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Chapter 3

Heterotic Supergravity,
Chern-Simons Terms and
Field Redefinitions

In this chapter we will introduce the supergravity action as the low-energy effective
action of superstring theories. We shall also outline various approaches that have been
used to construct such an action and the corresponding higher derivative corrections.
Field redefinitions and equivalent effective actions will be studied for the heterotic
string to order α′, having the Chern-Simons terms included. Also some comments on
higher order terms in α′ will be made.

3.1 Supergravity Theory

3.1.1 Preliminary

Supergravity theories were first presented as extensions of general relativity with
fermionic and bosonic matter fields [77]. Such extensions have been performed in
a way that the theory has a local supersymmetry which can be considered as an
extension of Poincaré symmetry of general relativity. The Poincaré Lie algebra is
formulated as a semi direct product of spacetime translations with generators Pm

and Lorentz rotations Jmn such that

[Pm, Pn] = 0, [Pm, Jnk] = ηmnPk − ηmkPn, (3.1.1a)

[Jmn, Jkl] = ηnkJml − ηmkJnl − ηnlJmk + ηmlJnk. (3.1.1b)
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Adding extra fermionic generators Qα to the Poincaré algebra leads to the well-
known super Poincaré algebra. The generators Qα are fermionic in the sense that
they transform in spinor representations of the Lorentz group where α is the spinor
index. Therefore the super Poincaré algebra must contain anti-commutation relations
along with the commutation relations. We consider the example of the minimal super
algebra1

[Jmn, Qα] = −1

4
(γmn)α

βQβ , [Qα, Pm] = 0, (3.1.2a)

{Qα, Qβ} ∼ γm
αβPm. (3.1.2b)

It is clear from these relations that the job of the Qα-generator is to rotate fermion
and boson fields to each other.

Local supersymetric invariant equations of motion and a set of fields that lie in
irreducible representations of a super algebra lead to a supergravity theory. In order
to construct the supergravity multiplet one has to associate to every generator a
vector field. In other words, the gauge fields that correspond to Pm are the vielbein
em

µ and for Jmn the gauge fields are the spin connection 1-form ωmn
µ which due to the

equations of motion is considered as a variable dependent on the vielbein, i.e. ωmn
µ (e).

On the other hand, the gauge field corresponding to a supersymmetry generator is the
gravitino denoted by ψα

µ , spin 3/2-field. The supergravity multiplet is then defined
as the smallest set of fields involving the vielbein and the gravitino that form an
irreducible representation of the super algebra2. Note that the number of boson and
fermion degrees of freedom in any multiplet should be equal. This can be seen from the
fact that Q|Boson〉 = |Fermion〉. Acting again with the operator Q, one finds from
the algebra that Q2|Boson〉 ∼ P |Boson〉 = |Boson′〉, where |Boson′〉 is a translated
boson. Now if translations are invertible the dimension of the bosonic space is equal
that of the fermionic.

Besides the supergravity multiplet one can out of the representations of super
algebra construct multiplets that do not describe gravity, namely do not contain
graviton and gravitino. These multiplets are representations of rigid supersymmetry,
and are called the scalar, vector and tensor multiplets. It is worth noting that a rigid
supersymmetry can be converted to local by coupling the multiplet to the supergravity
multiplet.

So far we have just mentioned what we have called minimal super algebra, i.e.,
super algebra with one spinorQα. One can also generalize this to more supersymmetry
generators QI

α, with I runs from 1 · · ·N. The supergravity theories that have been

1The Gamma matrices (γm)α
β obey the relation {γm, γn} = 2ηmn. The matrices γmn are the

antisymmetric products γmn = γ[mγn]. The charge conjugation matrix is playing the role of the

metric on spinor space; It satisfies the relations CT = κC and γT
m = ǫCγmC−1 with κ and ǫ take

the values +1 or -1.
2Often one has to add scalars such as dilaton, vectors, e.g. graviphoton, and fermions (dilatini)

etc...
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Superstring theory Low-energy approximation
Type IIA N = 2 type IIA supergravity
Type IIB N = 2 type IIB supergravity
Type I N = 1 supergravity coupled to SO(32) YM multiplet
Heterotic SO(32) N = 1 supergravity coupled to SO(32) YM multiplet
Heterotic E8 × E8 N = 1 supergravity coupled to E8 × E8 YM multiplet

Table 3.1.1: Superstring theories and their low-energy limits.

found so far are labelled by the number of supersymmetries N and the spacetime
dimension D where they live. The number of components of the irreducible spinors
QI

α is known as supercharges. The maximal number of supercharges that a field
theory (theory that does not contain fields with spin higher than two) can have is 32
or less. For example in D = 4, a spinor has four real components, then the maximal
number of supersymmetries is N = 8, e.g. maximal supergravity in D = 4. One
special example is 11 dimensional supergravity where the spinor has 32 supercharges
and hence N = 1. In 11 dimensions, the supergravity theory is unique and there is
only one supergravity multiplet consisting out of the 11-bein em

µ , gravitino ψα
µ and

the 3-form gauge potential Aµνρ.

