HPV16-positive vulval intraepithelial neoplasia (VIN). Most patients 

who received a single dose of the vaccine demonstrated HPV-16-specifi c immune 

responses. However, no complete correlation between immunological and clinical 

responses could be defi ned.130 

A recombinant viral vector that has been evaluated extensively in human clinical 

studies for treatment of a variety of illnesses is the adenovirus system. Adenoviral 

vectors have a cloning capacity of approximately 8 kb, allowing for insertion of 

relatively large genes. They can be prepared easily in high titer and effi ciently 

transduce a wide range of cell types. Concerns were raised about the use of 

adenovirus vectors after a report describing a fatal systemic infl ammatory response 

in a patient following adenoviral gene transfer.131;132 Another major concern for 

immunization is the presence or production of anti-adenoviral antibodies, which 

may hamper repeated vaccinations and thereby may compromise the therapeutic 

effect. Several studies using modifi ed adenovirus-expressing HPV16 E6 and/or E7 

showed enhanced antigen-specifi c CD8+ and/or CD4+ T-cell immune responses 

induced upon immunization in mice.133;134 In Chapter 7 of this thesis the therapeutic 

effi cacy of a recombinant adenoviral vector expressing HPV16 E6E7 is compared 

to that of recombinant SFV in a a murine model system. Another application of 

adenovirus is an adenoviral vector encoding E7 and targeted to CD40 by means of 

bispecifi c antibodies.  DCs infected by this adenoviral vector enhanced protection 

against HPV16-induced tumor cells in a murine model, and could initiate partial 

therapeutic immunity in mice bearing established tumors. This protection was 

both antigen-specifi c and CD8+ T-cell dependent.135 Given that vaccinia and 

adenoviruses are DNA viruses, another potential concern of using these vectors 

to deliver HPV E6 and E7 oncogenes in therapeutic vaccines is the integration of 

these oncogenes into the host genome. 

Vectors based on alphaviruses (i.e. Sindbis virus, Semliki forest virus, and 

Venezuelan equine encephalitis virus) are attractive candidates for vaccine 

development and are gaining increasing interest for their superiority over other 

viral vectors with respect to the induction of cellular and humoral immune 

responses. Alphavirus vectors are recombinant RNA viruses with a self-replicating 

RNA genome. Hence, there is no concern for integration of the transgene into 

the host cell chromosome. Furthermore, the majority of individuals have no 
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pre-existing immunity to these viruses.136 Hence therapeutic alphavirus-based 

vaccination strategies are very promising and are likely to be taken into clinical 

trials in the near future. This thesis focuses on the immunotherapeutic effect of 

a recombinant SFV viral vector encoding a fusion protein of HPV16 E6 and E7 

in a murine model system. A detailed overview of alphaviral vectors is given in 

Chapter 2 of this thesis. 

 

Heterologous prime-boost strategies

Heterologous prime-boost strategies involve priming the immune system to a 

target antigen delivered by one vector and then selectively boosting this immunity 

by re-administration of the antigen in the context of a second distinct vector. 

With this strategy powerful synergistic effects can be achieved, refl ected in an 

increased number of antigen-specifi c T cells, selectively enrichment of high avidity 

T cells and increased effi cacy against pathogen challenge.137;138 Additionally, these 

protocols may generate improved effector memory CD8+ T cell responses.139 

Chen et al. showed that priming with a DNA vaccine followed by a recombinant 

vaccinia booster enhanced  E7-specifi c CD8+ T cell precursor frequencies.140 A 

heterologous prime-boost clinical study with TA-CIN with TA-HPV demonstrated 

enhanced immunogenicity compared with either agent alone. The order of TA-CIN 

followed by TA-HPV was superior, inducing the highest number of T cells against 

the oncoproteins.100 In patients with anogenital intraepithelial neoplasia this 

prime-boost regime induced both humoral and cellular immunity, yet no simple 

relationship between induction of systemic HPV16-specifi c immunity and clinical 

outcome could be obtained.141 

SCOPE OF THIS THESIS

Aim

The aim of the study described in this thesis was to develop an immunotherapeutic 

strategy against CIN lesions and cervical cancer. Persistent high-risk HPV infection 

with continued expression of both oncoproteins, E6 and E7 are a prerequisite for 

the development of invasive cervical lesions. Patients with CIN lesions or cervical 

cancer might be immuno-suppressed and/or have mounted a certain degree 

of immunological tolerance or ignorance for these HPV-derived oncoproteins. 

This puts high demands on potential immunotherapeutic strategies, since such 

approaches need to overcome this tolerance in order to be effective. Viral vectors 

are being developed for immunotherapy of cancer and infectious diseases. As 

indicated above, vector based on alphaviruses are gaining increasing interest for 
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their superiority over other viral vectors with respect to the induction of cellular 

and humoral immune responses. This thesis mainly focuses on the use of a 

therapeutic immunization strategy against HPV-induced cervical cancer based on 

such an alphavirus vector, i.e. Semliki Forest virus. 

Summary of the Chapters

In Chapter 2, an overview of recombinant viral vectors based on alphaviruses is 

given. After a brief introduction on alphaviruses, describing their structure, life-

cycle and replication, the development and design of recombinant vector systems 

based on alphaviruses are described. In addition, an overview is given of current 

preclinical immunotherapy studies using these vector systems. Chapter 2 also 

presents a summary of the immunotherapeutic effects of recombinant SFV in our 

murine HPV model system, as detailed in the following chapter of this thesis.

In Chapter 3, the effi cacy of SFV-enhE6,7 is investigated in a mouse model. The 

therapeutic effect of immunization was examined by inoculating mice at different 

time points with tumor cells prior to immunization. The memory immune response 

induced upon immunization was determined by re-challenge three months after 

the initial challenge and immunization. Also, CTL responses in mice were studied 

up to 340 days after immunization and tumor challenge.

In Chapter 4, the effects of the route of immunization and dose administered 

of SFV-enhE6,7 are investigated. First, the induction of precursor CTL frequencies 

and bulk CTL activity upon either intramuscular (i.m.), intravenously (i.v.), 

subcutaneously (s.c.) or intraperitoneally (i.p.) immunization with SFV-enhE6,7 

were determined. Subsequently, the minimal effective dose of s.c. or i.v. SFV-

enhE6,7 were investigated using a standard bulk CTL assay. Next, the therapeutic 

effi cacy of i.m., i.v., and s.c. SFV-enhE6,7 immunization were compared in a 

tumor treatment experiment.  The effi cacy of i.m. and i.v. immunization of SFV-

enhE6,7 was further explored by initiating immunization at later time points after 

the tumor challenge or by lowering the dose of SFV-enhE6,7.

In Chapter 5, the potency of SFV-enhE6,7 is further explored in an immune-

tolerant K10 HPV16-E6/E7 transgenic mouse model. These transgenic mice 

constitutively express HPV16 E6 and E7 under the control of the keratin 10 

promoter in the suprabasal layers of the epidermis. E7-specifi c CTL tolerance in 

these mice is strong, as it can not be broken by immunizations using naked DNA 

or E7 protein mixed with an adjuvant. The induction of E6/E7-specifi c CTL activity 

upon immunization with SFV-enhE6,7 was determined by bulk CTL assay and INF-γ 

Elispot analysis in these mice. Also the effect of the route of administration (i.e. 

s.c., i.m., and i.v.) on the induction of CTL activity in these mice was investigated. 
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Furthermore, the effi cacy of immunization with SFV-enhE6,7 was compared to 

that of VP22-E71-60 DNA.  

Chapter 6 describes a study which evaluates whether systemic addition of 

SFV-IL12 to immunization with SFV-enhE6,7 improves the induction of antigen 

specifi c CTL activity and anti-tumor response. Treatment with IL12 has shown to 

have a marked immune-activating and anti-tumor activity. Also the use of IL12 as 

an adjuvant resulted in potentiated antigen-specifi c CTL responses and increased 

anti-tumor therapeutic effi cacy. Furthermore, co-administration of tumor antigens 

and IL12 has been described to provide an environment with infl ammatory 

danger signals that is required to activate DCs and may thereby prevent or revert 

tolerance to tumor-associated antigens. First, the most optimal amount, route, 

and timing of immunization of SFV-IL12 with SFV-enhE6,7 was determined. 

Next, this optimal immunization regiment was evaluated in K10 HPV16-E6/E7 

transgenic mice. Finally, the therapeutic effi cacy to eradicate established tumors 

was analyzed in a tumor-treatment experiment. 

In Chapter 7, as a prelude to future clinical evaluation of SFV vector, the 

effi cacy of rSFV with a recombinant adenoviral vector is compared, since adenoviral 

vectors have been and are being used in numerous clinical trials. Differences were 

investigated with respect to CTL induction and anti-tumor response in a murine 

HPV-tumor model. Additionally, to unravel the observed differences between the 

vectors, T-cell depletion and gene expression experiments were conducted. 

In Chapter 8, a heterologous prime-boost strategy with SFV-enhE6,7 and E7-

virosomes is described. Such strategies are found to establish higher frequencies 

of antigen-specifi c T cells than homologous prime-boost protocols or single 

immunizations. The effi cacy of this protocol was analyzed by determining the 

induction of antigen-specifi c precursor CTL activity, bulk CTL activity and anti-

tumor activity compared to homologous prime-boost protocols. Furthermore, it 

was investigated whether the potency of a heterologous booster immunization 

with SFV-enhE6,7 is affected by vector-specifi c immunity induced during the prime 

immunization, by mixing irrelevant rSFV with E7-virosomes during the priming 

immunization followed by a SFV-enhE6,7 boost.

Chapter 9 presents a general discussion of the results described in the thesis. 

Also, it provides a perspective on the opportunities and challenges related to the 

introduction of therapeutic HPV vaccination, particularly therapeutic vaccination 

based on the use of the recombinant SFV vector system, against the background of 

the ongoing implementation of prophylactic HPV vaccination in many countries.

 In Chapter 10, a summary of this thesis is given.
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ABSTRACT

Background: Vectors derived from alphaviruses are gaining interest for their high transfection 
potency and strong immunogenicity.
Objectives: After a brief introduction on alphaviruses and their vectors, an overview is given 
on current preclinical immunotherapy studies using vector systems based on alphaviruses. 
The effi cacy of alphavirus vectors in inducing immune responses will be illustrated by a more 
detailed description of immunization studies using recombinant Semliki Forest virus for the 
treatment of human papillomavirus-induced cervical cancer. 
Results: Immunization with recombinant alphavirus results in the induction of humoral and 
cellular immune responses against microbes, infected cells and cancer cells. Preclinical 
studies demonstrate that infectious diseases and cancer can be treated prophylactically as 
well as therapeutically.
Conclusions: Alphavirus-based genetic immunization strategies are highly effective in animal 
model systems, comparing quite favourably with any other approach. Therefore, we hope 
and expect to see an effi cient induction of tumour- or microbial immunity and a positive 
outcome in future clinical effi cacy studies.

INTRODUCTION

Vectors based on alphaviruses are gaining increasing interest for their superiority 

over other viral vectors with respect to the induction of cellular and humoral 

immune responses. Currently, prophylactic and therapeutic vaccines for infectious 

diseases and cancer based on these vectors are being developed. The prototypic 

vectors are derived from Sindbis virus, Semliki Forest virus, and Venezuelan 

equine encephalitis virus. Recombinant alphavirus particles carry the RNA that 

code for the replicase and the heterologous gene but lack the RNA that codes 

for the structural proteins. Consequently, infection of cells with recombinant 

alphavirus vectors will not result in productive replication and the virus will not 

spread beyond initially infected cells. 

Before giving an overview of the current (pre)clinical studies using alphavirus 

vectors we will briefl y introduce alphaviruses and their derived vector systems. We 

will illustrate the high effi cacy of alphavirus vectors in inducing immune responses 

by a more detailed description of our immunization studies using recombinant 

Semliki Forest virus for the treatment of human papillomavirus-induced cervical 

cancer. 

Alphaviruses

Alphaviruses are small, enveloped, positive-strand RNA viruses belonging to 

the family Togaviridae. The alphavirus genus comprises 27 different members 

including Semliki Forest virus (SFV), Venezuelan Equine Encephalitis virus (VEE) 
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and Sindbis virus (SIN), from which vector systems have been developed. SFV and 

SIN were originally isolated from mosquitoes. SFV is named after the Semliki Forest 

(Uganda) and SIN after the Egyptian village Sindbis1. VEE was fi rst recognized as 

the causative agent of infectious equine encephalomyelitis in Venezuela.

Alphaviruses are naturally transmitted by mosquitoes to vertebrates, and in turn 

back to mosquitoes1. In vertebrate cells, virus infection results in the rapid shutoff 

of host mRNA translation, take over of the translational machinery by viral mRNAs, 

production of high titres of infectious virus and eventually cell death by apoptosis. 

In mosquito cells virus replication is slower and often has minimal effects on the 

cell. Natural vertebrate hosts are avian and mammalian species. Although there is 

a risk of infection, alphaviruses are not major pathogens to humans. The spectrum 

of alphavirus disease in humans ranges from silent asymptomatic infections or 

undifferentiated febrile illness (SFV) and mild polyarthritis (SIN) to encephalitis 

(VEE). The incidence in humans is very low. Nonetheless, especially for vectors 

derived from VEE, biosafety features in the vector system are essential to prevent 

formation of infectious virus. Yet, also for vector systems derived from SFV and 

SIN these biosafety aspects are incorporated, as will be explained below.

Alphavirus structure 

As the structure of SIN and SFV has been studied in considerable detail, the 

information in this and the following paragraph is based on these two type-

specifi c members of the alphaviruses2. Alphaviruses are spherical particles with 

a diameter of 65-70 nm. The viral genome consists of a single stranded RNA 

genome surrounded by a capsid, together forming the nucleocapsid. The capsid 

is formed by a regularly arranged icosahedral (20-faced) shell composed of 240 

copies of one protein: the capsid protein. The nucleocapsid is enveloped by a 

lipid bilayer derived from the host-cell plasma membrane into which 240 copies 

of the glycoproteins, E1, E2 for SIN and E1, E2 and E3 for SFV, are inserted. The 

glycoproteins form 80 hetero-oligomeric spikes. Each spike consists of a trimer of 

E1/E2 heterodimers (SIN) or E1/E2/E3 heterotrimers (SFV)3. These polypeptide 

chains span the lipid bilayer and interact with the C protein. The spike-forming 

trimers projecting outward from the surface of the virus can be seen by electron 

microscopy (Figure 1). The alphavirus genome consists of a single RNA molecule 

of positive polarity which is capped and polyadenylated and serves directly as an 

mRNA once introduced in the host cell. It consists of two open reading frames 

(ORF). The fi rst ORF codes for the four non-structural proteins of the virus that form 

the replicase complex (nsP1-4). The second ORF encodes the structural proteins 

of the virus: the capsid (C) protein and the envelope proteins E2 (synthesized as 
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Figure 1. The SFV structure. The nucleocapsid (RNA and capsid together) is surrounded 
by a lipid bilayer membrane envelope into which viral spikes projecting outward from the 
surface of the virus are inserted (a). The viral spikes can be visualized in cryo-electronmi-
croscopy reconstruction images (b) (Panel A with permission from: Alberts B, Bray D Lewis 
J, Raff M, Roberts K, Watson JD: Molecular Biology of the Cell, third edition, 1994, Garland 
Publishing, pp. 274–279; Panel B by courtesy of S. Mukhopadhyay and J. Smit).

Figure 2. The wild-type SFV genome consists of two open reading frames; the fi rst of which 
encodes the four non-structural proteins that form the replicase complex, the second codes 
for the structural proteins.

a larger precursor P62 (SFV) or PE2 (for SIN)), 6K and E1, as shown in Figure 2. 

Alphavirus life-cycle and replication 

Alphaviral infection is initiated by binding of the viral envelope protein to a cell 

surface protein that serves as its receptor on the host-cell plasma membrane2. For 

SFV several proteins have been suggested as functional receptors and consistent 

with its broad host range, SFV is probably able to utilize a variety of surface 

receptors with varying affi nity. After binding, the virus enters the cell by clathrin-

mediated endocytosis and is transported to endosomes. The acidic pH within the 

endosomal compartment causes the viral spikes to mediate fusion between the 

viral and the endosomal membranes4;5. The nucleocapsid then is released into the 

cytosol, where uncoating of the nucleocapsid by ribosomes is followed by release 

of the viral RNA into the cytoplasm. After fusion with the endosomal membrane 

the viral glycoproteins are transported to lysosomes to be degraded6. Recently, 

the regulation of this intracellular transport mechanism was further characterized 

demonstrating that Rab7 (a small GTPase) is recruited to early endosomes, where 
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it forms distinct domains that mediate cargo sorting as well as the formation of 

late-endosome-targeted transport vesicles7. 

Alphavirus infection results in the shutoff of host proteins synthesis in favour 

of viral translation. Recently, McInerney et al.,8 demonstrated that for SFV the 

inhibition of host protein synthesis is due to the activation of the cellular stress 

response resulting in the formation of stress granules9. Stress granules (SG) are 

cytoplasmic domains into which mRNAs are sorted in response to phosphorylation 

of eukaryotic initiation factor eIF2-alpha, a key regulatory step in translation 

initiation. This mechanism enables stressed cells to shut down the expression of 

normal house-keeping genes to allow the selective expression of stress response 

factors. The mRNA is believed to be stored, pending either degradation or 

resumption of normal translation in the absence of stress. During SFV infection, 

SG formation is transient and occurs at the time of host shutoff, i.e., when the 

profi le of protein production changes from cellular to viral8. SFV-induced SGs 

dissolve in the vicinity of viral RNA as replication progresses.  

Viral replication begins with translation of the fi rst ORF, which codes for the 

four non-structural proteins nsP1, nsP2, nsP3 and nsP4 that make up the viral 

replicase. This replicase initially catalyses the formation of a full-length negative 

strand intermediate – the 42S RNA – from which more genomic RNA is produced. 

These genomic positive-strand RNA molecules are capped by the replicase at 

the 5’-end. Secondly, the replicase catalyses transcription of the second ORF to 

form a subgenomic 26S RNA molecule that codes for the structural proteins. This 

subgenomic RNA is replicated to large amounts, leading to a high production of 

the structural proteins. The newly synthesized capsid and envelope proteins follow 

separate pathways through the cytoplasm. The capsid protein, like the cytosolic 

proteins of the cell, is synthesized by ribosomes that are not membrane-bound. 

The newly synthesized genomic RNA and capsid protein are rapidly associated 

into new nucleocapsids in the cytosol. In contrast, the envelope proteins, like the 

plasma membrane proteins of the host cell, are synthesized by ribosomes that 

are bound to the ER. Rapidly after their synthesis P62 and E1 (SFV) or PE2 and 

E1 (SIN) form heterodimers. These future envelope proteins are inserted into 

the membrane of the ER, where they are glycosylated, transported to the Golgi 

apparatus, and then delivered to the plasma membrane. At a compartment after 

the trans-Golgi network, but prior to appearance at the cell surface, the P62 or PE2 

precursor is cleaved into the mature moieties E2 and E3. The viral nucleocapsids 

and envelope proteins fi nally meet at the plasma membrane. As a result of an 

interaction between the C proteins in the nucleocapsid and the cytoplasmic tail of 

E2, the nucleocapsid forms a bud whose envelope contains the envelope proteins 
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embedded in host-cell lipids. Finally, the bud pinches off and a free virus particle 

is released on the outside of the cell. The clustering of envelope proteins as they 

assemble around the nucleocapsid during viral budding excludes the host plasma 

membrane proteins from the fi nal virus particle.

Recombinant vector system based on alphaviruses

Alphavirus-based expression vectors have been constructed according to two 

fundamental designs. On the one hand replicon vectors, generating recombinant 

replicon particles that are limited to one round of infection and on the other hand 

double-genomic vectors that generate replicating recombinant virus. In both 

designs the recombinant RNA is self-replicating and expresses the foreign gene(s) 

at high levels. Yet, in the replicon system transgene expression is transient while 

in the replicating system transgene expression is more sustained. Next to replicon 

particles, alphavirus vaccines are being developed consisting of naked DNA/RNA 

replicons.

Replicon vectors

Using SIN, Xiong et al.10 were the fi rst to develop a replicon expression vector 

based on an alphavirus. Later on replicon vectors were developed using SFV and 

VEE virus11;12. The principles of the SIN and VEE replicon systems are in essence 

similar to the vector system based on SFV, which is described below. 

Liljeström and Garoff11 developed the SFV-based replicon vector system. The full-

length cDNA copy of the viral genome was cloned in a bacterial plasmid including a 

prokaryotic DNA-dependent RNA polymerase such that viral RNA can be transcribed 

in vitro. These RNA transcripts are fully infectious, i.e. introduction into cells suffi ces 

to initiate replication and a full infection cycle, resulting in virus formation. Next the 

alphavirus RNA replication and packaging machinery was adapted for expression 

of heterologous RNAs and proteins in animal cells. The structural proteins of SFV 

have been deleted and replaced with a polylinker into which foreign genes can 

be inserted (Figure 3). As the RNA is self-amplifi ed by the replicase complex, 

high level expression of the foreign gene is obtained. The helper vector(s) codes 

for the capsid and spike proteins (Figure 4). Recombinant SFV (rSFV) virus-like 

particles can be generated by cotransfection of cells with the recombinant RNA 

vector and a helper RNA vector (Figure 5). The RNA packaging signal is located 

in the non-structural region of the vector and absent on the helper vector. Thus, 

only the recombinant RNA is packaged into newly generated virus particles that 

are released from the packaging cell. This helper system provides a fi rst line 

of biosafety in that virus particles are formed that lack the genes encoding the 
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Figure 3. Schematic presentation of the wild-type SFV genome and the recombinant SFV 
vector. For use of alphaviruses as recombinant vector systems, the structural proteins are 
deleted and a gene of interest can be inserted.

Figure 4. Schematic presentation of pSFV helper constructs (see text).

structural proteins. For use in humans, increased biosafety can be obtained by 

the split helper system (Figure 4)13. Splitting the helper plasmid in two helper 

plasmids decreases the probability of formation of infectious, replication competent 

virus, as recombination between the two helper and the vector plasmids is highly 

unlikely. Since the RNA encoding the structural proteins is not encapsidated, the 

recombinant particles that are generated undergo only one round of infection, 

being unable to produce progeny virus. These rSFV particles are therefore also 

termed “suicide” particles. Upon infection, the recombinant RNA is expressed to 

high levels, including the gene of interest that is inserted into the multiple cloning 

site. Expression is transient as infected cells undergo apoptotic cell death.

More recently it was shown that by the introduction of a translational enhancer 
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Figure 5. Schematic representation of the production of recombinant SFV. In vitro, cells 
are electroporated in the presence of recombinant SFV RNA and helper RNA(s). Upon intro-
duction of these RNAs into the cytoplasm of cells the RNAs are replicated and translated as 
described in the text. Subsequently, the viral recombinant RNA (which contains a packaging 
signal) associate with the capsid protein. The RNA-capsid complex assembles at the cellular 
membrane with spike proteins forming recombinant virus particles that are released by the 
cell.

element in the SFV vector system the expression of the foreign gene can be 

strongly enhanced. This enhanced vector contains the fi rst 34 amino acids of 

the SFV capsid gene and the foot and mouth disease virus (FMDV) 2A protease 

downstream of the 26S promoter. Foreign genes are cloned in frame with this 

translational enhancer element, which results in enhanced translation of the gene. 

The FMDV protease is included so that the enhancer element is cotranslationally 

removed from the foreign protein. Expression levels in cells transfected with these 

“enhanced” rSFV particles are up to 10-fold higher than those transfected with 

the standard rSFV particles14. Although the mechanism of the enhancement is 

not entirely clear it was demonstrated that translation is only enhanced in the 

presence of intact eIF2-alpha (translation initiation factor) phosphorylation; these 

cells form stress granules upon SFV infection (see above). The authors suggest 

that the SFV translational enhancer counteracts the translation inhibition imposed 

by eIF2-alpha posphorylation8.   
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Replicating vector systems

Next to these suicide replicon vectors, replicating vectors based on alphaviruses 

are being developed that allow more prolonged gene expression. In the fi rst type 

of replicating vectors the transgene is placed under the transcriptional control of 

a duplicate 26S promoter inserted within the 3′ nontranslated region of the viral 

genome or within the short nontranslated region located just upstream of the 

native 26S promoter15. Since double-subgenomic vectors retain all viral genes, 

they are capable of multiple rounds of infection and result in a more sustained 

transgene expression. Yet, eventually also with these vectors gene expression is 

transient as, similar to the replicon particles, cells infected with these replicating 

virus particles die and the virus is cleared by the immune system. As replicating 

vectors may be of great value for future (immuno)therapy of cancer or infectious 

diseases several other strategies are being investigated to generate replicating 

alphavirus vectors16-19. Yet, as the number of studies using replicating virus is 

limited so far, we will, in the next paragraphs, focus on the use and applications of 

replication-defective replicon particles. 

Immunization strategies based on alphavirus vectors

Prophylactic vaccination against infectious diseases in general aims at the induction 

of humoral immune responses to prevent infection. This humoral immune response 

is mediated by plasma cells, i.e. antibody-producing B cells. On the other hand, 

therapeutic immunisation against infected cells and tumour cells requires the 

induction of cytotoxic T lymphocytes (CTL) that can specifi cally recognise and 

lyse infected cells or tumour cells. For the differentiation, expansion and memory 

induction of plasma cells and tumour- or microbe-specifi c CTLs, T helper cells (Th 

cells) are required. And, as key orchestrators in these processes of both humoral 

and cellular immune responses, properly activated antigen-presenting cells, 

dendritic cells (DCs) in particular, are essential.

Characteristics of alphavirus-based immunization strategies

Vectors based on alphaviruses are gaining increasing interest because of their 

superiority over other viral vectors with respect to the induction of both humoral 

and cellular immune responses. This superiority can be ascribed to several features 

of alphavirus-based immunization strategies but presumably lies in the combined 

effects of these features. Characteristics that make alphaviruses attractive 

candidates for development of replication-defective viral vectors for application 

in humans are that (i) recombinant alphaviruses induce high-level expression 

of encoded proteins, (ii) after 48-72 h of protein expression infected cells die by 
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apoptosis resulting in apoptotic bodies containing high levels of the transgene 

protein which may be very benefi cial for the induction of immune responses via 

cross-priming20, (iii) recombinant alphaviruses activate both the innate and the 

adaptive immune system. Infection of cells results in dsRNA intermediates that 

are known for their immunopotentiating capacity21. dsRNAs can be recognized 

by innate immune receptors such as Toll-like receptor 3 and trigger production 

of Interferon type I, while, in addition, dsRNAs activate and induce maturation 

of DCs22, (iv) humans in general do not carry neutralizing antibodies against 

SIN or SFV that may decrease the effi cacy of the immunization. In addition, 

Berglund et al.23 demonstrated that upon immunization of mice with rSFV the 

immune responses against the SFV vector itself did not disable boost responses 

by subsequent immunizations with the same vector. 

With respect to the delivery of encoded protein antigen to DCs for MHC class 

I and MHC class II processing and presentation one can envision two alternative 

mechanisms: (i) recombinant alphaviruses transfect DCs directly thereby inducing 

synthesis of the encoded antigen in the cytosol followed by MHC processing and 

presentation (direct priming) or (ii) the recombinant virus particles transfect other 

cell populations. When these cells, due to the infection, undergo apoptotic cell death 

they could serve as a source of apoptotic bodies containing substantial amounts 

of the expressed antigen. Dendritic cells have been shown to take up apoptotic 

bodies and to effi ciently present the enclosed antigens on MHC class I molecules 

in a process of so-called cross-priming24. In this respect rSFV, rVEE and rSIN differ 

in their natural cell tropism. While rVEE and rSIN readily transfect murine DCs25-27, 

rSFV does not20;28. Studies with monocytes, macrophages and DCs from various 

origins, including human and murine DCs, revealed that rSFV has a very limited 

capacity to transfect these cell types in vitro20. To further investigate whether 

rSFV in vivo transfect professional antigen-presenting cells directly or whether 

the antigens reach these cells via cross-priming we compared the immunological 

effects of rSFV-constructs encoding different forms of Human Papillomavirus 

(HPV) E6 and E7 or infl uenza nucleoprotein20;29. These constructs differed in the 

amount of protein produced per cell or in the stability of the protein. We found that 

the induction of CTLs appeared to benefi t from a large amount of stable antigen. 

In contrast, rapid antigen degradation, and thus availability of antigenic peptides 

in the transfected cell, was found to be disadvantageous. Based on these in vitro 

and in vivo results, we hypothesize that antigen presentation after SFV-based 

immunization proceeds via a mechanism in which antigen-presenting cells are not 

transfected directly but acquire antigen from other transfected cells and present it 

to CTLs in a process of cross-priming (Figure 6). Recently, Chen et al.,30 confi rmed 
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Figure 6. Schematic presentation of our hypothesis on the mechanism of antigen pre-
sentation after SFV-based immunization. Antigen-presenting cells (DC) are not transfected 
directly but acquire antigen from other transfected cells and present it to CD4+ and CD8+ 
T cells in a process of cross-priming. This process results in the generation of CTLs that can 
recognize tumour cells or virally infected cells expressing peptide epitopes of the recombi-
nant protein as produced by rSFV.

that infection of DCs with SFV in vitro is very ineffi cient. Interestingly, in this study 

on the role of MyD88 on the presentation of antigen derived from virally infected 

cells, these authors provide further proof that cross-priming indeed is the main 

mechanism by which immunity to an SFV replicon is generated. 

Despite the difference in tropism for DCs between SIN and VEE, on the one 

hand and SFV on the other hand, immune responses elicited upon immunization 

with these recombinant alphaviruses in general is comparably effi cient, yielding 

high levels of antigen-specifi c CTL and anti-tumour or anti-viral responses. As it is 

to be expected that rVEE and rSIN, similar to rSFV also infect cells other than DCs 

resulting in cross-priming of antigen, it remains to be established if the immune 

response elicited with rVEE and rSIN is a consequence of direct priming of DCs or 

of cross-priming or perhaps of a combination of both routes.

Wahlfors et al.,31 evaluated the utility of both SIN and SFV vectors in comparison 

to each other and to other vector types on different target cells. In general, 

SFV appeared to have a higher transduction effi ciency than SIN. However, high 

transduction effi ciency turned out to be not necessarily accompanied by a high 

transgene expression: the rate of transgene expression was identical for both 
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viruses. These authors also compared alphaviral (SIN) vectors with adenoviral 

and retroviral vectors by transduction of several cell lines with these vectors 

carrying human clotting factor IX cDNA. The concentration of hFIX in the cell 

medium was followed for four days after transduction. SIN expression climbed 

rapidly to high level, followed by a quick drop, whereas retroviral and adenoviral 

expression initiated later and remained constant for a longer period of time (48h). 

This suggests that alphaviruses may be particularly valuable in situations that 

require rapid high-level but transient gene expression such as certain cancer gene 

therapies and vaccination.

Immunization strategies against infectious disease 

The effi cacy of rSFV expressing viral antigens has been evaluated in immunization 

studies in mice, guinea-pigs, monkeys and even in chicks. The antigens most 

extensively studied are the nucleoprotein and haemagglutinin of infl uenza virus23, 

several HIV and SIV antigens32;33, Human Papilloma virus (HPV) E6 and E7 

protein29;34-37, antigens from Louping Ill virus38, Respiratory Syncytial virus39;40, 

Tickborne Encephalitis virus39, Hepatitis C virus41 and Infectious Bursal Disease 

virus in chicks42. So far only a few studies have been reported on the use of rSFV 

immunizations against bacterial (Chlamydia pneumoniae43 and Brucella Abortus44) 

and parasitic diseases (Plasmodium Falciparum45;46). Similarly, rSIN and rVEE have 

been studied as vectors for the induction of immune responses against HIV and 

SIV47-50, HPV E751-54, Norwalk virus55, Equine Arteritis virus in horses56 Anthrax57, 

Staphylococcus58 and Mycobacterium tuberculosis59.

These immunizations aim to induce sterilizing and long-lasting immunity 

against the microbe and/or eradication of infected cells by inducing micro 

organism-specifi c antibodies and/or specifi c CTL responses. Although in general 

T cell responses, including CTL responses, are readily induced against antigens 

encoded by recombinant alphaviruses, humoral responses against the antigens 

are not always induced. Humoral responses have been reported against rSFV-

encoded nucleoprotein and hemagglutinin protein of infl uenza virus,23 and spike 

proteins of Louping ill virus38;60. Yet, in our own studies on rSFV expressing HPV16 

E6E7, in which we aim to induce strong CTL responses against HPV-infected 

cells, immunizations never resulted in detectable humoral responses against the 

E6 and E7 protein, using various E6E7 constructs and routes of immunization 

(as determined for us by Michael Pawlita, German Cancer Centre, Heidelberg, 

Germany). In a Chlamydia pneumoniae study43 in which SFV-MOMP and SFV-

Omp2 were evaluated, immunization resulted in detectable systemic Omp2 

antibody levels while no MOMP-specifi c antibodies were induced. Despite this 
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difference in humoral response, both constructs induced similar antigen-specifi c 

T cell responses and similar levels of (partial) protection against a challenge 

with Chlamydia pneumoniae. Similarly, although T cell responses and (partial) 

protection were induced, no antibodies could be raised against the non-structural 

protein 3 of hepatitis C virus41, SIV antigens33 and Brucella abortus superoxide 

dismutase44 encoded by rSFV and HIV-1 Gag encoded by rSIN47. 

Although for several immunization strategies the induction of humoral responses 

is not essential to confer protection as long as cellular immunity is induced, in the 

malaria studies of Chen et al.46 the aim is to specifi cally induce antibodies that 

disrupt rosettes and protect against the sequestration of Plasmodium falciparum-

infected erythrocytes. Therefore, these authors generated an SFV construct which 

generates proteins that are expressed extra-cellularly but anchored to the cell 

membrane by a transmembrane domain. In this way the antigen is displayed at 

the eukaryotic cell surface as is the native protein on the infected RBC surface. 

A prime-boost immunization regime of rSFV (prime) and recombinant protein 

(boost) resulted in antibody levels with rosette-disrupting activity.

In conclusion, the induction of humoral responses upon immunizations with 

alphaviral vectors varies a great deal depending on the antigen, the processing 

and presentation of the antigen and the immunization route. Nonetheless, in most 

studies, strong cellular immune responses are induced that result in (partial) 

protection against specifi c micro organisms. Further studies will have to elucidate 

if the humoral responses that in some models are induced against alphavirus-

encoded antigens are indeed responsible for the observed protection or if cellular 

immunity that in general is also induced is the main effector mechanism. 

Immunization strategies against tumors

Tumor vaccines based on alphaviruses are in general designed to stimulate or 

augment an immune response against existing tumor cells. The effi cacy of rSFV 

has been evaluated in a limited number of preclinical tumor models, including 

melanoma (MAGE-3,61 and mammary tumor (Neu)62). Yet, most of the work on 

the use of SFV vectors as tumor vaccines has concentrated on two mouse models 

of human tumors, which both are weakly antigenic and express known tumor-

associated antigens. The fi rst tumor model tested was the P815 mastocytoma 

tumor in mice63,64, which expresses a weak tumor rejection antigen. Administration 

of rSFV expressing variants of the P815 antigen resulted in induction of strong cell-

mediated immune responses against the tumor antigen. Vaccinated mice were 

protected against tumor challenge, or, when vaccinated therapeutically, showed 

inhibition of tumor growth or even total regression of the tumor. The second tumor 
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model used in alphaviral immunization studies is HPV-induced cervical cancer. In 

the next paragraph we will focus on our own studies using rSFV for therapeutic 

immunization against cervical cancer. Similar studies are being performed using 

rVEE, and rSIN as vectors51;52.

Cervical cancer is the third most common cancer among women worldwide. 

It is caused by infection with high-risk Human Papillomavirus (HPV), in particular 

types 16, 18, 31, 33 or 45. High-risk HPVs have the capacity to transform cervical 

epithelial cells by integrating the open reading frames encoding the viral early 

proteins E6 and E7 into the host cell genome. This integration may lead to 

constitutive overexpression of E6 and E7, mediating transformation of the cells to 

a malignant phenotype. Since the continued production of E6 and E7 is required 

for the maintenance of the transformed phenotype, E6 and E7 in fact represent 

tumor-specifi c antigens in cervical carcinoma and premalignant HPV-transformed 

cells. As a consequence, E6 and E7 are potential targets for immunotherapeutic 

intervention strategies involving induction or stimulation of cytotoxic T lymphocyte 

(CTL) activity against HPV-transformed cells.

We initially demonstrated that immuniza tion of mice with rSFV particles 

encoding HPV16 E6 and E7 resulted in a potent HPV16-specifi c CTL and anti-

tumor response34. However, we were unable to induce full tumor protection. We 

next generated a construct in which the stop codon between E6 and E7 was 

removed and one base pair was inserted between the genes of E6 and E7 resulting 

in a construct that codes a stable fusion protein of E6 and E7. In addition, a 

translational enhancer was included to induce a high production of the fusion 

protein. The CTL response and anti-tumor activity induced by this so-called SFV-

enhE6,7 virus appeared much stronger compared to the responses induced with 

rSFV, producing the separate E6 and E7 proteins29. Tumor treatment experiments, 

clearly demonstrated the high potency of the vector (Figure 7). Exponentially 

growing tumors of approximately 500 mm3 in size were seen to completely resolve 

and even some tumors as large as 1500 mm3 decreased to one third of their 

size35;36. Considering that a tumor nodule of 1000 mm3 contains approximately 109 

cells, this implies that in the latter situation, i.e. a tumor decreasing 1000 mm3 

in volume, the CTLs generated, manage to kill 109 cells in a one-week period. An 

other important aspect of our immunization approach is the induction of a long-

term immune response, i.e. memory response  is induced which even half a year 

after immunization mice can eradicate s.c. inoculated tumors. 

Enhancement of CTL induction upon immunization with a vector encoding a 

more stable protein may seem inconsistent with several excellent studies in which 

MHC class I presentation has been demonstrated to be potentiated by enhanced 
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Figure 7. Effi cacy of SFV-enhE6,7 immunization on regression of established tumours. Mice 
were inoculated s.c. in the neck with 2×104 TC-1 cells. Subsequently, mice were immunized 
and boosted i.v. with 5×106 SFV-enhE6,7 at days 7, 14 and 21 (n = 7; panel B), at days 14, 
21, 28 (n = 7; panel C) after tumour inoculation.
As control, mice were injected i.v. with PBS (n = 10, panel A) at days 7, 14 and 21. Tumour 
measurements were initiated 10–14 days after tumour challenge and subsequently measu-
red twice weekly. Given is the tumour volume of individual mice. The percentages indicate 
the percentage of tumour-free mice for each treatment at day 70 after tumour inoculation.

degradation of antigen. However, the explanation lies in the cross-priming 

pathway through which antigen is presented upon injection of rSFV, as described 

in a previous section. For cross-priming, the recombinant proteins to be presented 

should be stable for the time that is required for the entire process of infection 

of cells through uptake by APCs. Although RNA replication and translation occur 

within 6 hr after infection, dying of the infected cells by apoptosis takes another 

24 to 72 hr. It therefore takes at least 24 hr after production before the protein 

gradually becomes available for APCs to be presented. Thus, the balance between 

stability and rate of degradation of the protein appears to determine the effi ciency 

of antigen presentation.  

In cervical cancer patients, HPV-specifi c CTL activity is generally low (Visser JTJ 

et al. 2005 Int J Cancer, in press), suggesting that they have mounted a certain 

degree of immunological tolerance or ignorance for the HPV-derived antigens. 

We recently studied whether SFV-expressing HPV16 E6 and E7 is potent enough 

to also prime a cellular immune response in immune-tolerant HPV-transgenic 

mice, in which CTL activity can not be induced using protein or DNA vaccines. We 

demonstrated that, depending on the route of immunization, SFV-enhE6,7 indeed 

has the capacity to induce HPV16 E7-specifi c cytotoxic T cells in HPV-transgenic 

mice37. Clearly, although the mechanism and kinetics of tolerance in this mouse 

model differ from that in humans, these studies demonstrate the potency of 

alphaviral vectors for immunization purposes.
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Clinical studies using alphavirus vectors

Until recently, alphavirus vector systems had not been used in human clinical 

studies. In 2003, a human trial among 40 volunteers has been performed in the 

area of HIV vaccine development (HIV Vaccine Trials Network (HVTN)). This study 

involved the use of a vector system based on VEE. The vaccine was well tolerated 

and no serious adverse events have been identifi ed. In 2004/2005 another 96 

volunteers were included in a multi centre dose-escalation study. Several rSFV 

applications will be evaluated in clinical trials in the near future. The European 

Vaccine Effort Against HIV/AIDS (Eurovac) will conduct human clinical studies using 

rSFV vectors encoding HIV-1 subtype C gag, pol, nef and env genes. 
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ABSTRACT

Previously, we described the effi cacy of immunisation with recombinant Semliki Forest virus 
(SFV), expressing the human papillomavirus 16 (HPV) oncoproteins E6 and E7, in inducing 
HPV-specifi c CTLs and anti-tumour responses. Recently, we developed a novel recombinant 
SFV construct encoding a relatively stable fusion protein of HPV16 E6 and E7 under control 
of a translational enhancer derived from the SFV capsid protein. In the present study we 
demonstrate that immunisation of tumour-bearing mice with this improved vector results in 
the regression and complete elimination of established tumours. We furthermore demonstrate 
that a long-term high level of CTL activity, up to 340 days, accompanies the anti-tumour 
response. Thus, immunisation with recombinant SFV particles encoding increased levels of a 
fusion protein of HPV16 E6 and E7 effi ciently induces CTL activity and CTL memory resulting 
in a potent therapeutic anti-tumour effect.   

INTRODUCTION

After breast cancer, cervical cancer is the most common cancer in women worldwide. 

