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Results of ISS Type for

Hysteretic Lur’e

Systems: a Differential

Inclusions Approach∗

B. Jayawardhana†, H. Logemann‡, and E.P. Ryan§

1 Introduction

The paper comprises a study of absolute stability, input-to-state stability, and
boundedness properties of a feedback interconnection of a finite-dimensional, linear,
m-input, m-output system (A,B,C) and a set-valued nonlinearity Φ. With refer-
ence to Figure 1, we assume that D is a set-valued map in which input or distur-
bance signals are embedded. The analytical framework is of sufficient generality

D (A,B,C)

Φ

y
+

−

Figure 1. Feedback interconnection of linear system (A,B,C) and nonlinearity Φ

to encompass feedback systems with hysteresis operators (that is, a causal rate-
independent operator) in the feedback loop. To illustrate this, let F be a causal op-
erator from dom(F ) ⊂ L1

loc(R+, Rm) to L1
loc(R+, Rm), where R+ := [0,∞), and con-

sider the feedback system (structurally of Lur’e type), with input d ∈ L∞
loc(R+, Rm),

∗Based on research supported by the UK Engineering & Physical Sciences Research Council
(Grant Ref: GR/S94582/01).

†Department of Discrete Technology and Production Automation, University of Groningen,
9747 AG Groningen, The Netherlands. Email: B.Jayawardhana@rug.nl

‡Department of Mathematical Sciences, University of Bath, Bath BA2 7AY,
United Kingdom. Email: hl@maths.bath.ac.uk

§Department of Mathematical Sciences, University of Bath, Bath BA2 7AY,
United Kingdom. Email: epr@maths.bath.ac.uk



given by the functional differential equation

ẋ(t) = Ax(t) + B
(

d(t) − (F (Cx))(t)
)

. (1)

Assume that F can be embedded in a set-valued map Φ in the sense that

y ∈ dom(F ) =⇒ (F (y))(t) ∈ Φ(y(t)) for a.a. t ∈ R+ .

If the input d is such that d(t) ∈ D(t) for almost all t, then any solution of (1) is a

fortiori a solution of the feedback interconnection in Figure 1. In this sense, prop-
erties of solutions of the feedback interconnection are inherited by solutions of (1).
Under particular regularity assumptions on D and Φ, generalized sector conditions
on Φ, and positive-real conditions related to the linear component (A,B,C), we
establish input-to-state stability (in the sense of [10], but extended to differential
inclusions) and boundedness properties of solutions of the system in Figure 1.

2 Set-valued nonlinearities and differential inclusions

A set-valued map y 7→ Φ(y) ⊂ R
m, with non-empty values and defined on R

m, is
said to be upper semicontinuous at y ∈ R

m if, for every open set U containing Φ(y),
there exists an open neighbourhood Y of y such that Φ(Y ) := ∪z∈Y Φ(z) ⊂ U ; the
map Φ is said to be upper semicontinuous if it is upper semicontinuous at every
y ∈ R

m. The set of upper semicontinuous compact-convex-valued maps

Φ : R
m → {S ⊂ R

m | S non-empty, compact and convex}

is denoted by U . Let D : R+ → {S ⊂ R
m |S 6= ∅} be a set-valued map. The map

D is said to be measurable if the preimage D−1(U) := {t ∈ R+ |D(t) ∩ U 6= ∅} of
every open set U ⊂ R

m is Lebesgue measurable; D is said to be locally essentially

bounded if D is measurable and the function t 7→ |D(t)| is in L∞
loc(R+). The set of

all locally essentially bounded set-valued maps R+ → {S ⊂ R
m |S 6= ∅} is denoted

by B. For D ∈ B, I ⊂ R+ an interval and 1 ≤ p ≤ ∞, the Lp-norm of the restriction
of the function t 7→ |D(t)| to the interval I is denoted by ‖D‖Lp(I).

The feedback system shown in Figure 1 corresponds to the initial-value problem

ẋ(t) − Ax(t) ∈ B (D(t) − Φ(Cx(t))) , x(0) = x0 ∈ R
n, D ∈ B , (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n and Φ ∈ U . By a solution of (2) we mean

an absolutely continuous function x : [0, ω) → R
n, 0 < ω ≤ ∞, such that x(0) = x0

and the differential inclusion in (2) is satisfied almost everywhere on [0, ω); a solution
is maximal if it has no proper right extension that is also a solution; a solution is
global if it exists on [0,∞). We record the following existence result (a consequence
of, for example, [3, Corollary 5.2]).

Lemma 1. Let Φ ∈ U . For each x0 ∈ R
n and each D ∈ B, the initial-value problem

(2) has a solution. Moreover, every solution can be extended to a maximal solution

x : [0, ω) → R
n and, if x is bounded, then x is global.