3.1.2 Supergravity Effective Actions

Although supergravity theory was not shown to be a finite perturbation theory to
all orders, their effective actions are still crucial for many applications, especially be-
cause of the remarkable fact that they turned out to describe the low-energy effective
behavior of superstring theories see table 3.1.1. Several different methods can be used
to formulate supergravity theories and their derivative corrections.

One straightforward approach is to directly gauge the supersymmetry algebra the
way we described above. In addition, most of the methods that have been pursued to
construct the low-energy effective actions Leff of superstring theories containing closed
strings- supergravity actions with derivative corrections- are to some extent the same
approaches mentioned in chapter two for constructing the open superstring effective
actions. The first method, already outlined in chapter 2, is to simply construct the
first quantized string theory in a background field (see for example [78–82]). The
consistency requirements on the string theory then lead to constraints on the back-
ground fields, which can be promoted to be the equations of motion. In other words
a consistent string theory can be constructed whenever the corresponding σ-model3

3To remind the reader, the nonlinear sigma model is a scalar field theory in which the scalar field
takes values in some non-trivial manifold M, the target space.
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is conformally invariant and the requirement of conformal invariance yields the clas-
sical equations of motion- which are identified with the β function, renormalization
group coefficients- for the background fields. This method has the advantage that
the 10-dimensional symmetries of superstring theory can be made explicitly and that
one may have the ability to get results that are valid to all orders in perturbation
theory. This method has the drawback of demanding an n-loop computation of the
β functions in order to obtain the nth order term in the effective action Leff.

We have also seen in chapter 2 that there exists another method, which is in
practice somewhat simpler, for constructing the effective action for open superstring
theory. Here one can also use closed string theory to calculate the scattering ampli-
tudes of its massless particles in the tree-level approximation. One then constructs an
effective Lagrangian which reproduces the closed superstring S-matrix [83,84]. Prac-
tically, S-matrix method, can be implemented as well in a perturbative fashion (in
analogy with open string case) in a sense that one first constructs a 2-point function
L2 that encodes the massless free particle of the closed superstring theory. We then
incorporate cubic terms, i.e. the 3-point interactions, thus yielding L3. The 4-point
function string scattering amplitudes can then be added4. The pole corresponding to
the intermediate massive particles having no singularities for small values of momen-
tum and can therefore be expanded in a power in α′. On the other hand, each term
in this expansion can be reproduced by the local vertex operator, defined in section
2.1.4, namely the 4-point vertex operator V4 which actually starts out quartic in the
massless fields. Thus the 4-point sector L4 is constructed, the effective action for
theories with closed superstring correct through quartic order. This machinery can
be repeated for higher point amplitude, e.g. five, six and so forth, thereby yielding,
in principle to all orders. In fact, by exploiting the local and global symmetries of
the theory, the task of constructing the effective action Leff can be greatly simplified.
Roughly speaking, these symmetries help with generating terms at a given order that
must appear in higher orders as a result of such symmetries.

3.1.3 Field Redefinitions Ambiguity

The effective action constructed this way, namely following either of the methods out-
lined above, will not be unique. That is because the scattering amplitude is unaffected
by a field redefinition. In other words if we construct an action L[Φa] to yield the
S-matrix for particles represented by the fields Φa, the Lagrangian

L[Φa(Φ′)] ≡ L′[Φ′
a] (3.1.3)

4Through unitarity one might guarantee that the massless poles will be those follow from the tree
diagrams of L3.
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will give the same S-matrix. Field redefinition can be performed order by order in
perturbation theory provided that the field redefinition transformation

Φ′ → Φ(Φ′) = Φ′ + a2Φ
′2 + a3Φ

′3 + · · · (3.1.4)

is nonsingular.
To illustrate the field redefinition ambiguity in S-matrix method, let us imagine

that we have calculated the 3-point sector L3 for one of the string theories. Now,
we wish to find L4. This will involve new 4-point terms, to account for the pieces of
the 4-point function which are not implied by L3. In order to obtain these we first
denote by Ls the Lagrangian which reproduces all string theory 4-point amplitudes
to desired order, i.e., Ls encodes a set of quartic terms. Then one can find a similar
set of terms which we call Lf , reproducing all the 4-point amplitudes coming from
L3. Subtracting Lf from Ls, one then obtain the terms that should be added to L3 to
yield L4. For the sake of simplicity, let’s calculate L4 for a toy model having Ls = 0
and