The association of high-risk human papilloma virus types (HPV) with cervical 

neoplastic lesions is very strong, independent of other risk factors. High-risk HPV 

prevalence in developed countries is as high as approximately 50% at an age of 20-

30 years decreasing to less than 5% at an age of 50-60 years1,2. Yet, only a small 

fraction of HPV-infected women will eventually develop cervical cancer. Induction 

of cellular immunity seems to play an important role in clearing the HPV infection, 

as immunocompromised individuals are at increased risk of anogenital neoplasia3. 

Although cellular and humoral responses against HPV antigens can be observed in 

patients with pre-invasive and invasive cervical carcinoma lesions, these responses 

apparently do not suffi ce to effectively eliminate HPV and HPV-transformed cells4. 

Several studies have shown that immunisation with the early protein E7 of HPV 16 

results in the induction of CTL and anti-tumour responses in murine tumour models. 

In general, vector-based vaccines result in stronger immune responses compared 

to immunisations using whole protein or peptide emulsifi ed in adjuvants5,6,7. We 

are exploiting an alphavirus vector system based on Semliki Forest virus (SFV) to 

induce a cellular immune response against HPV-transformed tumour cells8. In a 

previous study in mice, we have demonstrated that indeed an HPV-specifi c immune 

response can be induced upon administration of recombinant SFV expressing 

HPV16 E6 and E79. Subsequently, we generated a novel construct encoding both 

a translational enhancer and a fusion protein of E6 and E710. Infection of cells with 

this SFV vector (SFV-enhE6,7) gives rise to the enhanced production of a fusion 

protein of E6 and E7. The fusion protein is more stable than the E6 and E7 proteins 

separately as demonstrated by pulse-labelling experiments. Immunisation of mice 
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with SFV-enhE6,7 resulted in more potent CTL responses compared to immunisation 

with SFV expressing the separate proteins. In the present study we determined 

whether the enhanced immune response observed upon SFV-enhE6,7 immunisation 

is able to eradicate pre-existing tumours. Furthermore, we determined the effect of 

immunisation with SFV-enhE6,7 on long-term tumour protection and long-term CTL 

activity.

MATERIALS AND METHODS

Cell lines

Baby hamster kidney cells (BHK-21) were obtained from the American Type Culture 

Collection (# CCL-10). The cells were grown in GMEM (Life Technologies, Paisley, 

UK) containing 5% foetal calf serum (PAA laboratories, Linz, Austria). C3 cells, 13-2 

cells and TC-1 cells were kindly provided by Dr. C. Melief and Dr. R. Offringa (Leiden 

University, The Netherlands). The C3 cell line was derived from C57BL/6 (H-2b) 

embryonic cells transfected with a plasmid containing the complete HPV16 genome11. 

The 13-2 cell line was generated from C57Bl/6 (H-2b) embryonic cells transfected 

with the E1-region of adenovirus type 5 in which the adenoviral E1A epitope 

SGPSNTPPEI is replaced by a HPV16 E7 CTL epitope, AA 49-57 (RAHYNIVTF)12. 

The TC-1 cell line was generated from C57Bl/6 primary lung epithelial cells with a 

retroviral vector expressing HPV16 E6E7 plus a retrovirus expressing activated c-Ha-

ras13. C3, 13-2 and TC-1 cells were grown in IMDM (Life Technologies) supplemented 

with 10% foetal calf serum. Both media contained penicillin and streptomycin (Life 

Technologies; 100 U/ml and 100 µg/ml, respectively). 

Mice

Specifi c-pathogen-free female C57Bl/6 mice (Harlan CPB, Zeist, The Netherlands) 

were between 6 and 10 weeks of age at the start of the immunisation protocols. 

 

Production and purifi cation of recombinant SFV particles

pSFV-Helper 2 was kindly provided by Dr. P. Liljeström (Karolinska Institute, 

Stockholm, Sweden). pSFV3 was obtained from Life Technology. The HPV16 E6 and E7 

genes were obtained from the plasmid pRSV-HPV16E6E7, which was kindly provided 

by Dr. J. Ter Schegget (Amsterdam Medical Center, Amsterdam, The Netherlands)14. 

In this plasmid the HPV16 E6 and E7 genes are present in tandem, with a stop codon 

after the E6 gene. The construction of PSFV3-enhE6,7 is described in detail before10. 

In short, in pSFV3-enhE6,7 one base pair is inserted between E6 and E7 and the 

stop codon TAA of E6 is changed in GAA while furthermore a sequence encoding a 
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translational enhancer is cloned in front of the E6,7 fusion construct. Thus, pSFV3-

enhE6,7 encodes an enhanced expression of a fusion product of E6 and E7.

The pSFV3-enhE6,7, pSFV3-LacZ (Life Technologies) and the pSFV-Helper 2 

plasmids were isolated using the Qiagen midi plasmid purifi cation kit and linearised by 

digestion with SpeI (Life Technologies). RNA was synthesised from the linearised DNA 

by in vitro transcription using SP6 RNA polymerase (Amersham Pharmacia Biotech. 

Inc., Piscataway, NJ, USA). Capping analogue was obtained from Life Technologies. 

Fifteen µg SFV3-enhE6,7 or SFV3-LacZ  and 7.5 µg SFV-Helper  2 RNA were admixed 

and cotransfected into 8x106 BHK cells in 0.8 ml GMEM by electroporation using 

the Biorad Gene PulserRII (two pulses of 850 V/ 25 µF; Biorad, Hercules, CA, USA). 

After pulsing, the cells were suspended in 10 ml GMEM and cultured for 36 hr at 

37oC and 5% CO2.  The medium, containing the SFV-E6E7 or SFV-LacZ particles was 

centrifuged twice in a JA 20 rotor (Beckman, St. Paul, MN, USA) at 1800 rpm (i.e. 

40,000xg at rmax) to remove cells and cellular debris.  

The SFV particles were purifi ed on a discontinuous sucrose density gradient (2 ml 

of a 15% sucrose solution (w/v) and 1 ml of a 50% sucrose solution (w/v) in TNE-

buffer (50 mM Tris-Cl, 100 mM NaCl, 1mM EDTA, pH 7.4)). Virus was collected from 

the interface. Sucrose was removed from the virus solution by overnight dialysis 

against TNE-buffer. The virus suspension was concentrated approximately 10-fold 

(Centricon 30 fi lter; Millipore, Bedford, MA, USA), quickly frozen in N2 and stored in 

aliquots at -80oC. 

Before use, SFV particles were incubated with 1/20 volume of α-chymotrypsin 

(10 mg/ml; Sigma Chemical Co., St. Louis, MO, USA) for 30 min at   room   temperature 

to cleave the mutated viral E2 spike protein. Subsequently, α-chymotrypsin was 

inactivated by the addition of 0.5 volume of aprotinin (2 mg/ ml; Sigma Chemical 

Co.).

Titer determination of SFV particles

Recombinant SFV particles were titrated by serial dilution on monolayers of BHK 

cells. After infection and overnight incubation the cells were fi xed for 10 minutes in 

10% acetone and stained using a polyclonal rabbit anti-replicase (nsP3) antibody (a 

kind gift from Dr T. Ahola, Biocentre Viiki, Helsinki, Finland) as primary antibody and 

FITC-labelled goat-anti-rabbit IgG as a secondary antibody (Southern Biotech. Ass., 

Birmingham, AL, USA). Positive cells were counted and the titer was determined 

after correcting for the dilution factor and the dilution caused by the activation and 

the volume of particles added.
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Tumour treatment experiments

Mice were inoculated s.c. in the neck with 2x104 TC-1 cells suspended in 0.2 ml Hanks 

Buffered Salt Solution (Life Technologies). Subsequently, mice were immunised and 

boosted s.c. in the fl ank with 5x106 SFV-enhE6,7 particles,  5x106 SFV-LacZ particles 

or phosphate-buffered saline (PBS, pH 7.4) starting at days 2, 7 or 14 after tumour 

inoculation. Tumour measurements were always perfpormed blindly by the same 

skilled technician. At a tumour volume of approximately 1000 mm3, the mice were 

sacrifi ced.

Mice that cleared the tumour in the tumour treatment experiments as described 

above were rechallenged s.c. in the neck with 2x104 TC-1 cells three months after 

the initial tumour challenge without additional immunisations. Since all control PBS-

treated mice developed a tumour upon the initial tumour challenge, in the rechallenge 

experiments age-controlled naive mice were included.

 

CTL assay 

At several time points after s.c. immunisation in the fl ank and/or s.c. tumour 

inoculation in the neck, spleen cells were isolated and cocultured with irradiated (100 

Gy) TC-1 cells in a ratio of 25:1, in 25 cm2 culture fl asks, placed upright. After one 

week in culture, cells were harvested and a CTL assay was performed by a standard 

4-hr 51Cr release assay in triplicate determinations. Target cells were labeled for 1 

h with 3.7 MBq 51Cr/106 cells in 100 µl medium (51Cr was from Amersham, London, 

UK). The mean percentage of specifi c 51Cr-release of triplicate wells was calculated 

according to the formula: % specifi c release = [(experimental release-spontaneous 

release)/(maximal release-spontaneous release)] cpm x 100. The spontaneous 
51Cr-release was always <15%. The standard errors of the means of the triplicate 

determinations were <10% of the value of the mean.

RESULTS

Therapeutic immunisation against HPV transformed tumours with SFV-

enhE6,7

In a previous study we demonstrated that immunisation of mice with SFV-enhE6,7 

resulted in strong, long-lasting HPV-specifi c CTL responses as determined in bulk 

CTL assays and CTL precursor frequency assays (Interferon-gamma Elispot)10. We 

furthermore demonstrated that immunisation with SFV-enhE6,7 particles results 

in prevention of tumour outgrowth and subsequent protection against tumour re-

challenge. In the present study we determined the effi cacy of SFV-enhE6,7 in the 

eradication of established tumours. Mice were inoculated s.c. in the neck with 2x104 



62

Chapter 3

TC-1 cells and subsequently immunised with SFV-enhE6,7 particles. All control mice, 

either injected s.c. with PBS or with recombinant SFV expressing LacZ, developed 

tumours within 14 days after tumour inoculation (Figure 1, panels A and B; Figure 2). 

In 40% of mice immunised and boosted on days 2 and 7 with SFV-enhE6,7 a small 

tumour nodule, less than a pin-head, could be felt (Figure 1, panel C; Figure 2). These 

mice were boosted on day 14 and from day 17 on all mice became and remained 

tumour-free until three months after tumour inoculation at which time point the 

mice were rechallenged, as described below. All mice immunised s.c. on days 7, 14 

and 21, developed a palpable tumour at day 14 after tumour inoculation. At day 21, 

in 87% of the mice no tumour could be palpated anymore. Ultimately, 13 of 21 mice 

were tumour-free three months after tumour inoculation (Figure 1, panel D). When 

immunisation was initiated on day 14 after tumour inoculation tumours initially grew 

very fast, comparable to tumours in control mice. However, upon immunisation, 

tumours as large as 650 mm3 regressed to undetectable levels (Figure 1, panel E). 

At later time point, as late as 10 weeks after inoculation, some of these undetectable 

tumours started to grow again. Ultimately, in this group of mice 2 of 6 mice were 

tumour-free. 

Figure 1. Growth and regression of HPV-transformed tumours upon treatment with SFV-
enhE6,7. Mice were inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently, mice were 
immunised and boosted s.c. with 5x106 SFV-enhE6,7 particles at days 2, 7 and 14 (n=7; panel 
C) at days  7, 14 and 21 (n=21; panel D) or at days 14, 21, 28 (n=6; panel E) after tumour 
inoculation. As control, mice were injected s.c. with 5x106 SFV-LacZ particles (n=5; panel B) 
or with PBS (n=13, panel A) at days 2, 7 and 14. Tumour measurements were initiated 10-
14 days after tumour challenge and subsequently measured twice weekly.  Shown are the 
results of three separate experiments. Given is the tumour volume of each individual mouse. 
The percentages indicate the percentage of tumour-free mice for each treatment at day 84 
after tumour inoculation. At a tumour volume of approximately 1000 mm3, the mice were 
sacrifi ced.
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Mice are protected against a tumour rechallenge 3 months after the initial 

challenge and immunisation with SFV-enhE6,7.

In one experiment, all mice that were tumour-free after the initial challenge, were 

rechallenged three months later without additional immunisations. Since all control 

mice initially challenged developed a tumour, age-matched control mice were included 

in the rechallenge experiment. All control mice again developed a detectable tumour 

within 14 days after tumour inoculation (Figure 3). Twelve of thirteen mice that were 

entered in the rechallenge experiment did not develop a detectable tumour up to 12 

weeks after rechallenge, i.e. 25 weeks after the fi rst tumour challenge. In contrast 

to the fi rst tumour challenge, when most mice, dependent on the time of initiation 

of immunisation, developed a detectable tumour within 14 days after tumour cell 

inoculation, no tumours were detected at this time point in the rechallenged mice. 

The memory CTL response as observed above might be blurred by the fact that 

these mice were not only immunised with SFV-enhE6,7 but had also been challenged 

once or twice with TC-1 tumour cells. We therefore performed a control experiment 

in which CTL activity was determined in mice that had been immunised with SFV-

enhE6,7 particles and/or challenged with 2x104 TC-1 tumour cells. Two groups of 

each three mice were inoculated with tumour cells on day 0. Fourteen days after 

Figure 2. Treatment of established HPV-transformed tumours with SFV-enhE6,7. Mice were 
inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently, mice were immunised and 
boosted s.c. with 5x106 SFV-enhE6,7 particles at days 2, 7 and 14 (n=7; black squares), 7, 14 
and 21 (n=21; grey squares) or 14, 21, 28 (n=6; white squares) after tumour inoculation. As 
a control, mice were injected s.c. with 5x106 SFV-LacZ particles (n=5; open diamonds) or PBS 
(n=13; open circle) at days 2, 7 and 14. Tumour measurements were initiated 10-14 days after 
tumour challenge and subsequently measured twice weekly. Shown are the results of three 
separate experiments. Given is the percentage of tumour-free mice. 
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inoculation all mice had developed a small tumour. One group was then immunised 

once with 5x106 SFV-enhE6,7 particles s.c. the other group was injected s.c. with 

PBS. The third group of three mice was injected on day 0 with PBS and on day 14 

with 5x106 SFV-enhE6,7 particles s.c..  As a control one mouse was injected with PBS 

on days 0 and 14. On day 21 tumour volumes were determined in mice inoculated 

with tumour cells and spleens from all mice were isolated to perform a CTL assay.  

The CTL responses in non-tumour bearing mice ranged between 40% and 65% 

at an effector to target ratio of 30:1. In mice inoculated with tumour cells without 

immunisation no CTL activity was detectable, strongly suggesting that the tumours 

which were between 65 and 1414 mm3 at the time of CTL analysis do not induce an 

HPV specifi c CTL response. In addition, tumour growth does not potentiate the CTL 

response already induced upon immunisation with SFV-enhE6,7 as the percentages 

of tumour cells lysis of tumour-bearing immunised mice were as high as those 

obtained in mice immunised only.

Memory CTL activity in mice immunised with SFV-enhE6,7 particles and 

(re)challenged with tumour cells.

The observation that none of the immunised mice rechallenged 3 months after 

immunisation developed a small, but detectable tumour nodule two weeks after 

rechallenged suggests that HPV-specifi c memory CTLs or CTL precursors are still 

present at this time point. A fast and powerful antitumour response is apparently 

able to kill rechallenged tumour cells in a short time period. In a next experiment 

Figure 3. Effect of immunisation with SFV-enhE6,7 on a tumour-rechallenge 12 weeks after the 
initial tumour challenge and immunisation. Mice that cleared the tumour in one of the tumour 
treatment experiments as described in fi gure 2 were rechallenged with 2x104 TC-1 cells three 
months after the initial tumour challenge without additional immunisations. Since all control 
PBS-treated mice developed a tumour upon the initial tumour challenge, in the rechallenge 
experiments age-controlled naive mice (n=4) were included. Given is the percentage of 
tumour-free mice.
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Table 1. CTL activity as determined up to 340 days after immunisation with SFV-enhE6,7

Dosea

Day of 
tumour 

inoculation

Days of 
immunisation

Day of 
tumour 

challenge

Day of 
tumour 

re-
challenge

Day 
of CTL 

analysisb

% specifi c cytolysis
(number of mice)c

1x106 0-10-22 29 200 340 61 (1)

1x106 0-15-31 38 130 270 64 (2) 

5x106 0-15-31 38 130 270 61 ± 2 (3)

5x106 0 2-7-14 93 184 52 ± 12 (5)

5x106 0 7-14-21 93 184 63 ± 2 (4)

5x106 0 14-21-28 93 184 50 (2)

5x106 0 7-14-21 - 140 64 ± 1 (3)

aMice were immunised s.c. and boosted twice s.c. with purifi ed 1x106 or 5x 106 SFV-enhE6,7 
either before  tumour (re)challenge or after tumour inoculation according to the scheme given 
above.  
bCTL activity was determined 140 to 340 after the initiation of the experiment. After 7 days 
in vitro restimulation the resulting effector cells were tested for cytolytic activity against 13-2 
target cells in triplicate well assay. 
cShown are the mean levels of cytolysis and standard deviation of the indicated number of mice 
tested, at an effector to target ratio of 30 to 1. Since none of the control mice remained tumour 
free, two control naive mice were included in the CTL experiment. In these mice no CTL activity 
was detectable (not shown)

we therefore studied the CTL response in mice that were tumour free either in 

a preimmunisation experiment (in which mice were immunised before tumour 

inoculation)10 or in tumour treatment experiments. Since initially these were separate 

experiments the time-point of the CTL determination ranges between 140 and 340 

days after immunisation. In Table 1, the immunisation/tumour inoculation schemes 

are shown of the mice assayed for CTL activity. Independent on the immunisation 

scheme or dosage used, up to 340 days after immunisation a high level of CTL 

activity was still detectable in spleen cells. 
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DISCUSSION

Here were demonstrate the effi cacy of recombinant SFV-enhE6,7 in inducing a 

potent anti-tumour response. The experiments were conducted using TC-1 cells as 

developed by Wu and colleagues13. The model is very reproducible resulting in the 

development of s.c. growing tumours in all control mice within 2 weeks after tumour 

inoculation. In forty percent of mice immunised with SFV-enhE6,7 two days after 

tumour inoculation and boosted on days 7 and 14, small tumour nodules could 

initially (days 14-21) be palpated. Yet, the nodules disappeared in time and all mice 

remained tumour-free thereafter. The other sixty percent of mice eliminated the 

tumour already prior to the initiation of tumour palpation (day 14) and also remained 

tumour-free. Thus, immunisation resulted in rapid CTL induction able to effi ciently 

eliminate the fast-growing tumour. Tumour rechallenge of the mice demonstrated 

that 3 months after immunisation the immune response suffi ced to protect the mice 

from tumour growth. The decreased effi ciency of the late immunisation regimen 

(immunisation initiated 7-14 days after tumour inoculation) compared to the early 

immunisation regimen is can presumably be ascribed to the very fast growth of the 

tumour. Although most of the tumours initially regress, tumour growth at this time-

point outpaces the immune response, which has not reached its full strength at this 

point. Notably, all mice that eradicated the tumour when immunisation was initiated 

7 days after tumour inoculation, remained tumour-free upon a second tumour 

challenge 3 months later. In addition, CTL responses determined at very late time 

points after immunisation and tumour challenge demonstrate that up to 11 months 

after immunisation high levels of CTL activity could be determined.

In recent years several murine studies have been described demonstrating 

the in vivo anti-tumour effi cacy of several immunisation strategies against HPV-

transformed tumours. While in most of these studies mice were immunised prior 

to tumour inoculation12,14-18, only few studies report on therapeutic anti-tumour 

responses19-23. Partial prophylactic protection against tumour outgrowth was 

obtained upon immunisation with protein/adjuvant preparations, vaccinia virus and 

adenovirus-based vaccines. When this manuscript was in preparation, results were 

published on the effi cacy of another alphavirus vector system, Venezuelan Equine 

Encephalitis (VEE)24. Although the HPV tumour model used (C3 cells) differed 

from our tumour model system, the results were comparable to our results with 

SFV-enhE6,7.

Alphavirus expression systems based on suicidal virus particles derived from 

SFV, VEE and Sindbis virus effi ciently deliver heterologous genes, eliciting broad 

tumour-specifi c immune responses in animals, including primates24-29. Alphavirus 
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vectors are interesting and promising vectors since they infect a broad host 

range of cell types and there is no pre-existing  immunity against the vector 

in the majority of individuals. The strong immune responses induced against 

heterologous proteins expressed by these suicidal vectors is most likely elicited by 

cell death induced upon infection followed by the release of apoptotic bodies that 

can be taken up by antigen-presenting cells, thus enhancing cross-priming30,31.

In the present study we used an SFV vector expressing (SFV-enhE6,7) a fusion 

construct of E6 and E7 under control of a translational enhancer derived from 

the SFV capsid protein. As described (10), this construct elicits a much stronger 

immune response than a construct encoding E6 and E7 as separate proteins in the 

absence of the translational enhancer. We hypothesised that, due to the specifi c 

properties of the fusion protein and the elevated expression levels, SFV-enhE6,7 

gives rise to a signifi cantly improved processing and presentation of the antigen to 

immune effector cells. As mentioned above, upon infection with the SFV vector the 

recombinant antigen is most likely presented to the immune system in a process 

of cross-priming. Cellular debris from infected cells taken up by an APC will result 

in processing and presentation by both MHC class I and class II molecules. Thus, 

the recombinant proteins to be presented should be stable for the time that is 

required for the entire process of infection of cells through MHC presentation 

by APCs. Indeed we have demonstrated that the E6,7 fusion protein is more 

stable than the individual E6 and E7 proteins. Furthermore in the presence of 

the translational enhancer, which results in an approximately 10-fold increased 

production of recombinant protein per infected cell is expected to strongly 

facilitate CTL induction through cross-priming. Yet, since 100- to 1000-fold less 

SFV-enhE6,7 particles suffi ce to elicit responses comparable to those observed 

with SFV-E6E7, the enhanced immune response of SFV-enhE6,7 is presumably 

not merely due to the an increased level of protein production per cell10. 

Modifi cation of the E7 protein has been shown in several studies to signifi cantly 

enhance the immune responses elicited. Although based on another processing 

mechanism, Lin et al.13 demonstrated that therapeutic responses were not obtained 

using vaccinia virus encoding unmodifi ed E7, while a recombinant vaccinia vector in 

which E7 was linked to the sorting signals of lysosome-associated membrane protein 

was able to elicit anti-tumour responses. In addition, a fusion protein of BCG-hsp65 

and HPV16 E7 was able to induce regression of TC-1 tumours while an admixture 

of hsp65 and E7 did not induce signifi cant tumour regression20.  It should be noted, 

however, that in the recently published VEE study unmodifi ed E7 was expressed24. 

Although we have demonstrated that also SFV expressing unmodifi ed E6 and E7 

elicited prophylactic immune responses9, the responses induced upon immunisation 
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with VEE encoding unmodifi ed E7 seem stronger, although not stronger than the 

results observed with SFV-enhE6,7. This apparent difference between comparable 

vector systems might be due to the fact that the envelope glycoproteins of VEE, in 

contrast to those of SFV, confer dendritic cell tropism to the vector32.  This would imply 

that processing and presentation of heterologous proteins expressed by VEE does 

not require cross-priming, thus possibly explaining the apparent superior effi ciency 

of this vector with regard to presentation of E7.  A potential problem associated 

with direct antigen expression in dendritic cells lies in the fact that infection with 

alphaviruses results in cell death by apoptosis giving the dendritic cells only a short 

time-period to present the heterologous protein. An additional drawback might be 

that, while cross-priming results in both MHC class I and class II presentation of 

the antigen, thereby eliciting cytotoxic ánd helper T cell responses, transfection 

of dendritic cells in general only results in MHC class I presentation of antigen. It 

should be noted that CD4+ T helper responses are important for the maintenance 

of CD8+ T cell numbers and long-term memory responses33-35. Moreover, Marzo 

et al. demonstrated that CD4+ T cells are required for CD8+ T cell infi ltration of a 

tumour35. 

Optimal immune responses are believed to be essential to overcome immune 

evasion by the tumour and/or to break immune tolerance against tumour antigens. 

Here we demonstrate that immunisation with SFV expressing a fusion protein of HPV 

E6 and E7 results in a potent and long-term memory CTL response that correlates 

with a potent anti-tumour effect. From a clinical point of view as well as from a 

scientifi c point of view, comparative studies on the effi cacy of different vectors 

systems should be performed. The level of the immune response, the duration of 

the immune response and very importantly the safety of the vector system will 

be critical to ultimately develop the most optimal immunisation strategy against 

cervical cancer.
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ABSTRACT 

In our efforts to develop a strong, effective immune response against cervical carcinoma and 
premalignant disease we study the use of recombinant Semliki Forest virus (SFV) encoding 
the oncoproteins E6 and E7 from high-risk human papilloma viruses (HPV). Optimal 
immunization conditions are required for immunotherapeutic treatment of cervical cancer 
as it has been postulated that cervical cancer patients are immune-suppressed and/or 
immunologically tolerant for HPV. We previously generated an optimized construct encoding 
a fusion protein of HPV16 E6 and E7 and a translational enhancer (enhE6,7). Immunization 
of mice with SFV-enhE6,7 was shown to induce CTL responses and resulted in the eradication 
of established tumors. We now demonstrate, using HPV16-specifi c MHC class I tetramers, 
that high pCTL frequencies can be induced. Yet, this induction is strongly infl uenced by the 
route of immunization applied. While in bulk CTL assays, requiring in vitro restimulation, 
CTL activity can be observed upon s.c., i.p., i.v. and i.m. immunization, detectable pCTL 
frequencies, without in vitro restimulation, are only induced upon i.m. and i.v. immunization.  
The route of immunization also strongly infl uences the dose of viral vector needed to induce 
CTLs and tumor therapy. As few as 5x104 SFV-enhE6,7, primed and boosted i.v., are needed 
to eradicate tumors in 6 of 7 mice treated. Furthermore, exponentially growing tumors of 
approximately 500 mm3 in size were seen to completely resolve and even tumors as large 
as 1500 mm3 decreased to one third of their size. Apart from this potency, SFV vectors can 
safely be used for the expression of oncoproteins such as E6 and E7, since the viral RNA is 
not integrated in the host genome. Thus, SFV-enhE6,7 meets with the criteria that a vaccine 
against cervical cancer should be safe and induce a very strong, long-lasting CTL response, 
strong enough to eradicate existing tumors. 

INTRODUCTION

Cervical cancer is a virus-induced cancer. Infection of the cervical epithelia with 

so-called high-risk human papillomavirus (HPV) may lead to cell transformation 

and oncogenesis1. Upon integration of part of the HPV genome in the host cell, 

virally encoded oncogenic proteins are produced that can bind to the tumor 

suppressor proteins p53 and pRb resulting in deregulation of the cell cycle control 

and ultimately cell transformation2. 

At present, several promising clinical studies are being performed studying the 

effectiveness of prophylactic vaccines based on HPV virus-like-particles (VLPs) 

composed of one or both viral structural proteins, L1 and L23. The aim of these 

prophylactic strategies is to induce neutralizing antibodies that can prevent 

infection of cells with HPV. One of the problems associated with the development 

of a prophylactic vaccine against HPV is that it should be composed of at least 

15 different HPV VLP types to prevent approximately 95% of the HPV-induced 

cervical lesion4. Despite the promising results, and even if all problems associated 

with the development of a fully protective prophylactic vaccine are solved and 
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worldwide children are vaccinated, women that have already been infected before 

vaccination are at risk to develop (pre)malignant lesions or cervical cancer. Since 

the development of HPV-induced lesions in general manifests 10-20 years after 

infection this will concern many women. 

In contrast to prophylactic vaccines, a therapeutic vaccine against cervical 

cancer is aimed at the induction of a cellular immune response directed against 

tumor cells. The malignant phenotype of a HPV-transformed tumor cell requires the 

continued expression of the oncoproteins E6 and E7, making them attractive targets 

for T cell mediated immune responses5. Therapeutic immunization approaches that 

are nowadays being investigated can roughly be divided in protein/peptide-based 

strategies and vector-based strategies6. We are developing a therapeutic genetic 

vaccine against HPV-transformed cells based on Semliki Forest virus (SFV), a virus 

belonging to the alphavirus genus. Vectors based on alphaviruses are gaining 

increasing interest for their superiority over other viral vectors with respect to 

the induction of cellular immune responses. Recombinant SFV particles (rSFV) 

carry the RNA that codes for the replicase and the heterologous gene but lack 

RNA that codes for the structural proteins7;8. Consequently, infection of cells with 

rSFV will not result in productive replication and the virus will not spread beyond 

initially infected cells. We recently demonstrated, that cross-priming evokes the 

immune response induced upon SFV immunization9. Infection of cells with rSFV 

results in a high production of recombinant protein by infected cells that, due to 

the SFV infection, will die through apoptosis. Professional antigen-presenting cells 

(APC) that take up these apoptotic cells or apoptotic residues will process the 

recombinant protein for MHC class I and II presentation, resulting in the activation 

of specifi c cytotoxic T cells (CTL) and helper T cells. 

We previously demonstrated that s.c. immunization of mice with rSFV encoding 

a fusion protein of E6 and E7 and a translational enhancer10 (SFV-enhE6,7) 

resulted in strong, long-lasting HPV-specifi c CTL responses, as determined in 

bulk CTL assays and Interferon-gamma Elispot assay, and in in vivo anti-tumor 

responses11;12. Colmenero et al.13 reported on the localization of viral RNA after 

injecting rSFV via different injection routes. It was demonstrated that upon i.v. 

injection, rSFV-RNA was distributed to a variety of different tissues whereas it was 

confi ned more locally after i.m. and s.c. injections. Upon i.v. and i.m. injection, 

but not upon s.c. injection, rSFV-RNA could be detected in spleen. Morris-Downes 

et al.14 studied the distribution and persistence of i.m. injected rSFV in mice and 

chickens and demonstrated that i.m. injected rSFV showed persistence at the 

injection site up to 7 days, transient detection in secondary lymphoid organs 

and no dissemination to distal sites. We reasoned that these differences in gene 
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expression may infl uence the type and magnitude of the immune response. 

Therefore, in the present study we determined the effi cacy of the i.m. and i.v. 

route of immunization. While, as reported previously, SFV-enhE6,7 injected s.c. 

already evokes a potent immune and anti-tumor response, we now demonstrate 

that these responses are strongly enhanced upon i.m. or i.v. injection.  Rapidly 

growing tumors up to 1000 mm3  are minimized or even completely eradicated.

MATERIALS AND METHODS

Cell lines

Baby hamster kidney cells (BHK-21) were obtained from the American Type Culture 

Collection (# CCL-10). The cells were grown in GMEM (Invitrogen, Breda, The 

Netherlands) containing 5% fetal calf serum. 13-2 cells and TC-1 cells were kindly 

provided by Dr. C. Melief and Dr. R. Offringa (Leiden University, The Netherlands). The 

13-2 cell line was generated from C57Bl/6 (H-2b) embryonic cells transfected with 

the E1-region of adenovirus type 5 in which the adenoviral E1A epitope SGPSNTPPEI 

is replaced by a HPV16 E7 CTL epitope, AA 49-57 (RAHYNIVTF)15. The TC-1 cell line 

was generated from C57Bl/6 primary lung epithelial cells with a retroviral vector 

expressing HPV16 E6E7 plus a retrovirus expressing activated c-Ha-ras16. 13-2 and 

TC-1 cells were grown in IMDM with Glutamax-I  (Invitrogen) supplemented with 10% 

fetal calf serum and penicillin and streptomycin (Invitrogen; 100 U/ml and 100 µg/

ml, respectively). TC-1 medium was furthermore supplemented with non-essential 

amino acids (Invitrogen; 100-fold dilution), sodium pyruvate (Life Technologie; 1 

mM) and Geneticin G418 Sulphate (Roche, Germany; 5mg/ml).    

Mice

Specifi c-pathogen-free female C57Bl/6 mice (Harlan CPB, Zeist, The Netherlands) 

were between 6 and 10 weeks of age at the start of the immunization protocols. 

Production and purifi cation of rSFV 

Dr. P. Liljeström (Karolinska Institute, Stockholm, Sweden) kindly provided pSFV-

Helper 2. pSFV3 was obtained from Life Technology. The HPV16 E6 and E7 genes 

were obtained from the plasmid pRSV-HPV16E6E7, which was kindly provided by 

Dr. J. Ter Schegget (Amsterdam Medical Center, Amsterdam, The Netherlands)17. In 

this plasmid the HPV16 E6 and E7 genes are present in tandem, with a stop codon 

after the E6 gene. The construction of PSFV3-enhE6,7 is described in detail before11. 

In short, in pSFV3-enhE6,7 one base pair is inserted between E6 and E7 and the 

stop codon TAA of E6 is changed in GAA while furthermore a sequence encoding a 
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translational enhancer is cloned in front of the E6,7 fusion construct. Thus, pSFV3-

enhE6,7 encodes an enhanced expression of a fusion product of E6 and E7. The 

pSFV3-enhE6,7 and the pSFV-Helper 2 plasmids were isolated using the Qiagen 

midi plasmid purifi cation kit and linearized by digestion with SpeI (Invitrogen). RNA 

was synthesized from the linearized DNA by in vitro transcription using SP6 RNA 

polymerase (Amersham Pharmacia Biotech. Inc., Piscataway, NJ, USA). Capping 

analogue was obtained from Invitrogen. Fifteen µg SFV3-enhE6,7 and 7.5 µg SFV-

Helper  2 RNA were admixed and cotransfected into 8x106 BHK cells in 0.8 ml GMEM 

by electroporation using the Biorad Gene PulserRII (two pulses of 850 V/ 25 µF; 

Biorad, Hercules, CA, USA). After pulsing, the cells were suspended in 10 ml GMEM 

and cultured for 36 hr at 37oC and 5% CO2.  The medium, containing the SFV-enhE6,7 

particles was centrifuged twice in a JA 20 rotor (Beckman, St. Paul, MN, USA) at 

1800 rpm (i.e. 40,000xg at rmax) to remove cells and cellular debris.  

The SFV particles were purifi ed on a discontinuous sucrose density gradient (2 ml 

of a 15% sucrose solution (w/v) and 1 ml of a 50% sucrose solution (w/v) in TNE-

buffer (50 mM Tris-Cl, 100 mM NaCl, 1mM EDTA, pH 7.4)). Virus was collected from 

the interface. Sucrose was removed from the virus solution by overnight dialysis 

against TNE-buffer. The virus suspension was concentrated approximately 10-fold 

(Centricon 30 fi lter; Millipore, Bedford, MA, USA), quickly frozen in N2 and stored in 

aliquots at -80oC. 

Before use, SFV particles were incubated with 1/20 volume of α-chymotrypsin 

(10 mg/ml; Sigma Chemical Co., St. Louis, MO, USA) for 30 min at   room   temperature 

to cleave the mutated viral E2 spike protein. Subsequently, α-chymotrypsin was 

inactivated by the addition of 0.5 volume of aprotinin (2 mg/ ml; Sigma Chemical 

Co.).

Titer determination of rSFV 

SFV particles were titrated by serial dilution on monolayers of BHK cells. After infection 

and overnight incubation the cells were fi xed for 10 minutes in 10% acetone and 

stained using a polyclonal rabbit anti-replicase (nsP3) antibody (a kind gift from Dr 

T. Ahola, Biocentre Viiki, Helsinki, Finland) as primary antibody and FITC-labelled 

goat-anti-rabbit IgG as a secondary antibody (Southern Biotech. Ass., Birmingham, 

AL, USA). Positive cells were counted and the titer was determined after correcting 

for the dilution factor and the dilution caused by the activation and the volume of 

particles added.

Immunizations

For in CTL analysis, mice were immunized s.c., i.v., i.m or i.p. with 103 to 5x106 
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SFV-enhE6,7, followed by one booster immunization with a two-week interval. As 

negative controls, mice were injected with PBS. 

CTL assay 

Seven to ten days after immunization, spleen cells were isolated and cocultured with 

irradiated (100 Gy) TC-1 cells in a ratio of 25:1, in 25 cm2 culture fl asks, placed upright. 

After one week in culture, cells were harvested and a CTL assay was performed by a 

standard 4-hr 51Cr release assay in triplicate determinations. Target cells (13-2 cells) 

were labeled for 1 h with 3.7 MBq 51Cr/106 cells in 100 µl medium (51Cr was from 

Amersham, London, UK). The mean percentage of specifi c 51Cr-release of triplicate 

wells was calculated according to the formula: % specifi c release = [(experimental 

release-spontaneous release)/(maximal release-spontaneous release)] cpm x 100. 

The spontaneous 51Cr-release was always <15%. The standard errors of the means 

of the triplicate determinations were <10% of the value of the mean.

 

MHC class I tetramer staining and FACS analysis

To analyze the number of CD8+ T cells specifi c for the HPV 16 E749-57 peptide 

RAHYNIVTF we used Kb-RAHYNIVTF tetramers produced in the laboratory of Dr. Ton 

Schumacher (The Netherlands Cancer Institute, Amsterdam, The Netherlands). 

Spleen cells were washed with FACS buffer (PBS containing 0,5% BSA and 0,02% 

sodium azide) and stained with FITC-conjugated anti-CD8a (Pharmingen) together 

with PE-conjugated Kb-RAHYNIVTF tetramers for 20 minutes at 4°C. Spleen cells 

were washed three times and analyzed by fl ow cytometry (ELITE, Coulter). Live 

cells were selected based on propidium iodide exclusion.

Tumor treatment experiments

Mice were inoculated s.c. in the neck with 2x104 TC-1 cells suspended in 0.2 ml 

Hanks Buffered Salt Solution (Invitrogen). Subsequently, mice were immunized 

and boosted twice with a one-week interval, with SFV-enhE6,7 or phosphate-

buffered saline (PBS, pH 7.4) starting at days 7, 14 or 17 after tumor inoculation. 

Immunization routes were s.c., i.p., i.v. or i.m. The same skilled technician always 

did tumor measurements. At a tumor volume of approximately 1000 mm3, the mice 

were sacrifi ced. Mice that cleared the tumor in the tumor treatment experiments 

as described above were rechallenged s.c. in the neck with 2x104 TC-1 cells six 

months after the initial tumor challenge without additional immunizations. Since all 

control PBS-treated mice developed a tumor upon the initial tumor challenge, in the 

rechallenge experiments naive mice were included.
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RESULTS

Infl uence of the route of immunization on the induction of CTL responses

In a previous study we demonstrated that s.c. immunization of mice with SFV-

enhE6,7 resulted in HPV-specifi c CTL responses as determined in bulk CTL 

assay and Interferon-gamma Elispot assay11. We now compared CTL activity 

and precursor CTL (pCTL) frequencies induced upon s.c. immunization with the 

responses induced after i.v, i.m. or i.p. immunization. Mice were immunized 

and boosted once with 106 SFV-enhE6,7, CTL activity was determined one week 

after the booster using a standard bulk CTL-assay of spleen cells stimulated for 

6 days with irradiated TC-1 cells. As shown in Figure 1, apart from one mouse in 

the group immunized s.c., the bulk CTL analysis did not demonstrate signifi cant 

differences between the four routes of immunization tested. Yet, the frequency 

of pCTLs, determined with MHC class I tetramers refolded with HPV16 E749-57 

peptide, revealed that mice immunized i.v. and i.m. had higher frequencies of 

pCTLs compared to mice immunized i.p. or s.c. (Figure 2). Closer examination 

of the bulk CTL results (Figure 1) reveals that indeed the CTL levels of mice 

immunized i.v. and i.m. at an effector to target ratio of 3:1 are higher than those 

of mice immunized s.c. or i.p.. 

 We next questioned whether these differences are also refl ected in the minimal 

effective dose of SFV. Mice were immunized with decreasing doses of SFV-enhE6,7 

either i.v. or s.c. (Figure 3). 106 (Figure 3A, squares) and 105 SFV-enhE6,7 (Figure 

Figure 1. Infl uence of the route of immunization of SFV-enhE6,7 on bulk CTL activity. 
Mice were immunized s.c. (n=3), i.p. (n=3), i.v. (n=5) or i.m. (n=2) and boosted via the 
same route as the primary immunization, with 5x106 SFV-enhE6,7 or PBS as control. Shown 
are the combined results of two separate experiments in which in the fi rst immunization 
experiment 3 mice per group were immunized s.c., i.p. or i.v. and in the second experiment 
2 mice per group were immunized i.v. or i.m.. CTL activity was determined one week after 
the booster immunization. After 7 days of in vitro restimulation the resulting effector cells 
were tested for cytolytic activity against 13-2 target cells in triplicate well assay. In the 
individual panels the levels of cytolysis at different effector to target ratios are shown. Less 
than 2% of lysis at an effector to target ratio of 30:1 was observed in mice injected with 
PBS (not shown). 
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3A, circles) administered s.c. resulted in good CTL responses. However, 104 SFV-

enhE6,7 (Figure 3A, triangles) immunized s.c. did not induce a detectable CTL 

response. On the other hand, 104 SFV-enhE6,7 (Figure 3B, triangles) administered 

i.v. resulted in a potent CTL response and even one of two mice generated CTLs 

upon immunization and boosting with as few as 103 SFV-enhE6,7 (Figure 3B, 

diamonds). I.v. immunization with 106 SFV-enhE6,7 resulted in comparable levels 

of cytolysis as 105 particles (not shown for clarity of the fi gure; also see fi gure 

1).

Effi cacy of SFV-enhE6,7 immunization with respect to memory CTL

To determine whether memory responses were induced upon SFV-enhE6,7 

immunization, CTL responses were determined 1, 2 and 12 weeks after 

immunization with 2.5x106 SFV-enhE6,7 injected i.v. (Figure 4). One week after 

a single immunization CTLs could be detected both by bulk CTL analysis of spleen 

cells and tetramer analysis of spleen and blood cells (Figure 4, data points A). The 

frequency of pCTLs in blood was 3-fold higher compared to the frequency in spleen. 