3 Input-to-state stability: the main results

In the context of the differential inclusion (2), the transfer-function matrix of the
linear system given by (A,B,C) is denoted by G, i.e., G(s) = C(sI − A)−1B.

We assemble the following hypotheses which will be variously invoked in the theory
developed below. Recall that K∞ is the set of all functions ϕ : R+ → R+ that are
continuous, strictly-increasing and unbounded with ϕ(0) = 0; KL is the set of all
functions β : R+ × R+ → R+ such that β(·, t) ∈ K∞ for each t ∈ R+ and, for each
r ∈ R+, β(r, t) ↓ 0 as t → ∞.

(H1) There exist numbers a < b and δ > 0 such that

〈ay − v, by − v〉 ≤ 0 ∀ v ∈ Φ(y), ∀ y ∈ R
m , (3)

G(I + aG)−1 ∈ H∞ and (I + bG)(I + aG)−1 − δI is positive real.

(H2) Φ(0) = {0} and there exist numbers a > 0, δ ∈ [0, 1) and θ ≥ 0 such that

a‖y‖2 ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m , (4)

‖v − aδy‖ ≤ 〈y, v − aδy〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m with ‖y‖ ≥ θ (5)

and G(I + δaG)−1 is positive real.

(H3) There exist ϕ ∈ K∞ and numbers b > 0 and δ ∈ [0, 1) such that

max
{

ϕ(‖y‖)‖y‖, ‖v‖2/b
}

≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m (6)

and (δ/b)I + G is positive real.

(H4) Φ(0) = {0} and there exist ϕ ∈ K∞ and a number θ ≥ 0 such that

ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m , (7)

‖v‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y), ∀ y ∈ R
m with ‖y‖ ≥ θ (8)

and G is positive real.

Remark 2. (a) (H1) is a set-valued version of the familiar multivariable sector
condition.

(b) If m = 1 (the single-input, single-output case), then the combined frequency-
domain assumptions in (H1) admit a graphical characterization in terms of the
Nyquist diagram of G (see, e.g., [5, pp. 268]).

(c) Conditions (4) and (7) can be viewed as the limits of (3) and (6), respectively,
as b → ∞.

(d) A sufficient condition for (6) to hold is the “nonlinear” sector condition
〈

ϕ(y)‖y‖−1y − v , by − v
〉

≤ 0 ∀ v ∈ Φ(y), ∀ y ∈ R
m, (9)

(e) If m = 1 and (4) holds, then (5) is trivially satisfied for any θ ≥ 1 and any
δ ∈ [0, 1). Similarly, if m = 1 and (7) holds, then (8) is satisfied for every θ ≥ 1.



(f) If (6) holds for some ϕ ∈ K∞ and for some b > 0, then Φ(0) = {0} and,
furthermore, (8) is satisfied for any θ > 0 satisfying ϕ(θ) ≥ b.

Definition 3. System (2) is said to be input-to-state stable with bias c ≥ 0 if

every maximal solution of (2) is global, and there exist β1 ∈ KL and β2 ∈ K∞ such

that, for all x0 ∈ R
n and all D ∈ B, every global solution x satisfies

‖x(t)‖ ≤ max
{

β1(‖x
0‖, t) , β2(‖D‖L∞[0,t] + c)

}

∀ t ∈ R+ . (10)

System (2) is input-to-state stable if it is input-to-state stable with bias 0.

System (2) has the converging-input-converging-state property if, for all x0 ∈ R
n and

all D ∈ B with ‖D‖L∞[t,∞) → 0 as t → ∞, every maximal solution x of (2) is global
and satisfies x(t) → 0 as t → ∞. The following lemma shows in particular that if
system (2) is input-to-state stable, then it has the converging-input-converging-state
property.

Lemma 4. Assume that system (2) is input-to-state stable with bias c ≥ 0 and let

β1 and β2 be as in Definition 3. Then, for all x0 ∈ R
n and all D ∈ B, every global

solution x of (2) satisfies

lim sup
t→∞

‖x(t)‖ ≤ lim sup
t→∞

β2(‖D‖L∞[t,2t] + c) .

We now arrive at the main results on input-to-state stability (proofs of which
can be found in [4]).

Theorem 5. Let the linear system (A,B,C) be stabilizable and detectable. Assume

that (H1) holds. Then, every maximal solution of (2) is global and there exist

positive constants c1, c2 and ε such that, for all x0 ∈ R
n and D ∈ B, every global

solution x satisfies

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2‖D‖L∞[0,t] ∀ t ∈ R+ .

In particular, system (2) is input-to-state stable.

Theorem 6. Let the linear system (A,B,C) be minimal. Assume that at least one

of hypotheses (H2), (H3) or (H4) holds. Then system (2) is input-to-state stable.