L3 = −1

2
∂µΦ∂µΦ + κ(∂µ∂νΦ∂µΦ∂νΦ). (3.1.5)

The only contribution to the 4-point function following from L3 is the diagram con-
sisting of the exchange of Φ. Therefore the vertex to which Φ couples can be obtained
by varying the action L3 w.r.t the field, i.e.,

V2 = κ
δ

δΦ
(∂µ∂νΦ∂µΦ∂νΦ) = −κ(∂µ∂νΦ∂µ∂νΦ) + κ(∂2Φ∂2Φ), (3.1.6)

where we have made use of momentum conservation to move the derivatives from
the Φ of intermediate state (virtual) to the physical ones. The expression 3.1.6 is
evaluated on-shell. Therefore it is allowed to add terms to 3.1.6 that vanish on-shell.
The term that we should add is

V ′
2 = −κ

(
2∂µΦ∂µ∂

2Φ +
3

2
(∂2Φ)2 +

1

2
Φ(∂2)2Φ

)
. (3.1.7)

The expression 3.1.6 becomes

V2 = −1

4
κ(∂2)2(Φ2). (3.1.8)

We have done this in order to have the momenta in the vertex operator V2 emerge in
the form of an inverse of propagator, that cancel with the propagators to which it is
attached.

The Lagrangian Lf representing the scattering amplitude behaves as

Lf = V2P V2

= −1

8
κ2[(∂2)2(Φ2)]

−1

∂2
[(∂2)2(Φ2)], (3.1.9)
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where P is the Φ propagator. Again, one can add terms involving ∂2Φ, that vanish
on-shell, to obtain the following expression5

Lf = −1

4
κ2∂ρ∂σΦ∂ρ∂σΦ∂δΦ∂δΦ. (3.1.10)

Since Ls vanishes, we have L4 = L3−Lf . Then the 4-point effective Lagrangian, after
integrating by parts, takes on the form

L4 = −1

2
∂µΦ∂µΦ + κ∂µ∂νΦ∂µΦ∂νΦ

− 1

2
κ2(∂ρ∂σΦ∂ρΦ∂

δ∂σΦ∂δΦ). (3.1.11)

Performing the following field redefinition

Φ′ = Φ− 1

2
κ∂µΦ∂µΦ, (3.1.12)

one can then realize that 3.1.11 is equivalent to a free theory with

L4 = −1

2
∂µΦ′∂µΦ′. (3.1.13)

This agrees with the fact that the 3 and 4-point scattering amplitudes for our model
and for the free field theory are identical; they are all zero, and that the S-matrix
does not change under field redefinitions.

The same ambiguity exists in the previously discussed σ-model approach to the
string equations of motion. Indeed, the β-functions of a renormalizable field theory
with couplings Φa are not unique. They depend upon the definition of the coupling
constant and the renormalization prescription. Using the definition 3.1.3 and the
transformation 3.1.4, we find that the equations of motion have the same content
since the extrema of L and L′ are equal

δL[Φ]

δΦa
=

δ

δΦa
L′[Φ′(Φ)] =

∑

b

δL′
δΦ′

b

δΦ′
b

δΦa
, (3.1.14)

as long as the Jacobian δΦ′
b/δΦa, is nonsingular. Now, if we redefine the couplings,

namely the fields, Φ→ Φ(Φ′), the β-functions

βa(Φ) = µ

(
∂Φ

∂µ

)
, (3.1.15)

5Naively Lf seemed to have a pole due to the propagator, however this pole cancelled by the
inverse propagator in the vertex, leaving a contact term.
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transform under a field redefinition as

βa(Φ) = µ
∂

∂µ
Φa(Φ′) = β′

a(Φ′)
∂Φa

∂Φ′
b

. (3.1.16)

Nonetheless, The zeroes of βa, identified with the equations of motion, are invari-
ant under a non-singular field redefinition. In order to avoid having the fields over-
constrained, both sets of equations βa and δL

δΦa
= 0 have to be satisfied and coincide.

The properties of 3.1.4 suggests that they are related by a metric in the field space

βa(Φ) = Gab
δL
δΦb

. (3.1.17)

A direct connection between the β functions and the equations of motion is argued
for in [85].