Figure 2. Infl uence of the route of immunization of SFV-enhE6,7 on pCTL frequency. 
Mice were immunized s.c. (n=3), i.p. (n=3), i.v. (n=5) or i.m. (n=2) and boosted via the 
same route as the primary immunization, with 5x106 SFV-enhE6,7 or PBS as control. pCTL 
frequencies were determined from the same spleen populations that were analyzed for bulk 
CTL activity as shown in Figure 1. Spleen cells, directly upon isolation, were stained with 
a FITC-labeled monoclonal antibody against CD8 and a PE-labeled HPV16 E749-57 specifi c 
MHC class I tetramer and analyzed by fl owcytometry. Shown are the percentages of E749-57 

tetramer-positive CD8+ cells of individual mice. The maximum background response in PBS 
injected mice is shown as a horizontal dotted line.
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One week after a booster immunization the frequency in pCTLs in spleen increased 

3-fold compared to a single immunization while also the pCTLs in blood increased 

(data points B). Two weeks after booster immunization, the pCTL frequencies both 

in spleen and blood decreased yet CTL activity as determined in bulk CTL assay 

remained at the same level as observed one week after immunization (data points 

C). Similarly, 12 weeks after booster immunizations the pCTLs were fully responsive 

to the in vitro restimulation employed in the bulk CTL assay, resulting in a high level 

of CTL activity at an effector to target ratio as low as 3:1 (data points D).

Infl uence of route of immunization on therapeutic effi cacy of SFV-enhE6,7

We next determined whether the observed infl uence of the route of administration 

with respect to CTL induction is also refl ected in the therapeutic effect of SFV-

enhE6,7, using a murine HPV tumor model. Since it is unlikely that the i.p. route of 

administration will be applied in man, this route of administration was not analyzed 

further. In previous studies we demonstrated that s.c. immunization protects 

mice from a subsequently inoculated tumor and prevents tumor outgrowth when 

immunization is initiated early (2 days) after tumor inoculation12. To compare the 

different routes of administration we determined the therapeutic effi cacy of SFV-

enhE6,7 in the same model yet initiating the immunizations at later time-points. In 

Figure 3. CTL activity induced upon immunization with an increasing dose of SFV-enhE6,7. 
Mice were immunized s.c. (panel A) or i.v. (panel B) and boosted with 106 SFV-enhE6,7 
(squares), 105 SFV-enhE6,7 (circles), 104 SFV-enhE6,7 (triangle) or 103 SFV-enhE6,7 
(diamonds). After 7 days in vitro restimulation the resulting effector cells were tested for 
cytolytic activity against 13-2 target cells in triplicate well assay. Shown are the levels of 
cytolysis at different effector to target ratios. Less than 2% of lysis at an effector to target 
ratio of 30:1 was observed in mice injected with PBS (not shown).
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the fi rst experiment, immunization was initiated seven days after s.c. inoculation 

of TC-1 cells in the neck of C57Bl/6 mice. As demonstrated in Figure 5A, all control 

mice (n=12) developed a tumor within 2 to 3 weeks after tumor inoculation. All 

mice immunized and boosted i.v. (n=14) with 5x106 SFV-enhE6,7 eradicated the 

tumor and remained tumor-free for the next 3 months (Figure 5B). In the group 

of mice (n=21) immunized s.c. eleven of twenty-one mice eradicated the tumor, 

three developed a tumor at an early time point, comparable to control mice, and 

three mice developed a tumor at a much later time point, i.e. around week 10 

(Figure 5C). Thus, the observed difference in CTL induction is also refl ected in the 

therapeutic effect, i.e. i.v. immunization has a signifi cantly superior therapeutic 

effect compared to the s.c. immunization. 

To analyze whether i.m and i.v. immunizations are as effective in a therapeutic 

setting we fi rst determined the lower limits of the therapeutic effi cacy of i.v. 

immunization. For this purpose immunization was either initiated as late as 14 days 

or 17 days after tumor inoculation or mice were immunized with decreasing doses 

of SFV-enhE6,7. As shown in Figure 6B, initiation of immunization at day 7 results 

Figure 4. Effi cacy of SFV-enhE6,7 immunization with respect to long-term pCTL frequency  
and CTL activity. Two mice were i.v. injected once with 2.5x106 SFV-enhE6,7, one week after 
injection spleen and blood cells were analyzed for bulk CTL activity, as described in fi gure 
1, and pCTL frequency using HPV16 E749-57 tetramers (data points A). Three other groups 
of two mice were injected twice with a two-week interval and spleen and blood cells were 
isolated either one week (data points B), two weeks (data points C) or twelve weeks (data 
points D) after the second injection. All material was analyzed in one CTL experiment and 
FACS analysis. Shown are the mean percentages of cytolysis of spleen cells at an effector to 
target ratio of 3:1 (squares). The bars represent the mean pCTL frequencies as measured in 
blood (gray bars) and spleen (black bars).
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in eradication of tumor cells in all mice, confi rming the results shown in Figure 5B. 

Initiation of immunization (Figure 6C) as late as day 14 resulted in a remarkable 

decrease in tumor mass in the 4 mice that developed an early tumor. In two 

mice the tumor mass decreased from a volume of 900 mm3 and 750 mm3 to 225 

mm3. In two mice tumors of 530 mm3 and 115 mm3 were completely eradicated. 

Ultimately, after ending the booster injections, tumor started to grow out again in 

three mice; however, four mice had cleared the tumor and remained tumor-free. 

A similar anti-tumor effect could be seen when immunization was initiated 17 days 

after tumor inoculation (Figure 6D). Unfortunately, three mice were killed before a 

possible immune response could be effective since the tumor reached the critical 

size of 1000 mm3. One mouse had to be killed because its tumor, although very 

small, grew through the skin, which is also a criterion to kill the animal. In three 

mice again a very strong decrease in tumor volume was observed and ultimately 

three mice eradicated the tumor and remained tumor-free. 

To determine the minimal effective dose, mice were immunized and boosted 

with decreasing doses of SFV-enhE6,7. As shown in Figure 7, immunization 

followed by two booster injections of 5x105 SFV-enhE6,7 resulted in a complete 

therapeutic effect in that all mice eradicated the tumor and remained tumor-free 

for 10 weeks. Even upon immunization with as few as 5x104 SFV-enhE6,7 six of 

seven mice eradicated the tumor. 

Figure 5. Growth and regression of HPV-transformed tumors upon i.v. and s.c. treatment 
with SFV-enhE6,7. Mice were inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently, 
mice were immunized and boosted i.v. (n=14; panel B) or s.c. (n=21; panel C) with 5x106 
SFV-enhE6,7 at days 7, 14 and 21 after tumor inoculation. As control, mice were injected i.v. 
with PBS (n=12, panel A) at days 7, 14 and 21. Tumor measurements were initiated 10-14 
days after tumor challenge and subsequently measured twice weekly. Shown are the tumor 
volumes of individual mice. The percentages indicate the percentage of tumor-free mice at 
day 100 after tumor inoculation. At a tumor volume of approximately 1000 mm3, the mice 
were sacrifi ced.
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We next used two suboptimal treatment regimens to compare the effi cacy 

of i.m. immunization with i.v. immunization. Mice were either immunized with 

5x106 SFV-enhE6,7 starting at day 14 after tumor inoculation or were immunized 

with 104 SFV-enhE6,7 starting on day 7. In the lower panels of Figure 8, tumor 

growth in mice immunized i.v. or i.m. at a late time-point is shown. Since in this 

experiment the tumor grew out relatively early (some tumors reaching volumes 

over 1000 mm3 before an anti-tumor response could have been effective) we 

decided to let the tumors reach a size of 2000 mm3 before killing the animal or 

kill the animal as soon as the tumor, after decreasing in size, started to increase 

again. Again, similar to the results shown in Figure 6, a tremendous decrease in 

large tumors was observed after i.v. immunization (Figure 8D). A similar response 

occurred upon i.m. immunization (fi gure 8C). In the end, in the i.m. group six 

of seven mice had to be killed because of tumor outgrowth and in four of seven 

mice immunized i.v. the tumor started to grow again. Upon immunization with 

Figure 6. Effi cacy of SFV-enhE6,7 immunization on regression of established tumors. Mice 
were inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently, mice were immunized 
and boosted i.v. with 5x106 SFV-enhE6,7 at days 7, 14 and 21 (n=7; panel B), at days 14, 
21, 28 (n=7; panel C) or at days 17, 24 and 31 (n=7; panel D) after tumor inoculation. 
As control, mice were injected i.v. with PBS (n= 10, panel A) at days 7, 14 and 21. Tumor 
measurements were initiated 10-14 days after tumor challenge and subsequently measured 
twice weekly. Given is the tumor volume of individual mice. The percentages indicate the 
percentage of tumor-free mice for each treatment at day 70 after tumor inoculation.
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as few as 104 SFV-enhE6,7, fi ve of seven mice immunized i.m. eradicated the 

tumor (Figure 8A) and in the i.v. group one of four eradicated the tumor (Figure 

8B). Although the groups are relatively small it seems justifi ed to claim that i.v. 

and i.m. administrations of SFV-enhE6,7 are equally effective in the induction of 

therapeutic anti-tumor responses in this murine tumor model.

Long-term anti-tumor effi cacy of SFV-enhE6,7 immunization 

We next questioned whether the CTL memory responses induced by SFV-enhE6,7 

immunizations, as demonstrated in fi gure 4, suffi ce for an in vivo anti-tumor 

response. Therefore, several mice that eradicated the tumors in the previous 

therapeutic studies were re-challenged with tumor cells without an additional 

immunization. Of six mice that were immunized on days 7-14 and 21 after fi rst 

Figure 7. Growth and regression of HPV-transformed tumors upon i.v. immunization with 
a decreasing dose of SFV-enhE6,7. Mice were inoculated s.c. in the neck with 2x104 TC-1 
cells. Subsequently, mice were immunized and boosted on days 7, 14 and 21 with 5x106 

SFV-enhE6,7 (n=7; panel B), 5x105 SFV-enhE6,7 (n=7; panel C), 5x104 SFV-enhE6,7 (n=7; 
panel D) or  PBS (n=4; panel A), as control. Tumor measurements were initiated 10-14 days 
after tumor challenge and subsequently measured twice weekly. Given is the tumor volume 
of individual mice. The percentages indicate the percentage of tumor-free mice for each 
treatment at day 70 after tumor inoculation.



86

Chapter 4

tumor inoculation and had eradicated this tumor, four were able to eradicate the 

tumor of the second challenge 22 weeks after the fi rst one. Tumor growth in the 

two mice that developed a tumor was strongly delayed, i.e. the tumors started 

to grow after 6 and 8 weeks, respectively. All mice included in this rechallenge 

experiment initially immunized at days 14-21-28 (n=3) or 17-23-30 (n=2) 

eradicated the tumors of the rechallenge (not shown). 

DISCUSSION

In this study we demonstrate that robust immune- and anti-tumor responses 

against HPV16 induced tumors can be evoked by immunization with recombinant 

SFV expressing the oncoproteins E6 and E7 of HPV16. The magnitude of this 

Figure 8. Comparison of anti-tumor effect induced upon i.v. or i.m. immunization with SFV-
enhE6,7. Mice were inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently, two 
groups of mice were immunized and boosted on days 7, 14 and 21 with 104 SFV-enhE6,7 either 
i.m. (n=7; panel A) or i.v. (n=7; panel B). Two other groups were immunized with 5x106 SFV-
enhE6,7 on days 14,21 and 28 either i.m. (panel C) or i.v. (panel D).Tumor measurements 
were initiated 10-14 days after tumor challenge and subsequently measured twice weekly. 
Given is the tumor volume of individual mice. The percentages indicate the percentage of 
tumor-free mice for each treatment at day 70 after tumor inoculation.
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response is not only determined by the dose administered but also by the route 

of immunization. While we previously demonstrated that upon s.c. injection 

an antigen-specifi c CTL response is induced12, we now show that the i.v. and 

i.m. routes of injection are far more effective than the s.c. and i.p. route of 

injection, both with respect to CTL induction as with respect to therapeutic anti-

tumor responses. Despite the fact that the bulk CTL responses between the 

tested immunization routes do not differ signifi cantly, tetramer analysis revealed 

that the i.v. and i.m. route of immunization result in signifi cantly higher pCTL 

frequencies. A further analysis demonstrated that indeed over 100-fold fewer 

virus particles are needed when immunizing i.v. or i.m. as opposed to the s.c. 

route. Tumor treatment experiments show that i.v. and i.m. immunizations also 

result in superior anti-tumor responses compared to s.c. immunization, which 

can most likely be ascribed to the higher pCTL frequencies generated. The tumor 

treatment experiments, furthermore, clearly demonstrate the enormous potency 

of the vector. Exponentially growing tumors of approximately 500 mm3 in size 

were seen to completely resolve and even some tumors as large as 1500 mm3 

decreased to one third of their size. Considering that a tumor nodule of 1000 

mm3 contains approximately 109 cells this implies that in the latter situation, i.e. 

a tumor decreasing 1000 mm3 in volume, the CTLs generated, manage to kill 109 

cells in one-week time. An other important aspect of our immunization approach 

is the observation that a long-term immune response, i.e. memory response, 

is induced as illustrated in fi gure 4 with respect to pCTL frequencies and in our 

observations that even 22 weeks after immunization mice can eradicate s.c. 

inoculated tumors12. 

Colmenero et al.13 determined splenic CTL responses after injection of a high 

dose of SFV (2x107 particles) encoding the nucleoprotein of Infl uenza virus. 

In contrast to our conclusion, they conclude that injection of SFV via the i.v. 

and i.m. route is only slightly more effective than the s.c. route. The relatively 

small difference Colmenero et al. observed might be due to the high dose of SFV 

administered. The level of CTL activity induced upon i.v. or i.m. injection might 

already have been reached with 10 to 100-fold lower doses. In Colmenero’s study 

the difference was not further evaluated nor was the effect of the immunization 

route on in vivo therapeutic responses determined. Also from our bulk CTL 

experiments (i.e. fi gure 1) one could conclude that the route of injection does not 

signifi cantly infl uence CTL activity, yet tetramer analysis, dose-response studies 

and anti-tumor responses demonstrate that i.m. and i.v. injections are much more 

effective than the s.c. or i.p. route of injection. 

Alphavirus–based immunization strategies are gaining more and more interest 
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because of their effi cacy to evoke strong and long-lasting immune responses18. 

The recombinant SFV system activates both the innate and the adaptive immune 

system. Infection of cells with (recombinant) SFV results in dsRNA intermediates 

that are known for their immunopotentiating capacity19. dsRNAs can be recognized 

by innate immune receptors such as Toll-like receptor 3 and trigger production 

of Interferon type I, while, in addition, dsRNAs activate and mature DCs20. 

Uptake of apoptotic cells transfected with recombinant SFV will thus not only 

provide the specifi c antigen but also provide the required danger signal. Apart 

form their superiority, alphavirus vectors can safely be used for the expression of 

oncoproteins such as E6 and E7 since the viral RNA is not integrated in the host 

genome. Furthermore, since SFV is a rodent virus, humans in general do not carry 

neutralizing antibodies against the virus that may decrease the effi cacy of the 

immunization. In addition to this, Berglund et al.21 demonstrated that also upon 

immunization with SFV the immune responses against the SFV vector itself did not 

disable boost responses by subsequent immunizations with the same vector. Also 

with respect to the induction of anti-tumor responses against HPV-transformed 

tumors in animal models, immunization with recombinant alphaviruses has proven 

to be highly effective. Alphavirus-based immunizations result in high levels of 

pCTLs and CTL activity and most important in therapeutic anti-tumor responses 

as also demonstrated for recombinant Venezuelan Equine Encephalitis Virus (VVE) 

and Sindbis particles22;23.

Expression, routing and processing will eventually determine the magnitude, 

duration and type of immune responses. Colmenero et al.13 reported on the 

localization of viral RNA after injecting rSFV via different injection routes. They 

demonstrated that upon i.v. injection rSFV-RNA was distributed to a variety of 

different tissues whereas it was confi ned locally after i.m. and s.c. injections. 

Morris-Downes et al.14 studied the distribution and persistence of  i.m. injected rSFV 

in mice and chickens and observed that i.m. injected rSFV showed persistence at 

the injection site up to 7 days, transient detection in secondary lymphoid organs 

and no dissemination to distal sites. Using another alphavirus vector system, 

rVVE, Caley et al.24 reported on the expression of the recombinant protein in 

popliteal lymph nodes upon s.c. injection in the footpath. Although not directly 

comparable, the difference in localization between SFV and VEE gene expression 

might be ascribed to the observation that while rSFV does not transfect DCs9, 

rVEE  does. Thus, upon rVEE injection DCs might become infected at the site of 

injection and subsequently migrate to local lymph nodes where they can evoke 

an immune response. SFV on the other hand, transfects a variety of cells such as 

fi broblast, primary human tumor cells, murine tumor cells lines25;26, cardiovascular 
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cells and smooth muscle cells27 but, as mentioned above, not DCs. The immune 

response evoked by SFV immunization occurs via cross-priming of antigen by DCs 

that have taken up apoptotic rSFV transfected cells9. Although these data may 

help us to predict or design the most optimal immunization schedule and route, 

for the evaluation of the immunization strategy, anti-tumor effi cacy studies will 

remain essential. 

The robust therapeutic immune responses elicited with SFV-enhE6,7, as 

presented in this study, positions recombinant Semliki Forest virus as a serious 

candidate for clinical evaluation for  treatment of (pre)malignant cervical lesions.
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ABSTRACT

Despite promising preclinical results of various therapeutic anticancer immunization strategies, 
these approaches may not be effective enough to eradicate tumors in cancer patients. While 
most animal models are based on fast-growing transplantable tumors, malignancies in for 
example cervical cancer patients in general develop much more slowly, which may lead to 
immune suppression and/or immune tolerance. As a consequence, the immunomodulating 
signal of any therapeutic immunization regimen should be suffi ciently potent to overcome this 
immunocompromised condition. In previous studies, we demonstrated that an experimental 
vaccine against human papillomavirus (HPV)-induced cervical cancer, based on Semliki 
Forest virus (SFV), induces robust HPV-specifi c cellular immune responses in mice. Now we 
studied whether this strategy is potent enough to also prime a cellular immune response 
in immune tolerant HPV transgenic mice, in which CTL activity can not be induced using  
protein or DNA vaccines. We demonstrate that, depending on the route of immunization, 
SFV expressing HPV16 E6 and E7 indeed has the capacity to induce HPV16 E7-specifi c 
cytotoxic T cells in HPV-transgenic mice. 

Cervical cancer is the third most common cancer among women worldwide. It 

is caused by infection with high-risk Human Papillomavirus (HPV), in particular 

types 16, 18, 31, 33 or 45. Indeed, in over 99% of all cervical carcinomas, DNA 

derived from these HPV types is detectable.1 High-risk HPVs have the capacity to 

transform cervical epithelial cells by integrating the open reading frames encoding 

the viral early proteins E6 and E7 into the host cell genome. This integration may 

lead to constitutive overexpression of E6 and E7, mediating transformation of 

the cells to a malignant phenotype.2 Since the continued production of E6 and 

E7 is required for the maintenance of the transformed phenotype, E6 and E7 in 

fact represent tumor-specifi c antigens in cervical carcinoma and premalignant 

HPV-transformed cells. As a consequence, E6 and E7 are potential targets for 

immunotherapeutic intervention strategies involving induction or stimulation of 

cytotoxic T lymphocyte (CTL) activity against HPV-transformed cells.3

It is likely that HPV-specifi c CTLs play an important role in the immunological 

control of tumor development after HPV infection.3 Indeed, while the majority 

of sexually active women become infected with HPV, only a minority develops 

premalignant cervical lesions or cervical cancer.4 In these patients, as expected, 

HPV-specifi c CTL activity is generally low,5;6 suggesting that they have mounted 

a certain degree of immunological tolerance or ignorance for the HPV-derived 

antigens. It is possible that this tolerance arises peripherally at the level of the 

epithelial keratinocytes, the target cells for HPV. These keratinocytes lack co-

stimulatory molecules such that presentation of viral antigens in the context of 

MHC class I molecules may result in the induction of anergy in relevant T cells, thus 

causing immunological tolerance. Recently, Steinman and Nussenzweig7 proposed 
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that peripheral tolerance can also be induced by immature dendritic cells (DCs) 

which silence the T cell repertoire to self and environmental antigens captured 

in the steady state, i.e. in the absence of an acute infection or infl ammation. 

This induction of tolerance by immature DCs would be mediated by peripheral 

T cell deletion or by the induction of regulatory T cells. Immunological tolerance 

for chronic or persistent viral pathogens, such as HPV, could develop in a similar 

manner. Irrespective of its precise origin, the ‘putative’ immunological tolerance 

for HPV antigens in patients with cervical carcinoma or premalignant cervical 

disease puts high demands on potential immunotherapeutic strategies, since such 

approaches need to break or overcome this tolerance in order to be effective. 

In previous studies,8-10 we have demonstrated that immunization of mice with 

recombinant Semliki Forest virus (SFV) expressing a fusion protein of HPV16 E6 and 

E7 (SFV-enhE6,7) not only induces strong and long-lasting CTL responses, but also 

effectively eradicates established tumors of HPV-transformed cells. In the present 

study, we used K10HPV16-E6/E7 transgenic (Tg) mice which constitutively express 

HPV16 E6 and E7 under the control of the keratin 10 promoter in the suprabasal 

layers of the epidermis. Upon immunization with E7 protein, these mice produce 

anti-E7 antibodies but no E7-specifi c CTLs.11;12 The antibody response has been 

shown to be comparable to that of their non-transgenic littermates, demonstrating 

that E7-specifi c B cells as well as T helper cells are not deleted during development. 

By contrast, the CTL tolerance is extremely strong, since attempts to break it with 

protein or DNA vaccination have thus far been unsuccessful.12;13 The inability of 

K10HPV16-E6/E7 Tg mice to mount an E7-specifi c CTL response is not due to a 

general CTL unresponsiveness, since these mice are capable of generating specifi c 

CTL activity against for example ovalbumin.12 These results suggest that, similar 

to the HPV-transgenic murine model in which HPV16-E6/E7 is expressed from the 

K14 promotor, expression from the K10 promotor results in “split” tolerance, in 

which antigen-specifi c CTL responses are strongly suppressed but the antibody 

and T helper responses remain unaffected.14 In the present study we demonstrate 

that immunization of K10HPV16-E6/E7 Tg mice with SFV-enhE6,7 does induce 

CTL activity. Although the mechanism and kinetics of tolerance in this mouse 

model certainly differ from that in the human clinical situation, these studies do 

demonstrate the potency of immunization with the SFV-enhE6,7 vector. 

Spleen cells isolated from wild-type (Figure 1A) as well as Tg mice (Figure 

1B), immunized with 107 i.u. SFV-enhE6,7, displayed a high level of cytolysis 

against C3 target cells (squares), while no signifi cant HPV-specifi c CTL activity 

was observed in the SFV-LacZ and PBS control groups (closed and open circles, 

respectively). Although, as expected, the cytolysis in wild-type mice was higher 
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than in Tg mice, this result demonstrates that immunization of K10HPV16-E6/E7 

Tg mice with SFV-enhE6,7 can induce E7-specifi c CTLs in these animals.

Next, using interferon-γ (IFN-γ) Elispot analysis,15 we determined the number 

of HPV-specifi c IFN-γ-secreting T cells after 7 days of  in vitro restimulation with 

13-2 cells. As shown in Figure 2, immunization of wild-type (open circles) and 

Tg mice (solid circles) with SFV-enhE6,7 elicited T cells specifi c for E749-57. The 

background level of IFN-γ-secreting cells in the PBS and SFV-LacZ control groups 

is not E7-specifi c but due to the 7-day culture in the presence of IL-2. In these 

control groups the numbers of spots in wells stimulated with or without E7 protein 

Figure 1. CTL activity induced in wild-type versus K10HPV16-E6E7 transgenic mice. 
Crossing of K10HPV16-E6/E7 Tg males and Tg or wild-type females produced F1 mice.11 
Expression of E6 and E7 was confi rmed by PCR of DNA obtained from tail specimens. No 
difference in E6 and E7 expression was observed between homozygous and heterozygous 
F1 mice. In addition, no differences in CTL induction were observed between these mice 
(not shown). The production and purifi cation of recombinant SFV-enhE6,7 and SFV-LacZ 
was performed as described previously.8  (A) Wild-type mice immunized and boosted twice 
s.c. with 107 i.u. SFV-enhE6,7 (n=4, closed squares), 107 i.u. SFV-LacZ (n=2, closed circles) 
or PBS (n=4, open circles) (B) Tg mice immunized s.c. and boosted twice with 107 i.u. 
SFV-enhE6,7 (n=6, closed squares), 107 i.u. SFV-LacZ (n=2 closed circles) or PBS ( n=3, 
open circles) as a control. Seven days after the last booster immunization spleen cells were 
isolated and co-cultured with irradiated (100Gy) TC-1 cells28 (cell line generated from lung 
epithelial cells with a retroviral vector expressing HPV16 E6E7 plus a retrovirus expressing 
activated c-Ha-ras) at a ratio of 25:1, in 25 cm2 culture fl asks, kept upright. After 5-6 days 
or 9-12 days of culture, cells were harvested and restimulated with irradiated naïve spleen 
cells (33Gy) and irradiated TC-1 cells (100Gy) at a ratio of 2:5:0.08 in 24-wells plates in 
the presence of 4 units of recombinant hIL2/ml. Five days after the fi rst and/or second 
restimulation, cells were harvested and CTL activity was determined in a standard 4 h 51Cr 
release assay, done in triplicate, using C329 (cell line derived from H-2b embryonic cells 
transfected with a plasmid containing the complete HPV16 genome) or 13-2 cells30 (cell line 
generated from H-2b embryonic cells transfected with the E1-region of adenovirus type 5 in 
which an adenoviral epitope is replaced by the HPV16 E7 CTL epitope, AA 49-57) as targets. 
Similar levels of specifi c lysis were obtained using C3 or 13-2 cells; only the results obtained 
with the C3 cells will be shown.
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were the same. Again similar to the bulk CTL analysis, the response in wild-

type mice was higher than that in Tg mice. Assuming an equal doubling rate of 

pCTL from wild-type and Tg T cells during in vitro restimulation the Elispot results 

suggest that the pCTL frequency induced in wild-type mice is approximately 10-

fold higher than that in Tg mice. The relatively low level of pCTLs induced in Tg 

mice can not be determined by direct ex vivo Elispot or tetramer analysis as these 

levels range around the detection limit of these methods (not shown). In contrast, 

pCTL levels in wild-type mice can be determined directly ex vivo, both by Elispot 

and tetramer analysis.8 

Michel et al.13 recently demonstrated that immunization of K10HPV16-E6/E7 

Tg mice with VP22-E71-60 DNA was unable to overcome the E7-specifi c tolerance. 

Since the experimental conditions of the CTL assay used by these authors differed 

from the conditions in our experiments, we directly compared the effi cacy of the 

DNA immunization with SFV-enhE6,7 immunization in our model. µµµA strong 

HPV-specifi c CTL activity was induced in wild-type mice upon immunization with 

Figure 2. IFN-γ Elispot analysis of spleen cells from control and immunized Tg and wild-
type mice. Tg mice (solid circles) were immunized and boosted twice with PBS s.c. (n=2; 
group 1), 107 i.u. SFV- LacZ s.c. (n=3; group 2), and 107 i.u. SFV- enhE6,7 s.c. (n=6; group 
3) respectively. Wild-type mice (open circles) were immunized and boosted twice with 107 
i.u. SFV-enhE6,7 s.c. (n=2; group 4). Seven days after the booster immunization spleen 
cells were isolated and cultured as described in the legend to fi gure 1. After a 7-day in vitro 
restimulation of spleen cells, the cells were harvested and cultured overnight on anti-IFNγ-
coated ELISA plates in the presence of irradiated 13-2 cells and naïve spleen cells, in triplicate 
experiment. 13-2 cells were choosen as stimulator cells as these cells only express the HPV 
16 E7 CTL epitope (AA 49-57) which is known to be recognized by H-2b cells.The next day 
IFNγ-positive spots were developed as described previously analysis15, and counted. Results 
are expressed as number of IFNγ-spots per 105 splenocytes. Each dot represents the median 
number of spots per 105 cells per mouse, the line indicates the group median.
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VP22-E71-60 DNA (Figure 3, open circles). In contrast, no HPV-specifi c CTL activity 

was observed in the Tg mice immunized with the DNA (Figure 3, closed circles), 

while immunization with SFV-enhE6,7 induced a signifi cant HPV-specifi c CTL 

response in these mice (Figure 3, closed squares). 

In wild-type mice, intravenous (i.v.) or i.m. injection of recombinant SFV 

results in higher levels of CTL activity compared to s.c. or i.p. injection.10;16 To 

examine whether this also holds true in the K10HPV16-E6/E7 model, Tg mice 

were immunized via three different routes (s.c., i.m. or i.v.) with 107 i.u. SFV-

enhE6,7. As shown in Figure 4, s.c. immunization induced a higher level of CTL 

activity compared to i.m. and i.v. immunization which is opposite to the effect of 

the injection route in wild-type mice. 

The results presented in this report illustrate the exquisite potency of the SFV 

vector system as a means to induce CTL activity. While conventional DNA- and 

protein-based vaccines were unable to induce CTLs in K10HPV16-E6E7 Tg mice,12;13 

SFV-enhE6,7 did effi ciently prime CTL activity in these mice. 

Figure 3. Induction of CTL activity upon SFV-enhE6,7 versus DNA-E7 immunization in wild-
type and Tg mice.  Tg (n=2; closed circles) and wild-type (n=3; open circles) C57Bl/6 
mice were immunized intramuscularly (i.m.), in the tibialis anterior, with 100 µg VP22-E71-60 
DNA.13 The muscles of the mice were pretreated with 50 µl of 10 µM cardiotoxin 7 days prior 
to DNA injection. As a positive control, Tg mice were immunized s.c. and boosted twice with 
107 i.u. SFV-enhE6,7 (n=2; closed squares). Ten days after i.m. injection of VP22-E71-60 DNA 
and 7 days after the last booster with SFV-enhE6,7, mice were sacrifi ced and CTL activity 
was determined as described above. µµShown are the levels of cytolysis at different effector-
to-target ratios.
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HPVs have evolved such that infected cells and (pre)malignant cells are not 

recognized effectively by the immune system. For example, expression of HPV 

E6 and E7 protein prevents the immunoregulatory effects of IFN-α- and IFN-

β-mediated antiviral responses.2;17 It is furthermore observed that women 

with cervical cancer develop poor levels of E7-specifi c CTLs in response to the 

developing tumor5;6 or to an E7 vaccine.19 This poor cellular immune response may 

be caused by the expression of E7 in epithelial cells lacking co-stimulation which 

may lead not only to immunosuppression but also to immunological tolerance. 

Scavenge of E7-expressing cells by Langerhans cells (LCs) or DCs without co-

stimulation would thus prevent DC maturation. These immature DCs will transmit 

a tolerogenic rather than stimulatory signal to T cells. This and several other 

mechanisms of HPV-mediated immune escape have been recently reviewed by 

Tindle.20 Considering these immune evasion strategies of HPV, Tindle proposes that 

immunization with any form of E7 will have to provide so-called “danger” signals21 

that turn immature, tolerizing DCs into mature, activating DCs. The recombinant 

SFV system would appear to meet these criteria in that both the innate and the 

adaptive immune systems are activated. Infection of cells with SFV results in the 

formation of dsRNA intermediates22 that are known for their immunopotentiating 

capacity.23 dsRNAs can be recognized by innate immune receptors, such as Toll-

Figure 4. Effect of the route of immunization on the induction of CTL activity in Tg mice. Tg 
mice were injected s.c. (n=4, squares), i.m. (n=4, open circles) and i.v. (n=3, closed circles) 
with 107 i.u. SFV-enhE6,7. All mice were boosted twice s.c., i.m. and i.v. respectively. Seven 
days after the last booster immunization, CTL activity was determined in triplicate using C3 
target cells. Shown are the levels of cytolysis at different effector-to-target ratios.
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like receptor 3, and trigger production of IFN type I. ln addition, dsRNAs induce 

activation and maturation of DCs.24 Uptake of apoptotic cells transfected with 

recombinant SFV will thus not only provide the specifi c antigen but also provide 

the required danger signal. 

The observation that in wild-type mice i.v. and i.m. immunization results 

in higher CTL responses than s.c. or i.p immunization, whereas in K10HPV16-

E6E7 Tg mice the s.c. route seems superior, could be explained by the following 

observations. As described above, K10HPV16-E6E7 Tg mice express E6 and E7 in 

keratinocytes. Fausch et al.25 recently demonstrated that human LCs, that reside 

in the epidermis of the skin or in epithelia of  mucosal tissues, bind and internalize 

HPV virus-like particles but do not up-regulate markers nor initiate an HPV-specifi c 

immune response. Thus, LCs cells can be considered to be (co)responsible for the 

induction and maintenance of HPV tolerance. Breaking this tolerance could best be 

achieved by specifi cally targeting danger signals to tolerogenic LCs. As suggested 

above, immunization with recombinant SFV provides the danger signal that is 

needed to activate and mature LCs. Indeed, Johnston et al.26 demonstrated that 

in vivo epidermal infection with SFV signifi cantly increases the expression of MHC 

II, CD54 and CD80 on LCs. Thus, during an epidermal viral (SFV) infection, local 

LCs mature to a phenotype resembling that of lymphoid DCs. One could therefore 

speculate that s.c. immunization of the Tg mice with recombinant SFV used in 

this study might result in maturation and activation of skin LCs and disruption of 

immune tolerance. Upon i.v. or i.m. injection, SFV-infected cells are not likely to 

reach LCs.

Apart from the potent immune-stimulatory effect, infection of cells with 

replication-incompetent recombinant SFV is highly effi cient and, in addition, it is 

safe. Infection of cells does not proceed beyond a single round and the infected 

cells die by apoptosis.27 The transient nature of infection with recombinant SFV 

thus provides an important safety advantage when considering using SFV as a 

vaccine in humans.

In summary, we have demonstrated that immunization with recombinant SFV 

expressing a fusion protein of HPV16 E6 and E7 induces HPV-specifi c CTL activity 

in a very stringent HPV tolerogenic mouse model. Considering the effect of the 

route of immunization, we hypothesize that the ability of recombinant SFV to 

overcome immunological tolerance in this model is due to its high effi ciency and 

mediated by the activation and maturation of tolerogenic LCs. 
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ABSTRACT

To enhance the therapeutic effi cacy of an immunisation strategy against human papillomavirus-
induced cervical cancer, based on the use of a recombinant Semliki Forest virus (SFV) vector 
system, we evaluated the adjuvant effect of interleukin-12 (IL12) co-expressed by a second 
SFV vector. We demonstrate that, depending on the dose and administration scheme, SFV-
IL12 stimulates antigen-specifi c CTL responses elicited by a prime-boost immunisation 
regimen with recombinant SFV expressing a fusion protein of E6 and E7 of HPV16 (SFV-
enhE6,7). In wild-type mice, SFV-enhE6,7-induced pCTL and CTL activity were enhanced 
by the addition of a low dose of SFV-IL12 to the s.c. prime immunisation with SFV-enhE6,7. 
Increasing doses of SFV-IL12 did not further stimulate the frequency of precursor CTLs and 
CTL activity. Rather the activity was reduced compared to the effect observed with the low 
dose of SFV-IL12. Addition of SFV-IL12 to the booster immunisation further reduced the 
effi cacy of the SFV-enhE6,7 immunisation. A low-dose dose of SFV-IL12 added to the prime-
immunisation improved the therapeutic anti-tumour effi cacy of SFV-enhE6,7 immunisations 
in wild-type mice. In transgenic mice, tolerant for HPV E6 and E7, the addition of SFV-
IL12 to the priming SFV-enhE6,7 immunisation also stimulated CTL responses. Our fi ndings 
provide evidence for a specifi c enhancement of antigen-specifi c immune responses by SFV-
IL12. However, our observations also show that prudence is called for when considering 
co-administration of SFV-IL12 to an immunisation strategy, as the enhancement of cell-
mediated immune responses greatly depends on dosage and injection scheme.

INTRODUCTION

Cervical cancer is one of most common cancers among women worldwide.1 It 

is caused by persistent infection with high-risk human papillomavirus (HPV), in 

particular types 16, 18, 31, 33 or 45. These high-risk HPVs have the capacity to 

transform cervical epithelial cells by integrating the open reading frames encoding 

the viral early proteins E6 and E7 into the host cell genome. This integration may 

lead to constitutive overexpression of these proteins, mediating transformation 

of the cells to a malignant phenotype.2 Constitutive expression of E6 and E7 is a 

prerequisite for the maintenance of the transformed phenotype. This makes these 

proteins suitable targets for immunotherapeutic treatment of cervical cancer.3 

Cell-mediated immune responses play an important role in the immunological 

control of HPV infections and early (pre)malignant lesions. In the majority of 

women, HPV-induced lesions regress spontaneously.4 HPV-associated tumours 

occur more frequently in individuals treated with immunosuppressive drugs or 

patients infected with HIV5-8 The present treatment of cervical neoplasia involves 

surgery (radical hysterectomy with pelvic lymphadenectomy) and/or radiotherapy 

combined with chemotherapy, depending on the stage of disease. As cervical 

cancer is a virus-induced disease and viral tumour antigens, which serve as 

targets for immunotherapy, have been identifi ed, a tumour-specifi c vaccine could 
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further optimize treatment of patients with CIN and cervical cancer.9 We have 

developed an immunotherapeutic vaccine based on a vector derived from the 

alphavirus Semliki Forest virus (SFV). Vectors based on alphaviruses are gaining 

increasing interest for their effi cacy with respect to the induction of cellular immune 

responses.10 In previous studies, we have demonstrated that immunisation of 

mice with recombinant SFV (rSFV) expressing a fusion protein of HPV16 E6 and 

E7 (SFV-enhE6,7) not only induces strong and long-lasting CTL responses but also 

effectively eradicates established tumours of HPV-transformed cells.11-13 

Although these preclinical data with SFV-enhE6,7 are promising, prudence is 

called for when extrapolating these results to a clinical setting. HPVs have evolved 

such that infected cells and (pre)malignant cells are not recognized effectively 

by the immune system. For example, expression of HPV E6 and E7 protein 

prevents the immune-regulatory effects of IFN-α- and IFN-β-mediated antiviral 

responses.14;15 It is furthermore observed that women with cervical cancer mount 

only poor levels of  E7-specifi c CTLs in response to the developing tumour16;17 

or to an E7-vaccine18, despite immunecompetence measured by other criteria. 

This poor cellular response may be caused by the expression of E7 in epithelial 

cells lacking co-stimulation, which may lead not only to immunosuppression but 

also to immunological tolerance.19;20 A major challenge will therefore be to design 

immunotherapeutic regimens such that tumour-specifi c T cells are induced that 

are potent enough to turn the balance from immune tolerance towards immune 

activation. 

To explore the potential ability of SFV-enhE6,7 to break immunological tolerance 

we previously performed an immunisation study in K10 HPV16 E6/E7 transgenic 

mice. These mice constitutively express HPV16 E6 and E7 under the control of 

the keratin 10 promoter in the suprabasal layers of the epidermis, making them 

tolerant for E6 and E7. Although immunisation and boosting with SFV-enhE6,7 did 

prime CTL activity in these transgenic mice, the levels of specifi c cytolysis induced 

upon SFV-enhE6,7 were much lower than those induced in wild-type mice.21 

In the present study, we investigated whether co-administration of an 

immunostimulatory adjuvant to SFV-enhE6,7, can further enhance anti-tumour 

responses. A promising adjuvant for cancer vaccination strategies is IL12. 

Treatment with IL12 has been shown to have a marked anti-tumour and anti-

metastatic activity in numerous animal models.22 The ability of IL12 to induce 

antigen-specifi c immunity relies mainly on its ability to induce or augment Th1 

and CTLs responses, and the induction of immune memory.23-26 We evaluated 

whether the addition of SFV-IL12 to a recombinant SFV vaccine augments the 

induction of antigen-specifi c CTLs and anti-tumour responses. In wild-type mice 
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we determined if and at which dose and treatment schedule, SFV-IL12 could 

enhance the effi cacy of an SFV-enhE6,7 immunisation. Next we evaluated this 

optimal immunisation regime in K10 HPV16 E6/E7 transgenic mice. Finally, the 

adjuvant activity of SFV-IL12 when administered in combination with SFV-enhE6,7 

was analysed in tumour-treatment experiments. 

RESULTS

Addition of SFV-IL12 to an SFV-enhE6,7 vaccine augments the induction 

of E6/E7 specifi c CTLs 

In previous studies we have shown that in wild-type mice immunisation with SFV-

enhE6,7 results in potent CTL responses as determined in bulk CTL assays. To enable 

the evaluation of the addition of SFV-IL12 to an immunisation with SFV-enhE6,7 

in wild-type mice, the immunisation with SFV-enhE6,7 should be suboptimal, 

allowing the induction of higher levels of CTL- and anti-tumour activity. From 

previous studies we know that this can be achieved by immunising subcutaneously 

(s.c.) instead of the more effective intravenous (i.v.) or intramuscular (i.m.) 

route of immunisation and/or by lowering the dose of recombinant virus used for 

immunisation. 27

To determine if addition of SFV-IL12 can enhance an antigen-specifi c immune 

response, increasing doses of SFV-IL12 (104, 105 and 106 infectious units) were 

added to a suboptimal s.c. immunisation with 106 I.U. of SFV-enhE6,7. SFV-IL12 

was co-administered with the fi rst immunisation (priming). Two weeks after the 

priming immunisation mice were boosted with SFV-enhE6,7 alone. One week after 

the booster the frequencies of HPV16 E6,7-specifi c precursor CTLs (pCTLs) were 

determined by tetramer analysis using MHC class I tetramers refolded with the 

E749-57 peptide (Figure 1), and CTL activity (Figure 2) was determined using a 

standard bulk CTL assay.  Upon two s.c. immunisations with 106 I.U. of SFV-

enhE6,7, as expected, no detectable pCTL frequencies were induced (Figure 1, 

bar B). However, the addition of SFV-IL12 evoked a strong enhancement in pCTLs, 

with a pCTL frequency up to 6% at a dose of 105 SFV-IL12 (Figure 1, bar D). This 

immunostimulating effect of SFV-IL12 was also refl ected in CTL activity, as shown 

in Figure 2. Notebly, the CTL levels in mice immunised with the lower doses of 

SFV-IL12, i.e. 104 I.U. (Figure 2, panel C) and 105 I.U. (Figure 2, panel D), were 

higher than those in mice immunised with 106 SFV-IL12 (Figure 2, panel E).
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Figure 1. Effects of co-administration of SFV-IL12 with SFV-enhE6,7 on the induction of 
antigen-specifi c pCTLs. Mice were immunised and boosted s.c. with 106 SFV-enhE6,7, and 
increasing doses of SFV-IL12 were co-administered during the priming immunisation, i.e. 104 
I.U. (n=5, C), 105 I.U. (n=5, D) and 106 I.U. (n=5, E). A group of 4 mice was immunised and 
boosted with SFV-enhE6,7 only (B), and 4 mice were immunised and boosted with PBS, as 
controls (A). pCTL frequencies were determined one week after the booster immunization. 
Spleen cells, directly upon isolation, were stained with a FITC-labelled monoclonal antibody 
against CD8 and a PE-labelled HPV16 E749-57 –specifi c MHC class I tetramer and analysed by 
fl owcytometry. The average percentages (±SD) of E749-57 tetramer-positive CD8+ cells of 
the different groups are shown. Results of group C, D, and E were signifi cantly different from 
group B (p<0.05) ), as indicated with *. 