In [1] it is has been proved, for single-valued Φ and D, that, if (A3) holds,
then (2) is input-to-state stable. Therefore, Theorem 6 can be considered as a
generalization of the main result in [1].

In the following corollaries (to Theorems 5 and 6, respectively), we will consider not
only nonlinearities satisfying at least one of the conditions (3), (4), (6) and (7) for

all arguments y ∈ R
m, but also nonlinearities Φ ∈ U with the property that there

exist a set-valued map Φ̃ ∈ U satisfying at least one of the conditions (3), (4), (6)



and (7) and a compact set K ⊂ R
m such that

y ∈ R
m\K =⇒ Φ(y) ⊂ Φ̃(y) . (11)

In particular, single-input, single-output hysteretic elements can be subsumed by
this set-valued formulation provided that the “characteristic diagram” of the hys-
teresis is contained in the graph of some Φ ∈ U .

Corollary 7. Let the linear system (A,B,C) be stabilizable and detectable. Let

Φ ∈ U be such that there exist a set-valued map Φ̃ ∈ U and a compact set K ⊂ R
m

such that (11) holds. Assume that (H1) holds with Φ replaced by Φ̃. Then, every

maximal solution of (2) is global and there exist positive constants c1, c2 and ε such

that, for all x0 ∈ R
n and D ∈ B, every global solution x satisfies

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2(‖D‖L∞[0,t] + E) ∀ t ∈ R+ ,

where

E := supy∈K supv∈Φ(y) inf ṽ∈Φ̃(y)‖v − ṽ‖ . (12)

Corollary 8. Let the linear system (A,B,C) be minimal and let Φ ∈ U be such

that there exist a set-valued map Φ̃ ∈ U and a compact set K ⊂ R
m such that (11)

holds. Assume that at least one of the hypotheses (A1), (A2) or (A3) holds with Φ
replaced by Φ̃. Then system (2) is input-to-state stable with bias E given by (12).

4 Hysteretic feedback systems

We return to the feedback interconnection of Figure 1, but now in a single-input,
single-output setting and with a hysteresis operator F in the feedback path. An
operator F : C(R+) → C(R+) is a hysteresis operator if it is causal and rate
independent. Here rate independence means that F (y ◦ ζ) = (Fy) ◦ ζ for every
y ∈ C(R+) and every time transformation ζ, where ζ : R+ → R+ is said to be a
time transformation if it is continuous, non-decreasing and surjective. Conditions
on F which ensure well-posedness of the feedback interconnection (existence and
uniqueness of solutions of the associated initial-value problem) are expounded in, for
example, [8] and [9]. The so-called Preisach operators are among the most general
and most important hysteresis operators: in particular, they can model complex
hysteresis effects such as nested loops in input-output characteristics. Therefore,
and for clarity of presentation, we focus on the class of Preisach operators.

A basic building block for these operators is the backlash operator. A discussion
of the backlash operator (also called play operator) can be found in a number of
references, see for example [2], [6] and [7]. Let σ ∈ R+ and introduce the function
bσ : R

2 → R given by

bσ(v1, v2) := max
{

v1 − σ , min{v1 + σ, v2}
}

=











v1 − σ, if v2 < v1 − σ

v2, if v2 ∈ [v1 − σ, v1 + σ]

v1 + σ, if v2 > v1 + σ .



Let Cpm(R+) denote the space of continuous piecewise monotone functions defined
on R+. For all σ ∈ R+ and ξ ∈ R, define the operator Bσ, ξ : Cpm(R+) → C(R+) by

Bσ, ξ(y)(t) =

{

bσ(y(0), ξ) for t = 0 ,
bσ(y(t), (Bσ, ξ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < . . ., limn→∞ tn = ∞ and u is monotone on each
interval [ti, ti+1]. We remark that ξ plays the role of an “initial state”. It is not
difficult to show that the definition is independent of the choice of the partition
(ti). Figure 2 illustrates how Bσ, ξ acts. It is well-known that Bσ, ξ extends to a

y

Bσ,ξ(y)

−σ

σ

Figure 2. Backlash hysteresis
Lipschitz continuous operator on C(R+) (with Lipschitz constant L = 1), the so-
called backlash operator, which we shall denote by the same symbol Bσ, ξ. It is
well-known that Bσ, ξ is a hysteresis operator.