3.2 Strings in Background Fields: Nonlinear Sigma

Model

Let’s now make use of the σ-model approach and derive the bosonic sector of the
supergravity action. We restrict ourselves to the bososnic string and try to describe
a string moving in a more general spacetime than the Minkowski space we have
considered in chapter 2. The most general covariant action we can write down with
two worldsheet derivatives and appropriate symmetries, i.e. gauge invariance and
local Weyl invariance, is the nonlinear sigma model action

S = − 1

4πα′

∫

Σ

dτdσ(
√
−hhabGµν(X)− εabBµν(X))∂aX

µ∂bX
ν + S[Φ], (3.2.1)

where εab is the fully antisymmetric tensor in two dimensions, and the integral6 is
over the worldsheet Σ.
Actually, one can think of this action as a string moving in coherent backgrounds,
Gµν , an antisymmetric tensor Bµν called an axion, and a scalar field Φ, i.e. the
dilaton. The sector S[Φ] of the action represents the coupling of string to the dilaton

S[Φ] = − 1

4π

∫

Σ

dσdτ
√
−hR(2)Φ(X)− 1

2π

∫

∂Σ

dsKΦ(X), (3.2.2)

Where R(2) is the two-dimensional Ricci scalar of the two-dimensional worldsheet
metric hab, and K is an extrinsic curvature and is added to cancel the total derivative

6The integral over Σ reflects the fact that closed string vertex operators are inserted in the bulk
of Σ.
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that is obtained by varying R(2) [86]. Note that by setting the dilaton to a constant
mode Φ0, the first term of 3.2.2 is proportional to a topological invariant quantity
from the worldsheet viewpoint, the Euler characteristic

χ =
1

4π

∫

Σ

dσdτ
√
−hR(2) = 2− 2b, (3.2.3)

where b is the genus, i.e. number of holes, of the Riemann surface Σ. This means that
the first term in 3.2.2 provides us with information about the number of loops in string
S-matrix. Therefore one can easily notice that the different topologies in the path
integral representation of Euclideanized version of S are weighted with g2−2b

s where
the string coupling constant identified with the vev value of eΦ. We know that the
symmetries of the free field theory action 2.1.2 are crucial in obtaining a consistent
quantization of the string since they are actually responsible for the decoupling of
unphysical degrees of freedom. However, now we are dealing with an interacting
field theory which does not turn into the Polyakov action in the conformal gauge
hab = Ληab, which makes it a non-trivial 2-dimensional field theory. As a result, if we
want to do quantum calculations we are forced to a perturbation expansion in α′. In
other words, the Weyl symmetry is ruined at quantum level unless the renormalization
group β-functions for the field dependent couplings Gµν , Bµν and Φ vanish. At first
non-trivial order in α′ and tree-level in the loop expansion one obtains

βG
µν = Rµν − 2∇µ∂νΦ +

9

4
HµρσHν

ρσ +O(α′) = 0

βB
µν = ∇ρH

ρ
µν − 2Hρ

µν∂ρΦ +O(α′) = 0 (3.2.4)

βΦ = (D − 26) + 3α′(R + 4(∂Φ)2 − 4∇2Φ +
3

4
HµνρH

µνρ) +O(α′) = 0,

where Rµν and R are respectively the Ricci tensor and Ricci scalar associated to the
background metric Gµν , and ∇µ is the spacetime covariant derivative. Hµνρ is the
field strength of the Kalb-Ramond background Bµν defined by

Hµνρ = ∂[µBνρ] =
1

3
(∂µBνρ + ∂νBρµ + ∂ρBµν). (3.2.5)

Note that H is invariant under the gauge transformation assigned to Bµν .
The constraints 3.2.4 can be interpreted as target spacetime equations of motion

and one can wonder whether they could be derived from an action principle. Indeed,
the action has been found to be

S =
1

2

∫
dDx
√
Ge−2Φ

[
− (D − 26)

3α′ −R+ 4(∂Φ)2 − 3

4
HµνρH

µνρ
]

+O(α′). (3.2.6)

The action 3.2.6 is known as the low-energy effective action; it describes the massless
modes of slowly varying embedding coordinates Xµ in the target space in which the
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string moves. In the critical dimensions, i.e. D = 26, the dimension dependent terms
in 3.2.4 and 3.2.6 drop out.

The appearance of Gµν in the low-energy action 3.2.6 adds additional evidence to
the argument that string theory would be the theory of quantum gravity. Of course,
one can alternatively view the action 3.2.6 differently; it can be seen as the action
of 26-dimensional gravity coupled to tensor and scalar fields. The action 3.2.6 can
receive higher order terms in α′ or string loops, namely stringy corrections to general
relativity. This is a good place to point out to the reader that two coupling constants
for two entirely different quantum theories were actually introduced:

• α′ coupling constant: it controls the auxiliary two dimensional theory living
on the worldsheet. For some special backgrounds, flat and some curved ones,
the 2-dimensional theory can be found completely to all orders in α′. While
for a generic background this is not plausible anymore. One has to evaluate
β-function order by order in α′. This gives rise to higher derivative terms in the
effective action.