Figure 2. Effects of co-administration of SFV-IL12 with SFV-enhE6,7 on the induction of 
antigen-specifi c CTL activity. Mice were immunised and boosted as described in the legend 
to fi gure 1. CTL activity was determined after a 7-day in vitro restimulation. The resulting 
effector cells were tested for cytolytic activity against C3 target cells in triplicate well assay. 
In the individual panels A-E, corresponding to the bars depicted in Figure 1, the level of 
cytolysis at different effector-to target ratios is shown. Results in panel C and D were 
signifi cantly different from panel B (p<0.05). The results of the group primed with 106 I.U. 
SFV-IL12 (panel E) were not signifi cantly different from the SFV-enhE6,7 control (panel B).

Time-point of SFV-IL12 administration determines its effi cacy

Next to the dose also the time-point of administration of IL12 has been described 

to be a critical factor for positive cell-mediated immunity effects.28;29 To evaluate 

if the time-point of administration also infl uences the adjuvant activity of IL12 

expressed by SFV, SFV-IL12 was added either to the priming SFV-enhE6,7 
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immunisation, to the booster immunisation or at both time-points. The addition of 

SFV-IL12 during the priming immunisation strongly enhanced CTL activity (Figure 

3). In contrast, addition of SFV-IL12 to the booster reduced CTL activity. In mice in 

which SFV-IL12 was added both with the priming and the boosting immunisation 

with SFV-enhE6,7, the CTL activity strongly varied. In approximately half of these 

mice CTL activity was enhanced to the level also observed when adding SFV-IL12 

to the prime only, while in the other half of the mice the response was reduced to 

the level also observed when adding SFV-IL12 to the booster immunisation (not 

shown).  These fi ndings indicate that in an rSFV prime-boost vaccine regimen, 

IL12 stimulates the immune response when co-expressed with antigen (i.e. E6,7) 

during the induction of generation of the initial primary immune response. 

SFV-IL12 effi cacy in HPV-transgenic mice

We previously demonstrated that in K10 HPV16 E6/E7 trangenic mice, tolerant 

for HPV16 E6E7, SFV-enhE6,7 immunisation can break this tolerance resulting 

in the induction of HPV-specifi c CTLs. Remarkably, in these transgenic mice 

tolerance can only be broken by s.c. immunisation with SFV-enhE6,7. The levels 

of specifi c cytolysis induced upon SFV-enhE6,7 were, however, much lower than 

those that can be induced in wild-type mice.30 IL12 has been demonstrated to 

reverse antigen-induced tolerance and expand antigen-specifi c CTLs31;32, by acting 

as a third signal along with TCR and costimulatory molecules.33;34 To determine if 

SFV-IL12 could also enhance the induction of the specifi c CTL response in HPV-

trangenic mice, K10 HPV16 E6/E7 trangenic mice were primed s.c. with 107 I.U. of 

Figure 3. Effects of the timing of SFV-
IL12 administration on the induction of 
antigen-specifi c CTLs.
Mice were immunised and boosted s.c. 
with SFV-enhE6,7 (106 I.U.) . SFV-IL12 
(105 I.U.)  was  either co-administered 
at the priming (open circles), at the 
booster (open squares) or at both 
immunisations (not shown). As controls, 
mice were immunised and boosted with 
SFV-enhE6,7 only (closed squares) 
or injected with buffer only (closed 
diamands). One week after the booster, 
spleen cells were analysed for bulk CTL 
activity, as described in Figure 2. Shown 
are the resuls of a typical experiment. The 
average percentages (±SD) of cytolysis of 
spleen cells at different effector-to target 
ratios are depicted. 
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SFV-enhE6,7 together with different amounts of SFV-IL12 particles and boosted 

twice with 107 SFV-enhE6,7. One week after the last booster injection, CTL activity 

was determined using bulk CTL assay. Compared to the immunisation with SFV-

enhE6,7 only (Figure 4, panel A), addition of SFV-IL12 slightly improved the E6/

E7-specifi c CTL response in these HPV-transgenic mice (panels B and C). The 

immune-potentiating effect of SFV-IL12 was dose-dependent yet not as strong as 

that seen in wild-type mice. Addition of 105 I.U. of SFV-IL12, the optimal adjuvant 

dose in wild-type mice, resulted in divergent CTL responses in HPV-transgenic 

mice. (Figure 4, panel C). The lowest dose of SFV-IL12 tested (104 I.U.) added to 

the priming immunisation of SFV-enhE6,7 slightly stimulated CTL activity in both 

wild-type and HPV-transgenic mice (Figure 4, panel B), while 106 I.U. SFV-IL12 

did not enhance the immune response in HPV-transgenic mice (Figure 4, panel D). 

Thus, the enhancement in antigen-specifi c immune response elicited with a low 

dose of SFV-IL12, as observed in wild-type mice, also occurs in HPV-transgenic 

mice. However, the levels of specifi c cytolysis induced in the transgenic mice with 

the most optimal rSFV-vaccine regimen remained lower than those induced in 

wild-type mice.

Effect of co-administration of SFV-IL12 on in vivo anti-tumour response

The experiments described above revealed that SFV-IL12 enhances SFV-enhE6,7-

induced specifi c CTL activity. To analyse whether this enhancement in CTL activity 

is also refl ected in the therapeutic ability of the immune response to eradicate 

Figure 4. Effects of co-administration of SFV-IL12 with SFV-enhE6,7 on the induction of 
antigen-specifi c CTL activity in HPV-transgenic mice. K10 HPV16 E6/E7 trangenic mice 
were primed s.c. with 107 SFV-enhE6,7 together with increasing doses of SFV-IL12, 104 
I.U. (panel B), 105 I.U. (panel C) or 106 I.U. (panel D) and boosted twice with 107 SFV-
enhE6,7.  A control group was immunised and boosted twice with 107 SFV-enhE6,7 only 
(panel A). Seven days after the last booster, spleen cells were isolated. After 12 days of in 
vitro restimulation, CTL activity was determined in triplicate using C3 target cells. Shown 
are the levels of cytolysis at different effector-to-target ratios. Less than 2% of lysis at an 
effector-to-target ratio of 30:1 was observed in mice injected with PBS (not shown).
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established tumours, a tumour-treatment experiment was performed. We 

previously have shown that optimal immunisation with SFV-enhE6,7 effectively 

eradicates established tumours of HPV-transformed cells in already 100% of the 

mice. To analyse if SFV-IL12 enhances the immune response in this tumour model, 

mice were inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently, mice 

were s.c. treated with a suboptimal dose of 106 SFV-enhE6,7 with or without 105 

SFV-IL12 at day 7 and boosted with SFV-enhE6,7, only, at day 14. All control mice, 

injected s.c. with PBS, developed tumours within 14 days after tumour inoculation. 

(Figure 5, panel A) Although tumour outgrowth was signifi cantly delayed, all mice 

immunised and boosted suboptimally with SFV-enhE6,7,  developed tumours. 

(Figure 5, panel B) In contrast, 28% of the mice co-injected with SFV-IL12 at the 

priming were able to eradicate the tumour and remained tumour-free up to 45 

days after tumour inoculation. Thus, the observed enhancement in specifi c CTL 

activity upon co-administration of SFV-IL12 is also refl ected in the therapeutic 

effect.

We next determined the effect of co-injection of SFV-IL12 on tumour eradication 

in HPV16 E6E7 transgenic mice. The increase in CTL activity induced by SFV-

IL12 when present during the priming immunisation, however, did not suffi ce to 

generate a suffi ciently high anti-tumour response to kill the HPV-tumour cells in 

vivo in these tolerant mice (results not shown).

Figure 5. Effect of SFV-IL12 on the therapeutic anti-tumour effi cacy of SFV-enhE6,7. Mice 
were inoculated s.c. in the neck with 2x104 TC-1 cells. Subsequently mice were immunised 
and boosted at day 7 and 14 with 106 SFV-enhE6,7 s.c.,  with co-administration of 105 
SFV-IL12 at the priming (n=7, panel C) or without SFV-IL12 (n=7, panel B). As controls, 
mice were injected s.c. with PBS (n=7, panel A). Tumour measurements were initiated 
10-14 days after tumour challenge and subsequently measured twice weekly. At a tumour 
of approximately 1000 mm3, the mice were sacrifi ced. Shown is the tumour volume of 
individual mice. The percentages indicate the percentage of tumour-free mice  at 6 weeks 
after tumour inoculation. 
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DISCUSSION

Interleukin-12 can target two processes in the control of tumour growth. The fi rst 

process involves the formation of new blood vessels that are required for tumour 

nutrition, while the second process relates to the augmentation of immune responses 

directed against the tumour.35-37 SFV encoding IL12 has sofar only been reported 

to effectively target the fi rst process. In these studies, SFV-IL12 was administered 

intratumourally or peritumourally.38-41 The local IL12 production, in this treatment 

setting, most likely results in an inhibition of tumour neovascularization through 

IFN-γ induction.42 In the present study, we demonstrate that IL12 produced by 

SFV also targets the second anti-tumour process. Depending on the dose and 

administration scheme, SFV-IL12 enhances antigen-specifi c CTL responses 

elicited by a prime-boost immunisation with SFV-enhE6,7. In wild-type mice, SFV-

enhE6,7-induced pCTL and CTL activity were enhanced by the addition of a low 

dose of SFV-IL12 (104 and 105 I.U.) to the priming s.c. immunisation with SFV-

enhE6,7. Increasing the dose of SFV-IL12 (106 I.U.), did not further stimulate the 

frequency of precursor CTLs and CTL activity. Rather the activity was decreased 

compared to the effect observed with 104 and 105 I.U. of SFV-IL12. The addition 

of SFV-IL12 to the booster immunisation even suppressed the effi cacy of the SFV-

enhE6,7 immunisation alone. In transgenic mice, tolerant for HPV E6 and E7, the 

addition of SFV-IL12 to the priming immunisation with SFV-enhE6,7 enhanced 

CTL activity. The adjuvant activity of SFV-IL12 also improved the therapeutic anti-

tumour effi cacy of SFV-enhE6,7 immunisations in wild-type mice. However, such 

an effect was not achieved in K10 HPV16 E6/E7 transgenic mice.

As mentioned above, recombinant IL12 has been shown to have an anti-tumour 

and anti-metastatic effect in animal models.22 IFN-γ is the principal mediator of 

the anti-tumour effects of IL12, through direct toxicity and activation of potent 

anti-angiogenic mechanisms via interferon-inducible protein-10 and monokine 

activity. 43-45 The major objection against IL12 for anti-tumour therapy is its toxicity. 

Dosages that elicit anti-tumour effects have severe side-effects. The dosages that 

elicit these anti-tumour responses far exceed the dose of IL12 produced upon the 

injection of SFV-IL12. For therapeutic effects, s.c. dosing schedules of for example 

50-300 ng/kg twice weekly for a period of 24 weeks have been evalutated in 

patients. Colmenero and coworkers demonstrated that in vitro 6 ng of IL12 can be 

produced by the infection of 106 cells with SFV-IL12 at an MOI of 10.46 Assuming 

that in vivo and in vitro cells produce similar amounts of IL12, this would imply 

that a maximum of 0.6 ng of IL12 is produced when injecting 105 IU of SFV-IL12 

in a mouse (i.e. appr. 30 ng/kg).  With a single injection of SFV-IL12 one would 
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therefore not expect any signifi cant side effects. Indeed, in our experiments we 

did not observe any side effects. 

IL12 as a recombinant protein has also been used as an adjuvant for the 

potentiation of antigen-specifi c CTL responses and increased anti-tumour 

therapeutic effi cacy in several vaccination strategies in both mice and humans.47 

Co-administration of tumour antigens and IL12 can provide an environment 

with infl ammatory danger signals that is required to activate antigen-presenting 

dendritic cells (DC) and may thereby prevent or revert tolerance to tumour-

associated antigens.48;49 The ability of IL12 to induce antigen-specifi c immunity 

relies mainly on its ability to induce or augment Th1 and CTL responses, and 

the induction of immune memory.50-53 Apart from these studies in which IL12 is 

administered as a recombinant protein, several studies report on the effectiveness 

of IL12 as an adjuvant when expressed by a viral vector.54;55  

Colmonero et al. showed that in a murine P815 s.c. tumour model, peri-

tumoural or intra-tumoural co-delivery of SFV encoding the tumour antigen P1A 

and IL12 did not signifi cantly improve the anti-tumour therapeutic effect obtained 

when the vectors were used individually.56 The authors furthermore demonstrated 

that when both vectors were injected s.c. in the contralateral side of the tumour 

no anti-tumour effect was observed.  The lack of an adjuvant effect in Colmenero’s 

studies as well as the observation that contralateral s.c. injections did not evoke 

an immune response differ from our results. This difference in outcome can 

possibly be explained by our observation that the adjuvant effect of SFV-IL12 

is dose- and schedule-dependent. In Colmenero’s studies, 106 I.U. of SFV-IL12 

were administered, a dosage that in our study inhibited CTL activity. The authors 

furthermore injected mice four times with SFV-IL12 and SFV-E-P1A. Although we 

did not evaluate the effects of four injections, we did observe that the addition of 

SFV-IL12 to the booster injection with SFV-enhE6,7 suppressed CTL activity, while 

the addition of SFV-IL12 to both the priming and the boosting immunisation in half 

of the mice augmented CTL responses but in the other half suppressed the CTL 

response. Thus while the effect Colmenero et al. observed when injecting SFV-

IL12 peritumoural or intratumoural may be ascribed to an inhibition of tumour 

neovascularization through IFN-γ induction57, the effect we observe with SFV-IL12 

is most likely due to an immune-adjuvant effect of IL12. It should however be 

noted that the mouse strains used for both studies differ. Colmenero et al. used 

DBA/2 and Balb/C mice with a H2-d background that are more prone to develop 

Th2-type responses, while the C57Bl/6 mice used in our studies are more prone 

to a Th1-type of response. Further studies are needed to evaluate if this difference 

in genetic background infl uences the effects of SFV-IL12.
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In the present study, we observed that the addition of SFV-IL12 to the priming 

immunisation with SFV-enhE6,7 enhances CTL responses, while it hampers the 

responses when given at the booster immunisation. These results are in line with 

a study by Gherardi et al.58 These authors demonstrated that, in a heterologous 

DNA prime and vaccinia virus boost vaccine regimen, an optimal cellular immune 

response was induced when IL12 was delivered during the priming immunisation 

followed by a booster with the antigen alone. By contrast, Seaman et al.59 

demonstrated that plasmid IL12 delivery on day 10 post-immunisation resulted 

in a strong expansion of the number of CD8+ T cells specifi c for the antigen used 

in the study (GP120). This increase was not observed when the plasmid IL12 

was administered on the day of the immunisation. However, a further analysis 

indicated that the expanded cells were primarily effector memory rather than 

central memory T cells. Central memory T cells have been shown to have a greater 

capacity to expand in vivo following an infection and are able to confer better 

protection than effector memory T cells. The data of these authors suggest that 

activation of CD8+ T cells during the peak phase of the immune response (day 

10) drives the terminal differentiation into effector memory CTL. Further studies 

will have to demonstrate if the enhancement of the CTL response observed in our 

studies can be ascribed to the fact that administration of IL12 during the priming 

of naïve T cells drives the response to a central memory phenotype.

In conclusion, our results demonstrate that SFV-IL12 can enhance but can 

also hamper antigen-specifi c CTLs and anti-tumour responses elicited by a prime-

boost immunisation with SFV-enhE6,7. In HPV-transgenic mice, tolerant for HPV16 

E6E7 this enhanced effi cacy slightly increases CTL activity yet does not suffi ce to 

induce anti-tumour responses. As however the tolerance in this transgenic mouse 

model is very stringent, the results in the wild-type mice suggest that one could 

consider to include SFV-IL12 as an adjuvant in SFV-based immunisations. The 

dose-response effect of SFV-IL12 requires that specifi c attention should be given 

to determine the optimal adjuvant dose. More is not always better.  

MATERIALS AND METHODS 

Cell lines

Baby hamster kidney cells (BHK-21) were obtained from the American Type Culture 

Collection (# CCL-10). The cells were grown in GMEM (Invitrogen, Breda, The 

Netherlands) containing 5% fetal calf serum.  C3 cells, 13-2 cells, and TC-1 cells 

were kindly provided by Dr. C. Melief and Dr. R. Offringa (Leiden University, The 

Netherlands). The C3 cell line was derived from C57Bl/6 (H-2b) embryonic cells 
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transfected with a plasmid containing the complete HPV16 genome.60 The 13-2 

cell line was generated from C57Bl/6 (H-2b) embryonic cells transfected with the 

E1-region of adenovirus type 5 in which the adenoviral E1A epitope SGPSNTPPEI is 

replaced by a HPV16 E7 CTL epitope, AA 49-57 (RAHYNIVTF).61 The TC-1 cell line 

was generated from C57Bl/6 primary lung epithelial cells with a retroviral vector 

expressing HPV16 E6E7 plus a retrovirus expressing activated c-Ha-ras.62 C3, 13-2 

and TC-1 cells were grown in IMDM with Glutamax-I (Invitrogen) supplemented 

with 10% fetal calf serum and penicillin and streptomycin (Invitrogen; 100 U/ml 

and 100 µg/ml, respectively). TC-1 medium was furthermore supplemented with 

non-essential amino acids (Invitrogen; 100-fold dilution), sodium pyruvate (Life 

Technologies; 1 mM) and Geneticin G418 Sulphate (Roche, Germany; 5mg/ml).    

Mice

For wild-type mice, specifi c-pathogen-free female C57Bl/6 mice (Harlan CPB, Zeist, 

The Netherlands) were used. Founder transgenic mice, K10 HPV16 E6/E7, were kindly 

provided by Prof. L. Gissmann (Deutsches Krebsforschungszentrum, Heidelberg, 

Germany). Crossing of K10HPV16-E6/E7 transgenic males with K10HPV16-E6/E7 

transgenic or wild-type females produced F1 mice.63 Expression of E6 and E7 was 

confi rmed by PCR of DNA obtained from tail specimens. No difference in E6 and 

E7 expression was observed between homozygous and heterozygous F1 mice. In 

addition, no differences in CTL induction were observed between these mice (not 

shown). Both the wild-type mice and the HPV-transgenic mice were between 6 and 

10 weeks of age at the start of the immunisation protocols. 

Production, purifi cation, and titer determination of rSFV 

The production, purifi cation, and titer determination of recombinant SFV-enhE6,7 

and SFV-IL12 was performed as described previously.64;65 In short, pSFV3-eE6,7 and 

pSFV-IL12 were produced using pSFV-Helper 2 and quantifi ed using BHK 21 cells. 

pSFV3-eE6,7 encodes an enhanced expression of a fusion product of E6 and E7 of 

HPV type 16. For the construction of recombinant SFV-IL12, the genes encoding the 

p40 and p35 subunit proteins of murine IL12 were inserted individually downstream 

of the 26S promoter in the SFV expression vector pSFV4.2.

Immunisations

For CTL analysis, wild-type mice were immunised with a suboptimal s.c. immunisation 

with 106 I.U. of SFV-enhE6,7, followed by one booster immunization with a two-

week interval. Varying doses of SFV-IL12 (104, 105 and 106 I.U.) were added either 

to the priming SFV-enhE6,7 immunisation, to the booster immunisation or at both 
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time-points. K10 HPV16 E6/E7 trangenic mice were primed s.c. with 107 I.U. of 

SFV-enhE6,7 together with different amounts of SFV-IL12 particles (104, 105 and 106 

I.U.) and boosted twice with 107 SFV-enhE6,7. As negative controls, both wild type 

and HPV-transgenic mice were injected with PBS.

CTL assay 

Seven to ten days after immunisation, spleen cells were isolated and cocultured 

with irradiated (100 Gy) TC-1 cells in a ratio of 25:1, in 25 cm2 culture fl asks, placed 

upright. In experiments using wild-type mice one-week after in vitro restimulation, 

cells were harvested and a CTL assay was performed by a standard 4-hr 51Cr release 

assay in triplicate. In experiments using HPV-transgenic mice, after 5-6 days and 

9-12 days of culture, cells were harvested and restimulated with irradiated naïve 

spleen cells (33Gy) and irradiated TC-1 cells (100Gy) at a ratio of 2:5:0.08 in 24-

wells plates in the presence of 4 units of recombinant hIL2/ml (Strathmann Biotech, 

Hamburg, Germany). Five days after the fi rst and second restimulation, cells were 

harvested and CTL activity was determined in a standard 4 h 51Cr release assay. 

Target cells (13-2 cells and C3 cells) were labeled for 1 h with 3.7 MBq 51Cr/106 cells 

in 100 µl medium (MP Biomedicals, Inc., Irvine, CA, USA). The mean percentage 

of specifi c 51Cr-release was calculated according to the formula: % specifi c release 

= [(experimental release-spontaneous release)/(maximal release-spontaneous 

release)] cpm x 100. The spontaneous 51Cr-release was always <15%. The standard 

errors of the means of the triplicate determinations were <10% of the mean. Similar 

levels of specifi c lysis were obtained using C3 or 13-2 cells; only the results obtained 

with the C3 cells are shown.

 

MHC class I tetramer staining and FACS analysis

To analyze the number of CD8+ T cells specifi c for the HPV 16 E749-57 peptide 

RAHYNIVTF we used Kb-RAHYNIVTF tetramers produced in the laboratory of Dr. Ton 

Schumacher (The Netherlands Cancer Institute, Amsterdam, The Netherlands). 

Spleen cells were washed with FACS buffer (PBS containing 0,5% BSA and 0,02% 

sodium azide) and stained with FITC-conjugated anti-CD8a (Pharmingen, San 

Diego, CA, USA) together with PE-conjugated Kb-RAHYNIVTF tetramers for 20 

minutes at 4°C. Spleen cells were washed three times and analyzed by fl ow 

cytometry (FACSCalibur, Beckton Dickinson, Breda, The Netherlands). Live cells 

were selected based on propidium iodide exclusion.
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Tumour treatment experiments

Mice were inoculated s.c. in the neck with 2x104 TC-1 cells suspended in 0.2 ml 

Hanks Buffered Salt Solution (Invitrogen). Subsequently, wild-type mice were 

treated s.c. with 106 particles of SFV-enhE6,7 with or without 105 SFV-IL12 at day 7, 

after tumour inoculation and boosted at day 14, with 106 particles of SFV-enhE6,7 

only. HPV-transgenic mice were treated s.c. with 107 particles of SFV-enhE6,7 with 

or without 105 SFV-IL12 at day 2 and boosted at day 7 and 14 with 106 particles 

of SFV-enhE6,7 only (results not shown). As negative controls, both wild type and 

HPV-transgenic mice were injected with PBS after tumour inoculation. Tumour 

measurements were always performed blindly by the same technician. At a tumour 

volume of approximately 1000 mm3, the mice were sacrifi ced. 

Statistical analysis

Data depicted in Figures 1 and 2 were statistically analysed using the Mann-

Whitney U-test.
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ABSTRACT

Currently, various therapeutic strategies are being explored as a potential means to 
immunize against metastatic malignant cells or even primary tumours. Using recombinant 
viral vectors systems or protein-based immunization approaches, we are developing 
immunotherapeutic strategies against cervical cancer or premalignant cervical disease, as 
induced by high-risk type human papillomaviruses (HPVs). We previously demonstrated that 
immunization of mice with recombinant replication-defective Semliki Forest virus (rSFV) 
encoding a fusion protein of HPV16 E6 and E7 (SFV-enhE6,7) induces strong CTL activity and 
eradication of established HPV-transformed tumours. In the present study, we compared 
the anti-tumour effi cacy of SFV-enhE6,7 with that of a recombinant adenovirus (rAd)  type 
5 vector, expressing the same antigen construct (Ad-enhE6,7). Prime-boosting with SFV-
enhE6,7 resulted in higher precursor CTL (pCTL) frequencies and CTL activity compared to 
prime-boosting with Ad-enhE6,7 and also in murine tumour treatment experiments SFV-
enhE6,7 was more effective than Ad-enhE6,7. To elicit a therapeutic effect with Ad-enhE6,7, 
100/1000-fold higher doses were needed compared to SFV-enhE6,7. In vivo T-cell depletion 
experiments demonstrated that these differences could not be explained by the induction of a 
different type of effector cells, since CD8+ T-cells were the main effector cells involved in the 
protection against tumour growth in both rSFV- and rAd-immunized mice. Also comparable 
amounts of in vivo transgene expression were found upon immunization with rSFV and rAd 
encoding the reportor gene luciferase. However, anti-vector responses induced by a single 
injection with rAd resulted in a more than three log decrease in luciferase expression after 
a second injection of rAd. With rSFV, transgene expression was inhibited by only one to 
two orders of magnitude in pre-injected mice. As an antigen-specifi c booster immunization 
strongly increases the level of the CTL response and is essential for effi cient induction of 
immunological memory, it is likely that (part of) the difference in effi cacy between rSFV and 
rAd type 5 can be ascribed to a diminished effi cacy of the booster immunization in the case 
of rAd due to anti-vector antibody responses. 

INTRODUCTION

We are developing immunotherapeutic strategies against cervical cancer or 

premalignant cervical disease using replication-defective recombinant viral vector 

systems 1-5 or protein-based immunization approaches.6 Cervical cancer is the 

second most common type of cancer among women worldwide, and the fi rst 

malignancy recognized by the WHO to be 100% attributable to infection with a 

virus, specifi cally a high-risk type human papillomavirus (HPV). 7;8 Malignant cell 

transformation by HPVs involves integration of part of the viral genome into the 

chromosomal DNA of susceptible cervical epithelial cells. Subsequent constitutive 

expression of the E6 and E7 early viral genes results in inhibition of the tumour 

suppressor proteins p53 and pRb, respectively, and thus in a loss of cell cycle 

control.9;10 Since the sustained expression of E6 and/or E7 is a prerequisite 

for maintenance of the transformed cellular phenotype, these proteins in fact 
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represent tumour-specifi c antigens and thus are potentially suitable targets for 

immunotherapeutic strategies against cervical cancer or pre-malignant cervical 

disease.11 Therapeutic immunization against tumour cells requires the induction 

of cytotoxic T lymphocytes (CTL) that can specifi cally recognize and lyse tumour 

cells. For the differentiation, expansion and memory induction of tumour-specifi c 

CTLs, T-helper cells (Th cells) and properly activated antigen-presenting cells 

(APC), dendritic cells (DCs) in particular, are essential.       

Preclinical evaluation of a recombinant replication-defective Semliki Forest 

virus (SFV) vector, expressing a fusion proteins of HPV type 16 E6 and E7, has 

demonstrated the ability of this system to induce strong E6/E7-specifi c cytotoxic 

T lymphocyte (CTL) activity in normal 1;3 and immune-tolerant E6/E7-transgenic 4 

mice and to eradicate pre-established, subcutaneously implanted, HPV-transformed 

tumours in a murine tumour model.2 However, despite the apparent potential 

of this approach, clinical evaluation of an SFV-based therapeutic immunization 

strategy is hampered by the fact that there is no prior human clinical experience 

with this vector system which would facilitate regulatory procedures. 

A recombinant viral vector that has been evaluated extensively in human clinical 

studies is the adenovirus system.12-14 Like recombinant SFV-based vector systems, 

recombinant adenoviruses (rAd) are attractive vaccine candidates, harbouring 

several advantageous features. rAd are easy to construct and propagate, they 

are replication-incompetent and can transduce a wide range of dividing and non-

dividing cells, including antigen-presenting cells (APCs), and give high levels of 

transgene expression.15;16 The only major limitation in the clinical application of 

rAd is the prevalence of pre-existing or inducible anti-viral immunity.17;18

In the present study, with the goal of rapidly bringing a therapeutic genetic 

immunization approach against (pre)malignant cervical disease to the clinic, 

we evaluated a recombinant replication-defective adenovirus vector expressing 

HPV16 E6/E7 antigen, in our murine model system and compared its effi cacy with 

that of SFV-mediated immunization in terms of induction of CTL activity and anti-

tumour responses.            

RESULTS 

Effi cacy of Ad-enhE6,7 compared to SFV-enhE6,7 with respect to the 

induction of HPV-specifi c CTLs 

To compare the effi cacies of rAd and rSFV as vectors for the induction of anti-tumour 

activity, rAd and rSFV was generated encoding the same HPV16 E6,7 construct. 

This construct encodes the E6 and E7 protein of HPV16 as a fusionprotein.1 Next, 
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Ad- enhE6,7 and SFV-enhE6,7 particles were compared in immunization and in 

vivo tumour treatment experiments. pCTL frequencies and CTL activity were 

determined one week after the last (booster) immunization by the direct staining 

of spleen cells with MHC class I tetramers refolded with HPV16 E749-57 peptide and 

a standard bulk CTL assay, respectively.  

As shown in Figure 1, two intramuscular (i.m.) or intravenous (i.v.) immunizations 

with 5x106 SFV-enhE6,7 resulted in a signifi cantly higher CTL activity than two 

i.m. immunizations with a 100-fold higher dose of Ad-enhE6,7. As a control, mice 

Figure 1. Effi cacy of Ad-enhE6,7 compared to SFV-enhE6,7 with respect to the 
induction of HPV-specifi c CTLs
CTL-activity induced upon immunization with SFV-enhE6,7 particles versus Ad-enhE6,7 
particles. Mice were immunized and boosted, with 5x106 SFV-enhE6,7 i.v. (n=7, closed 
diamonds), with 5x106 SFV-enhE6,7 i.m. (n=7, open diamonds), 5x108 Ad-enhE6,7 i.m. 
(n=7, closed squares) or with 1x109 Ad-Luc i.m. (n=3, closed triangles) or PBS (n=3, open 
circles) as controls. CTL activity was determined 1 week after the booster immunization. 
After 7 days of in vitro restimulation, the resulting effector cells were tested for cytolytic 
activity against C3 target cells in triplicate well assay. The levels of cytolysis at different 
effector-to-target ratios are shown. Control immunizations with 5x106 SFV-LacZ did not 
induce CTL activity (not shown).1,3 Shown are the results of a typical experiment repeated 
three times. Both the i.v. and i.m. SFV-enhE6,7 immunization groups and i.m. Ad-enhE6,7 
immunization group were signifi cantly different compared to the PBS control group (resp. 
p=0.03; p=0.03 and p=0.006). Both routes of SFV-enhE6,7 immunizations were signifi cantly 
different compared to Ad-enhE6,7  (P=0.006)
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were injected twice with a two-fold higher dose of rAd encoding an irrelevant 

gene (Ad-Luc) or with SFV-LacZ (not shown) which did not evoke any CTL activity. 

Similar levels of specifi c lysis were obtained using C3 or 13-2 cells; only the 

results obtained with the C3 cells are shown.  

In a dose-response experiment the difference in CTL activity seen between 

Figure 2. Dose response effect of Ad-enhE6,7 and SFV-enhE6,7 prime-boost 
immunizations 
Mice were immunized and boosted i.m. with 104, 105 and 106 SFV-enhE6,7 or with 107, 108 
and 109 Ad-enhE6,7 or with buffer (in each group 4 mice). Spleen cells, isolated one week 
after the booster immunization were either stained directly (A) or after a 7-day in vitro 
restimulation (B), with a FITC-labelled monoclonal antibody against CD8+ and a PE-labelled 
HPV16 E749-57-specifi c MHC class I tetramer and analyzed by fl owcytometry. Data represent 
percentages of E749-57 tetramer-positive CD8+ cells of individual mice (A and B). In chart C 
typical fl ow cytometry data are shown of spleen cells either stained directly upon isolation 
or after a 7-day in vitro restimulation of buffer control mice or mice immunized with 109 Ad-
enhE6,7 or 105 SFV-enhE6,7. Indicated is the percentage of tetramer+ T cells in the CD8+ 
T cell population. Figures A and B shown results of a typical experiment, repeated twice. 
Responses in A and B in all individual groups of SFV or Ad immunized mice were signifi cantly 
different from the PBS control group (p=0.03). 
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Ad-enhE6,7 and SFV-enhE6,7 was also refl ected in the frequencies and the pro-

liferative capacity of precursor CTLs induced (Figure 2). Prime-boost immuniza-

tions with as few as 104 SFV-enhE6,7 particles induced considerable levels of 

HPV-specifi c CTL precursors (Figure 2A) that upon in vitro restimulation readily 

expanded (Figure 2B). The very low level of pCTLs induced upon immunization 

with 107 Ad-enhE6,7 could not be expanded signifi cantly above background levels 

by the 7-day restimulation protocol. Immunizations with 108 and 109 did results 

in detectable levels of pCTLs that expanded upon restimulation. Yet, while in this 

experiment pCTLs isolated from SFV-immunized mice expanded to approximately 

30-60% of the CD8+, pCTLs isolated from Ad-immunized mice expanded to ap-

proximately 10% of the CD8+ T cell population (Figure 2B). To illustrate these re-

sponses Figure 2C shows typical fl ow cytometry data of spleen cells either stained 

directly upon isolation or after a 7-day in vitro restimulation of mice immunized 

with 109 Ad-enhE6,7, 105 SFV-enhE6,7 or buffer.

For SFV immunizations we previously demonstrated that the route of 

immunization determines to a large extent the outcome of the immune response 

evoked, i.v. and i.m immunizations being signifi cantly more effi cient that i.p. 

or s.c immunization.3 To determine the optimal route of injection for adenoviral 

immunization, 5x108 Ad-enhE6,7 particles were administered via different routes 

(i.m., i.p. or s.c), twice with a two-week interval. As intravenous injection of rAd 

is hepatotoxic, Ad-enhE6,7 was not administered via this route.19;20 Only upon 

Figure 3. Infl uence of the route of immunization of Ad-enhE6,7 on the induction of 
CTL responses
Mice were immunized i.m. (n=7), s.c. (n=2), i.p. (n=2) and boosted via the same route 
as the primary immunization, with 5x108 Ad-enhE6,7 or PBS as control. After 8 days of 
in vitro restimulation, the resulting effector cells were tested for cytolytic activity against 
C3 target cells in triplicate well assay. The levels of cytolysis at different effector-to-target 
ratios are shown. Less than 2% of lysis at an effector-to-target-ratio of 30:1 was observed 
in mice injected with PBS or SFV-LacZ (not shown). Shown are the results of an experiment 
repeated twice. 
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i.m. immunization low but detectable CTL activity was induced; s.c. and i.p. 

immunization did not induce detectable CTL activity (Figure 3). Although the bulk 

CTL analysis did not reveal any CTL activity, tetramer analysis demonstrated low 

but detectable pCTL frequencies by s.c. immunization. Upon i.p. immunization 

pCTLs frequencies, if induced, were below detection limit (not shown).

Therapeutic effi cacy of immunization with Ad-enhE6,7 versus SFV-

enhE6,7

We next determined whether the observed difference in CTL activity induced by 

both vectors is also refl ected in the therapeutic effi cacy in eradicating established 

tumours. In the following anti-tumor experiments, Ad-enhE6,7 was compared 

to i.v. injected SFV-enhE6,7 as our gold standard. We previously demonstrated 

that i.m. and i.v. SFV-enhE6,7 immunizations resulted in similar levels of pCTL 

frequencies, CTL activity (also see fi gure 1) and anti-tumor responses.3 Mice were 

inoculated s.c. in the neck with 2x104 TC-1 cells and subsequently immunized and 

boosted twice with increasing doses of Ad-enhE6,7 or SFV-enhE6,7 particles. All 

control mice, either injected i.m. with buffer or with Ad-Luc, developed tumours 

within 14 days after tumour inoculation (Table 1). As shown in Table 1, 60% of 

the mice immunized and boosted with 1x109 Ad-enhE6,7 i.m. on days 7, 14 and 

21 after tumour inoculation eradicated the tumour and subsequently remained 

Table 1. Therapeutic effi cacy of immunization with Ad-enhE6,7 versus SFV-

enhE6,7

 Immunization Dose Days after Number % Tumor free
   challenge of mice 

 Buffer  7-14-21 8 0%
  1x10e4 7-14-21 10 40%
  1x10e5 7-14-21 10 60%*
 SFV-enhE6,7 1x10e6 7-14-21 10 100%*
  1x10e6 14-21-28 5 40%

  1x10e7 7-14-21 5 20%
  1x10e8 7-14-21 10 40%
 Ad-enhE6,7 1x10e9 7-14-21 10 60%*
  1x10e8 14-21-28 5 0%

 Ad-Luc 1x10e9 7-14-21 4 0%

a Mice were immunized and boosted twice with SFV-enhE6,7 i.v., Ad-enhE6,7, Ad-Luc or 
buffer i.m. after tumor inoculation according to the schemes and dosages as indicated.
* Signifi cant different  (p<0.01) compared to buffer control group using Chi-square analy-
sis.
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tumour-free for the next 2 months. Upon immunization with 1x108 and 1x107 

Ad-enhE6,7, 40% and 20% of the mice, respectively, cleared the tumour and 

remained tumour-free. In contrast, all mice immunized and boosted with 1x106 

SFV-enhE6,7  i.v. on days 7, 14 and 21 after tumour inoculation eradicated the 

tumour. When immunizations were initiated as late as 14 days after the tumour-

inoculation, all mice treated with 1x109 Ad-enhE6,7 developed a tumour, whereas 

still 40% of the mice treated with 1x106 SFV-enhE6,7 eradicated the tumour and 

remained tumour-free.  

Thus, the observed difference in CTL induction is also refl ected in the therapeutic 

effect, i.e. SFV-enhE6,7 immunization has a signifi cantly better therapeutic effect 

compared to Ad-enhE6,7 immunization. Even with a 1000-fold lower dose of SFV-

enhE6,7 all mice effi ciently eradicated the tumour compared to 60% in the group 

treated with Ad-enhE6,7.

Effect of CD4+ and/or CD8+ T cell depletion on the anti-tumour effects of 

Ad-enhE6,7 and SFV-enhE6,7

Although not as effective as SFV-enhE6,7, immunization of mice with Ad-enhE6,7 

did generate anti-tumour responses. Considering the low levels of antigen-specifi c 

CTLs induced upon Ad-enhE6,7 immunizations, we investigated whether different 

lymphocyte subsets might be involved in the anti-tumour effect evoked by rAd 

and rSFV. To determine the actual effector cells involved in the anti-tumour effect 

seen in mice immunized with Ad-enhE6,7 or SFV-enhE6,7, we in vivo depleted T 

cell subsets using monoclonal antibodies. Mice were immunized and subsequently 

depleted of CD4+ T cells, CD8+ T cells or both T cell populations. Next, the mice 

were inoculated s.c. in the neck with 2x104 TC-1 cells. During the experiment, the 

depletion of the T cell subsets was maintained by weekly injections with antibodies. 

As shown in Figure 4A, all mice in the control group developed tumors within 14 

days after tumour inoculation. In the group of immune-competent mice, 7 of 7 mice 

receiving 5x106 SFV-enhE6,7 were protected from tumour-outgrowth (Figure 4B), 

whereas in only 2 of 7 mice immunized with 5x108 Ad-enhE6,7 tumour-outgrowth 

was prevented (Figure 4F). When CD4+ T cells were depleted, all mice immunized 

with SFV-enhE6,7  and again only 2 of 7 mice immunized with Ad-enhE6,7 were 

protected (Figure 4B and 4G, respectively). In contrast, in the groups of mice 

depleted of CD8+ T cells, 7 of 7 mice immunized with SFV-enhE6,7 grew tumours 

within 20 days after TC-1 challenge (Figure 4D) and all mice immunized with 

Ad-enhE6,7 developed tumours within 14 days. (Figure 4H) After depletion of 

both CD4+ and CD8+ T cells in both the rSFV-immunized and the rAd-immunized 

group, tumours grew comparable to the control group (Figure 4E,I). 
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These data indicate that, as expected, CD8+ T cells are the major effector 

cells involved in the observed anti-tumour effects induced by rSFV as well as rAd 

immunizations. Furthermore, CD4+ T cells may play a minor role in the anti-

tumour response in mice immunized with rSFV as tumour growth was slightly 

delayed in the group only depleted of CD8+ T cells compared to the PBS control 

group and the group depleted of both T cell populations.