Let ξ : R+ → R be a compactly supported and globally Lipschitz function with
Lipschitz constant 1. Let µ be a signed Borel measure on R+ such that |µ|(K) < ∞
for all compact sets K ⊂ R+, where |µ| denotes the total variation of µ. Denoting
Lebesgue measure on R by µL, let w : R×R+ → R be a locally (µL ⊗µ)-integrable
function and let w0 ∈ R. The operator Pξ : C(R+) → C(R+) defined by

(Pξ(y))(t) =

∫ ∞

0

∫ (Bσ, ξ(σ)(y))(t)

0

w(s, σ)µL(ds)µ(dσ) + w0∀u ∈ C(R+) , ∀ t ∈ R+ ,

(13)
is called a Preisach operator, cf. [2, p. 55]. It is well-known that Pξ is a hysteresis
operator (this follows from the fact that Bσ, ξ(σ) is a hysteresis operator for every σ ≥
0). Under the assumption that the measure µ is finite and w is essentially bounded,
the operator Pξ is Lipschitz continuous with Lipschitz constant L = |µ|(R+)‖w‖∞
(see [7]) in the sense that

sup
t∈R+

|Pξ(y1)(t) − Pξ(y2)(t)| ≤ L sup
t∈R+

|y1(t) − y2(t)| ∀ y1, y2 ∈ C(R+).

This property ensures the well-posedness of the feedback interconnection.

Setting w(·, ·) = 1 and w0 = 0 in (13), we obtain the Prandtl operator Pξ : C(R+) →
C(R+) defined by

Pξ(y)(t) =

∫ ∞

0

(Bσ, ξ(σ)(y))(t)µ(dσ) ∀u ∈ C(R+) , ∀ t ∈ R+ . (14)



For ξ ≡ 0 and µ given by µ(E) =
∫

E
χ[0,5](σ)dσ (where χ[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 3. The
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Figure 3. Example of Prandtl hysteresis

next proposition identifies conditions under which the Preisach operator (13) satis-
fies a generalized sector bound. For simplicity, we assume that the measure µ and
the function w are non-negative (an important case in applications), although the
proposition can be extended to signed measures µ and sign-indefinite functions w.

Proposition 9. Let Pξ be the Preisach operator defined in (13). Assume that

the measure µ is non-negative, a1 := µ(R+) < ∞ and a2 :=
∫ ∞

0
σµ(dσ) < ∞.

Furthermore, assume that

b1 := ess inf(s,σ)∈R×R+
w(s, σ) ≥ 0 , b2 := ess sup(s,σ)∈R×R+

w(s, σ) < ∞

and set

aP := a1b1, bP := a1b2 , cP := a2b2 + |w0| . (15)

Then

∀ y ∈ C(R+) ∀ t ∈ R+ , y(t) ≥ 0 =⇒ aPy(t) − cP ≤ (Pξ(y))(t) ≤ bPy(t) + cP ,
(16)

∀ y ∈ C(R+) ∀ t ∈ R+ , y(t) ≤ 0 =⇒ bPy(t) − cP ≤ (Pξ(y))(t) ≤ aPy(t) + cP ,
(17)

and, for every η > 0,

∀ y ∈ C(R+) ∀ t ∈ R+ , |y(t)| ≥ cP/η =⇒ (aP−η)y2(t) ≤ (Pξ(y))(t)y(t) ≤ (bP+η)y2(t) .
(18)

Let Pξ be a Preisach operator satisfying the hypotheses of Proposition 9. Let

aP , bP and cP be given by (15) and define Φ, Φ̃ ∈ U by

Φ(y) :=

{

{v ∈ R | aPy − cP ≤ v ≤ bPy + cP}, y ≥ 0

{v ∈ R | bPy − cP ≤ v ≤ aPy + cP}, y < 0.



Φ̃(y) := {v ∈ R | (aP − η)y2 ≤ vy ≤ (bP + η)y2},

where η > 0. In view of (16) and (17),

y ∈ C(R+) =⇒ (Pξ(y))(t) ∈ Φ(y(t)) ∀ t ∈ R+.

Moreover, writing K := [−cP/η , cP/η], we have

Φ(y) ⊂ Φ̃(y) ∀ y ∈ R\K and E := supy∈K supv∈Φ(y) inf ṽ∈Φ̃(y)|v − ṽ| = cP .

Let the linear system (A,B,C) (with transfer function G) be stabilizable and de-
tectable. Write a := aP − η, b := bP + η and assume that G/(1 + aG) ∈ H∞

and, for some δ > 0, (1 + bG)/(1 + aG) − δ is positive real. Then hypothesis (H1)
holds with m = 1 and Φ̃ replacing Φ. We are now in a position to invoke Corollary
7 to conclude properties of solutions of the single-input, single-output, functional
differential equation

ẋ(t) = Ax(t) + B
[

d(t) − (Pξ(Cx))(t)
]

, x(0) = x0. (19)

We reiterate that, for each x0 ∈ R
n and d ∈ L∞

loc(R+), (19) has unique global
solution. An application of Corollary 7 (with D(t) = {d(t)} for all t ∈ R+) yields
the existence of constants ε, c1, c2 > 0 such that, for every global solution x,

‖x(t)‖ ≤ c1e
−εt