• The string coupling gs : dictates the loop expansion in the underlying target
space theory.

The analysis of higher orders corrections in α′, particularly to heterotic string, will
come later.

This mechanism of calculating the low-energy effective action might be applied as
well for supersymmetric string, i.e. superstring theory. Indeed, it has been shown
that the low-energy approximation of superstring is the 10-dimensional supergravity,
locally supersymmetric quantum field theory. As mentioned in chapter 2, the N = 1
worldsheet supersymmetry induces N = 2 spacetime supersymmetry. The way that
these supersymmetries enter in the theory determines the types of superstring theories
and the corresponding low-energy effective actions see table 3.1.1.

Type I

Although this theory is a theory of open strings, closed strings are also involved in
type I and that is due to the fact that a closed string can split up into two interacting
open strings. For such a theory, the boundary conditions of open string break the
original N = 2 to N = 1 supersymmetry. We recall from chapter 2 that there is a
non-abelian group (Yang-Mills) with charges attached at the endpoints of open string.
The gauge group which is allowed by the consistency at the quantum level, is SO(32).
According to [87–89] the bosonic part of N = 1, D = 10 supergravity reads

Stype I =
1

2

∫
d10x
√
G
[
e−2Φ(−R+ 4(∂Φ)2)− 3

4
H2

(3) +
1

4
e−ΦF I

2 F
I
2

]
, (3.2.7)
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where the subscripts (3) and (2) are to indicate the rank of the field strength. The
gauge field associated to the gauge group SO(32) is represented by the field strength
of the vector field which lies in the adjoint representation of SO(32).

Type IIA

The type IIA theory contains only closed strings. The theory is non-chiral in the sense
that the two spacetime supersymmetries of the theory show up with two opposite
chiralities. Contrary to type I, type IIA does not have a gauge group. The bosonic
field content of this theory comprises, besides the metric, axion and dilaton of type I,
a one-form field C(1) and 3-form gauge field C(3) (see table 2.1.3 in chapter 2). The
type IIA supergravity action [90–92] behaves as

Stype IIA =
1

2

∫
d10x
√
G
[
e−2Φ

(
−R+ 4(∂Φ)2 − 3

4
H2

(3)

)

1

4
G2

(2) +
3

4
G2

(4) +
1

64
(G)−

1
2 ǫ10∂C3∂C3B(2)

]
, (3.2.8)

with G(2) and G(4) are the field strengths of the R-R gauge fields C(1) and C(3)

respectively, and ǫ10 is the 10-dimensional fully antisymmetric tensor. Notice that
the fields of NS-NS sector have an explicit dilaton coupling via the factor e−2Φ,
whereas the R-R fields are not multiplied by this factor. The appearance of the
coupling as such reflects the fact that R-R fields correspond to a higher order in
string coupling constant. The existence of R-R fields, bosonic fields, in type IIA
action 3.2.8 is necessitated by the extension of supersymmetry from N = 1 to N = 2.
It is worth recalling that the solutions-p-brane- that couple to these R-R fields belong
to non-perturbative spectrum.

Type IIB

The type IIB theory is a theory of closed strings as well, havingN = 2 supersymmetry,
though for this theory the two-supersymmetries have the same chirality, i.e., it is a
chiral theory. Similarly to type IIA, there is no possibility for non-abelian gauge
groups, and besides the NS-NS fields, one has R-R sector consisting of a scalar C0,
2-form field C(2) and a selfdual 4-form gauge field C+

νµρλ, table 2.1.3. The selfduality
property of the 4-form prohibits writing down an effective action of type IIB in a
covariant way. An action has been found in [93] wherein there has not been made use
of the selduality condition, but is added as an extra condition on the 4-form. The
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type IIB supergravity action is

Stype IIB =
1

2

∫
d10x
√
G
[
e−2Φ

(
−R+ 4(∂Φ)2 − 3

4
H2

(3)

)

− 1

2
(∂C0)

2 − 3

4
(G(3) − C0H(3))

2 − 5

6
G2

(5)

− ǫ10

96
√
G
C(4) ∧G(3) ∧H(3)

]
, (3.2.9)

with
H(3) = dB(2), G(1) = dC0, G(3) = dC(2). (3.2.10)

The above IIB action is called the non-selfdual action, as we pointed out before the
selfduality condition of 4-form does not follow from the action. The equations of
motion have to be supplemented by

G(5) µ1···µ5
=

1

5!
√
G
ǫµ1···µ10G

µ6···µ10

(5) . (3.2.11)