Figure 4. Effect of CD4+ and/or CD8+ T cell depletion on the anti-tumor effects of 
Ad-enhE6,7 and SFV-enhE6,7
Mice were immunized and boosted with 5x106 SFV-enhE6,7 i.v. (panel B, C, D, and E) or 
5x108 Ad-enhE6,7 i.m. (panel F, G, H, and I). The number of mice per group was 7. Six days 
after the booster injection and six days before tumor inoculation in vivo antibody depletion 
was initiated. The in vivo depletion was performed by i.p. injection of 200 µg/mouse of anti-
CD4 (panel C and G), anti-CD8 (panel D and H) or both (panel E and I) for three consecutive 
days followed by a weekly injection. One week after the initiation of the depletion, the 
mice were challenged s.c. in the neck with 2x104 TC-1 cells. As controls, mice were left 
without depletion after immunization with PBS i.m. (panel A), SFV-enhE6,7 (panel B) or 
Ad-enhE6,7 (panel F) before tumor-challenge. The percentages indicate the percentage of 
tumor-free mice for each treatment at day 40 after tumor inoculation. At a tumor volume 
of approximately 500mm3, the mice were sacrifi ced. The experiments without CD8 and CD4 
depletion were repeated at least three times. The depletion experiment was performed once. 
Results in panel B and C were signifi cantly different from panel A (p<0.05), and panel D and 
E statistically different from panel B (p<0.05). The results of the Ad-enhE6,7 immunized 
groups were not signifi cantly different from the PBS control.
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Luciferase activity induced upon i.m. injection with Ad-Luc and SFV-Luc.

Since immunization with Ad-enhE6,7 results in a signifi cantly lower CTL and 

anti-tumour activity compared to SFV-enhE6,7 immunizations, we investigated 

if the amount of transgene product expressed in vivo could possibly explain this 

difference. Therefore, we performed an in vivo transfection experiment with Ad-

Luc and SFV-Luc. Since the time-point of maximal expression of the transgene 

product after rSFV and rAd injection differs, we determined the expression level 

of luciferase at 24 hours after SFV-Luc injection and at 48 hours for Ad-Luc.21;22 As 

shown in Figure 5, comparable levels of luciferase activity were measured in the 

muscles of the mice injected with 1x106 SFV-Luc and 5x108 Ad-Luc. 

In the above immunization studies all mice received a booster immunization. 

It is known that rAd elicits a strong anti-vector response. Anti-vector responses 

elicited by rSFV are not well documented. We therefore determined the level of 

recombinant protein produced by a second injection injection with rAd or rSFV. To 

this end, mice were pre-injected i.m. with rAd or rSFV expressing β-galactosidase 

(i.e. Ad-LacZ and SFV-LacZ) two weeks before injection of Ad-Luc or SFV-Luc, 

Figure 5. Luciferase activity induced upon i.m. injection with Ad-Luc and SFV-Luc
Luciferase activity in the muscles of mice injected i.m. with 1x106 SFV-Luc (n=4, A) or 5x108 
Ad-Luc (n=4, C). To measure anti-vector responses mice were pre-injected with SFV-LacZ 
and Ad-LacZ two weeks before injecting SFV-Luc (n=2, B) and Ad-Luc (n=2, D), respectively.  
The muscles were isolated 24h after the i.m. injection of SFV-Luc and 48h after Ad-Luc. 
Luciferase activity was measured as described in the Materials and Methods section. Data 
represent the average (±SD) of relative light units (RLU) measured of a typical experiment 
of two. The background RLU is shown as a horizontal dotted line. Statistical value: bars A vs 
B: p=0.01; bars C vs D: p=0.01; bars A vs C not signifi cant and bars B vs D: p=0.03.
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respectively. Pre-injection of mice with Ad-LacZ resulted in a more than 3-log 

decrease in luciferase expression compared to naïve Ad-Luc injected mice. In 

mice injected with SFV-LacZ fi rst and with SFV-Luc next, luciferase activity was 

decreased by 1 to 2 orders of magnitude compared to SFV-mediated luciferase 

expression in SFV-naïve mice (Figure 5). 

Single versus prime-boost immunizations with Ad-enhE6,7 and SFV-

enhE6,7.

To analyse the effi cacy of a booster immunizations of Ad-enhE6,7 and SFV-

enhE6,7, mice were either injected with 5x108 Ad-enhE6,7 and ‘boosted’ two 

weeks later with buffer or the other way around, or mice were primed and boosted 

with 5x108 Ad-enhE6,7. Other groups of mice were similarly immunized with 

SFV-enhE6,7. While the booster immunization did not signifi cantly increase pCTL 

frequencies of single Ad-enhE6,7 immunized mice, the pCTL frequency of single 

SFV-enhE6,7 immunized mice increased signifi cantly from approximately 0,5% to 

1,5% (Figure 6).  

Figure 6. Single versus prime-boost immunizations with Ad-enhE6,7 and SFV-
enhE6,7. Mice were either injected with 5x108 Ad-enhE6,7 followed by an injection with 
buffer two weeks later (n= 3), a second group of mice was fi rst injected with buffer followed 
by 5x108 Ad-enhE6,7 (n=3), and a third group of mice was injected twice with a two-
week interval with 5x108 Ad-enhE6,7 (n=7). Other groups of mice were similarly immunized 
i.m. with SFV-enhE6,7. One week after the injection, spleen cells were isolated and pCTL 
frequencies were determined with a FITC-labelled monoclonal antibody against CD8+ and 
a PE-labelled HPV16 E749-57-specifi c MHC class I tetramer and analyzed by fl owcytometry. 
Data represent percentages of E749-57 tetramer-positive CD8+ cells of individual mice of a 
typical experiment repeated twice. Precursor frequencies in groups of mice immunized and 
boosted with SFV-enhE6,7 or with Ad-enhE6,7 were signifi cantly different from the buffer 
control group (p=0.017). All other groups were not signifi cantly different from the PBS 
control group.
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DISCUSSION

In this study we compared the effi cacies of rSFV and rAd as vectors for the 

induction of cellular and anti-tumor responses against HPV-induced cervical 

cancer. We previously demonstrated that immunizations with rSFV-enhE6,7 result 

in very potent CTL and anti-tumor responses in murine animal models.1-4 However, 

rSFV has not yet been evaluated in humans hampering a facile introduction of 

SFV-based immunotherapeutic strategies into the clinic. On the other hand, rAd 

vectors have already been used in numerous clinical studies against a variety of 

infectious diseases and tumors.12-14;16 Thus, as rAd immunizations could potentially 

be a good alternative for the immunotherapy of cervical cancer. In this study we 

compared the effi cacies of both vector systems. 

Here we demonstrate that immunization with SFV expressing the HPV E6 and E7 

antigens results in two-fold higher E7-specifi c CTL precursor frequencies compared 

to immunizations with 100-fold more infectious particles of an adenoviral vector 

encoding the same antigens. The therapeutic effi cacy of both vectors in eradicating 

established tumors was studied in a murine HPV-tumor model. Despite the low 

levels of CTL induced upon immunization with Ad-enhE6,7, up to 60% of the mice 

eradicated the tumor. In line with our previous studies, all mice immunized with a 

1000-fold lower dose (i.e. 1x106) of SFV-enhE6,7 eradicated the tumors.  

To explore the possible mechanisms that might explain the difference in effi cacy 

between both vectors we determined i) the role of CD4+ and CD8+ T cells in the 

anti-tumor responses elicited, ii) the protein expression levels of both vectors, and 

iii) the infl uence of possible anti-vector responses on booster injections. The role 

of CD4+ and CD8+ T lymphocytes in the anti-tumor response was investigated by 

determining the effi cacy of the immunizations in the presence or absence of these 

T cell subsets. Mice were immunized and subsequently depleted of their CD4+ 

T cells, CD8+ T cells or both T cell populations using antibodies. Subsequently, 

the mice were challenged s.c. with tumor cells. Upon depletion of CD8+ T cells 

in both the rSFV- and the rAd-immunized group, mice were no longer protected 

against tumor growth. Notably, in the rSFV-immunized group depletion of only 

the CD8+ T cells resulted in a slight delay of tumor growth of 3-5 days compared 

to the rSFV-immunized group depleted of both T cell populations and the PBS 

immunized group, suggesting that also CD4+ T cells may have some anti-tumor 

effect. However, this delay, which was not observed in the rAd treated group, was 

not signifi cant, and therefore most likely does not explain the difference in effi cacy 

between both vectors. Depletion of only the CD4+ T cells did not affect the anti-

tumor responses elicited with both vector systems. Thus, CD8+ T cells seem to 
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be the main effector cells involved in the protection against tumor growth elicited 

both by rSFV and rAd. 23-25

As the lymphocyte subsets can not explain the difference in effi cacy, we next 

determined the amount of antigen expressed in vivo with rSFV and rAd. For 

this, the expression of luciferase after i.m. injection of Ad-Luc and SFV-Luc was 

determined. It should be noted that we previously demonstrated that i.m. and i.v. 

SFV-enhE6,7 immunizations resulted in similar levels of pCTL frequencies, CTL 

activity and anti-tumor responses.3 As the time-point of maximal expression of 

the transgene product after rSFV and rAd injection differs, luciferase expression 

level was determined at 24 hours after SFV-Luc and at 48 hours after Ad-Luc 

injection.21;22  Intramuscular injection of 1x106 SFV-Luc and 5x108 Ad-Luc resulted 

in comparable levels of luciferase in the muscles of the mice at these given time 

points. It should however be noted that two to three days after SFV infection, 

cells die through apoptosis, and hence transgene expression stops. 21 In contrast, 

transgene expression in cells infected with rAd may lasts for several weeks.22 Thus 

the total amount of transgene produced by rAd is much higher than that produced 

with rSFV. One could therefore hypothesize that, as a consequence of this long-

term production of antigen, immunization with rAd should be more effi cient than 

rSFV. Yet, despite the short expression of antigen induced with rSFV compared to 

rAd, the immune responses elicited with rSFV immunization are more effective 

in eradicating tumor cells. Although not determined in this study one could 

also envision that the rate of degradation of the E6,7 fusion protein may differ 

depending on the expression system.

Pre-existing anti-vector immunity represents a major problem in the development 

of vector-based vaccines. Anti-adenovirus serotype 5 (Ad5) immunity has already 

been shown to substantially suppress the immunogenicity of recombinant Ad5 

(rAd5) vector-based vaccines. 26-28 Neutralizing antibodies reduce transfection of 

the adenoviral vectors by cells, and thus expression of the transgene product, 

which in turn impacts the resulting transgene product-specifi c immune response. 

In this study we confi rm these studies by demonstrating that that anti-vector 

responses elicited by prior injections with immune-activating doses of our rAd 

reduce transgene (luciferase) expression of a subsequent injection with rAd more 

than 3-log. Anti-vector responses elicited by rSFV are not very well documented.  

Berglund et al. 29 showed that upon immunization with SFV the immune responses 

against SFV did not disable boost responses by subsequent immunizations with 

the same vector. Moreover, booster immunizations are indispensable for the 

induction of long-term memory responses.1 Despite this, here we demonstrate 

that prior injections with rSFV at dosages required for immune activation also 
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reduce transgene expression of subsequently injected rSFV. Yet, in contrast to 

the almost complete inhibition observed with rAd, preinjection with rSFV results 

in a 1-2 log decrease. Currently we are further investigating the mechanisms and 

kinetics of anti-vector responses in rSFV immunizations. 

It is known that the mechanism of the activation of an immune response by 

these vectors differs. Our own studies strongly suggest that the immune response 

evoked by SFV immunizations does not occur via direct priming of DCs but via 

cross-presentation of antigen by DCs that have taken up apoptotic rSFV transfected 

cells.30 Recently, Chen et al.31 confi rmed that infection of DCs with rSFV in vitro 

indeed is very ineffi cient, and provided further proof that cross-priming is the 

main mechanism by which immunity to a rSFV is generated. An other important 

feature of rSFV is that infection of cells with SFV results in the formation of dsRNA 

intermediates that are known for their immunopotentiating capacity.32.33 Mercier 

et al.34 compared the immune response induced by an i.m. injection of rAd alone 

with that induced by cells transduced ex vivo with the rAd. They demonstrated 

that in muscle, Ad-transduced myoblasts and endothelial cells are very poor 

inducers of antigen-specifi c CD8+ T cell response either by direct stimulation 

or by cross-priming, and that transduction of DCs is essential for induction of a 

CD8+ T cell response. Yet, DCs do not express the primary Ad receptor, coxsackie-

adenovirus receptor (CAR). As a consequence Ad-mediated transduction of DCs 

is ineffi cient.35 Furthermore, Rea et al.36 showed that DCs activated in vitro by 

rAd lack a high level of CD83 expression and IL-12 production, and therefore, are 

inhibited to fully mature and polarize toward a Th1-inducing phenotype. This may 

explain why higher dosis of rAd5 compared to rSFV are needed to elicit effective 

immune responses. Recently, De Gruijl et al. 37 demonstrated that the rAd35 

vector, which uses CD46 as a high-affi nity receptor which is expressed on human 

DCs, does infect migrated and mature CD83+ cutaneous DCs with high effi ciency 

when delivered intradermally in an established human skin explant model. They 

furthermore demonstrated that upon intracutaneous delivery of a rAd35 vaccine, 

emigrated DC functionally express and process encoded antigenic epitopes and 

were capable of activating specifi c CD8+ effector T cells. 

Apart from differences in the activation pathway leading to an immune 

response, the induction of memory T cells generated upon immunization with 

both vectors might also explain the differences in effi cacy of immunization with 

rAd compared to rSFV. Immunization with viral vector may generate effector T 

cells against the encoded antigen. Differentiation of these effector T cells into 

memory T cells follows a linear pathway.38 As mentioned above, we showed that 

for SFV-enhE6,7 immunizations, boosting with SFV-enhE6,7 is required for the 
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induction of CTL memory, resulting in high levels of CTL activity up to 12 months 

after immunization.1;2  A single immunization results in a rapid decrease in CTL 

activity within weeks after the immunization.1  Following immunization with rAd 

one can envision two possible mechanisms by which this differentiation pathway 

into memory T cells could be disturbed. First the strong anti-vector response 

induced after immunization with rAd prohibits the effect of boosting, and hence 

a good CTL memory. Secondly, the prolonged expression of antigen with rAd 

results in effector T cells, which fail to acquire the key properties of memory 

cells. These effector T cells are maintained for some time and mediate immediate 

(partial) protection from a challenge. However, no functional central memory T are 

generated. As a consequence, upon antigen removal, effector T cells disappear 

and memory T cells do not develop.39 The balance between too little, just right 

and too much stimulation determines the induction of memory T cells that acquire 

memory traits, including the ability to undergo homeostatic proliferation, rapid 

proliferation upon secondary challenge and the ability to produce cytokine.40 Our 

studies suggest that the SFV vector system possesses the ability to generate the 

“just right” level of stimulation. 

In this study we only evaluated immune responses against E7 although the 

vaccines encodes both E6 and E7. In a separate study we demonstrated that in 

patients with cervical cancer or premalignant cervical lesions E6 and E7 responses 

are present.41 We recently demonstrated that these responses in patients are 

largely inhibited by the presence of regulatory T cells. After in vitro depletion of 

regulatory T cells PBMC readily respond (Interferon-gamma release) to both E6 

and E7 protein in 60-80% of the patients.42 

In conclusion, the SFV vector system proved signifi cantly more immunostimulating 

than the adenoviral type 5 vector system. As, immunization with SFV-enhE6,7 

resulted not only in 2-fold higher pCTL frequencies and signifi cantly higher levels 

of CTL activity, also a signifi cantly superior therapeutic effect was seen after 

SFV-enhE6,7 immunization requiring 100-1000-fold lower doses compared to 

Ad-enhE6,7 immunization. Together with the high level of biosafety of the SFV 

vector system and the absence of pre-existing neutralizing antibodies in humans 

it seems worthwhile to tackle the severe regulatory hurdles that have to be taken 

for the evaluation of this ‘novel’ vector system in humans.
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MATERIALS AND METHODS 

Cell lines

Baby hamster kidney cells (BHK-21) were obtained from the American Type Culture 

Collection (#CCL-10). The cells were grown in GMEM (Invitrogen, Breda, The 

Netherlands) containing 5% fetal calf serum.  C3 cells, 13-2 cells, and TC-1 cells 

were kindly provided by Dr. C. Melief and Dr. R. Offringa (Leiden University, The 

Netherlands). The C3 cell line was derived from C57Bl/6 (H-2b) embryonic cells 

transfected with a plasmid containing the complete HPV16 genome.43 The 13-2 cell 

line was generated from C57Bl/6 (H-2b) embryonic cells transfected with the E1-

region of adenovirus type 5 in which the adenoviral E1A epitope SGPSNTPPEI is 

replaced by a HPV16 E7 CTL epitope, AA 49-57 (RAHYNIVTF).44 The TC-1 cell line 

was generated from C57Bl/6 primary lung epithelial cells with a retroviral vector 

expressing HPV16 E6E7 plus a retrovirus expressing activated c-Ha-ras.45 C3, 13-2 

and TC-1 cells were grown in IMDM with Glutamax-I (Invitrogen) supplemented 

with 10% fetal calf serum and penicillin and streptomycin (Invitrogen; 100 U/ml 

and 100 µg/ml, respectively). TC-1 medium was furthermore supplemented with 

non-essential amino acids (Invitrogen; 100-fold dilution), sodium pyruvate (Life 

Technologie; 1 mM) and Geneticin G418 Sulphate (Roche, Germany; 5mg/ml).    

Mice

Specifi c-pathogen-free female C57Bl/6 mice (Harlan CPB, Zeist, The Netherlands) 

were between 6 and 10 weeks of age at the start of the immunization protocols. 

Production, purifi cation, and titer determination of rSFV 

The production, purifi cation, and titer determination of recombinant SFV-enhE6,7, 

SFV-LacZ and SFV-luciferase was performed as described previously.1 In short, 

pSFV3-enhE6,7, pSFV3-LacZ, and pSFV3-luciferase were produced using pSFV-

Helper 2 and quantifi ed using BHK 21 cells. pSFV3-enhE6,7 encodes an enhanced 

expression of a fusion product of E6 and E7 of HPV type 16. 

Production of rAd5

All recombinant vectors were constructed through homologous recombination in 

Escherichia Coli using the AdEasy system.44 The E6,7 fusion protein was isolated 

from the pHelix eE6,E7 plasmid1 using restriction enzymes XbaI and KpnI and 

cloned into the AdTrackCMV plasmid using the same enzymes. This resulted in 

expression of E6,7 under control of the CMV promoter. The recombinant E1 and 

E3 deleted vector was grown on 293 cells and purifi ed in HEPES/sucrose buffer, 
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pH 8.0 according to conventional double CsCl gradient centrifugation method.. 

The number of viral particles was calculated from the optical density at 260 nm 

(OD260).47 Infectious units were determined by limiting dilution assay. In short, 

293 human embryonic kidney cells were plated at 10,000 cells/ well in a 96 wells 

plate. Next day, 100 µl of 10-fold dilutions of the sampled media were added 

to the wells in 5- or 10-fold. Cytopathic effect was monitored every 2-3 days 

and scored at day 14. Plaque forming units (pfu) were calculated according to 

standard procedures. This vector contains green fl uorescent protein (GFP) as 

reporter genes under control of cytamegalovirus (CMV) promoter.46

Initial experiments were performed using an adenovirus with two expression 

cassettes (CMV-Green Fluorescent Protein and CMV-Luciferase; AdGFP-Luc)48.  

Immunizations

For CTL analysis, mice were immunized with either varying doses of infectious 

particles of SFV-enhE6,7 i.v. or i.m. or with Ad-enhE6,7 i.m., i.p. or s.c., followed 

by one booster immunization with a two-week interval. As negative controls, mice 

were injected with dialysis buffer, PBS or Ad-Luc. 

CTL assay 

Seven to ten days after immunization, spleen cells were isolated and cocultured 

with irradiated (100 Gy) TC-1 cells in a ratio of 25:1, in 25 cm2 culture fl asks, 

placed upright. After a one-week in vitro restimulation, cells were harvested and 

a CTL assay was performed by a standard 4-hr 51Cr release assay in triplicate. 

Target cells (13-2 cells and C3 cells) were labeled for 1 h with 3.7 MBq 51Cr/106 

cells in 100 µl medium (MP Biomedicals, Inc., Irvine, USA). The mean percentage 

of specifi c 51Cr-release was calculated according to the formula: % specifi c release 

= [(experimental release-spontaneous release)/(maximal release-spontaneous 

release)] cpm x 100. The spontaneous 51Cr-release was always <15%. The 

standard errors of the means of the triplicate determinations were <10% of the 

mean. Similar levels of specifi c lysis were obtained using C3 or 13-2 cells; only the 

results obtained with the C3 cells are shown.

 

MHC class I tetramer staining and FACS analysis

To analyze the number of CD8+ T cells specifi c for the HPV 16 E749-57 peptide 

RAHYNIVTF we used Kb-RAHYNIVTF tetramers produced in the laboratory of Dr. Ton 

Schumacher (The Netherlands Cancer Institute, Amsterdam, The Netherlands). 

Spleen cells were washed with FACS buffer (PBS containing 0,5% BSA and 0,02% 

sodium azide) and stained with FITC-conjugated anti-CD8a (Pharmingen) together 
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with PE-conjugated Kb-RAHYNIVTF tetramers for 20 minutes at 4°C. Spleen cells 

were washed three times and analyzed by fl ow cytometry (FACSCalibur, Beckton 

Dickinson). Live cells were selected based on propidium iodide exclusion.

Luciferase assay

To determine luciferase activity, organs were collected, immediately frozen in 

liquid nitrogen and kept at -80˚C. Organs were crunched into powder in a mortar 

on dry ice. For luciferase determination the Luciferase Reporter 1000 Assay 

System ( Promega, Cat.#E4550),was used.Firefl y luciferase, a monomeric 61kDa 

protein, catalyzes luciferin oxidation using ATP-Mg2+ as a cosubstrate. In the 

conventional assay for luciferase, a fl ash of light is generated that decays rapidly 

after the enzyme and substrates are combined. The Luciferase Assay System 

incorporates coenzyme A(CoA) for improved kinetics, allowing greater enzymatic 

turnover resulting in increased light intensity that is nearly constant for at least 

1 minute. In brief, the material was lysed in lysis buffer (Promega) (300 µl / 0,1 

gram of tissue). The suspension was frozen and thawed three times with vigorous 

vortexing in between. To remove cell debris the suspensions were centrifused 

twice in an Eppendorf centrifuge. Immediately before measurement, 4 µl of the 

supernatant of the samples was mixed with 36 µl luciferase substrate solution. 

Luciferase signal was determined in a Lumicount (Packard).

Tumor treatment experiments

Mice were inoculated s.c. in the neck with 2x104 TC-1 cells suspended in 0.2 ml 

Hanks Buffered Salt Solution (Invitrogen). Subsequently, mice were immunized 

and boosted twice with a one-week interval, with SFV-enhE6,7, Ad-enhE6,7, Ad-

Luc or dialyse buffer starting at days 7 or 14 after tumor inoculation. Immunization 

routes were i.v. for SFV-enhE6,7 and i.m. for Ad-enhE6,7, Ad-Luc and dialyse 

buffer. The same skilled technician always did tumor measurements. At a tumor 

volume of approximately 1000 mm3, the mice were sacrifi ced. 

In vivo depletion of T cell subsets and tumor challenge

For the in vivo depletion of CD4+ and CD8+ T cells, the monoclonal antibodies 

GK1.5 (anti-CD4) and 2.43 (anti-CD8) were used. The hybridoma’s were kindly 

provided by Prof A. Kruisbeek. (Free University Amsterdam, The Netherlands). 

The monoclonal antibodies (mAbs) were produced by culturing the hybridoma 

cells in the two-chamber cell culture device CELLine 350 (Integra Biosciences) 

according to the manufacturer’s instruction. For the purifi cation of the mAbs 

HiTrapTMProtein G HP 1ml columns (Amersham Biosciences) were used in an FPLC 
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system. mAbs concentrations were determined by spectrophotometry at 280 nm 

using an extinction coeffi cient of 1,35 mg/ml.

The in vivo depletion was performed by i.p. injection of 200 µg/mouse of anti-

CD4, anti-CD8 or both for three consecutive days followed by a weekly injection. 

Depletion of lymphocyte subsets was assessed by fl ow cytometric analysis of spleen 

cells using anti-CD4-PE (IQ Products, Groningen, The Netherlands/ Pharmingen) 

and anti-CD8-FITC (Pharmingen) antibodies. This antibody treatment resulted in 

97% depletion of CD8 T cells and 91% depletion of CD4 T cells in spleen. In blood 

95% and 83% depletion of CD8 and CD4 T cells, respectively was obtained with 

this treatment (not shown).This level of depletion was maintained by the weekly 

injections. 

For the tumor challenge experiment, mice were immunized and boosted with 5x106 

SFV-enhE6,7 i.v. or 5x108 Ad-enhE6,7 i.m.. Six days after the booster injection 

and six days before tumor inoculation in vivo antibody depletion was initiated. One 

week after the initiation of the depletion, the mice were challenged s.c. with 2x104 

TC-1 cells suspended in 0,2 ml Hank’s Buffered Salt Solution (Invitrogen).

Statistical analysis

Data depicted in Figure 4 were statistically analysed using Chi-square testing. The 

other data with the Mann-Whitney U-test. 
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ABSTRACT 

In heterologous prime-boost immunization strategies, antigen-specifi c immune responses 
are primed by one vector or antigen delivery system and selectively boosted by another 
system. Such strategies are found to establish higher frequencies of antigen-specifi c T 
lymphocytes than homologous prime-boost protocols or single immunizations. Previously, 
we developed virosomes and recombinant Semliki Forest Virus (rSFV) as systems each 
capable of inducing strong CTL responses in homologous prime-boost protocols. 
Here, we demonstrate that a heterologous prime-boost protocol with rSFV and virosomes 
results in higher numbers of antigen-specifi c pCTL in mice than homologous protocols. A 
virosome prime followed by an rSFV boost was more effective in this respect than vice 
versa. Evasion of vector-specifi c immunity appeared to play a role in establishing these high 
frequencies, as co-induction of vector-specifi c responses during the prime immunization 
reduced the frequency of target antigen-specifi c pCTL after a heterologous booster. 
However, the induction of high numbers of pCTL did not correlate with improved functional 
immune responses. Heterologous prime-boosting did not result in CTL with an enhanced 
responsiveness to in vitro antigenic stimulation, nor did it result in improved cytolytic 
activity or superior anti-tumor responses in vivo compared to a homologous protocol with 
rSFV, although the responses were improved compared to homologous prime-boosting with 
virosomes.
This study indicates that heterologous prime-boost immunization protocols with rSFV and 
virosomes do not induce superior CTL responses and underlines the potency of homologous 
prime-boost protocols involving rSFV alone.

INTRODUCTION

In heterologous prime-boost immunization strategies, an antigen-specifi c 

immune response is primed by delivery of the target antigen by one vector or 

delivery system and selectively boosted by a subsequent immunization using a 

second, distinct, system1. Heterologous prime-boost protocols have been found 

to establish higher frequencies of antigen-specifi c CD8+ and CD4+ T lymphocytes 

than homologous prime-boost immunization protocols or single-immunization 

regimens1-4. Additionally, heterologous prime-boost protocols have been described 

to generate CD8+ cytotoxic T lymphocytes (CTL) of higher avidity5 and effector 

memory CD8+ T lymphocytes, a particularly desirable quality for protective 

immunity against certain pathogens6.

Heterologous prime-boost protocols are generally thought to be more effective 

than homologous protocols because prime-induced immune responses against the 

vector or delivery system that might limit the booster immunization in homologous 

prime-boost strategies are circumvented1;7;8. Antibodies, induced by the priming 

immunization, may neutralize the vector or antigen delivery system. Additionally, 

cellular responses could kill cells that express antigens of the vector or delivery 
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system9. Yet another mechanism related to immunity against the vector or 

antigen delivery system is immunodominance. During the priming immunization, 

T lymphocyte responses against epitopes of both the target antigen and the vector 

or delivery system will be induced. In homologous prime-boost protocols, both of 

these responses will be stimulated by the booster immunization. A heterologous 

booster only shares the target antigen with the priming immunization and will 

therefore preferentially boost the T lymphocyte response against the target 

antigen. Heterologous prime-boost protocols thereby focus the immune response 

on immunodominant epitopes of the target antigen1;4;7;10. In several recent studies, 

the effi cacy of heterologous prime-boost immunization strategies against, for 

example, malaria11;12, HIV13-15, and tumor antigens16-18 has been investigated. These 

heterologous prime-boost strategies, while often inducing increased numbers of 

antigen-specifi c IFN-γ producing T lymphocytes, did not always result in improved 

responses towards the pathogen or tumor cells. In some cases, the effectiveness 

of the responses in vivo was not studied.

We have developed immunization strategies for the treatment of (pre)malignant 

cervical disease based on a virosomal antigen delivery system19;20 or based on the 

recombinant Semliki Forest virus (rSFV) vector system21;22. The etiology of cervical 

cancer involves a persistent infection with a high-risk type of human papillomavirus 

(HPV)23. This virus constitutively expresses the tumor-specifi c antigens E6 and E7, 

which are involved in cell transformation, immortalization, and tumorigenicity. The 

constitutive expression of these unique tumor-specifi c antigens makes cervical 

cancer an attractive candidate for immunotherapy. E7-virosomes and especially 

SFV-enhE6,7 have been shown to be very effective in inducing CTL responses 

against HPV16 E6- and E7-expressing cells24-26. Virosomes, in our studies derived 

from infl uenza virus, are reconstituted virus envelopes that retain the cell entry 

properties of the native Infl uenza virus27. These virosomes can be taken up by 

professional antigen presenting cells (APC) via receptor-mediated endocytosis. 

Protein antigens, encapsulated in the virosomal lumen may thus be introduced in 

the major histocompatibility complex (MHC) class I route of antigen presentation28. 

rSFV is a replication-defective alphavirus vector that consists of a single-stranded 

RNA molecule encapsidated in recombinant virus particles. Infection of target 

cells leads to RNA replication and synthesis of a heterologous protein encoded 

by the recombinant viral genome29;30. As rSFV is incapable of infecting dendritic 

cells (DC)31, MHC class I presentation of the transgene for the induction of CTL 

responses proceeds predominantly via antigen transfer from initially transfected 

cells to professional APC31;32. 

Both virosomes and rSFV are capable of inducing strong CTL responses in 
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homologous prime-boost protocols. Nevertheless, for immunotherapeutic 

applications induction of the strongest possible response is desirable. In the current 

study, we have therefore investigated whether heterologous prime-boosting with 

virosomes and rSFV represents an even more potent immunization strategy for the 

induction of CTL responses and anti-tumor activity than homologous protocols.

MATERIALS AND METHODS

Cells

Baby hamster kidney cells (BHK-21) were obtained from the American Type Culture 

Collection (No. CCL-10). BHK-21 cells were grown in GMEM (Invitrogen, Paisley, 

UK) containing 5% fetal calf serum (Bodinco B.V., Alkmaar, The Netherlands), 100 

U/ml penicillin (Invitrogen), and 100 g/ml streptomycin (Invitrogen). C3 cells, 

13-2 cells and TC-1 cells were a kind gift from Dr C Melief and Dr R Offringa (Leiden 

University Medical Center, The Netherlands). The C3 cell line is a C57BL/6 (H-2b) 

embryonic cell transfected with a plasmid encoding the complete HPV16 genome33. 

The 13-2 cell line was generated by transfection of C57Bl/6 (H-2b) embryonic 

cells with the E1-region of adenovirus type 5 in which the adenoviral E1A epitope 

SGPSNTPPEI is replaced by a HPV16 E7 CTL epitope, AA 49-57 (RAHYNIVTF)34. 

C3, and 13-2 cells were grown in IMDM (Invitrogen) supplemented with 10% 

fetal calf serum, 100 U/ml penicillin, and 100 g/ml streptomycin. The TC-1 cell 

line was generated from C57Bl/6 (H-2b) primary lung epithelial cells with two 

retroviral vectors, one expressing HPV16 E6E7, the other expressing activated 

c-Ha-ras35. TC-1 was cultured in IMDM supplemented with 10% fetal calf serum, 

100 U/ml penicillin, and 100 g/ml streptomycin, 10 mM Sodium Pyrumvaat MEM 

(Invitrogen), Non-essential amino acids (100-fold dilution of an Invitrogen stock), 

and 30 µM β-Mercapto ethanol.

Mice

Specifi ed pathogen-free female C57BL/6 mice were used at 8 to 10 weeks of 

age. They were purchased from Harlan CPB (Zeist, The Netherlands) and kept 

accourding to institute guidelines. All animal experiments were approved by the 

local Animal Experimentation Ethical Committee.

Recombinant SFV

Recombinant SFV was produced as previously described25;36. In brief, the plasmids 

pSFV3 and pSFV3 containing the β-Gal sequence (pSFV-β-gal) were purchased 

from Life Technologies29. The plasmid pSFV-Helper 2 was kindly provided by 
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Dr. Peter Liljeström, Stockholm, Sweden37. The HPV16 E6 and E7 genes were 

obtained from the plasmid pRSVHPV16E6E7,which was kindly provided by Dr J Ter 

Schegget, Amsterdam, The Netherlands38. The pSFV3-enhE6,7 plasmid encodes 

for an enhanced expression of a fusion product of E6 and E7. It was generated by 

inserting one base pair between the E6 and E7 genes and changing the stop codon 

TAA of E6 in GAA while, furthermore, a sequence encoding a translational enhancer 

was cloned in front of the E6,7 fusion construct. The rSFV and the pSFV-Helper 2 

plasmids were isolated using the Qiagen midi plasmid purifi cation kit (Qiagen, Inc., 

Md., USA) and linearized by digestion with SpeI (Invitrogen). RNA was synthesized 

from the linearized DNA by in vitro transcription using SP6 RNA polymerase (GE 

Healthcare, Piscataway, NJ, USA). rSFV RNA (15 μg) admixed with SFV-Helper-2 

RNA (7.5 μg) was electroporated into BHK cells (8×106) in 0.8 ml GMEM using the 

Biorad Gene Pulser® II (two pulses of 850 V/25 μF; Biorad, Hercules, CA., USA). 

After pulsing, the cells were suspended in 10 ml GMEM and cultured at 37ºC and 

5% CO2 for 36 h. The medium containing rSFV particles was separated from cells 

and cellular debris by centrifuging it twice in a JA 20 rotor (Beckman, St Paul, 

MN., USA) at 1800 rpm (that is, 40 000 ×g at rmax). The rSFV particles were 

purifi ed on a discontinuous sucrose density gradient (15%/50% sucrose solution 

(w/v) in TNE-buffer (50 mM Tris-Cl, 100 mM NaCl, 1 mM EDTA, pH 7.4). rSFV was 

collected from the interface and sucrose was removed by overnight dialysis against 

TNE-buffer. Finally, the rSFV suspension was concentrated approximately 10-fold 

(Centricon 30 fi lter; Millipore, Bedford, MA, USA), quickly frozen in liquid N2 and 

stored in aliquots at –80ºC. rSFV particles were activated by incubation with 1/20 

volume of α-chymotrypsin (10 mg/ml; Sigma, St. Louis, MO, USA) for 30 min at 

room temperature to cleave the mutated viral E2 spike protein. α-chymotrypsin 

was inactivated by the addition of 0.5 volume of aprotinin (2 mg/ml; Sigma). Mice 

were immunized with 1x106 particles of rSFV in 50 µl i.m.

HPV16 E7 protein production

Recombinant HPV16 E7 protein was produced as described before39. The E7 

cDNA was amplifi ed by PCR from the vector pX-HPV-16 E740 and inserted into 

the vector pET3a41, generating the bacterial expression vector. Escherichia coli 

BL21(DE3)pLysS (Stratagene, La Jolla, CA, USA), transformed with pET3a-HPV-

16 E7 were grown to an OD600 of 0.5, induced for 3 h at 37 °C by adding 0.4 mM 

IPTG (Biomol, Hamburg, Germany), harvested and resuspended in lysis buffer 

(50 mM KCl, 20 mM H2KPO4, 50 mM DTT, 5% glycerol, 1 complete-mini-EDTA-free 

protease inhibitor cocktail tablet (Roche, Vienna, Austria)/50 ml lysis buffer, pH 

7.8). Cells were lyzed by sonication, centrifuged at 70 000 × g for 30 min and the 
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E7 protein was ammonium sulphate precipitated by adding 60% (v/v) saturated 

(NH4)2SO4 solution to the supernatant. The resulting protein pellet was dissolved 

in MonoQ low salt loading buffer (150 mM Tris, 10 mM NaCl, 10 mM DTT, 5% 

glycerol, pH 7.8), dialyzed against MonoQ low salt loading buffer and loaded onto 

a MonoQ HR10/10 column (GE Healthcare). The bound proteins were eluted from 

the anion-exchange column with a linear salt gradient (10–1000 mM NaCl) and 

E7 came off the column at 470 mM NaCl. E7 containing fractions were pooled and 

loaded onto a pre-equilibrated HiLoad 16/60 Superdex 75 gel fi ltration column 

(GE Healthcare). The fl owrate of the gel fi ltration buffer (150 mM Tris, 150 mM 

NaCl and 10 mM DTT, pH 7.8) was set to 1 ml/min. Identity of the E7 protein 

was confi rmed by Western blot. The gel fi ltration buffer was removed by dialysis 

against HNE buffer (5 mM Hepes, 150 mM NaCl and 0.1 mM EDTA) prior to use of 

E7 protein for the preparation of E7-virosomes.

E7-virosomes

E7-virosomes were prepared as described previously26. In short, A/Panama/2007/99 

Infl uenza virus (1.5 μmol of viral membrane phospholipid) was solubilized in 350 

μl HNE buffer (5 mM Hepes, 150 mM NaCl and 0.1 mM EDTA) containing 200 mM 

octa(ethyleneglycol)-n-dodecyl monoether (C12E8) (Calbiochem, San Diego, 

CA, USA) overnight at 0°C. Next, Infl uenza virus RNA was removed from the 

preparation by ultracentrifugation of the nucleocapsid. HPV16 E7 protein in 350 

μl HNE buffer was added to the Infl uenza virus supernatant in C12E8 in a fi nal 

concentration of 0.5 mg/ml.  Subsequently, the detergent C12E8 was extracted 

from the supernatant by incubation with BioBeads SM2 (Bio-Rad, Hercules, CA, 

USA), leading to the formation of E7-containing virosomes. The virosomes were 

applied to a discontinuous sucrose density gradient (10%/50%) to separate them 

from non-encapsulated E7. Sucrose was removed by dialysis against HNE buffer 

and E7-virosomes were subsequently concentrated by centrifugation in an Amicon 

Ultra-4 fi lter device (Millipore, Bedford, MA, USA; 30000 MWCO). Virosomal 

phospholipid content was determined by phosphate analysis42 and virosomal 

protein was determined according to Lowry43. For immunization, 50 nmol of E7-

virosomes in 50 µl HNE was injected i.m.

MHC class I tetramer staining and FACS analysis

To analyse the number of CD8+ T cells specifi c for the HPV 16 E749–57 peptide 

RAHYNIVTF, 106 spleen cells were stained with FITC-conjugated anti-CD8a (BD 

Pharmingen, San Diego, CA, USA) and PE-conjugated Kb-RAHYNIVTF tetramers, 

(Sanquin, Amsterdam, The Netherlands) for 20 min at 4°C. Spleen cells were 
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washed three times with FACS buffer (PBS containing 0.5% BSA (Merck, Darmstadt, 

Germany)) and analyzed by fl ow cytometry (FACSCalibur from BD Biosciences, 

Erembodegem, Belgium). Living cells were selected based on propidium iodide 

exclusion.

CTL assay

Ten days after receiving their last immunization, mice were sacrifi ced and spleen 

cell were isolated. The spleen cells were restimulated with irradiated (100 Gy) 

TC-1 cells at an effector-to-stimulator ratio of 25:1 in 25 cm2 culture fl asks, 

placed upright. A standard 4 h 51Cr release assay in triplicate determinations was 

performed after fi ve or seven days of culture. Two days before performing the 51Cr 

release assay, 4 U/ml of recombinant human IL-2 (Strathmann Biotech, Hamburg, 

Germany) was added to the target cells. C3 and 13-2 target cells were labeled for 

1 h with 3.7 MBq 51Cr/106 cells in 50 μl medium (51Cr was from MP Biomedicals, 

Asse-Relegem, Belgium). The following formula was used to calculate specifi c 

lysis: % specifi c lysis = (experimental release − spontaneous release) / (maximal 

release − spontaneous release) × 100. Spontaneous release was determined from 

target cells incubated without effector cells and maximal release was determined 

from target cells incubated with medium containing 0.5% Triton X-100. The 

spontaneous 51Cr release was always <15%. The standard errors of the means of 

the triplicate determinations were <10% of the value of the mean.

Tumor treatment experiments

For tumor inoculation, TC-1 cells were harvested, washed 3 times with PBS, and 

suspended in Hanks Buffered Salt Solution (Invitrogen). Mice were inoculated sc 

in the neck with 2x104 TC-1 cells in 0.2 ml. Subsequently, mice were immunized 

i.m. 14 days, 21 days, and 28 days after tumor inoculation. Tumor growth was 

measured twice weekly by palpation. The size of a tumor was calculated using 

the following formulas: 0.5236 x diameter3 (for a spherical tumor), 0.7854 x 

diameter2 x length (for a cylindrical tumor).