Heterotic String

The structure of heterotic string theory rests upon the fact that closed strings which
form this theory have independent the right and left moving sectors. In heterotic
string, one sector is supersymmetric, namely the theory has N = 1 supersymmetry
(which is enough to remove the tachyon from the spectrum). This can be seen from the
fact that the left moving sector can coincide with a purely bosonic strings, contrasting
with a right moving sector which consists of modes of a superstring. In heterotic string
theory we do have a non-abelian (Yang-Mills) gauge theory which results from the
compactification of the bosonic sector on a 16-dimensional compact internal space,
yielding 10-dimensional superstring theory. Due to quantum consistency, the gauge
group turns out to be SO(32) or E8×E8. Therefore the bosonic part of the low-energy
effective action, i.e., the bosonic sector of heterotic supergravity [94] is written as

SHet =
1

2

∫
d10x
√
Ge−2Φ

[
−R+ 4(∂Φ)2 − 3

4
H2

(3) +
1

4
F I

(2)F(2) I

]
. (3.2.12)

Note that the metric G, the dilaton Φ and the axion B appear in the same way
in all string theories, except type I. This has been referred to as the common sector
in supergravity.

11-dimensional Supergravity

We pointed out in chapter 2 that in spite of the fact that superstring theory lives
in D = 10, there is also a supergravity theory living in 11 dimensions. Despite the
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intimate relation between superstring and supergravity theories, the 11-dimensional
supergravity does not follow from a low-energy effective action of superstring the-
ory. However, 11-dimensional supergravity is still interesting by itself. It plays a
crucial role in unifying the above five superstring theories. It is well-known that the
higher number of dimensions that supergravity can live in is eleven7. Therefore 11-
dimensional supergravity is a unique theory with N = 1 supersymmetry. The bosonic
sector of 11-dimensional supergravity action [96] is expressed as

S11−sup. =
1

2

∫
d11x
√
G
[
−R+

3

4
G2

(4) +
1

384
√
G
ǫ11C∂C∂C

]
, (3.2.13)

where the field contents of eleven dimensional supergravity are the metric G and the
3-form gauge field Cµνρ with G(4) = dC. ǫ(11) is a fully anti-symmetric tensor in 11
dimensions.

3.3 String Effective Action and Chern-Simons Terms

The low-energy effective action of string theory often involves Chern-Simons forms,
which are totally antisymmetric tensors Oµ1···µn

. They depend on one or more lower
rank gauge fields or spin connections/Christoffel symbols rather than just the field
strength. Consequently, O is not invariant under the gauge transformation associated
with these lower rank gauge fields. However O has a peculiar property that the
variations of O under various gauge transformations are exact forms:

δOµ1···µn
= ∂[µ1

ϕµ2···µn], (3.3.1)

for some quantity ϕ. Therefore the curvature ∂[µ1
Oµ2···µn+1] is a covariant tensor.

Let us give an example of such a Chern-Simons term. Assume the theory has a
r-form gauge field Bµ1···µr

(1) and a s-form gauge field Bµ1···µs

(2) with associated gauge

transformations of the form

δAµ1···µr
= ∂[µ1

βµ2···µr], δBµ1···µs
= ∂[µ1

γµ2···µs]. (3.3.2)

Then the r + s+ 1-form

Oµ1···µr+s+1 = A[µ1···µr
∂µr+1Bµr+2···µr+s+1] (3.3.3)

transforms by a total derivative of the form 3.3.1 under the gauge transformation
induced by β. Thus Oµ1···µr+s+1 defined in 3.3.3 is a Chern-Simons (r + s+ 1)-form.

It may happen that the Chern-Simons terms show up in the expression of low-
energy effective action of string theory in two different ways:

7For supergravity theories in dimensions higher than eleven, fields with spin greater than two
appear [95], and it is not clear how to deal with these higher spin fields in an adequate way
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• The action itself might contain a Chern-Simons term of the form

∫
dDxǫµ1···µDOµ1···µD

. (3.3.4)

Since δO is total derivative, an action of this form is gauge invariant up to
surface terms.

• In some theories the gauge invariant field strength associated with an antisym-
metric tensor field Bµ1···µn−1 is given by

Hµ1···µn
= ∂[µ1

Bµ2···µn] +Oµ1···µn
(3.3.5)

for some Chern-Simons n-form O constructed out of lower dimensional gauge
fields and spin connection. Under the gauge transformation 3.3.1, Bµ1···µn−1 is
assigned the transformation

δBµ1···µn−1 = −ϕµ1···µn−1 , (3.3.6)

such that
δHµ1···µn

= 0. (3.3.7)

A typical example of such a term is the 3-form field strength associated with
the NS sector 2-form gauge field of heterotic string theory. The definition of
the three form field strength comprises both gauge and Lorentz Chern-Simons
LCS 3-forms. In such cases the low-energy effective action being a function of
Hµ1µ2µ3 is invariant under the gauge transformation 3.3.1 and 3.3.6 for n = 3.