RESULTS 

The effect of a heterologous prime-boost protocol with rSFV and virosomes 

on CTL activation

To compare the effi cacies of heterologous versus homologous prime-boost 

immunizations with rSFV and virosomes, we fi rst determined the frequencies of 

the epitope-specifi c precursor CTL as induced by these protocols. Mice were primed 
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and boosted 14 days later with rSFV expressing a fusion protein of HPV 16 E6 and 

E7 (SFV-enhE6,7) or E7-containing virosomes (E7-virosomes) in homologous and 

heterologous combinations. Based on previous studies19;25;26, doses that induce 

strong CTL responses in homologous prime-boost protocols were used; 106 SFV-

enhE6,7 particles and 50 nmols of virosomal phospholipids (i.e. ~2.5 µg of E7 

protein) respectively. Ten days after the booster immunization, the mice were 

sacrifi ced and spleens were collected. As determined by tetramer staining using 

MHC class I tetramers carrying the E749-57 (RAHYNIVTF) peptide, a heterologous 

prime-boost protocol with SFV-enhE6,7 followed by a booster immunization with 

E7-virosomes resulted in approximately 2.7% E7-specifi c CD8+ T lymphocytes 

(Figure 1A). A prime immunization with E7-virosomes and a subsequent booster 

immunization with SFV-enhE6,7 resulted in higher frequencies ranging between 

4.7% and 6.9%. Both homologous immunization protocols induced precursor 

frequencies of about 0.7% and a single immunization with SFV-enhE6,7 resulted in 

Figure 1: The effect of a heterologous prime-boost immunization protocol on E7-
specifi c pCTL frequencies.
Mice were immunized  i.m. with 106 SFV-enhE6,7 and injected with buffer i.m. fourteen days 
later, injected with buffer i.m. and immunized i.m. with 106 SFV-enhE6,7 fourteen days later, 
immunized twice with 106 SFV-enhE6,7, treated according to a homologous protocol with 50 
nmol E7-virosomes, prime immunized i.m. with 106 SFV-enhE6,7 and booster immunized 
i.m. with 50 nmol E7-virosomes, or prime immunized i.m. with 50 nmol E7-virosomes and 
booster immunized i.m. with 106 SFV-enhE6,7. A control mouse that received two buffer 
injections was also included. Ten days after the last injection, mice were sacrifi ced and 
spleens were isolated. A. Freshly isolated splenocytes and B. splenocytes after an additional 
7-day in vitro restimulation were analyzed by fl ow cytometry after staining with Pe-labeled 
HPV16 E749-57 carrying MHC class I tetramers and FITC-labeled monoclonal antibodies against 
CD8. The percentages of tetramer-positive CD8-positive cells of individual mice are shown.
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an average frequency of 0.4%. Clearly, a heterologous prime-boost immunization 

protocol, especially a virosome prime followed by an rSFV boost, resulted in much 

higher frequencies of E7-specifi c CD8+ T lymphocytes than either a homologous 

prime-boost protocol or a single immunization with rSFV.

The potency of an immune response is not merely based on the number of 

specifi c cells that is induced. The functional capacity of the induced cells is also of 

critical importance. To investigate if the precursor CTL can expand, the numbers of 

E7-specifi c T lymphocytes were determined after a 7-day antigen-specifi c in vitro 

restimulation. The number of E7-specifi c CD8+ T lymphocytes was substantially 

increased, reaching approximately 47%, in the splenocytes of mice immunized 

twice with SFV-enhE6,7 (Figure 1B). Both heterologous prime-boost protocols 

resulted in approximately the same level of E7-specifi c CD8+ T lymphocytes, 

although it should be noted that the initial frequency of antigen-specifi c cells was 

higher at the start of the in vitro restimulation. The level of 0.4% pCTL induced by 

a single immunization with SFV-enhE6,7 on day 0 followed by a buffer injection 

on day 14 expanded to about 14%, whereas the 0.4% pCTL induced by a buffer 

injection on day 0 followed by an immunization with SFV-enhE6,7 on day 14 

expanded in vitro to 33% on average. Splenocytes from mice immunized twice 

with E7-virosomes did not reach such high levels. Consistent with a previous 

study26, between 7.3% and 18.5% of the CD8+ T lymphocytes were specifi c for E7 

after two immunizations with E7-virosomes and 7 days of in vitro restimulation. 

This experiment shows that E7-specifi c CD8+ T lymphocytes, induced by a 

homologous protocol with E7-virosomes have the lowest proliferative capacity. 

Both heterologous prime-boost protocols induced E7-specifi c CD8+ T lymphocytes 

with a high proliferative capacity. E7-specifi c CD8+ T lymphocytes, induced by a 

homologous protocol with rSFV, expanded to the same high extent.

The effect of adding irrelevant rSFV to E7-virosomes during a heterologous 

prime-boost protocol

The absence of an immune response against the vector during the booster 

immunization is thought to be the main factor contributing to the potency of 

heterologous prime-boost protocols. Here, we investigated whether the potency 

of our most potent heterologous prime-boost immunization regime (E7-virosomes 

followed by SFV-enhE6,7) is due to evasion of prime-induced vector-specifi c 

immunity. For that purpose, rSFV expressing an irrelevant antigen (SFV-LacZ) 

was added to E7-virosomes and this mixture was administered as a priming 

immunization inducing both E7-specifi c immunity and SFV-vector-specifi c immunity. 

The addition of SFV-LacZ to the E7-virosome prime immunization reduced the 
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pCTL frequency from 7.8% to 3.9% (Figure 2A). Furthermore, an injection of SFV-

LacZ followed by an immunization with SFV-enhE6,7 resulted in about 0.4% E7-

specifi c CD8+ T lymphocytes, whereas a single immunization with SFV-enhE6,7 

without pre-injection of SFV-LacZ resulted in up to 0.8%. A homologous prime-

boost immunization protocol with SFV-enhE6,7 induced approximately 1.6% E7-

specifi c CD8+ T lymphocytes. These results show that when an irrelevant rSFV 

vector was added to the E7-virosomes during the priming immunization, the initial 

induction of pCTL was reduced compared to “clean” heterologous prime-boosting 

but still considerably higher than the pCTL induction by a homologous prime-boost 

protocol or single immunization with SFV-enhE6,7. Apparently, the effect on the 

induction of antigen-specifi c pCTL is limited and, thus, the potency of heterologous 

prime-boosting not solely attributable to evasion of vector-specifi c immunity. 

The effect of evasion of vector-specifi c immunity on the proliferative capacity 

of the E7-specifi c CD8+ T lymphocytes was determined by tetramer staining after 

Figure 2: The effect of admixing irrelevant rSFV with E7-virosomes during the prime 
immunization on the E7-specifi c pCTL frequencies after heterologous boosting.
Mice were immunized according to a homologous protocol with 106 SFV-enhE6,7, injected 
with buffer i.m. and immunized i.m. with 106 SFV-enhE6,7 fourteen days later, pre-injected 
i.m. with 106 SFV-LacZ and immunized with 106 SFV-enhE6,7, prime immunized i.m. with 
50 nmol E7-virosomes mixed with 106 SFV-LacZ and booster immunized i.m. with 106 SFV-
enhE6,7, or prime immunized i.m. with 50 nmol E7-virosomes and booster immunized i.m. 
with 106 SFV-enhE6,7 fourteen days later. A control mouse that received two buffer injections 
was also included. Ten days after the last injection, mice were sacrifi ced and spleens were 
isolated. A. Freshly isolated splenocytes and B. splenocytes after an additional 7-day in vitro 
restimulation were analyzed by fl ow cytometry after staining with Pe-labeled HPV16 E749-57 
carrying MHC class I tetramers and FITC-labeled monoclonal antibodies against CD8. The 
percentages of tetramer-positive CD8-positive cells of individual mice are shown. 
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7 days of in vitro restimulation. After a single immunization with SFV-enhE6,7, 

E7-specifi c CD8+ T lymphocytes made up about 43% of the in vitro restimulated 

splenocytes (Figure 2B). A single immunization with SFV-enhE6,7 preceded by 

an injection with SFV-LacZ, on the other hand, resulted in E7-specifi c CD8+ T 

lymphocytes numbers ranging between 7.3% and 13.3%. All prime-boost 

immunization protocols (homologous and heterologous), including an E7-virosomes 

+ SFV-LacZ prime followed by an SFV-enhE6,7 boost resulted in E7-specifi c CD8+ T 

lymphocytes that expanded to approximately 80%. Thus, compared to a standard 

heterologous prime-boost protocol, the capacity to expand of the pCTL upon in 

vitro restimulation is not reduced when SFV-LacZ is admixed with E7-virosomes 

during the prime immunization. 

The effect of a heterologous prime-boost protocol with rSFV and virosomes 

on the cytolytic activity of the induced CTL

To determine the cytolytic activity of the antigen-specifi c CTL induced by a 

heterologous prime-boost immunization protocol with rSFV and virosomes, a 51Cr 

release assay was performed. After 7 days of in vitro restimulation, the cytolytic 

activity of splenocytes from all immunization protocols was of the same magnitude, 

ranging between 72% and 84% at an effector cell to target cell (E:T) ratio of 30 to 

1 (Figure 3A). Only the cytolytic activity of splenocytes induced by a homologous 

prime-boost protocol with E7-virosomes appeared to be slightly lower. As cytolysis 

was determined after 7 days of restimulation, these results are conceivably due 

to the fact that similar maximum levels of CTL are present after long-term in vitro 

restimulation.

In an attempt to detect differences between homologous and heterologous 

regimens, cytolysis was also determined after 5 days of in vitro restimulation. 

Unlike after 7 days, after 5 days of restimulation, the antigen-specifi c T lymphocytes 

have not expanded optimally, allowing determination of differences in their 

intrinsic cytolytic activity. A homologous prime-boost protocol with E7-virosomes 

did not induce CTL responses detectable after only 5 days of in vitro restimulation 

(Figure 3B). A homologous protocol with rSFV as well as the heterologous prime-

boost protocols and a heterologous immunization protocol with irrelevant rSFV 

incorporated in the prime resulted in the same levels of cytolytic activity after 5 days 

of in vitro restimulation. Thus, although heterologous prime-boost immunizations 

with rSFV and virosomes result in higher numbers of specifi c CTL, apparently such 

protocols do not result in immune responses that are more potent in killing tumor 

cells in vitro. Additionally, rSFV is found to be more potent than virosomes as 

the immunization protocols that incorporate rSFV induce stronger CTL responses 
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than a homologous protocol with virosomes. Finally, adding SFV-LacZ with E7-

virosomes in the prime immunization of a heterologous prime-boost protocol does 

not affect specifi c cytolysis, indicating that evasion of vector-specifi c immunity 

is rather insignifi cant for the induction of potent CTL responses by heterologous 

prime-boost strategies. 

The in vivo effect of a heterologous prime-boost protocol with rSFV and 

virosomes on the outgrowth of a tumor

Although heterologous prime-boost protocols with rSFV and virosomes do not 

result in higher cytolytic activity towards tumor cells in vitro, the capacity to induce 

higher initial precursor frequencies of specifi c CD8+ T lymphocytes may yet make 

them more effective in vivo. To test this hypothesis, a tumor treatment experiment 

was performed. Previous experiments have shown that a homologous prime-boost 

strategy with 5x106 SFV-enhE6,7 starting on day 7 after tumor inoculation can 

Figure 3: The effect of a heterologous prime-boost immunization protocol on the 
cytolytic activity.
Mice were primed i.m. with 106 SFV-enhE6,7 and boosted i.m. with 50 nmol E7-virosomes 
(open squares, n=3), primed i.m. with 50 nmol E7-virosomes and boosted i.m. with 106 
SFV-enhE6,7 (open triangles, n=3), primed i.m. with 50 nmol E7-virosomes mixed with 
106 SFV-LacZ and boosted i.m. with 106 SFV-enhE6,7 (open diamonds, n=3), immunized 
according to a homologous protocol with 106 SFV-enhE6,7 (black triangles, n=2), or treated 
according to a homologous protocol with 50 nmol E7-virosomes (black diamonds, n=2). A 
control mouse that received two buffer injections was also included (black squares, n=1). 
Ten days after the last injection, mice were sacrifi ced and spleen cells were isolated. After A. 
7 days or B. 5 days in vitro restimulation, cytolytic activity against C3 and 13-2 target cells 
was determined in triplicate well assay. The levels of specifi c cytolysis at different effector 
cell to target cell ratios are shown with error bars representing standard deviation. 
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fully inhibit tumor outgrowth in mice, while homologous prime-boosting starting 

from day 14 or day 17 onwards delays tumor growth but does not convey full 

protection25 (Figure 4A). To be able to detect a possibly improved anti-tumor 

response after a heterologous prime-boost immunization, it was decided to start 

immunizing on day 14 after tumor inoculation and use a 5-fold lower dose. Mice 

were inoculated with an HPV-16 expressing tumor and subsequently immunized 

from day 14 after tumor inoculation onwards. The mice were either treated with 

three consecutive injections of 1x106 SFV-enhE6,7, prime immunized with SFV-

enhE6,7 and heterologously booster immunized twice with E7-virosomes, or prime 

immunized with E7-virosomes and booster immunized twice with SFV-enhE6,7. 

The booster immunizations were given one week after the previous immunization. 

As a negative control, a group of mice was injected 3 times with buffer. All 

immunization protocols resulted in delayed tumor growth compared to the buffer 

Figure 4: The effect of a heterologous prime-boost immunization protocol on the 
outgrowth of an HPV16 E6E7 expressing tumor.
A. In order to select a homologous immunization protocol that induces suboptimal tumor 
protection, mice were inoculated s.c. in the neck with 2x104 TC-1 cells and treated with three 
weekly immunizations with 5x106 SFV-enhE6,7 starting on day 7 (open squares, n=7), day 
14 (open triangles, n=7), or day 17 (open diamonds, n=7) after tumor inoculation. A control 
group that received three buffer injections was also included (black squares, n=10). Tumor 
growth was measured twice weekly by palpation from day 14 onwards. 
B. The effect of heterologous prime-boosting was determined by measuring tumor growth 
in mice prime immunized i.m. with 50 nmol E7-virosomes on day 14 after tumor inoculation 
and booster immunized i.m. with 106 SFV-enhE6,7 on days 21 and 28 (open squares, n=7), 
prime immunized i.m. with 106 SFV-enhE6,7 and booster immunized i.m. with 50 nmol E7-
virosomes (open triangles, n=7), or immunized thrice according to a homologous protocol 
with 106 SFV-enhE6,7 (black triangles, n=7). A control group that received three buffer 
injections was also included (black squares, n=5).
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control group. However, no clear difference in outcome was observed between the 

group immunized with SFV-enhE6,7 alone and the groups immunized according 

to the heterologous prime-boost immunization protocols. Ninety days after tumor 

inoculation 2 out of 7 mice were tumor free in the homologous prime-boost 

immunization group. In the heterologous prime-boost group, prime-immunized 

with SFV-enhE6,7 and booster-immunized with E7-virosomes, 3 out of 7 mice 

remained tumor free and in the other heterologous prime-boost group no mice 

were tumor free (Figure 4B). This experiment further demonstrates that despite 

the initial higher frequencies of epitope-specifi c precursor CTL a heterologous 

prime-boost immunization with rSFV and virosomes does not induce a signifi cantly 

(log-rank test) stronger or more effective anti-tumor immunity.

DISCUSSION 

The present study demonstrates that a heterologous prime-boost immunization 

protocol with SFV-enhE6,7 and E7-virosomes results in substantially higher 

numbers of antigen-specifi c pCTL than the most potent of the tested homologous 

protocols (immunization with SFV-enhE6,7). Co-induction of SFV-specifi c 

immunity during the virosome prime of a heterologous virosome-rSFV protocol 

by addition of SFV-LacZ to the E7-virosomes only slightly reduces the induction 

of E7-specifi c pCTL. Indeed, the frequency of these pCTL remained twice as high 

as the frequency induced by two immunizations with SFV-enhE6,7. A homologous 

immunization protocol with SFV-enhE6,7, as well as heterologous prime-boosting, 

induces CTL that can readily expand upon in vitro antigen-specifi c stimulation. 

Both protocols induce similar cytolytic activity towards E6/E7-expressing cells in 

vitro, as determined by 51Cr release assay, and both induce the same high level 

of anti-tumor immunity in vivo. Thus, a homologous prime-boost protocol with 

rSFV induces equally high anti-tumor activity as a heterologous protocol with rSFV 

and virosomes, despite the induction of higher pCTL frequencies by heterologous 

prime-boosting. We furthermore demonstrate that heterologous prime-boosting 

strongly enhances CTL induction compared to a homologous virosome-based 

immunization protocol.

The induction of higher numbers of antigen-specifi c CTL by the heterologous 

prime-boost immunization protocols is in concordance with the notion that 

heterologous boosting focuses the response on a single or a few immunodominant 

epitopes shared by both immunizations and therefore results in higher numbers of 

target antigen-specifi c CTL1;3. La Gruta et al44 showed that the immunodominance 

of an epitope is determined by the frequency of precursor CTL (pCTL) specifi c for 
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that epitope and the antigenic availability of that epitope. In heterologous prime-

boosting with E7-virosomes and SFV-enhE6,7, the prime immunization would 

induce responses specifi c for the vector or delivery system as well as E7-specifi c 

responses. During the booster immunization, the frequency of E7-specifi c CD8+ 

T lymphocytes is then expected to be much higher than the frequency of naïve 

CD8+ T lympocytes specifi c for the system used in the booster immunization. 

Furthermore, the booster does not share the antigens of the priming vector or 

delivery system. Therefore, a heterologous booster would exclusively boost the 

E7-specifi c response, focusing the immune system on the target antigen and 

establishing E7 as the sole immunodominant antigen. 

Why a virosome immunization followed by an rSFV booster results in twice the 

number of E7-specifi c CTL compared to an immunization in the reverse order is not 

quite clear. It may be due to the composition or intrinsic qualities of the vector or 

delivery system7;10. Conceivably, an SFV-enhE6,7 prime might disperse the focus 

of the immune system on two antigens; E6 and E7, whereas a prime immunization 

with E7-virosomes solely primes an E7-specifi c response. When only E7-specifi c 

responses are primed, the heterologous booster immunization may further focus 

the immune system and selectively boost the E7-specifi c CTL. That the sequence 

of immunizations may be crucial for the induction of high frequencies of specifi c 

precursor CTL has also been noted for other heterologous prime-boost protocols. 

For example, it has been found that recombinant vaccinia virus is particularly 

effi cient in boosting immune responses primed by recombinant Infl uenza virus45, 

recombinant fowl pox virus2, or a protein antigen34, whereas immunizations in the 

reverse order did not result in stronger immune responses in these studies. Ali 

S et al46 have shown that a prime immunization with retrovirally transduced DC 

induces inherent immune-regulating mechanisms such as regulatory CD4+ T cells 

that suppress heterologous boosting with an adenoviral vector. The higher pCTL 

level attained with a heterologous sequence of the virosome-prime and SFV-boost 

compared to vise versa might likewise be due to different levels of regulatory T 

cell induction by virosomes and SFV immunizations. Studies to investigate the 

induction of these cells by virosomes and rSFV are ongoing. 

The most important observation of this study was the lack of correlation 

between initially induced pCTL frequencies and functional activity towards target 

cells. CTL induced by a heterologous immunization protocol did not expand better 

than CTL induced by a homologous protocol with rSFV. Furthermore, heterologous 

prime-boosting did not result in better specifi c cytolysis of tumor cells in vitro or 

in vivo. As in vitro cytolysis was determined after 5 or 7 days of restimulation, it 

is most likely partly dependent on the proliferating capacity of the splenocytes, 
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which is the same after either immunization protocol. Yet, in an article by Estcourt 

et al5, a heterologous prime-boost protocol has been described to induce CTL with 

higher avidity which are expected to result in superior specifi c cytolysis both in 

vitro as well as in vivo. As reviewed by Couli PG et al47, the lack of correlation 

between T cell numbers and cytolytic activity towards target cells could be due to 

inappropriate co-stimulation, or suboptimal concentrations of soluble factors such 

as IL-10 and IL-2 during priming of the response. 

A lack of correlation between T cell numbers and cytolytic activity has also 

been described by others. Upon immunization of melanoma patients, distinct 

populations of specifi c CD8+ T lymphocytes were identifi ed that displayed 

quiescent phenotypes and lacked cytotoxic potential48. Rubio et al49 found that 

tetramer staining is not directly correlated with cytolysis. Conversely, tumor 

infi ltrating lymphocytes can consist of highly cytolytic cells that, however, do not 

bind tetramers50. Clearly, the number of antigen-specifi c T lymphocytes induced 

by a heterologous prime-boost strategy is not a good measure for the effi cacy of 

the immunization protocol. Yet, based on studies that solely focused on analysis 

of the number of antigen-specifi c T lymphocytes, either by tetramer staining or 

by ELISPOT, several authors concluded that heterologous prime-boosting induces 

more potent immune responses than homologous immunization protocols13;15;51. 

There have also been a number of other studies, often employing a DNA prime 

followed by a booster immunization with a viral vector, that do show the induction 

of high numbers of specifi c T lymphocytes as well as strong functional immune 

responses against infectious diseases or cancer (including HPV-induced cervical 

cancer) by heterologous prime-boost strategies4;11;16;18;52;53. 

Evasion of vector-specifi c immunity, induced by the prime immunization, 

is often considered the most important mechanism by which heterologous 

prime-boost immunization protocols induce such strong immune responses4;10. 

The distinct boosting vector is thought not to be hampered by vector-specifi c 

immune responses, elicited against the priming vector, that may neutralize the 

vector or kill infected cells during a homologous booster54-61. Our fi nding that the 

addition of SFV-LacZ to the E7-virosomes prime immunization of our most potent 

heterologous prime-boost protocol reduces the initial number of E7-specifi c pCTL 

indicates that vector-specifi c immunity indeed has an effect on the booster. This 

effect was absent in mice primed with virosomes and boosted with rSFV, which 

implies that the induction of high frequencies of specifi c pCTL by a heterologous 

protocol may indeed be partly due to evasion of SFV-specifi c immunity. On the 

other hand, at the level of cytolytic activity, our results indicate that incorporation 

of irrelevant rSFV in the virosome prime does not hamper an SFV-enhE6,7 booster 
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immunization. Thus, even though the initial induction of pCTL is reduced by vector-

specifi c immunity, evasion of vector-specifi c does not play a signifi cant role in the 

induction of functional CTL by a heterologous booster. This is in concordance with 

our previous fi ndings that SFV-specifi c responses do not inhibit CTL induction by 

SFV-enhE6,7 when these SFV-specifi c responses were primed in the presence 

of the relevant target antigen (E7) by admixing E7 protein with SFV-LacZ in the 

priming immunization [de Mare, manuscript in preparation].

The data presented here and in other studies62 [de Mare, manuscript in 

preparation] imply that rSFV is a very potent vector in homologous prime-boost 

strategies and does not need heterologous priming or boosting. This is a deviation 

from previous heterologous prime-boost studies with rSFV63-65, in which it was 

concluded that rSFV is an attractive vector for heterologous prime-boosting. 

However, these studies only showed the induction of increased numbers of specifi c 

T lymphocytes and stronger proliferative responses, but did not test the cytolytic 

potential of the induced responses. Overall, we conclude that heterologous 

prime-boost immunization strategies with rSFV and virosomes may result in 

higher numbers of specifi c CTL than homologous strategies with these systems. 

Furthermore, these higher specifi c CTL frequencies are mainly due to the combined 

intrinsic qualities of the used vector or delivery systems as well as to evasion of 

immunity specifi c for these systems. Importantly, however, our data indicate that 

the higher numbers of specifi c T lymphocytes, induced by a heterologous prime-

boost immunization protocol, do not necessarily correlate with improved cytolytic 

activity towards target cells.
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Chapter 9

The aim of the studies described in this thesis was to develop a therapeutic 

immunization strategy against cervical cancer and premalignant cervical disease, 

based on the use of a recombinant alphavirus vector system, i.e. Semliki Forest 

virus (SFV), the general properties of which are reviewed in Chapter 2. The results 

presented in Chapters 3 and 4 illustrate the exquisite potency of recombinant SFV 

(rSFV), expressing HPV E6 and E7, to induce robust and long-lasting cell-mediated 

immune responses and anti-tumor effects in mice. Furthermore, the rSFV vector 

has the ability to turn an immune-compromised state toward immune-activation 

in an immune-tolerant HPV transgenic mouse model, as E7-specifi c cytotoxic 

T-lymphocyte (CTL) activity could be induced in these tolerant mice (Chapter 5). 

In addition, we showed that systemic addition of SFV encoding IL-12, known for 

its immune-activating and anti-tumor activity, improves the induction of antigen 

specifi c CTL activity and anti-tumor responses upon immunization with SFV-

enhE6,7 (Chapter 6). In Chapter 7 we demonstrate that the SFV vector system 

is signifi cantly more immunotherapeutic than an adenoviral vector system. Finally, 

we performed a heterologous prime-boost study involving rSFV and E7 protein-

containing virosomes, to further improve antigen-specifi c CD8+ T cell responses 

(Chapter 8). 

On the basis of the results described in this thesis, it would appear that the 

rSFV-based therapeutic immunization strategy is ready for clinical evaluation. 

Clearly, the ultimate goal of such clinical studies is the implementation of 

therapeutic vaccination as a new control measure in the combat against cervical 

cancer. However, before discussing the issues involved in the potential introduction 

of rSFV-based therapeutic immunization against cervical neoplasia, we will fi rst 

briefl y reiterate other control strategies that have been implemented before.  

CONTROL MEASURES AGAINST CERVICAL CANCER: A BRIEF HISTORIC 

OVERVIEW

While in former days cervical cancer used to be a major cause of death among 

women worldwide, several developments in the last century have resulted in a 

considerable reduction of the incidence of the disease, at least in the developed 

countries (Figure 1). In 1941 Georgious Papanicolaou introduced a multichromatic 

histological staining technique, which detects premalignant and malignant 

epithelial cells in cervical scrapings.1 The implementation of this so-called “Pap-

smear” marked the beginning of preventive measures against cervical cancer. 

Since that time, the incidence of cervical cancer has gone down by up to 75% in 

countries with a screening program in place based on this technique.2 Although 
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Figure 1.  Schematic overview of the possible interventions against cervical intraepithelial 
neoplasia and invasive cancer induced by HPV.
(a) Normal squamous epithelium differentiates as shown. HPV is able to infect the basal cells 
of the epithelium. The transformation zone is the most common site for the development of 
cervical cancer. Prophylactic vaccines aim at neutralizing the virus and prevent HPV infec-
tion. (b) After HPV infection, the viral genome becomes established in the basal cells as an 
episome , and progeny virions are generated. In these basal layers of stratifi ed epithelium, 
viral early proteins (E1, E2, E5, E6 and E7) are produced in undifferentiated keratinocytes. 
Infected daughter cells then begin to migrate up and differentiate in the outer layers of the 
epithelium. In these outer layers late proteins (L1 and L2) and early protein (E4) are pro-
duced and capsids are formed. Subsequently virions are shed into the genital tract within 
desquamated epithelial cells. (c) A signifi cant fraction of high-risk HPV infections progress 
to high-grade lesions. In high-grade lesions the viral DNA is integrated into the host cell 
chromosome. Pap screening and HPV tests can be used to detect CIN lesions. CIN II/III le-
sions (HSIL) are effectively treated by loop electrosurgical excision (LEEP). HPV-therapeutic 
vaccines aim at inducing regression of established HPV infection and its (pre)malignant 
lesions. These vaccines will be an excellent alternative for the current treatment of CIN II/
III lesions and early invasive cervical cancer. (d) The progression of untreated CIN lesions 
to micro-invasive and invasive cervical cancer. These cancers can be treated with surgery, 
chemotherapy or radiotherapy. (Reproduced, with permission from Macmillan Publishers 
Ltd, from Roden et al. Nat Rev Cancer 2006; 6 (10): 753-63)
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the introduction of the Pap-smear is a major milestone in the reduction of the 

incidence of cervical cancer, this screening test also has limitations. First, the 

Pap-smear test has an average sensitivity of 51% and an average specifi city of 

98%. In addition, the test is associated with signifi cant false-positive and false-

negative results.3-5 Up to a quarter of cervical cytology specimens observed 

as “normal”, exhibit abnormalities when reviewed a second time. These false-

negative results will leave cervical neoplasia undetected, leading to a delay in 

diagnosis and treatment.6-8 Conversely, false-positive results, occurring in up to 

14% of all cervical smears, may lead to unnecessary invasive interventions and 

anxiety with the patient. 9 

In 1991 Zur Hausen discovered a link between cervical cancer and the Human 

Papillomavirus (HPV).10 Further extensive epidemiologic studies on the subject 

confi rmed that persistent infection with specifi c “high-risk” types of HPV is 

essential for the development of cervical cancer.11 To date, 15 HPV types are 

considered to be high-risk. The two main high-risk HPVs, types 16 and 18, are the 

cause of about 70% of the total number of cases of invasive cervical cancer.12 The 

discovery of Zur Hausen has facilitated the development of new strategies towards 

prevention and treatment of cervical cancer. It has also led to the development of 

non-cytology-based cervical cancer screening tests.

Recently, in addition to the Pap-smear screening test, sensitive molecular 

tests to detect HPV DNA in cervical epithelial cells have been developed. It is 

now clear that HPV DNA testing is more sensitive than Pap-smears in detecting 

high-grade cervical intraepithelial neoplasia (CIN).13 However, detection of high-

risk HPV DNA does not prove that the HPV infection induced the formation of 

(pre)malignant cervical epithelial cells, since the majority of HPV infections will 

be transient without cytological changes. Therefore, these tests are somewhat 

less specifi c compared to conservative Pap-smear screening, which detects solely 

premalignant and malignant epithelial cells in cervical scrapings. Possibly, by 

starting the screening with HPV DNA testing followed by Pap-smears only among 

the HPV-positive women, the sensitivity of these diagnostic procedures for high-

grade CIN lesions could be increased in comparison to conventional cytology. The 

use of HPV DNA testing to improve the preventive screening programs, based on 

Pap-smears, is currently under investigation.14 

Despite the above efforts to reduce its incidence, cervical cancer remains the 

second most common cancer among women worldwide. Approximately half of the 

women who have acquired malignant cervical lesions will die from the disease. 

Over 80% of these cases occur in countries where neither population-based routine 

screening nor optimal treatment is available. However, also in countries where 
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excellent screening possibilities are in place, substantial numbers of women are 

still diagnosed with cervical cancer annually. One of the reasons is non-compliance 

with screening programs, which may be based on anxiety or embarrassment to 

undergo a vaginal examination. For example, half of the patients with invasive 

cervical cancer did not participate in the screening program.15;16 Therefore, ongoing 

research to further improve prevention and treatment of (pre)malignant cervical 

disease is essential. 

Since, as indicated above, persistent infection with a high-risk HPV is a 

requirement for the initiation of cervical cancer, ultimately vaccination may well 

be the most effective mechanism to prevent HPV infection and HPV-associated 

disease. Accordingly, the latest major development in reducing the incidence of 

cervical cancer is the recent licensure of two prophylactic HPV vaccines. As of 

June 2006, a prophylactic HPV vaccine developed by Merck is available under 

the tradename “Gardasil®”. This vaccine is a quadrivalent HPV vaccine, based 

on virus-like particles (VLP), protective against both cervical cancer caused by 

HPV types 16 or 18 and external genital lesions caused by HPV types 6 or 11.  

Subsequently, in 2007, a similar vaccine developed by GlaxoSmithKline (GSK), 

called “Cervarix®”, was approved in Australia and Europe. Cervarix® is a bivalent 

vaccine, also based on VLPs, targeting HPV types 16 and 18. In fully vaccinated 

women, both vaccines induce full protection from cervical dysplasia associated 

with the HPV types included in the vaccine and an almost 100% protection against 

confi rmed infection with these HPV types. 17-23

Although the introduction of prophylactic HPV vaccines represents a major step 

forward in the combat against cervical cancer, clearly the available vaccines only 

protect the high-risk types 16 and 18. Therefore, around one third of the cervical 

cancers will continue to develop despite the anticipated extensive implementation 

of prophylactic immunization against HPV. Moreover, these prophylactic HPV 

vaccines will not be benefi cial for those women already infected with HPV, since 

prophylactic vaccines have no therapeutic potential.24;25 A therapeutic vaccine 

against cervical neoplasia would therefore represent an additional important 

control measure aimed at a further reduction of the impact of cervical cancer, at 

least for several decades onwards. 

THERAPEUTIC HPV-SPECIFIC VACCINES

Therapeutic HPV-vaccines aim at inducing regression of established persistent 

HPV infections and (pre)malignant lesions of the cervix. To induce regression 

of tumors, vaccines need to elicit a cell-mediated cytotoxic T-lymphocyte (CTL) 



172

Chapter 9

response, leading to elimination of (pre)malignant cells. In HPV-induced lesions, 

the expression of the oncoproteins of HPV, E6 and E7, occurs in cells in which 

the viral genome has integrated into the cellular DNA. The E6 and E7 proteins 

allow virus-infected cells to escape apoptosis and cell cycle arrest. Constitutive 

expression of these proteins is therefore a prerequiste for the maintenance of the 

transformed phenotype of (pre)malignant cells, making E6 and E7 in fact tumor-

specifi c antigens in (pre)malignant cervical lesions. As a consequence, E6 and E7 

represent suitable targets for an HPV-specifi c therapeutic vaccine.26;27 

Requirements for a therapeutic vaccine against cervical neoplasia

To obtain an effective therapeutic vaccine against cervical cancer and its precursor 

lesions several barriers have to be overcome. A major challenge for an effective 

therapeutic vaccine against cervical neoplasia is the immunocompromised state of 

many of the patients involved. It has been suggested that cervical cancer patients 

have mounted a certain degree of immunological tolerance or ignorance for the HPV-

derived antigens.28-34 In addition, HPV-infected cells use various immune-escape 

mechanisms to evade host immunity.35-39 These immune evasion mechanisms may 

lead to local immune nonresponsiveness. As a consequence, HPV antigen-specifi c 

effector cells may either not be recruited to the infected area, or their activity may 

be downregulated.38 This puts high demands on potential therapeutic vaccines, 

since the vaccination needs to overcome this immune tolerance in order to be 

effective. 

Another requirement for a therapeutic vaccine against cervical cancer is the 

need for a high level of biosafety. There are concerns about the safety of several 

vaccine candidates, since the targets of these therapeutic vaccines are the E6 

and E7 oncoproteins of the high-risk HPV type involved. For example, the use 

of vaccines based on DNA or certain viral vectors, harbors the potential risk of 

integration of the E6 and/or E7 genetic material into the host cell genome. As a 

consequence, this may lead to malignant transformation of the cells hit by the 

vaccine. On the other hand, when peptide/protein-based vaccines or vaccines 

using vectors based on viruses, where no DNA intermediates are being formed, 

this risk of integration is not an issue. When the therapeutic vaccine is based on 

the use of viral vectors, another general concern represents the possible formation 

of infectious virus particles. Therefore, depending on the approach of vaccination, 

measures have to be taken to guarantee safety. 

Current therapeutic HPV-specifi c vaccine candidates 

Several candidate therapeutic HPV vaccines have been evaluated in Phase I and II 
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clinical trials. To put rSFV as a potential therapeutic vaccine in perspective, we will 

fi rst briefl y discuss the pros and the cons of the available approaches. Presently, 

the three main forms of HPV therapeutic vaccines are peptide/protein-, DNA-, and 

viral vector-based vaccines. 

1. Peptide/protein-based vaccines

The major advantage of peptide and protein-based vaccines is that in principle 

they offer a high level of safety. HPV-specifi c therapeutic vaccines based on 

peptides and proteins have  been shown to be well-tolerated in humans, without 

the occurrence of signifi cant adverse effects. Another advantage of peptide- or 

protein-based vaccines over other approaches is their relatively low cost and ease 

of production. Yet, an important disadvantage is that these vaccines in general are 

poor inducers of CTL activity. In most cases, the antigen involved is not actively 

delivered to the cytosol of antigen-presenting cells (APCs), and as a consequence 

there is no presentation in the context of MHC class I via the endogenous route. 

These peptide/protein-based vaccines will, therefore, normally be dependent on 

a process called cross-presentation for delivery of the antigen to the MHC class I 

processing and presentation pathway. Although this process of cross-presentation 

does induce CTL activity, it appears to be much less effi cient than CTL induction 

via the direct priming of APC. (Jan, zie ook opmerking van Toos in de kantlijn) 
40;41

Most preclinical model studies and clinical evaluation of therapeutic HPV 

immunization strategies are based on the use of peptide or protein vaccines.42-

51 So far, the majority of clinical trials using these vaccines have shown limited 

effi cacy in eradicating established HPV-induced malignancies in humans. The 

weak induction of cell-mediated immunity by these vaccines may present a major 

problem, since, as explained before, strong CTL response will likely be necessary 

to induce an effective anti-tumor response in cervical cancer patients. Efforts have 

been made to enhance the induction of CTL responses upon immunization with 

peptide and protein vaccines through the use of adjuvants or specifi c antigen-

delivery strategies. 

Recently, Zwaveling et al.52 showed that vaccination with long peptides resulted 

in more potent CTL responses than vaccination with a peptide corresponding to 

the exact minimal CTL epitope involved. Longer peptides allow presentation of 

more CTL epitopes and T-helper epitopes, resulting in enhanced immunogenicity. 

This may result in a higher effi cacy in cervical cancer patients. Future clinical trials 

will have to show the potency of this approach among patients with HPV-induced 

cervical lesions.
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The use of virosomes as delivery system represents a promising strategy to 

make peptide and protein vaccines more effective. Recently, it was shown that 

infl uenza virosomes are potent inducers of target antigen-specifi c CTL responses. 

Virosomes actively deliver the antigen to the cytosol of APC, leading to presentation 

of the antigenic peptides in the context of MHC class I via the endogenous 

route.42;53 As a result strong CTL activity and anti-tumor responses can be induced 

with low doses of antigen.54-56 In addition to their function as delivery vehicle 

for introduction of the antigen into the cell cytosol, virosomes may also act as 

an immune adjuvant.57 Virosome-based vaccines are already approved for use 

in humans. Given these properties, virosomes containing E6 and/or E7 protein 

antigen represent an attractive therapeutic vaccine candidate. In Chapter 8 we 

describe the use of E7-containing virosomes, in conjunction with rSFV-enhE6,7, in 

a prime-boost immunization regimen. 

2. DNA-based vaccines

The main advantages of DNA-based vaccines are their purity, ease of preparation 

and stability. In addition, DNA vaccines do not elicit antibodies against the DNA 

itself, and thus can be administered repeatedly. Furthermore, DNA vaccines may 

prime class I MHC-restricted CD8+ T cell responses, which may be advantageous 

compared with conventional protein-based vaccines.58-60 Indeed, it has been 

demonstrated that, upon immunization with DNA-based vaccines, not only 

humoral but also cell-mediated immune responses are induced against HPV-

antigens.61 Immunization with DNA vaccines results in expression of antigen in 

the context of MHC molecules over a longer period of time compared with peptide 

or protein vaccines. However, in the case of HPV-specifi c therapeutic vaccines, 

the prolonged persistence of the E6 and/or E7 DNA  also represents a safety 

concern. Another major drawback is that naked DNA vaccines are comparatively 

weakly immunogenic. Although these DNA-based vaccines are able to induce a 

cell-mediated immune-response, they only result in low numbers of precursor 

CTLs.  

Various strategies have been developed to enhance DNA vaccine 

immunogenicity.62-66 As with peptide/protein-based vaccines, a strategy to improve 

the immunogenicity of HPV DNA vaccines is by encapsulating the DNA into a 

delivery system. An interesting example is the use of encapsulated plasmid DNA-

encoding fragments derived from E6 and E7 of HPV16 and HPV18 in biodegradable 

particles (ZYC101a), which enhance delivery to APCs. Recently, it was reported 

that the use of ZYC101a resulted in a signifi cantly higher rate of CIN II/III 

resolution in the treated groups under the age of 25 years. However, this effect 
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was less pronounced in the group older than 25 years of age. This may be partly 

explained by the fact that younger women have been exposed to the HPV for 

shorter periods of time. Therefore, the HPV-transformed cells may have suffered 

fewer virus-induced changes, making them more sensitive to immunotherapy.62 

Although promising, further improvements in the potency of ZYC101a are still 

needed in order to make this strategy suffi ciently strong to treat patients with CIN 

II/III lesions. 

Another promising strategy to further enhance the potency of DNA vaccines is 

the use of so-called particle-mediated epidermal delivery (PMED). This approach 

effi ciently delivers gold particles coated with DNA plasmids encoding vaccine 

antigens into the epidermal layer of the skin.67;68 This system enables DNA to 

directly transfect professional APCs, allowing antigen presentation via both MHC 

class I and II molecules.69 Clinical trials have demonstrated that particle-mediated 

DNA immunization effi ciently induces both antibody and T cell responses, requiring 

a signifi cantly lower dose of DNA compared to inoculation of DNA with a needle 

and syringe.70-73 This ability of PMED to effectively induce Th and CTL responses 

in humans suggests that this strategy might also be useful in the context of the 

potential development of a DNA-based therapeutic HPV-specifi c vaccine.

However, despite the fact that there are promising developments, taken 

together, the weak potency of DNA vaccines in inducing cellular immune responses, 

the safety concerns related to the use of DNA vaccines, particularly  in the context 

of HPV vaccination, and the so far limited clinical response in patients with CIN 

lesions, make DNA-based vaccines at this point less attractive for therapeutic 

vaccination purposes against cervical cancer. 

3. Vaccines based on viral vectors

Viral vectors, mimicking real-virus infection, in general are very potent 

immunogens. Indeed, a major advantage of viral vectors over the approaches 

mentioned above is their ability to induce massive cellular immune activation. 

Upon infection with a recombinant viral vector expressing an antigen of interest, 

the antigen is synthesized endogenously within the cytosol of the target cell. 

Thus, CTL epitopes are processed and presented in the context of both MHC class 

I and class II in a natural manner, resulting in the induction of both humoral and 

cellular immune responses to the antigen. In addition, since these vaccines mimic 

a real-virus infection, also the innate immune response may be activated resulting 

in a strong enhancement of the induced immune response. Nonetheless, despite 

these advantages, there are several drawbacks, including potential safety issues 

and pre-existing immunity against the virus that is used as a vector, which are 
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dependent on the type of virus used. These issues will be further discussed for 

DNA viruses versus RNA viruses.

Vectors based on DNA viruses

The two main vectors based on DNA viruses which have been used extensively in 

preclinical and clinical studies against cervical cancer, are recombinant vaccinia 

virus and adenovirus. 

Vaccinia vectors are widely used in vaccines (vaccinia/smallpox vaccine). 

These vectors can be relatively easily manufactured. Vaccinia vectors have a 

stable dsDNA genome with a large cloning capacity. Phase I and II clinical trials 

using recombinant vaccinia virus encoding HPV16 and 18 E6/E7 (also called TA-

HPV) demonstrated that it was well-tolerated and indicated that some patients 

with CIN lesions or advanced cervical cancer, developed T-cell immune responses 

upon vaccination.74-76 TA-HPV has also been used in the treatment of high-grade 

HPV16-positive vulval intraepithelial neoplasia (VIN). Most patients who received 

a single dose of the vaccine demonstrated HPV16-specifi c immune responses. 