3.4 α′-Corrections to Heterotic Supergravity

The heterotic supergravity action defined above has received higher curvature cor-
rections as it is the low-energy effective actions of heterotic superstring theory. In
this section we are going to clarify the relation between two formulations of the order
α′ heterotic string effective action. One formulation follows from the methods dis-
cussed in section 3.1, namely the string S-matrix calculations [84,97] and the require-
ment of conformal symmetry of the corresponding sigma model to the appropriate
order [97, 98], the other formulation [99, 100] is based on the supersymmetrization of
Lorentz Chern-Simon forms. In [C] it has been argued that the bosonic expression
for the order α′ corrections constructed in [97] has to be part of a supersymmetric
invariant. It has been proved a long time ago [99] that the heterotic string effective
action is supersymmetric through order α′. A few months later, in [100], the super-
symmetry of the action has been established to order α′2 and α′3. In [C] we have
shown that to order α′ [99] agrees with [97], demonstrating in a direct way that the
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action of [97] is indeed part of a supersymmetric invariant. The field redefinitions
required to establish this correspondence generate additional terms at higher orders
in α′.

In what follows we will try to establish that the two actions are equivalent [C].
We relegate the reader to appendix B for necessary material and conventions. Then
we discuss the terms of order α′2 and α′3.

The heterotic string effective action to order α′, as found in [97], is

LMT = − 2

κ2
ee−2Φ

[
R(Γ)− 1

12
HµνρH

µνρ + 4∂µΦ∂µΦ (3.4.1)

+
1

8
α′{Rµνab(Γ)Rµνab(Γ)− 1

2
Rµνab(Γ)HµνcHabc

−1

8
(H2)ab(H

2)ab +
1

24
H4}

]
, (3.4.2)

where we have

Hµνρ = 3∂[µBνρ], H2 = HabcH
abc,

(H2)ab = HacdHb
cd, H4 = HabcHa

dfHb
efHc

de, (3.4.3)

normalisations are as in [97].
On the other hand there is the result of supersymmetrising the LCS of [99,100]. In

this section we only discuss the bosonic contributions to the effective action. Fermionic
contributions can be found in [100]. Thus the bosonic terms take on the form

LBR =
1

2
ee−2Φ[{−R(ω)− 1

12
H̃µνρH̃

µνρ + 4∂µΦ∂µΦ} (3.4.4)

−1

2
αRµνab(Ω−)Rµνab(Ω−)]. (3.4.5)

With respect to [100] we have redefined the dilaton and the normalisation of Bµν (see

Appendix B.1). In 3.4.4 H̃ contains the LCS terms with H-torsion:

H̃µνρ = Hµνρ − 6αOµνρ(Ω−), (3.4.6)

O3 µνρ(Ω−) = Ω−[µab∂νΩ−ρ]
ab − 2

3
Ω−[µ

abΩ−ν
acΩ−ρ]

cb, (3.4.7)

Ω−µ
ab = ωµ

ab − 1

2
H̃µ

ab. (3.4.8)

The coefficient α is proportional to α′, notice that the relative normalization between
the LCS term and the R2 action is fixed.

In order to show that the two actions (3.4.1, 3.4.2) and (3.4.4, 3.4.5) are equiv-
alent we expand R(Ω−) in 3.4.5, perform the required field redefinitions and fix the
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normalisations.
To start with, we have

Rµν
ab(Ω−) = Rµν

ab(ω)− 1

2
(DµH̃ν

ab−DνH̃µ
ab)− 1

8
(H̃µ

acH̃ν
cb− H̃ν

acH̃µ
cb). (3.4.9)

where the derivatives D are covariant with respect to local Lorentz transformations.
Obviously the substitution of 3.4.9 in 3.4.5 gives terms similar to those in 3.4.2,
additional terms come from expanding H̃ (see Appendix B.3) in 3.4.4. The effect of
these substitutions is, to order α :

LBR =
1

2
ee−2Φ[−R(ω)− 1

12
H̄µνρH̄

µνρ + 4∂µΦ∂µΦ

+α{1
2
Hµνρ∂µ(ων

abHρ
ab)− 1

2
Rµν

ab(ω)Hρ
abHµνρ +

1

4
HµνρHµ

abDνHρ
ab

− 1

12
H4} (3.4.10)

−1

2
α{Rµν

ab(ω)Rµνab(ω) (3.4.11)

−2Rµνab(ω)DµHνab (3.4.12)

+
1

2
(DµHν

ab −DνHµ
ab)DµHνab (3.4.13)

−Rµν
ab(ω)HµacHνcb (3.4.14)

+
1

2
(DµHν

ab −DνHµ
ab)HµacHνcb (3.4.15)

+
1

8
((H2)ab(H

2)ab −H4)}]. (3.4.16)

Here H̄ contains the LCS term without H-torsion:

H̄µνρ = Hµνρ − 6αO3 µνρ(ω). (3.4.17)

We now rewrite the terms (3.4.11-3.4.16) in LBR, see Appendix B.4 for details. The
result, keeping only contributions to order α, is

LBR =
1

2
ee−2Φ[−R(ω)− 1

12
H̄µνρH̄

µνρ + 4∂µΦ∂µΦ

−1

2
α{Rµν

ab(ω)Rµνab(ω) +
1

2
Rµν

ab(ω)Hρ
abHµνρ

+
1

8
(H2)ab(H

2)ab +
1

24
H4} (3.4.18)

−1

2
α{Rµ

c(ω)HµabHabc + eµ
ce

ν
dDνHabdDµHabc

+2∂cΦHabdDdHabc − 2∂dΦHabdDcHabc}]. (3.4.19)
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The term proportional to the Ricci tensor in 3.4.19 contributes through a field re-
definition to the terms quartic in H, and gives an additional contribution involving
derivatives of Φ (see B.2.4). Making use of B.2.2 and integrating by parts all remain-
ing terms can be made to cancel.

The final result is then

LBR =
1

2
ee−2Φ[−R(ω)− 1

12
H̄µνρH̄

µνρ + 4∂µφ∂
µΦ

−1

2
α{Rµν

ab(ω)Rµνab(ω) +
1

2
Rµν

ab(ω)Hρ
abHµνρ

−1

8
(H2)ab(H

2)ab +
1

24
H4}], (3.4.20)

in agreement with [97] if we set R(Γ) = −R(ω) and α = − 1
4α

′, and adjust the overall
normalisation. Of course [97] also includes the LCS term in H2 for the heterotic string
effective action, see the footnote in [97], page 400.

3.4.1 Higher Orders and Field Redefinitions

It has been shown in [100] that the effective action to order α2 consists of terms which
are bilinear in the fermions (3.4.4, 3.4.5). This is no longer true when the effective
action at order α is in the form 3.4.20.

Since the steps to go from (3.4.4, 3.4.5) to 3.4.20 have all been explicitly deter-
mined, the effective action at order α2 can in principle be constructed. Let us identify
the sources of bosonic terms of order α2 that we have encountered:

1. From the action 3.4.4 there are contributions outlined in Appendix B.3. We
should now expand H̃ to order α2, which means that in A B.3.2 also terms of
order α should be considered. Then one should calculate H̃2.

2. H̄ contains the LCS term of order α. These should now also be kept in the
higher order contributions.

3. In a number of places we have used the identity B.4.1, the resulting R2 terms
contribute to order α2.

4. We have used field redefinitions to modify the effective action at order α. A field
redefinition is of the form

eµ
a → eµ

a + α∆a
µ, (3.4.21)

and is applied to the order α0 action. This has the effect of giving an extra
contribution

α∆a
µEµ

a (3.4.22)
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to the action, where Eµ
a is the Einstein equation at order α0. Thus one can

eliminate a term
−α∆a

µEµ
a, (3.4.23)

at order α. Contributions of order α2 arise because the transformation should
also be applied to the order α action.

Accordingly, the bosonic part of terms with six derivatives in the effective action at
order α2, corresponding to the order α action 3.4.2, can be obtained, including the
complete dependence on H.

At order α3 the situation is different. In [100] an invariant related to the super-
symmetrisation of the LCS terms was constructed. The status of R4 invariants was
discussed in [101], with extensive reference to the earlier work.

3.5 Conclusion

We have devoted this chapter to introduce a supergravity action as the low-energy
effective action of a superstring theory, outlining the most powerful methods that
have been pursued for constructing such an action and the derivative corrections (α′

corrections) contributions to them. We found out that the heterotic string actions
(with Chern-Simons forms) which follow from the σ-model approach and the string
S-matrix calculation- note that it has been established in [97] that those two actions
are equivalent to order α′ modulo field redefinitions- are equivalent to order α′ to the
heterotic string action constructed in [100], i.e. through the supersymmetrisation of
LCS. Actually, our interest in the relation between these results was triggered by a
remark in a paper of Sahoo and Sen [102] in which the entropy of a supersymmetric
black hole was obtained using the method of [103], with [97] for the derivative cor-
rections to the action. The result was found to agree with that obtained by several
other methods, which was taken by [102] as an indirect indication that the bosonic
expression for the order α′ corrections given [97] must be part of a supersymmetric
invariant.