However, no complete correlation between immunological and clinical responses 

could be defi ned.77 

Vectors based on recombinant adenovirus type 5 have been evaluated for a 

variety of diseases ranging from infectious diseases to cancer.78-81 The vectors 

based on recombinant adenovirus are rendered replication-defective by mutations 

and deletions. Adenoviral vectors infect cells and deliver their genomes to the 

nuclei of the target cells, resulting in sustained presentation of the antigens. With 

a cloning capacity of approximately 8 kb, these vectors allow insertion of relatively 

large genes. They can be prepared easily in high titers and can effi ciently transduce 

a wide range of cell types.82 Recombinant adenoviruses have been shown to 

elicit strong humoral and cell-mediated immune responses. Several preclinical 

studies in mice using adenoviral vectors expressing HPV-16 E6 and/or E7 showed 

enhanced antigen-specifi c CD8+ and CD4+ T-cell immune responses and anti-

tumor effects.83-85 To date, no clinical trials have been performed using this vector 

as a therapeutic vaccine against cervical cancer.

In this thesis, as a prelude to future clinical evaluation of rSFV, the effi cacy 

of rSFV was compared with that of a recombinant adenoviral vector, because 

adenoviral vectors, in contrast to rSFV, have been used extensively before in clinical 

trials. In Chapter 7 we show that the SFV vector system proved signifi cantly more 

immunotherapeutic than the adenoviral vector system. We hypothesize, based on 

the results, that following immunization with recombinant adenovirus (rAd), the 

induction of CTL memory is disturbed by at least two mechanisms. Firstly, strong 
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anti-vector responses induced after immunization with recombinant adenovirus 

may prohibit the effect of booster immunizations necessary for effi cient memory 

CTL induction.86 Secondly, the prolonged expression of antigen with recombinant 

adenovirus may lead to the induction of effector T cells, which fail to acquire the 

key properties of memory cells.87;88 For rSFV these issues will be discussed further 

below.

For both recombinant vaccinia and adenovirus vectors, there are concerns 

about pre-existing immunity. As mentioned above, vaccinia virus has been used 

extensively as a smallpox vaccine, resulting in anti-vector immunity in vaccinated 

people. Also worldwide, there is a high seroprevalence against adenovirus, in 

particular serotype 5.89 It has been demonstrated that this anti-vector immunity 

essentially abrogates the ability of  recombinant adenovirus serotype 5 to serve 

both as a priming or booster vector.90 Therefore, adenovirus vectors derived 

from strains that have not circulated widely in the human populations are under 

investigation as vaccine vectors. Another way to evade anti-vector immunity 

involves the use of heterologous prime-boost strategies.91;92 However, a recent 

clinical study using a prime-boost strategy with recombinant vaccinia virus and a 

DNA vaccine could not show a simple relationship between induction of systemic 

HPV16-specifi c immunity and clinical outcome.93 

Another concern related to the use of vaccinia virus or adenovirus vectors 

as a HPV-specifi c therapeutic vaccine, relates to the potential integration of the 

E6 and E7 DNA into the genome of the vector-infected cells. Since vaccinia and 

adenoviruses are DNA viruses, the replication takes place in the nucleus of the 

cells, giving rise to the potential possibility of nuclear integration, and hence 

transformation of the infected cells. Therefore, the targets used in these vaccines 

should be modifi ed, eliminating the risk for malignant transforming capacity, 

and at the same time preserve the immunogenicity of the antigens. In addition, 

for vaccinia there is the concern about potential dissemination of vaccinia to 

immunodefi cient individuals.94-96 Another major safety concern with adenovirus 

vector is the adverse infl ammatory response that may be generated by high doses 

of the vector; this infl ammatory response has led to the death of a patient in an 

adenovirus clinical trial.96-98  Recently, an adenovirus-based HIV vaccine Phase II 

trial demonstrated to be ineffective at either preventing infection of individuals 

not previously infected with HIV or at reducing viral loads in those individuals who 

became infected with HIV during the trial. Moreover, these results indicated that 

among individuals with pre-existing immunity to adenovirus, there were more 

infections in vaccine-recipients than in study participants who received placebo. 

The reasons for this result are still being studied.99
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In conclusion, although the described viral vectors are available for clinical use 

and have shown promising results, the concerns about the safety, pre-existing 

immunity, and the potential unsuitability for homologous prime-boost immunization 

protocols make them possibly less attractive candidates for a therapeutic vaccine 

against cervical cancer.  

Vectors based on RNA viruses

Several RNA virus vaccines are being used or explored in clinical and preclinical 

settings against a variety of diseases. Among the RNA viruses used are Vesicular 

Stomatitis Virus (VSV), measles virus, poliovirus, and alphaviruses.100 A major 

advantage of the use of vectors based on RNA viruses over vectors based on 

DNA viruses, as a HPV-specifi c therapeutic vaccine, is that the safety concern 

about integration is not an issue. This is because the replication of RNA viruses 

takes place in the cytoplasm without formation of DNA-intermediates. Particularly, 

vectors derived from alphaviruses (i.e. Sindbis virus, Semliki forest virus, or 

Venezuelan equine encephalitis virus) are gaining increased interest for their high 

transfection potency and strong immunogenicity. 

Alphaviruses are zoonotic and only cause infrequent epidemics among humans 

in certain geographical regions. Therefore, in contrast to the vectors based on 

major human pathogens, pre-existing immunity against alphaviruses is rare 

and is unlikely to present a problem. Recombinant alphaviruses induce high-

level expression of encoded foreign proteins. After 48-72h of protein expression, 

infected cells die by apoptosis resulting in apoptotic bodies, containing high levels 

of the transgene protein, which may be very effective in the induction of immune 

responses via so-called cross-priming.101;102 Thus, these vectors effi ciently induce 

both cellular and humoral immune responses to the expressed antigen. In Chapter 

2 an overview is given of the recombinant alphaviruses used as vectors for anti-

tumor and anti-microbial immunotherapy.

Besides the shared characteristics of the various alphaviruses, there is a 

difference with respect to the delivery of encoded protein antigens to DCs for 

MHC class I and MHC class II processing and presentation. Venezuelan equine 

encephalitits virus and Sindbis virus directly transfect murine DCs (direct 

priming), while rSFV is dependent for the presentation of antigens on a process 

of cross-priming.101;103-106 Despite the difference in tropism for DCs, immune 

responses elicited upon immunization with these different alphavirus vectors are 

in general comparably effi cient. Other preclinical studies using alphavirus vectors 

as therapeutic HPV specifi c vaccines also show promising results, like the results 

described in this thesis. Upon immunization with these vectors strong anti-tumor 
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activity and high antigen-specifi c CTL responses are induced.107-110 Since this thesis 

mainly focuses on the immunotherapeutic effect of a recombinant SFV viral vector, 

the remainder of the discussion will be confi ned to rSFV. 

RECOMBINANT SFV AS A THERAPEUTIC VACCINE 

A potent and safe system for the induction of CTL and anti-tumor 

responses

The preclinical studies described in this thesis demonstrate the exquisite effi cacy 

of therapeutic immunization based on SFV in an HPV-murine model. As described 

in Chapter 3 and Chapter 4 of this thesis, exponentially growing tumors of 

approximately 500 mm3 in size were seen to completely resolve upon therapeutic 

immunization with SFV-enhE6,7. The magnitude of this immune and anti-tumor 

responses against HPV16-induced tumors is determined by the dose administered 

and by the route of immunization with SFV-enhE6,7. Notably, i.v. and i.m. 

immunizations resulted in signifi cantly higher pCTL frequencies and superior 

anti-tumor responses compared with s.c. immunization (Chapter 4). Another 

important aspect of our immunization approach is the induction of a long-term 

memory immune response. Even half a year after immunization, mice are able to 

eradicate s.c. inoculated tumors and up to 340 days after immunization high levels 

of CTL activity can be observed (Chapters 3 and 4). We further demonstrated 

that, depending on the route of immunization, SFV-enhE6,7 has the capacity to 

induce HPV16 E7-specifi c CTL activity in immune-tolerant HPV-transgenic mice 

(Chapter 5). As mentioned previously in this discussion, cervical cancer patients 

have mounted a certain degree of immunological tolerance or ignorance for the 

HPV-derived antigens. Although the mechanism and kinetics of tolerance in this 

transgenic mouse model certainly differ from that in the human clinical situation, 

these observations do underline the anticipated effi cacy of SFV-enhE6,7 for 

immunization purposes in these patients.

The high potency of rSFV can be ascribed to several features of the system. 

As stated earlier, the main mechanism by which immunity to a rSFV is generated 

is via cross-presentation of antigen by DCs that have taken up apoptotic bodies 

derived from rSFV-infected cells.101;103 The apoptotic bodies contain high levels 

of transgene protein which are likely to be very effective in the induction of 

immune responses. Another important feature of rSFV is that infection of cells 

with SFV results in the formation of dsRNA intermediates that are known for 

their immunopotentiating capacity.111 These dsRNAs can be recognized by innate 

immune receptors, such as Toll-like receptor 3, and trigger production of type I 
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IFN, while, in addition, dsRNAs induce activation and maturation of DCs.112 For 

the differentiation, expansion and memory induction of antigen-specifi c CTLs, 

Th-cells and properly activated APCs are essential. Uptake of apoptotic cells 

transfected with rSFV will thus not only provide the specifi c antigen, but will also 

provide the required danger signal to turn immature tolerizing DCs into mature, 

activating DCs. In Chapter 7 we demonstrate that the SFV vector system is 

signifi cantly more immunostimulating than a recombinant adenoviral (rAd) 

vector.  Although rAd is able to infect DCs directly, the Ad-mediated transduction 

of DCs is ineffi cient.113 DCs activated in vitro by rAd are inhibited to fully mature 

and polarize toward a Th1-inducing phenotype, which is essential for eliciting 

an effective immune response.114 Furthermore, the induction of memory T cells 

generated upon immunization differs with both vectors. As explained previously 

for rAd, the induction of memory T cells may be disturbed. In contrast, our studies 

suggest that the rSFV vector system possesses the ability to generate just the 

right level of stimulation for the induction of memory T cells.115 

Beside its strong potency, another important feature of the SFV vector system 

is the high level of biosafety. rSFV are “suicide” particles in that they induce one 

round of infection, during which the viral RNA is self-amplifi ed by the replicase 

complex, resulting in a high level of expression of the foreign gene. Foreign 

protein expression, however, is transient since the infected cells undergo apoptotic 

cell death.116;117 As the replication of SFV is only cytoplasmic, without a DNA 

intermediate118, there is no possibility of nuclear integration of the foreign gene or 

insertional mutagenesis. Since the structural genes of the virus are missing, new 

infectious progeny particles cannot be formed. 

The rSFV virus is generally produced by cotransfection of cells with the 

recombinant RNA vector and a so-called helper RNA vector, coding for the capsid and 

spike proteins. Since the RNA packaging signal is absent on the helper vector, only 

the recombinant RNA is packaged into newly generated virus particles, which can 

thus induce just one round of infection. Yet, during the production of recombinant 

virus, there is a small but still signifi cant chance that RNA recombination occurs 

with formation of infectious virus.117 The formation of infectious virus through 

RNA recombination may however be reduced to insignifi cant levels through the 

use of split helper vectors in the production of the recombinant virus, virtually 

eliminating the chance that productive recombination occurs.119 In fact, no 

replication-competent virus has been detected in rSFV preparations produced with 

the use of split helper RNAs. 120 
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Is there a need for further improvement of the rSFV-based strategy?

In our research we have focused on optimization of the effi cacy of recombinant 

SFV in terms of induction of effective antigen-specifi c CTL responses. The 

results presented in Chapters 3 and 4 illustrate the exquisite potency of the 

system to induce robust and long-lasting cell-mediated immune responses 

and anti-tumor effects in mice. Also, the rSFV vector has the ability to turn an 

immune-compromised state toward immune-activation in immune-tolerant HPV-

transgenic mice (Chapter 5). However, the levels of specifi c cytolysis induced in 

the transgenic mouse model were signifi cantly lower than those induced in wild-

type mice.  Therefore, we investigated whether co-administration of an immuno-

stimulatory adjuvant, IL-12, to SFV-enhE6,7 could further stimulate CTL induction 

and anti-tumor responses, in particular in immune-tolerant mice (Chapter 6). 

Although, in both wild-type and transgenic mice, the co-expression of IL12 did 

signifi cantly stimulate CTL induction, unfortunately, the extent of stimulation did 

not suffi ce to generate a measurable anti-tumor response in the transgenic mice. 

It should be noted, however, that the immune tolerance in transgenic mice is likely 

to be very stringent and substantially different from that in patients with cervical 

neoplasia. Therefore, although the adjuvant effect of SFV-IL12 upon immunization 

of mice with SFV-enhE6,7 was limited, there may be still be a therapeutic benefi t 

associated with it in the clinical setting.  

Another level at which the rSFV system could potentially be further improved is 

that of anti-vector immunity. As discussed above, anti-vector immunity represents 

a major problem associated with the use of vaccines based on recombinant 

viruses. The main effector mechanism of vector-specifi c immunity is thought to 

be neutralization by antibodies specifi c for the structural proteins of the vector.121-

123 Until recently, anti-vector responses elicited by rSFV were not very well 

documented. In Chapter 7 we demonstrate that repeated administration of rSFV 

to mice results in a signifi cant decrease in transgene expression. It is generally 

thought that such reduced levels of transgene expression may eventually lead to 

lowered CTL induction.121;122;124 The fact that, despite the signifi cant decrease in 

transgene expression, rSFV is still capable of inducing a strong CTL response, can 

in part be explained by the dose of rSFV used, which was in general approximately 

100-fold higher than the minimal effective dose of rSFV. As a consequence, even 

in the presence of signifi cant levels of virus-neutralizing antibodies, rSFV is still 

capable of inducing enough transgene expression to result in a strong antigen-

specifi c CTL activity and anti-tumor responses. These results also underline that 

the rSFV system is particularly well suited for use in homologous prime-boost 

immunization protocols, since - despite the reduced levels of transgene expression 
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upon repeated administration - CTL (re)activation does not appear to be hampered 

in wide dose range studied.   

This conclusion is further supported by recent observations of De Mare et 

al.125, who demonstrated that transgene-specifi c CTL induction by rSFV is not 

so much affected by vector-neutralizing antibodies, but rather infl uenced by T 

cell competition. T cell competition may play an important role in vector-specifi c 

immunity. During T cell competition, vector epitopes and epitopes of the target 

antigen are both presented on the same APC. As a consequence the immune 

response may focus on the antigens of the vector instead of the target antigen, 

resulting in a reduced target-antigen specifi c immune response.126;127 Due to 

neutralization by vector-specifi c antibodies and killing of infected cells by vector-

specifi c CTLs, most other viral vectors are unsuited for homologous prime-

boost immunization protocols.90;128-131 In contrast, the study of De Mare et al. 

demonstrates that rSFV is a very powerful vector for homologous prime-boost 

immunization protocols, since the reduced transgene expression due to vector-

neutralizing antibodies has little effect on CTL induction by rSFV in a wide dose 

range, and T cell competition, possibly due to the strong immunodominance of the 

target antigen, does not play a role in homologous immunization protocols. 

In our efforts to optimize SFV-mediated CTL responses, we also performed 

heterologous prime-boost immunizations, involving rSFV in conjunction with 

infl uenza virosomes carrying the HPV E7 protein antigen. This is a way to evade 

SFV-specifi c immunity and might possibly lead to higher CTL responses. It has been 

demonstrated that with this strategy powerful synergistic effects can be achieved, 

refl ected in an increased number of antigen-specifi c T cells, selective enrichment 

of high-avidity T cells and increased effi cacy against pathogen challenge.132;133 

Additionally, these protocols may generate improved effector memory CD8+ T cell 

responses.134 Heterologous prime-boost strategies prime the immune system to 

a target antigen delivered by one vector and then selective boost target-specifi c 

immunity by re-administration of the antigen in the context of a second distinct 

vector. In Chapter 8, surprisingly, no difference in cytolytic activity of CTL induced 

by a heterologous booster in the presence or absence of SFV-specifi c responses 

was found compared to a homologous protocol with rSFV. Furthermore, both 

heterologous and homologous protocols induce the same high level of anti-tumor 

immunity in mice. These fi ndings support our above conclusions and imply that, 

at the level of cytolytic activity, rSFV is not hindered by the anti-vector immunity. 

This underlines that rSFV can be used both as a priming and a boosting vector. 
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Challenges on the way toward clinical evaluation of the rSFV system  

As mentioned in the fi rst part of this discussion, the ultimate goal of our studies is 

to develop a therapeutic vaccine against cervical cancer and premalignant cervical 

disease. Besides all the advantages of rSFV, a number of major challenges on 

the way toward clinical application of rSFV remain. First, the production of large 

amounts of clinical-grade rSFV in itself may represent a challenge. To generate 

rSFV, cells have to be electroporated in the presence of recombinant SFV RNA and 

helper RNAs. Upon introduction of these RNAs into the cytoplasm of the producer 

cells, the RNAs will replicate and will be translated, resulting in the generation of 

new recombinant virus particles. Secondly, in contrast to the several other viral 

vector systems, rSFV has not yet been evaluated in a clinical setting. Therefore, 

it is diffi cult to predict how rSFV will perform in humans. However, the preclinical 

studies described in this thesis are promising and fully justify clinical trials to 

evaluate the potential of rSFV-based therapeutic vaccination in patients with (pre)

malignant cervical lesions. 

FUTURE PERSPECTIVES 

In this thesis, we have focused on determining the effi cacy of a therapeutic 

immunization strategy based on rSFV against HPV-induced cervical neoplasia. 

As discussed in the preceding paragraph, the described preclinical studies justify 

clinical trials to evaluate the effi cacy of rSFV to treat patients with (pre)malignant 

lesions. To fi nalize this discussion it is important to consider the position of 

therapeutic vaccination in the current preventive and curative setting. 

The recent introduction of HPV prophylactic vaccines

This discussion started with an overview of the efforts to reduce the incidence 

of cervical cancer. As mentioned, the most recent development added to the 

available preventive options against cervical cancer are the prophylactic HPV 

vaccines developed by Merck and GlaxoSmithKline (GSK), named “Gardasil®” and 

“Cervarix®”, respectively. Clinical trials with both vaccines have shown exciting 

results. More than 99% seroconversion against the HPV types included in the 

vaccines was induced, and peak antibody titers were at least 50-fold higher 

than the titers detected after natural infection. In fully vaccinated women, both 

vaccines induced full protection from cervical dysplasia associated with the HPV 

types included in the vaccines and an almost 100% protection against confi rmed 

infection by the same HPV types.17-23 However, although these highly effective and 

apparently safe vaccines have great potential for reducing cervical cancer rates, 



184

Chapter 9

several issues remain unresolved.

First, the duration of the antibody protection beyond 5 years is unknown. Over 

the next several decades it will be important to monitor antibody levels and HPV 

infections in immunized subjects to evaluate the duration of protection and to 

determine whether booster vaccinations will be needed. In addition, it will be 

important to determine whether the prophylactic vaccines also induce an effective 

memory response, giving long-lasting protection even after disappearance of 

vaccine-induced antibodies.  

A second issue is that the two vaccines protect only against two of the high-

risk HPV types, which are responsible for only 70% of the cervical carcinomas. As 

a consequence, the vaccines do not protect against the other 30%.135;136 These 

prophylactic vaccines will thus reduce, but not eliminate, the risk of cervical cancer. 

This implies that also in the longer term, current screening programmes will need 

to be maintained. 

Another issue is that girls will need to be vaccinated before they become sexually 

active, between the age of 9 and 13 years to prevent genital HPV infection.137 

Although some countries have successful school-based programmes to deliver 

vaccines to adolescents, many do not. Also, parental consent will be needed, and 

it has been suggested that about one fi fth of the parents are likely to deny consent 

for their children to be vaccinated.138

Furthermore, until now clinical trials determining the effi cacy of prophylactic 

HPV vaccination have mainly been focused on women. Data documenting vaccine 

effi cacy in men are limited. Although the burden of HPV-induced disease is 

considerably less in men compared to women, it is not insignifi cant.139 Since HPV 

is a sexually transmitted disease, involving both men and women, future studies 

will have to investigate whether these vaccines are also effective in men, and 

should be recommended for them as well. 

Finally, the vaccines are not therapeutic. Therefore, it is unlikely that these 

vaccines will have much impact on those already infected with HPV. Thus, even 

if large-scale prophylactic vaccination was implemented today, it would take 

decades to lower incidences of HPV-induced pre-malignant lesions and invasive 

cervical cancer. 

The need for and the position of an HPV-specifi c therapeutic vaccine

So far, in the developed world, cervical cancer or preceding CIN lesions are 

usually detected at an early stage, as a result of intensive screening programs. 

Cytomorphological examination of cervical smears is the most widely applied 

screening method for cervical cancer and its precursors. Despite these excellent 
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screening possibilities, substantial numbers of women are still diagnosed with 

cervical cancer annually. Approximately 90% of all the CIN II and III lesions can 

be treated successfully with the current, mostly surgical, treatments. Yet, these 

treatments are often invasive and disfi guring for women and are also related 

with increased pregnancy-related morbidity.140 Furthermore, the overall rate of 

recurrent or persistent disease is 5 to 17%.141 Thus, ongoing research to further 

improve the present preventive and therapeutic options is desirable.

Therapeutic HPV vaccines will be an excellent alternative for the current 

treatment of CIN II and III lesions and early invasive cervical cancer. They will 

represent a less invasive and disfi guring treatment option for women with pre-

existing HPV-associated lesions, and may prevent recurrence or persistence of 

the disease. In addition, a therapeutic HPV vaccine might also be benefi cial for 

treatment of other HPV-associated non-cervical cancers.

Given that the present prophylactic HPV vaccines will not protect against the 

HPV types not included in the vaccines, around one third of the cervical cancers 

will continue to develop even if prophylactic vaccination were widely implemented. 

Also, prophylactic vaccines will not be effective in women already infected with 

HPV. Therapeutic HPV vaccines could fi ll in this temporal defi cit of prophylactic 

vaccination, by attacking already established HPV infection and HPV-induced 

disease. At the time an effective therapeutic vaccine can be launched, together 

with the prophylactic vaccines, this is expected to result in signifi cant reductions of 

health-care costs and a further reduction of cervical cancer incidence and death. 

 

CONCLUDING REMARKS

The robust therapeutic immune responses elicited by rSFV-enhE6,7 vaccine 

candidate, the absence of pre-existing antibodies in the human population, the 

ability to use the vector both in priming and booster immunizations, and the high 

level of biosafety of the system, all position rSFV as a serious candidate for clinical 

evaluation as a potential treatment for patients with (pre)malignant CIN lesions 

and early invasive cervical cancer. 

A possible hurdle to clinical application of rSFV is that this alphavirus vector 

system has not yet been used in a clinical setting. This may slow down procedures 

involved in obtaining approval for initial clinical studies. However, if promising 

results emerge from early trials, possible reservations with respect to these 

vectors will likely diminish. 

Finally, we started this discussion with a survey of control measures against 

cervical cancer that have been implemented over the last several decades. These 
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control measures have been very successful and have reduced the incidence 

of cervical cancer substantially. However, this applies almost exclusively to the 

developed countries. It is important to note that over 80% of all cases of cervical 

cancer occur in underdeveloped and developing countries, and this proportion is 

expected to increase to 90% by 2020.142 Women in these countries, who would 

benefi t most from the vaccination, are unlikely to receive the vaccine. Apart from 

the technical and logistic issues involved, they simply have no access to it and they 

cannot afford it. Neither will these women receive a Pap smear test, again because 

of a lack of access and money. Therefore, clearly the most diffi cult challenge 

in the combat against cervical cancer worldwide will be to fi nd possibilities to 

give girls and women in developing countries an equitable access to prophylactic, 

and potentially also therapeutic, vaccines as well as to screening and subsequent 

treatment options. 
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Chapter 10

The aim of the studies described in this thesis was to investigate the effi cacy of 

a therapeutic immunization strategy against cervical cancer and premalignant 

cervical disease. Cervical cancer is caused by persistent infection with high-risk 

human papillomavirus (HPV). Two of the early proteins of these high-risk HPV, E6 

and E7, interact with the cell cycle regulation proteins p53 and pRb, respectively, and 

can cause immortalization of cells. Constitutive production of these oncoproteins 

is required for the maintenance of the transformed phenotype of the cells, making 

these proteins attractive targets for immunotherapeutic strategies against HPV-

induced cervical lesions. The therapeutic immunization strategy described in this 

thesis is based on an alphavirus vector, i.e. Semliki Forest virus vector (SFV).  

Recombinant SFV expressing a fusion protein of E6 and E7 under control of a 

translational enhancer (SFV-enhE6,7) is investigated in several preclinical studies 

using a murine model for HPV-dependent carcinogenesis.

Chapter 1 presents a general introduction on cervical cancer, the etiological role of 

HPV infection in the induction of (pre)malignant lesions, and the current treatment 

options for the different stages of the disease. Next, the role of the immune 

system in the development of disease is described. Finally, an overview of currently 

available prophylactic and therapeutic immunization options, both registered 

and experimental, is given. Cervical cancer is the second most common cancer 

among women worldwide. As mentioned earlier, the etiology of cervical cancer 

is a persistent infection with a high-risk type HPV.1-3 High-risk HPVs, in particular 

types 16, 18, 31, 33 or 45, have the capacity to transform cervical epithelial cells 

through integration of the open reading frames encoding the viral early proteins 

E6 and E7 into the host cell genome.4;5 Since the continued production of these 

oncoproteins is required for the maintenance of the transformed phenotype of the 

cells, E6 and E7 in fact represent  tumor-specifi c antigens in cervical carcinoma 

and premalignant HPV-transformed cells. As a consequence, E6 and E7 are suitable 

targets for immunization strategies against cervical cancer.6

Therapeutic immunization against virus-infected cells or tumor cells requires 

the induction of cytotoxic T-lymphocytes (CTLs) that can specifi cally recognize 

and lyse infected or tumor cells. For the differentiation, expansion and memory 

induction of antigen-specifi c CTLs, T-helper (Th) cells and properly activated 

antigen presenting cells (APCs), dendritic cells (DCs) in particular, are essential. The 

majority of the HPV infections are transient, not giving rise to detectable cervical 

lesions. However, HPVs have evolved different immune evasion mechanisms 

such that infected cells and (pre)malignant cells may not always be recognized 

effectively by the immune system.7 Furthermore, it has been suggested that 
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patients with CIN lesions or cervical cancer are immunosuppressed and/or have 

mounted a certain degree of immunological tolerance or ignorance for the HPV-

derived antigens.8 Therefore, the challenge in tumor vaccination will be to design 

immunotherapeutic modalities that are potent enough to turn the balance from 

immune tolerance towards immune activation. 

In Chapter 2 an overview is given of the recombinant alphaviruses used as 

vectors for anti-tumor and anti-microbial immunotherapy. Alphaviruses are small, 

enveloped, positive-strand RNA viruses belonging to the family Togaviridae. The 

prototypic vectors are derived from Semliki Forest virus (SFV), Venezuelan Equine 

Encephalitis virus (VEE) and Sindbis virus (SIN). In the presence of helper vectors, 

recombinant RNA derived from these viruses generates recombinant virus particles 

that are limited to one round of infection. The recombinant RNA is self-replicating 

and transiently expresses the foreign gene(s) at high levels. 

Vectors based on alphaviruses are gaining increasing interest because of their 

superiority over other viral vectors with respect to the induction of both humoral 

and cellular immune responses. Characteristics that make alphaviruses attractive 

candidates for development of replicon vectors for application in humans are that 

(i) recombinant alphaviruses induce high-level expression of encoded proteins, 

(ii) after 48-72h of protein expression, infected cells die by apoptosis resulting 

in apoptotic bodies containing high levels of the transgene protein which may 

be very benefi cial for the induction of immune responses via cross-priming9 (iii) 

recombinant alphaviruses activate both the innate and the adaptive immune 

system.10;11 

Different immunization strategies against infectious diseases show that the 

induction of humoral responses upon immunization with alphaviral vectors varies 

a great deal depending on the antigen, the processing and presentation of the 

antigen and the immunization route. Nonetheless, in most studies, strong humoral 

and cellular immune responses are induced that result in (partial) protection 

against specifi c micro-organisms. Tumor vaccines based on alphaviruses are in 

general designed to stimulate or augment a cellular immune response against the 

tumor cells, and the potential of alphaviral vectors to eradicate tumor cells has 

been evaluated in several preclinical studies. 

Chapter 3 describes a series of tumor treatment studies in mice performed with 

SFV-enhE6,7, determining the effi cacy of subcutaneous (s.c.) administration 

of SFV-enhE6,7 in eradicating established HPV-dependent tumors. Previously, 

it was demonstrated that an HPV-specifi c immune response could be induced 
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upon administration of recombinant SFV expressing HPV16 E6 and E7 (SFV-

E6E7) to mice.12 Subsequently, a novel construct encoding a fusion protein of E6 

and E7 under control of a translational enhancer was generated (SFV-enhE6,7), 

resulting in more potent CTL responses upon immunization in mice, compared to 

immunization with SFV expressing the separate proteins.13 

Here, we demonstrate that all mice immunized s.c. with 5x106 SFV-enhE6,7 

two days after tumor inoculation and boosted on days 7 and 14 eliminated the 

tumor and remained tumor-free. When immunization was initiated at later time 

points (days 7-14-21 or 14-21-28 after tumor inoculation) 67% and 33% of the 

mice, respectively, remained tumor-free. That not all mice remained tumor-free 

in these latter two groups can presumably be ascribed to the very fast growth of 

the tumor. Most tumors initially regress, yet tumor growth appears to outpace the 

immune response at these time points. 

Notably, all mice that eradicated the tumor remained tumor-free upon a second 

tumor challenge 3 months later, suggesting that HPV-specifi c memory CTLs were 

still present at this time point. In addition, CTL responses determined at very late 

time points after immunization and tumor challenge demonstrated that up to 340 

days after immunization high levels of CTL activity could be determined. Thus, 

immunization with SFV-enhE6,7 results in a potent and long-term memory CTL 

response that correlates with a strong anti-tumor effect.

In Chapter 4 it is demonstrated that the magnitude of the induced CTL activity and 

anti-tumor responses against HPV16-dependent tumors is not only determined by 

the immunization dose of SFV-enhE6,7 but also by the route of administration. 

We show that the i.v. and i.m. routes of injection are far more effective than 

the s.c. and i.p. routes of injection, both with respect to CTL induction and with 

respect to therapeutic anti-tumor responses. These differences in gene expression 

may infl uence the type and magnitude of the immune response. Despite the fact 

that the bulk CTL responses between the tested immunization routes do not 

differ signifi cantly, tetramer analysis revealed that the i.v. and i.m. routes of 

immunization result in signifi cantly higher pCTL frequencies. Indeed, a further 

analysis demonstrated that over 100-fold fewer virus particles are needed when 

immunizing i.v. or i.m. as opposed to the s.c. route. 

These results are in agreement with observations of Colmenero et al. who 

demonstrated that the location of viral RNA differs after injecting rSFV via different 

injection routes. They showed that upon i.v. injection, rSFV-RNA distributes to a 

variety of different tissues, whereas it remains confi ned more locally after i.m. and  

s.c. injection. Upon i.v. and i.m. injection, but not upon s.c. injection, rSFV-RNA 
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can be detected in the spleen.14 

Tumor treatment experiments show that i.v. and i.m. immunizations also result 

in superior anti-tumor responses compared with s.c. immunization, which can 

most likely be ascribed to the higher pCTL frequencies generated. Furthermore, 

the tumor treatment experiments clearly demonstrate the enormous potency 

of the vector. Exponentially growing tumors of approximately 500 mm3 in size 

were seen to completely resolve and even some tumors as large as 1500 mm3 

decreased to one-third of their size. Another important observation is that even 

22 weeks after immunization most of the mice are able to eradicate s.c. inoculated 

tumors, demonstrating a strong memory response induced upon immunization 

with SFV-enhE6,7.

In Chapter 5, we investigated whether the robust immune response elicited 

with SFV-enhE6,7 was strong enough to break immune tolerance in HPV16-E6/

E7-transgenic mice. Here, it is shown that SFV-enhE6,7 did effi ciently prime 

CTL activity in these mice, while others demonstrated that conventional DNA- 

or protein-based vaccines were unable to induce CTLs in these HPV16-E6/E7-

transgenic mice.15;16 

In contrast to wild-type mice, in these transgenic mice immunization via the 

s.c. route resulted in higher CTL responses than i.v. or i.m. immunizations. This 

could be explained by the following observations. These HPV16-E6/E7-transgenic 

mice express E6 and E7 under control of the K10 promoter in keratinocytes, 

leading to strong E6/E7-specifi c CTL tolerance.15;17 Fausch et al. demonstrated that 

human Langerhans cells (LCs), which reside in the epidermis of the skin or in the 

epithelia of mucosal tissues, are not activated by uptake of HPV capsids, resulting 

in an inhibition of the HPV-specifi c immune response. Thus, LCs can be considered 

to be (co)responsible for the induction and maintenance of HPV tolerance.18 By 

immunizing s.c. with SFV-enhE6,7, strong “danger signals” are provided that may 

turn immature, tolerizing LCs into mature, activating LCs.7;19 In fact, Johnston et 

al. demonstrated that in vivo epidermal infection with SFV signifi cantly increases 

the expression of MHC II, CD54 and CD80 on LCs, leading to maturation of the 

local LCs.20 One could therefore speculate that s.c. immunization of the transgenic 

mice with SFV-enhE6,7 might result in maturation and activation of skin LCs and 

disruption of immune tolerance. Upon i.v. and i.m. injection, SFV-infected cells are 

not likely to reach LCs. 

Although the mechanism and kinetics of tolerance in this mouse model 

certainly differ from that in the human clinical situation, these studies indicate that 

immunization with the SFV-enhE6,7 is extremely potent and therefore suggest that 
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the vector might also be effective in patients with HPV-induced cervical lesions.

Chapter 6 describes studies exploring the effi cacy of SFV expressing IL12 to 

augment the antigen-specifi c immune and anti-tumor responses induced upon 

immunization with SFV-enhE6,7. Although immunization and boosting with SFV-

enhE6,7 did prime CTL activity in HPV16-E6/E7-transgenic mice, the levels of 

specifi c cytolysis induced upon SFV-enhE6,7 were lower than those induced in 

wild-type mice. Therefore, we investigated whether co-expression of an immuno-

stimulatory adjuvant along with SFV-mediated expression of E6,7 could further 

enhance the anti-tumor response. A promising adjuvant for cancer vaccination 

strategies is IL12.21;22 

It is demonstrated that in wild-type mice the magnitude of this adjuvant effect 

of SFV-IL12 is dependent on its route of administration, the dose, and also on 

the timing of administration. In wild-type mice, SFV-enhE6,7-induced pCTL and 

CTL activity were enhanced by the addition of a low dose of SFV-IL12 to the s.c. 

prime immunization with SFV-enhE6,7. The observed enhancement in specifi c CTL 

activity was also refl ected in the therapeutic effect. In transgenic mice, tolerant for 

HPV E6 and E7, the addition of SFV-IL12 to the priming SFV-enhE6,7 immunization 

also stimulated CTL responses. In conclusion, although our fi ndings provide 

evidence for a specifi c enhancement of antigen-specifi c immune responses by 

SFV-IL12, prudence is called for when considering co-administration of SFV-IL12 

to an immunization strategy, as enhancement of cell-mediated immune responses 

greatly depends on dosage and injection scheme. 

In Chapter 7 the effi cacies of rSFV and a vector derived from adenovirus type 

5 are compared for the induction of cellular and anti-tumor responses against 

HPV-induced cervical cancer.  For this, a recombinant adenovirus was generated 

encoding the same HPV16 E6,7 construct as used in rSFV (Ad-enhE6,7). Here we 

show that immunization with SFV-enhE6,7 is more effective than immunization 

with Ad-enhE6,7. It resulted in two-fold higher pCTL frequencies and signifi cantly 

higher levels of CTL activity. In addition, superior therapeutic effect was seen 

after SFV-enhE6,7 immunization at 100-1000-fold lower doses compared to Ad-

enhE6,7 immunization. 

To explore the possible mechanisms that might explain the difference in 

effi cacy between both vectors, several aspects were studied. First, the role of 

CD4+ and CD8+ T lymphocytes in the anti-tumor response was investigated. 

Upon immunization with both rSFV and rAd, CD8+ T-cells appear to be the main 

effector cells involved in the protection against tumor growth. Next, the amount 
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of antigen expressed in vivo was determined using rSFV and rAd expressing 

luciferase. Intramuscular injection of 1x106 SFV-luc and 5x108 Ad-luc resulted in 

comparable levels of luciferase in the muscles of the mice. However, Sato et al. 

showed that transgene expression in cells infected with rAd may last for several 

weeks, whereas cells infected with rSFV die through apoptosis two to three days 

after infection.23 Finally, the infl uence of possible anti-vector responses on booster 

injections was investigated. In contrast to the almost complete inhibition observed 

with rAd, pre-injection with rSFV resulted in a 1-2 log decrease. We hypothesize 

that following immunization with rAd the induction of CTL memory is disturbed 

by at least two mechanisms. First, strong anti-vector responses induced after 

immunization with rAd may prohibit the effect of boosting, necessary for good 

memory CTL induction13, and secondly the prolonged expression of antigen with 

rAd may lead to the induction of effector T cells, which fail to acquire the key 

properties of memory cells.24;25 In conclusion, the SFV vector system proved 

signifi cantly more immunotherapeutic than the adenoviral vector system.

Chapter 8 describes a heterologous prime-boost strategy with SFV-enhE6,7 

and E7-virosomes. This strategy results in higher numbers of antigen-specifi c 

pCTLs in mice than homologous immunization protocols. Most effective was a 

virosome prime followed by an rSFV boost. Yet, the induction of high numbers 

of pCTLs did not correlate with improved cytolytic responses. It did not result in 

CTLs with an enhanced responsiveness to in vitro antigenic stimulation, nor did 

it result in improved cytolytic activity or superior anti-tumor responses in vivo 

compared to an homologous prime-boost protocol with SFV-enhE6,7. However, 

the responses were higher than those induced by homologous prime-boosting 

with E7-virosomes.  

Evasion of vector-specifi c immunity, induced by the prime immunization, is 

often considered the most important mechanism by which heterologous prime-

boost immunization protocols induce superior immune responses.26;27 To explore 

this issue for rSFV, irrelevant rSFV was mixed with E7-virosomes during the 

priming immunization followed by a SFV-enhE6,7 boost. Although this addition 

resulted in a reduced number of specifi c pCTLs, no difference in cytolytic activity 

of CTLs induced was found. These observations imply that rSFV is a very potent 

vector in homologous prime-boost strategies that does not need heterologous 

priming or boosting.

Chapter 9 presents a general discussion of the results described in the thesis. The 

preclinical studies described here show that SFV-enhE6,7 is able to elicite robust 
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therapeutic immune responses in mice, not hindered by anti-vector immunity. 

Also, SFV-enhE6,7 has the ability to turn an immune-compromised state toward 

immune-activation in immune-tolerant HPV-transgenic mice, underlining the 

exquisite potency of SFV-enhE6,7 for immunization purposes in patients with 

HPV-induced lesions. Finally, the SFV vector system proves signifi cantly more 

immunotherapeutic than the adenoviral vector system. 

Currently, two prophylactic HPV vaccines, Gardasil® and Cervarix®, are being 

implemented in many countries. Both vaccines induce full protection from cervical 

dysplasia associated with the two high-risk HPV types incorporated in the vaccine. 

Since these two high-risk HPV types are responsible for 70% of the cervical 

carcinomas approximately one third of the cervical cancers will still develop 

despite vaccination. Furthermore, these prophylactic vaccines are not effective in 

women already infected with HPV. Therapeutic HPV vaccines could fi ll in this niche 

of prophylactic vaccination, by attacking already established HPV infection and 

HPV-induced disease. In addition, these therapeutic vaccines could also represent 

a less invasive and disfi guring treatment option for women with pre-existing HPV-

associated lesions, and may prevent recurrence or persistence of the disease.

It is diffi cult to predict how rSFV will perform in humans. The preclinical studies 

described in this thesis are very promising and fully justify clinical trials to evaluate 

the effi cacy of rSFV to treat patients with (pre)malignant cervical lesions. A possible 

hurdle to clinical application of rSFV is that this alphavirus vector system has not 

yet been used in a clinical setting. This may slow down procedures involved in 

obtaining approval for initial clinical trials. However, if promising results emerge 

from early trials, possible reservations with respect to these vectors will likely 

diminish.

At the time an effective therapeutic vaccine can be launched, together with the 

prophylactic vaccines on a worldwide scale, this is expected to result in signifi cant 

reduction of health-care costs and a further reduction of cervical cancer incidence 

and death.
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Beknopt historisch overzicht van de strijd tegen baarmoederhalskanker

Baarmoederhalskanker is lange tijd één van de belangrijkste doodsoorzaken 

onder vrouwen geweest. Verscheidene ontwikkelingen hebben de afgelopen eeuw 

echter gezorgd voor een reductie van het aantal ziektegevallen, althans in de 

ontwikkelde landen. 

In 1941 introduceert Georgious Papanicolaou een kleuringstechniek die 

premaligne en maligne epitheelcellen kan aantonen in uitstrijkjes van de 

baarmoederhals. De implementatie van deze zogenoemde “Pap-smears” markeert 

het begin van preventieve maatregelen tegen baarmoederhalskanker. Sindsdien 

is de incidentie van baarmoederhalskanker met 75% afgenomen in landen waar 

wordt gescreend met deze methode. 

In 1991 ontdekt Zur Hausen dat er een verband bestaat tussen 

baarmoederhalskanker en het humane papillomavirus (HPV). Verder onderzoek 

wijst uit dat een persisterende infectie met zogenaamde hoogrisico typen van 

HPV noodzakelijk is voor het ontstaan van baarmoederhalskanker. De twee 

belangrijkste hoogrisico HPVs zijn type 16 en 18; samen veroorzaken zij ongeveer 

70% van het totale aantal gevallen van baarmoederhalskanker.

Recentelijk zijn er moleculaire testen op de markt gekomen, waarmee HPV DNA 

in epitheelcellen van de baarmoederhals kan worden aangetoond. Deze techniek 

is gevoeliger dan het Pap-uitstrijkje. Nadeel is wel dat de testen alleen het virale 

DNA aantonen en niet de maligne transformatie. Hoe het Pap-uitstrijkje het best 

met HPV DNA-testen kan worden gecombineerd voor screening, is op dit moment 

onderwerp van een uitgebreid onderzoek.

Ondanks al deze ontwikkelingen blijft baarmoederhalskanker de op één na 

meest voorkomende vorm van kanker onder vrouwen wereldwijd. Ongeveer de 

helft van de vrouwen met baarmoederhalskanker overlijdt hier ook aan. Meer dan 

80% van alle gevallen wordt gevonden in de ontwikkelingslanden, waar men niet 

beschikt over goede preventieve zorg. 

Maar ook in landen waar uitstekende screeningsmogelijkheden zijn worden nog 

steeds aanzienlijke aantallen vrouwen gediagnostiseerd met baarmoederhalskanker. 

Een belangrijke oorzaak hiervoor is non-compliance, vaak veroorzaakt door angst 

of gêne bij een vaginaal onderzoek. Daarom blijft het nodig dat er onderzoek 

wordt verricht om de preventie en behandeling van baarmoederhalskanker waar 

mogelijk te verbeteren.

Zoals vermeld is een persisterende infectie met hoogrisico HPV essentieel voor 

het ontstaan van baarmoederhalskanker. Daarom is vaccinatie waarschijnlijk de 

meest effectieve manier om infectie met HPV en daarmee de door HPV veroorzaakte 
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ziekte te voorkomen. Op dit moment zijn er twee profylactische vaccins tegen 

baarmoederhalskanker op de markt: Gardasil® en Cervarix®. Deze vaccins bieden 

bescherming tegen de hoogrisico HPV typen 16 en 18. 

De huidige profylactische vaccins bieden alleen bescherming tegen de twee 

typen HPV die in het vaccin zijn opgenomen. Dit betekent dat, ondanks vaccinatie, 

nog steeds 30% van de gevallen van baarmoederhalskanker zal blijven ontstaan. 

Verder hebben deze profylactische vaccins geen therapeutische werking, met als 

gevolg dat alle vrouwen die al zijn geïnfecteerd met HPV er geen baat meer bij 

hebben. Een therapeutisch vaccin tegen baarmoederhalskanker en de voorstadia 

van deze ziekte zou een toevoeging van betekenis kunnen zijn in de strijd tegen 

baarmoederhalskanker.

Introductie

Het doel van deze studie, beschreven in dit proefschrift, was het vaststellen 

van de effectiviteit van een therapeutische vaccinatiestrategie tegen 

baarmoederhalskanker en voorstadia van deze ziekte (zogenaamde CIN laesies). 

Baarmoederhalskanker wordt veroorzaakt door een persisterende infectie met een 

hoogrisico HPV. Twee van de vroege oncogene eiwitten van deze hoogrisico HPV-

typen, E6 en E7, kunnen een interactie aangaan met respectievelijk de cellulaire 

eiwitten p53 en pRb. Deze laatstgenoemde eiwitten zijn medeverantwoordelijk 

voor een goede regulatie van de cyclus van de gastheercel. De interactie tussen 

E7 en pRb resulteert in een verhoogde DNA replicatie en de interactie tussen E6 

en p53 voorkomt apoptose (celdood) van de cel. Dit kan leiden tot een maligne 

transformatie van deze geïnfecteerde cellen. Een aanhoudende productie van 

deze oncogene eiwitten E6 en E7 is een vereiste voor het behoud van de maligne 

transformatie en daarmee de ontwikkeling van baarmoederhalskanker. Aangezien 

E6 en E7 op alle kankercellen tot expressie worden gebracht zijn deze eiwitten 

aantrekkelijke aangrijpingspunten voor immunotherapeutische strategieën. 

De in dit proefschrift beschreven therapeutische vaccinatiestrategie is gebaseerd 

op de toepassing van een recombinante virale vector, het zogenaamde Semliki 

Forest virus (SFV). De gebruikte SFV-vector brengt een fusie-eiwit van E6 en E7 

tot expressie (SFV-enhE6,7). De doeltreffendheid van dit therapeutische vaccin 

werd in een aantal preklinische studies in een muizenmodel onderzocht.

Hoofdstuk 1 geeft een algemene introductie over baarmoederhalskanker 

(cervixcarcinoom), de etiologische rol van HPV infectie in het ontstaan van (pre)

maligne laesies, en de huidige behandelingsmogelijkheden tegen de verschillende 

stadia van de ziekte. Vervolgens wordt de rol van het immuunsysteem bij de 
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ontwikkeling van de ziekte beschreven. Tenslotte volgt een overzicht van de 

huidige beschikbare profylactische en therapeutische vaccinatiemogelijkheden, 

zowel de geregistreerde als de nog experimentele. 

Wereldwijd is baarmoederhalskanker de op één na belangrijkste vorm van 

kanker onder vrouwen. Door de integratie van de virale vroege eiwitten E6 en 

E7 in het genoom van de gastheercel, zijn hoogrisico HPV, met name typen 16, 

18, 31, 33 en 45 in staat tot maligne transformatie van de epitheelcellen van de 

baarmoederhals. Om het getransformeerde fenotype van de cellen te behouden is 

continue expressie van E6 en E7 noodzakelijk. Daarom kunnen E6 en E7 worden 

gezien als tumorspecifi eke antigenen. Dit maakt E6 en E7 zeer geschikte targets 

voor immunotherapeutische behandeling van baarmoederhalskanker. 

Therapeutische immunisatie tegen virus-geïnfecteerde cellen of tumorcellen 

beoogt de inductie van cytotoxische T-lymfocyten (CTL). Deze CTLs kunnen specifi ek 

de geïnfecteerde cellen of tumorcellen herkennen en lyseren. T-helpercellen en 

geactiveerde antigeen-presenterende cellen (APCs), in het bijzonder dendritische 

cellen, zijn essentieel voor het aanzetten tot differentatie en de expansie van 

antigeen-specifi eke CTLs, en voor de vorming van geheugencellen (“memory 

CTLs”). 

Het merendeel van de infecties met HPV zijn van voorbijgaande aard en geven 

geen aanleiding tot de vorming van detecteerbare cervicale laesies. Echter, HPVs 

zijn zodanig geëvolueerd dat ze verschillende mechanismen bezitten, waarmee 

ze het immuunsysteem kunnen omzeilen. Hierdoor worden geïnfecteerde cellen 

en (pre-)maligne cellen niet altijd herkend door het immuunsysteem. Verder 

wordt aangenomen dat patiënten met CIN-laesies of baarmoederhalskanker 

immuungecompromitteerd zijn en/of een bepaalde immunologische 

tolerantie hebben ontwikkeld tegen HPV. Voor een succesvolle therapeutische 

vaccinatiestrategie betekent dit, dat er een zeer potent vaccin nodig is, zodat de 

balans kan omslaan van immunologische tolerantie naar activatie.

Hoofdstuk 2 biedt een overzicht van recombinante alfavirale vectoren die worden 

gebruikt in antitumor en antimicrobiële immunotherapie. Alfavirussen zijn kleine 

positieve RNA membraanvirussen, die behoren tot de familie van de Togaviridae. 

De meest gebruikte vectoren zijn afgeleid van het Semliki Forest virus (SFV), 

het Venezuelaanse paardenencefalitis virus (VEE) en het Sindbis virus (SIN). Met 

deze vectoren kunnen recombinante virusdeeltjes worden gemaakt die in staat 

zijn om één ronde van infectie te geven. Deze vectoren worden replicatiedefectief 

genoemd, omdat na deze ene ronde van infectie er geen nieuwe virusdeeltjes 

gevormd kunnen worden. Het recombinante RNA van de vectoren is zelfreplicerend 
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en de vreemde genen worden maar tijdelijk tot hoge expressie gebracht.

Alfavirale vectoren staan sterk in de belangstelling, omdat ze in staat zijn een 

hoge humorale en cellulaire immuunrespons op te wekken. De karakteristieke 

eigenschappen die alfavirussen tot aantrekkelijke kandidaten maken voor het 

gebruik bij mensen zijn; (i) recombinante alfavirussen geven hoge expressie 

van de gecodeerde eiwitten, (ii) na 48-72 uur sterven de geïnfecteerde cellen 

door apoptose (de apoptotische cellen bevatten grote hoeveelheden van het 

transgene eiwit wat gunstig is voor het opwekken van een immuunrespons via 

“cross-priming”), (iii) recombinante alfavirussen kunnen zowel het aangeboren 

(“innate”) als het verworven (“acquired”) immuunsysteem activeren.

Verscheidene immunisatiestrategieën tegen infectieziekten hebben laten zien 

dat de humorale immuunrespons, opgewekt door alfavirussen, sterk varieert en 

daarnaast afhankelijk is van het type antigeen, de verwerking/presentatie van 

het antigeen en de toedieningsweg. Desalniettemin wordt in de meeste studies 

aangetoond dat alfavirussen sterke cellulaire immuunresponsen induceren 

die kunnen beschermen tegen specifi eke micro-organismen of tumoren. De 

doeltreffendheid van recombinant SFV is in verschillende preklinische studies 

geëvalueerd.

Hoofdstuk 3 beschrijft een serie experimenten waarin gekeken werd naar het 

effect van de behandeling met SFV-enhE6,7 van tumoren in muizen. In dit model 

worden HPV-getransformeerde tumorcellen subcutaan (s.c.) geïnjecteerd bij 

muizen, die vervolgens uitgroeien tot een tumor. Tumor-dragende muizen werden 

geïmmuniseerd met SFV-enhE6,7 en vervolgens werd gekeken of door deze 

immunisatie de tumorgroei wordt geremd. Voorafgaand aan dit onderzoek was 

reeds aangetoond dat met behulp van SFV, coderend voor E6 en E7, een sterke 

HPV-specifi eke immuunrespons kan worden geïnduceerd in muizen. 

In dit hoofdstuk wordt aangetoond dat muizen, die s.c. geïmmuniseerd zijn 

met SFV-enhE6,7 in staat zijn tumorcellen op te ruimen en daarna tumorvrij te 

blijven. Belangrijk is dat deze tumorvrije muizen ook tumorvrij blijven na een 

tweede injectie met tumorcellen drie maanden later. Dit suggereert dat er op 

dit late tijdstip nog steeds HPV-specifi eke geheugen-CTLs aanwezig zijn. Verder 

blijkt uit het onderzoek dat zelfs 340 dagen na immunisatie nog sterke HPV-

specifi eke CTL-responsen aantoonbaar zijn. Samenvattend kan gesteld worden 

dat immunisatie met SFV-enhE6,7 leidt tot een potente CTL-respons, die gepaard 

gaat met een sterk antitumor effect. Daarnaast geeft deze immunisatie ook een 

langdurige geheugen CTL-respons.
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Uit experimenten beschreven in hoofdstuk 4 blijkt dat de sterkte van de, door 

SFV-enhE6,7, opgewekte immuun- en antitumorrespons tegen HPV-geïnduceerde 

tumoren, niet alleen dosisafhankelijk is, maar ook afhangt van de toedieningsroute 

van het vaccin. 

In deze studie werd vastgesteld dat i.v. en i.m. toediening van SFV-enhE6,7 

vele malen effectiever is dan s.c. of intraperitoneale (i.p) toediening. Dit geldt 

zowel voor CTL inductie als therapeutische antitumorresponsen. Klaarblijkelijk 

beïnvloedt de plaats van genexpressie de activatie van de immuunrespons. 

Hoewel er geen signifi cant verschil te meten was in de CTL activiteit, liet analyse 

met behulp van MHC-tetrameren zien dat i.v. en i.m. toediening een signifi cant 

hogere precursor CTL (pCTL) frequentie oplevert. Verdere analyse liet zien dat, 

om dezelfde CTL activiteit te induceren, ruim honderd keer minder virusdeeltjes 

nodig zijn bij i.v. of i.m. toediening in vergelijking met s.c. of i.p. toediening.

Tumorbehandelingsexperimenten lieten zien dat i.v. en i.m. immunisaties ook 

een betere antitumorrespons geven, vergeleken met s.c. immunisatie zoals in 

hoofdstuk 3 beschreven. Dit kan hoogstwaarschijnlijk worden toegeschreven 

aan de hogere pCTL frequenties die worden gegenereerd. Verder wordt met 

deze tumor-experimenten de enorme potentie van de SFV vector aangetoond. 

Exponentieel groeiende tumoren, tot zo’n 500 mm3 in grootte, kunnen volledig in 

remissie gaan en zelfs tumoren van 1500 mm3 kunnen soms tot een derde van 

hun grootte worden terug gebracht. Een andere belangrijke observatie is dat zelfs 

22 weken na de laatste immunisatie de meeste muizen nog steeds in staat zijn om 

de geïnjecteerde tumoren op te ruimen. 

In hoofdstuk 5 werd onderzocht of de immuunrespons die door SFV-enhE6,7 

wordt opgewekt sterk genoeg is om de immunologische tolerantie in HPV16-E6/E7-

transgene muizen te doorbreken. Immunisatie met SFV-enhE6,7 blijkt inderdaad 

een specifi eke CTL-respons te induceren in deze transgene muizen, terwijl andere 

immunisatiestrategieën gebaseerd op conventionele DNA- of eiwitvaccins dit niet 

kunnen bewerkstelligen in deze transgene muizen.

In tegenstelling tot wat we zien bij wildtype muizen, geeft niet i.m. of i.v. 

toediening maar s.c. immunisatie bij HPV-transgene muizen de beste CTL-respons. 

De volgende bevindingen kunnen dit mogelijk verklaren. Eerder is beschreven 

dat HPV16-E6/E7-transgene muizen E6 en E7 tot expressie brengen op het 

celoppervlak van keratinocyten, wat leidt tot sterke perifere tolerantie van de 

E7-specifi eke CTLs. Fausch et al. hebben aangetoond dat humane Langerhans 

cellen, die gelokaliseerd zijn in de epidermis van de huid of in het epitheel van de 

slijmvliezen, niet worden geactiveerd door de opname van de capside-eiwitten van 
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HPV. Dit heeft tot gevolg dat de HPV-specifi eke immuunrespons wordt geremd. 

Langerhans cellen zouden dus mede verantwoordelijk kunnen zijn voor de inductie 

en het behoud van de tolerantie tegen HPV. Bij s.c. immunisatie met SFV-enhE6,7 

worden “danger-signals” afgegeven die onrijpe Langerhans cellen, die tolerantie 

veroorzaken, omzetten naar rijpe activerende Langerhans cellen. Deze hypothese 

wordt ondersteund door bevindingen van Johnston et al. Deze auteurs laten zien 

dat SFV infectie van de epidermis in vivo een signifi cant verhoogde expressie van 

MHC II, CD54 en CD80 op de Langerhans cellen geeft. Hieruit valt af te leiden dat 

s.c. immunisatie met SFV-enhE6,7 de Langerhans cellen in de huid van transgene 

muizen kan aanzetten tot rijping en activatie. Op die manier verstoren deze cellen 

de immunologische tolerantie. Via i.v. of i.m. toediening is het niet waarschijnlijk 

dat deze Langerhans cellen worden bereikt.

Het mechanisme van tolerantie in transgene muizen verschilt waarschijnlijk 

wezenlijk van de tolerantie die kan optreden na een humane HPV-infectie bij de 

mens. De hoop en de verwachting is dat ook de lichte mate van immunotolerantie 

bij patiënten met HPV-geïnduceerde laesies doorbroken kan worden door 

immunisatie met SFV-enhE6,7.

In hoofdstuk 6 werd onderzocht of toevoeging van een tweede SFV vector, 

die interleukine 12 (IL12) tot expressie brengt, de SFV-enhE6,7-geinduceerde 

antigeen-specifi eke immuun- en antitumorrespons verder kan versterken. In 

het vorige hoofdstuk werd aangetoond dat het mogelijk is om in HPV16-E6/E7-

transgene muizen met een immunisatie met SFV-enhE6,7 een E7-specifi eke CTL-

respons te induceren. Deze respons blijft echter lager dan die in wildtype muizen. 

In dit hoofdstuk werd onderzocht of door toevoeging van een immuunstimulerend 

adjuvant de geïnduceerde immuun- en antitumorrespons kan worden vergroot.

In wildtype muizen is het adjuvante effect van SFV-IL12 afhankelijk van zowel 

de dosis als de timing van toediening. Een lage dosering van SFV-IL12, toegevoegd 

aan de eerste SFV-enhE6,7 immunisatie, geeft aanleiding tot een verhoogde 

antigeen-specifi eke CTL-respons. Het positieve effect op de specifi eke CTL 

activiteit bleek overeen te komen met een verhoogd therapeutisch effect. Verder 

werd ook in HPV-transgene muizen een verhoging van de antigeen-specifi eke CTL-

respons gezien, na toevoeging van SFV-IL12 aan de eerste immunisatie met SFV-

enhE6,7. 

Hoewel SFV-IL12 de antigeen-specifi eke immuunrespons enigszins 

versterkt lijkt, op basis van deze experimenten, toevoeging van SFV-IL12 

aan immunisatieprotocollen niet gerechtvaardigd. Het risico bestaat dat de 

immuunrespons wordt geremd in plaats van verhoogd. 
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in vivo wordt er geen verhoogde cytolytische activiteit of betere antitumorrespons 

gezien vergeleken met een homologe immunisatiestrategie met SFV-enhE6,7. 

Daarentegen zijn de resultaten wel beter dan die na een homologe prime-boost 

immunisatie met E7-virosomen.

Met heterologe prime-boost immunisatiestrategieën kan de immuunrespons 

tegen de vector worden omzeild. Dit wordt gezien als het meest belangrijke 

mechanisme op basis waarvan met deze immunisatiestrategieën sterkere 

immuunresponsen kunnen worden opgewekt. In deze studie is ook gekeken of deze 

vector-specifi eke immuniteit een belangrijke rol speelt bij immunisatiestrategieën 

met rSFV. Om dit effect te onderzoeken werd aan de immunisatie met E7-virosomen 

irrelevant rSFV toegevoegd. Na deze immunisatie volgde een booster-immunisatie 

met SFV-enhE6,7. De toevoeging van irrelevant rSFV aan de immunisatie gaf 

verminderde aantallen specifi eke pCTLs. Er kon echter geen verschil worden 

aangetoond in de cytolytische activiteit van de geïnduceerde CTLs vergeleken 

het oorspronkelijke heterologe prime-boost protocol: E7 virosomen gevolgd door 

SFV-enE6,7. Deze studie laat zien dat een immuunrespons tegen de SFV-vector 

de therapeutische werking niet hindert waardoor SFV-enhE6,7 uitstekend in 

homologe immunisatieprotocollen toe te passen is.

Hoofdstuk 9 presenteert een algemene discussie van de resultaten in de 

verschillende hoofdstukken van dit proefschrift. Hiernaast worden de mogelijkheden 

en uitdagingen van een eventuele introductie van een therapeutisch HPV vaccin in 

perspectief gebracht, in het bijzonder die van een therapeutisch vaccin gebaseerd 

op het gebruik van het recombinante SFV-vectorsysteem. Het geheel wordt belicht 

tegen de achtergrond van de huidige implementatie van de profylactische HPV 

vaccinatie in veel landen.

De krachtige therapeutische immuunresponsen die kunnen worden 

opgewekt met SFV-enhE6,7, de afwezigheid van pre-existerende antilichamen 

tegen SFV onder mensen, de mogelijkheid om rSFV te gebruiken in homologe 

immunisatieprotocollen en de veiligheid van het SFV-vectorsysteem, maken rSFV 

tot een serieuze kandidaat voor klinische evaluatie als mogelijke behandelingvorm 

voor (pre)maligne CIN laesies en vroeg-invasieve baarmoederhalskanker.

De samenvatting begon met een overzicht van de mogelijke maatregelen 

tegen baarmoederhalskanker die zijn geïmplementeerd in de afgelopen decennia. 

Deze maatregelen zijn zeer succesvol gebleken en hebben de incidentie van 

baarmoederhalskanker substantieel verminderd. Dit geldt echter alleen voor de 

ontwikkelde landen. Meer dan 80% van de gevallen van baarmoederhalskanker 

komen echter voor in ontwikkelingslanden. De verwachting is dat dit percentage zal 
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In hoofdstuk 7 wordt de cellulaire en antitumorrespons na immunisatie met rSFV 

vergeleken met de respons opgewekt door immunisatie met een adenovirus-vector. 

Hiertoe werd een recombinant adenovirus type 5 geconstrueerd (Ad-enhE6,7) met 

hetzelfde HPV16-E6,7 construct als SFV-enhE6,7. Immunisatie met SFV-enhE6,7 

resulteert in een twee keer hogere pCTL frequentie en een signifi cant hogere CTL 

activiteit vergeleken met immunisatie met Ad-enhE6,7. Ook is het therapeutisch 

effect van immunisaties met SFV-enhE6,7 signifi cant beter. 

Er zijn verschillende mogelijke mechanismen, die aan dit verschil tussen rSFV 

en rAd ten grondslag kunnen liggen. Als eerste werd onderzocht welke rol CD4+ 

en CD8+ T-cellen spelen in de antitumorrespons. Na immunisatie met zowel 

rSFV als rAd, spelen de CD8+ T-cellen de belangrijkste rol in de bescherming 

tegen tumoruitgroei. Ten tweede is gekeken naar de hoeveelheid antigeen die 

in vivo tot expressie komt na immunisatie met rSFV en rAd. I.m. toediening van 

1x106 i.u. rSFV en 5x108 i.u. rAd geven aanleiding tot vergelijkbare hoeveelheden 

antigeenexpressie in de spieren van de muizen. Sato et al. laten in hun 

onderzoek zien dat de antigeenexpressie in rAd-geïnfecteerde cellen wekenlang 

kan voortduren. Dit in tegenstelling tot de expressie in cellen geïnfecteerd met 

rSFV, die na twee à drie dagen in apoptose gaan. Als laatste is gekeken naar de 

invloed van een mogelijke antivectorrespons, die opgewekt zou kunnen worden 

bij de eerste immunisatie. In tegenstelling tot een bijna volledige remming van 

antigeenexpressie door een tweede dosis rAd resulteert een pre-injectie van rSFV 

slechts in een partiële verlaging van de antigeenexpressie. 

Op basis van deze studie veronderstellen we dat immunisatie met rAd niet 

resulteert in de inductie van CTL geheugencellen. De sterke antivectorrespons, 

die wordt opgewekt door de eerste immunisatie met rAd verhindert een effectieve 

booster-immunisatie. Een booster-immunisatie is noodzakelijk voor een goede 

geheugenrespons. Daarnaast kan de langdurige expressie van antigeen, na 

immunisatie met rAd, resulteren in de inductie van effector-T-cellen die tijdelijk 

actief zijn maar zich niet kunnen ontwikkelen tot functionele geheugencellen. 

In Hoofdstuk 8 wordt een heterologe prime-boost strategie met SFV-enhE6,7 

en E7-virosomen geëvalueerd. Uit andere studies blijkt dat heterologe prime-

boost strategieën hogere aantallen antigeen-specifi eke pCTLs induceren dan 

homologe immunisatieprotocollen. De studie beschreven in dit hoofdstuk laat 

zien dat een heterologe prime-boost immunisatiestrategie, waarin muizen eerst 

worden geïmmuniseerd met E7 virosomen en daarna worden geboosterd met 

SFV-enhE6,7, de hoogste aantallen pCTLs induceert. Deze hoge aantallen pCTLs 

leiden echter niet tot CTLs die sterker reageren op antigeenstimulatie. In vitro en 
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zijn toegenomen tot 90% in het jaar 2020. De vrouwen uit deze ontwikkelingslanden, 

die de meeste baat zouden hebben bij vaccinatie, zullen hoogstwaarschijnlijk geen 

toegang hebben tot zo’n vaccin omdat ze het zich niet kunnen veroorloven. Ook 

hebben zij geen toegang tot de huidige screeningsmogelijkheden, zoals de Pap-

uitstrijkjes, vanwege gebrek aan geld of faciliteiten. Het vinden van mogelijkheden 

om ook meisjes en vrouwen uit deze achtergestelde landen toegang te bieden 

tot profylactische en, eventueel therapeutische vaccins is misschien nog wel de 

grootste uitdaging in de strijd tegen baarmoederhalskanker wereldwijd.
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In essentie geef je met danken aan dat je iets niet had kunnen bereiken zonder 

hulp. Over het algemeen kun je stellen dat je niets zonder betrokkenheid van 

een ander kunt bereiken. Had iemand mij 7 jaar geleden gezegd dat ik nu zou 

promoveren, al is het met hulp van zovele anderen, dan had ik diegene vol 

ongeloof aangekeken en misschien zelfs wel uitgelachen. Mijn gedachten gaan 

daarom, toch vooral terug naar mijn allereerste bezoeken aan het UMCG. Iemand 

heeft kennelijk toch iets gezien wat ik zelf toen nog niet zag. Het eerste jaar had 

ik nogal eens moeite om in te zien waar het allemaal tot zou lijden*. Al snel kreeg 

ik plezier in wat ik deed op het lab en voelde ik me meer thuis in deze wonderlijke 

wetenschappelijke wereld. Gedurende de jaren heb ik heel wat afgevraagd, 

uitgeplozen, besproken en nagelezen. Mijn verbale incontinentie heeft soms voor 

veel plezier en vast ook voor ergernis gezorgd. Bovenal ben ik dankbaar dat mijn 

eigen enthousiasme en nieuwsgierigheid me de drive hebben gegeven om telkens 

door te zetten. Dat ik nu dit kan schrijven, heb ik voor het grootste deel te danken 

aan de mogelijkheden die me zijn geboden, de hulp en steun (in de breedste zin 

van het woord) die ik heb mogen ontvangen en het vertrouwen van veel mensen. 

In de opsomming die gaat volgen zal ik niet iedereen die een bijdrage heeft 

geleverd aan de totstandkoming van dit proefschrift bij naam kunnen noemen, 

maar ik ben hen allemaal erg dankbaar hiervoor.

Voorts wil ik met name bedanken;

Jan Wilschut, als zijnde mijn eerste promotor. Jouw enthousiasme en vertrouwen 

maakten dat ik niet lang na hoefde te denken toen je me een onderzoeksplaats 

aanbood tijdens mijn sollicitatie naar de opleiding tot arts-microbioloog. Dit was 

spannend voor ons allebei, gezien ik de eerste “arts” was die zich voegde bij jullie 

groep. Je begeleiding heb ik als zeer leerzaam ervaren, bedankt voor alles.  

Toos Daemen, mijn dagelijkse begeleider en co-promotor. Jouw geduld en hulp 

hebben ervoor gezorgd dat ik me de, voor mij vreemde, taal waarin jullie spreken 

enigszins eigen heb kunnen maken. Je deur stond altijd open voor mijn vragen 

en je bent bij elke stap van mijn promotietraject zeer nauw betrokken geweest. 

Je prikkelende vragen en uitgesproken ideeën zijn essentieel geweest voor de 

vorming van dit proefschrift.  

John Degener, mijn opleider en tweede promotor. Dank je voor alle ruimte 

en mogelijkheden die je hebt geschapen, om de uitdagende combinatie van de 

kliniek en de research tot een succes te maken. 

Ate van der Zee, mijn derde promotor. Hartelijk dank voor jouw bijdrage aan 

dit proefschrift. Jouw praktische benadering vanuit de kant van de kliniek zorgt 

ervoor dat je niet uit het oog verliest voor wie je het doet, de patiënt.



217

Dankwoord

Joke Regts, mijn steun en toeverlaat op de werkvloer. Van jou heb ik onder 

andere geleerd dat het begrip steriel werken verschillende betekenissen heeft. Ik 

heb bewondering voor je enorme nauwgezetheid, een kunst die leidt tot geweldig 

reproduceerbare resultaten. De samenwerking met jou heb ik als een bijzondere en 

dierbare tijd ervaren. Daarnaast ben ik je dankbaar dat je ook op deze belangrijke 

dag aan mijn zijde wilt staan.

Barry-Lee, Jørgen en Arjan, mijn kamergenoten. Ik kijk met veel plezier terug 

op de periode waarin we lief en leed met elkaar deelden. Inmiddels heb ik al jullie 

promoties bij mogen wonen en heb ik zo de kunst mooi kunnen afkijken.

Jolanda, Laura en Jeroen behoorden tot de “oude” AIO’s groep. Jullie 

relativerings vermogen en de al opgebouwde ervaring gaven me op gezette tijden 

de rust en vertrouwen dat alles erbij hoort en het uiteindelijk weer op zijn pootjes 

terecht komt.

Natuurlijk waren er nog veel meer collega’s bij de Moleculaire Virologie die ik 

hier niet wil overslaan. Annechien, Anke, Baukje-Nynke, Chekwa, Felix, Heidi, 

Hilde, Ingrid, Iza, Jacqueline, Judith, Marijke, Mateusz, Paul, Tjarko, Toon, Wouter. 

Jullie expertise heeft mij vaak verder geholpen en ik kijk met veel plezier terug 

naar de fi jne periode die ik bij jullie heb gehad.

Bert Dontje, als de vaste biotechnicus. Niet alleen de muizen maar ook 

persoonlijk ben ik heel dankbaar voor jouw betrouwbare hulp en vaste hand. 

Daarnaast dank ik de medewerkers van het CDL voor de goede verzorging van al 

“mijn” muisjes. En natuurlijk dank ik alle muisjes, die niet geheel uit eigen wil, 

een essentiële bijdrage hebben geleverd aan dit proefschrift. 

Hidde Haisma, Gera Kamps, Marianne Rots, en Ou Jianghua van de afdeling 

Therapeutisch Gen Modulatie. Heel erg bedankt voor alle hulp, zowel praktisch als 

in theorie, bij de experimenten met de adenovirale vectoren. 

De medewerkers van de afdeling medische biologie, in het bijzonder Marja 

Brinker, wil ik bedanken voor de hulp bij het opzetten van de PCR voor het 

identifi ceren van de transgene muizen.

Geert Messander, bedankt voor al je ondersteunende hulp bij de FACS 

experimenten. Jan Wijbenga bedankt voor de goede zorgen over alle andere 

apparaten. En de afdeling ICT, in het bijzonder Guus van den Brekel, voor alle 

hulp als de computer weer iets anders in gedachten had dan ik. 

Margaret Chen, thank you for contributing the SFV-IL12 virus particles and all 

the constructive comments on the paper. Prof. L. Gissmann and Dr. N. Michel for 

kindly supplying us with founder HPV-transgenic mice. Marc Fiedler and Pidder 

Jansen Dürr for the E7 protein you kindly provided.

Willem Manson, Jan Arends, Rik Winter, Nico Meessen en Greetje Kampinga, de 
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artsen-microbioloog van het UMCG. Jullie hebben allemaal zo je eigen specifi eke 

kwaliteiten waar ik al behoorlijk veel van heb opgestoken. In de afgelopen 7 

jaar, hebben jullie mij zien ontwikkelen van een ietwat naïeve “AIOS” naar een 

toekomstig collega, die niet bang is om voor haar mening op te komen. 

Karola Waar, Niek Arents, Jutte de Vries, Glen Mithoe, Astrid Buss, Jerome 

Lo Ten Foe en Felix Geeraerdts, mijn collega arts-assistenten. Jullie hebben me 

voorzien van de nodige adviezen en mijn geweeklaag nu lang genoeg aangehoord. 

Ik stel het zeer op prijs dat jullie je, vooral in die hectische laatste maanden van 

de afronding, fl exibel hebben opgesteld.

Verder wil ik alle andere collega’s van de afdeling Medische Microbiologie in het 

UMCG bedanken. Ik kijk uit naar de nieuwe uitdagingen die in het verschiet liggen 

en heb er vertrouwen in dat we ook hier een succes van kunnen maken.

De collega’s van het LVI wil ik bedanken voor de morele steun tijdens mijn 

stage. Voornamelijk, René Benne voor het beschikbaar stellen van de nodige tijd 

en begrip.

Ook ben ik de leden van de leescommissie Prof. H.J. Haisma, Prof. L.F.M.H. de 

Leij en Prof. P.J.F. Snijders zeer erkentelijk voor het beoordelen van het proefschrift 

en hun goedkeuring.

Wil en Thomas Lof, dankzij jullie heeft mijn proefschrift een persoonlijke 

omslag. Ook wil ik jullie bedanken voor het gebruik van het heerlijke pied-à-terre 

in Frankrijk en de relativerende grappen die vooral de laatste loodjes af en toe 

wat lichter maakten.

Peter van der Sijde, heel wat zorgen en stress zijn me bespaard gebleven door 

jouw expertise om het proefschrift mooi vorm te geven, bedankt hiervoor.

Marieke, Elbrig, Phillis en Paulien, mijn vriendinnen uit mijn tijd van de 

Geneeskunde studie in het AMC. Wie had gedacht dat ik als eerste zou promoveren 

(ik niet!). We zijn aardig verspreid geraakt over heel Nederland, desondanks hoop 

ik dat we nog lang een goed contact zullen houden.

Vera en Annelies, getuigen van alle belangrijke life-events tot nu toe, mijn 

vriendschap met jullie is me heel dierbaar. Vooral de laatste tijd heb ik jullie 

wel tekort gedaan. Maar jullie steevaste vertrouwen in mijn kunnen hebben er 

mede voor gezorgd dat ik heb doorgezet en dat we nu een mooi feest te vieren 

hebben.

Suzan, al vriendinnen vanaf ons 3e levensjaar. Ik vind het erg fi jn dat onze 

vriendschap hier in Groningen is opgebloeid, we wonen weer net als vroeger op 

fi etsafstand van elkaar. Naast David denk ik dat jij één van de weinige bent die me 

soms precies begrijpt zonder dat ik het hoef uit te leggen.   

Een goede buur is beter dan een verre vriend. Dit geldt zeker voor een aantal 
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buren uit de Leeuwarderstraat. Ik heb genoten van de gezelligheid en heerlijke 

etentjes, die zorgen voor de broodnodige ontspanning en afl eiding.

Guus en Joan, hartelijk dank voor het beschikbaar stellen van het heerlijk 

ontspannen toevluchtsoord in Denemarken. Guus bedankt voor het proefl ezen 

van delen uit dit proefschrift. Hiernaast bewonder ik jullie enorme positieve 

levensinstelling. We komen zeker een keer langs in Afrika!

Mijn schoonfamilie heeft mij ook enorm geholpen. Jullie stonden altijd klaar 

voor mij en mijn gezin. De warme en hechte familieband heb ik leren waarderen 

en hoop ik mezelf eigen te kunnen maken. Ik ben jullie enorm dankbaar voor de 

ontelbare keren dat jullie ons te hulp schoten. Was het niet bij de verbouwing van 

het huis dan wel was het wel bij de opvang van de kinderen. 

Mijn ouders ben ik dankbaar voor het bijbrengen van zelfdiscipline en 

doorzettingsvermogen. Jullie normen en waarden die ik heb meegekregen leggen 

hoge eisen op, maar ik heb geleerd dat je er zeer ver mee kunt komen. Daarnaast 

hoop ik nog lang te kunnen genieten van jullie als ouders en in de rol als opa en 

oma voor mijn beide dochters. Jan Derk, mijn broer, het spijt me dat ik het je als 

oudere zus weer lastig maak door te promoveren, maar ik heb alle vertrouwen 

in je. Ik vind het heel fi jn, dat je aan mijn zijde wilt staan op deze dag, dank je. 

Verder, ben ik mijn hele familie dankbaar voor de steun en aanwezigheid in mijn 

leven.

Mijn bewondering gaat uit naar al die mensen die dagelijks op zoek zijn naar de 

waarheid in wetenschappelijke vraagstukken. Door hun ideeën, onderzoeken en 

artikelen komen we telkens weer een stapje dichterbij geweldige vernieuwingen. 

Die door de juiste vertaalslag, een beetje geluk en een fl ink portie idealisme, voor 

een enorm verschil kunnen zorgen in het leven van zo vele mensen.

Dankbaar ben ik uiteraard voor mijn gezin. David, Ruth, Hannah en Dorus, 

wil ik bedanken voor de onvoorwaardelijke liefde die ik van jullie elke dag weer 

mag ontvangen. Het geeft mij de kracht om door te zetten en te gaan voor wat ik 

denk dat belangrijk is en daarmee hopelijk een beetje verschil uitmaak. Tot slot, 

David, mijn nummer 1, samen met jou voel ik me compleet en durf ik alles aan. 

Ik hoop nog heel lang samen met jou en onze kinderen van het leven te kunnen 

genieten. 
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Annelies Riezebos-Brilman werd geboren op 3 juni 1975, te Nijmegen en groeide 

op in Oldenzaal. In 1993 behaalde zij haar VWO examen aan het Twents Carmel 

Lyceum te Oldenzaal. 

Na haar middelbare school vertrok zij naar Amsterdam en startte hier met de 

studie Medische Biologie aan de Universiteit van Amsterdam. In 1994 sloot zij 

het eerste studiejaar af met de propedeuse Medische Biologie en werd zij tevens 

ingeloot voor de studie Geneeskunde in het AMC. Hier behaalde zij haar doctoraal 

examen in 1998, gevolgd door het artsexamen in 2001. 

Na haar artsexamen verhuisde ze naar Groningen. In het UMCG werd op 1 

september 2001 begonnen met de opleiding tot arts-microbioloog onder supervisie 

van Prof. Dr. J.E. Degener. De opleiding startte met 9 maanden onderzoek bij de 

sectie Moleculaire Virologie. Na deze 9 maanden werd de opleiding uitgebreid 

met twee jaar om verder te werken aan het onderzoek naar een therapeutische 

vaccinatiestrategie tegen baarmoederhalskanker. Het wetenschappelijk onderzoek 

resulteerde in dit proefschrift onder leiding van Prof. Dr. J.C. Wilschut, Prof. Dr. 

A.G.J. van der Zee, Prof. Dr. J.C. Degener en Dr. C.A.H.H. Daemen. Als lid van 

de onderwijscommissie van de NVAMM is zij actief betrokken geweest bij het 

opstellen van het huidige logboek voor de opleiding tot arts-microbioloog, vanaf 

de oprichting van deze commissie in 2002 tot 2006. Van november 2005 tot en 

met oktober 2006 was zij gedetacheerd op het Laboratorium voor Infectieziekten 

in Groningen voor het deel klinische virologie van haar opleiding. Momenteel is zij 

in het UMCG bezig met het laatste jaar van haar opleiding tot arts-microbioloog.

Tijdens haar studie leerde zij haar man kennen, met wie zij trouwde in de 

zomer van 2000. Op dit moment wonen zij in Groningen stad samen met hun 2 

dochters, Ruth (2004) en Hannah (2007). 
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Ad   adenovirus
AIDS   acquired immune defi ciency syndrome
APC   antigen-presenting cell
BHK   baby hamster kidney cells
BSA   bovine serum albumin
C   capsid protein
C12E8         octa(ethyleneglycol)-n-dodecyl monoether
CAR   coxsackie-adenovirus receptor
CD   cluster of differentiation
CIN    cervical intraepithelial neoplasia
CMV   cytomegalovirus
Cr    chromium
CTL    cytotoxic T lymphocyte
DC   dendritic cell
DNA   deoxyribonucleic acid
ds   double-stranded
E6   early protein 6 of HPV 
E7   early protein 7 of HPV
ELISA   enzyme-linked immunosorbent assay
Elispot   enzyme-linked immunosorbent spot
e   enhancer
enh    enhancer
E:T ratio  effector cell to target cell ratio
FACS    fl uorescence activated cell sorter
FCS   foetal calf serum
FITC   fl uorescein isothiocyanate
FMDV   foot and mouth disease virus
GFP   green fl uorescent protein
GM-CSF  granulocyte-macrophage colony-stimulating factor
HEPES   N-[2-hydroxyethyl]piperazine-N’-[2-ethanesolfonic acid]
HIV   human immunodefi ciency virus
HLA   human leukocyte antigen
HNE   5 mM Hepes, 150mM NaCl and o,1 mM EDTA buffer
HPV    human papillomavirus
IgG   immunoglobulin G
IL   interleukine 
i.m.   intramuscular
INFγ   interferon gamma
i.p.   intraperitoneal
IPTG   isopropyl-β-D-thiogalactopyranoside
i.v.   intravenous
L   late viral capsid protein of HPV
lacZ   β-galactosidase
LC   Langerhans cells
LPS   lipopolysaccharide
luc   luciferase
K10   keratine 10 promotor
MHC   major histocompatibility complex
mRNA   messenger RNA
NaCl   natriumchloride
NK   natural killer cells  
nsP   non-structural proteins
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List of Abbreviations

ORF   open reading frame
OVA   chicken ovalbumin
p53   tumor protein 53
Pap   Papanicolaou
PBS   phosphate buffered saline
PBMC   peripheral blood mononuclear cells
PCR   polymerase chain reaction
pCTL   precursor cytotoxic T lymphocyte
pRb   retinoblastoma protein
rAd   recombinant adenovirus
RAHYNIVTF  HPV16 E7 CTL epitope, amino acid 49-57
RNA   ribonucleic acid
rSFV   recombinant Semliki Forest virus
s.c.   subcutaneous
SFV   Semliki Forest virus
SIL   squamous intraepithelial lesion
SIN   Sindbis virus
TCM   central memory T cells
TCR   T cell receptor
TEM    effector memory T cells 
TGF-β   transforming growth factor beta
Th   T-helper cells
TLR   Toll-like receptor
TNF-α   tumor necrosis factor alpha
Treg   regulatory T cells  
VEE   Venezuelan equine encephalitits virus
VIN   vulval intraepithelial neoplasia
VLP   virus-like particle
WHO   World Health Organisation




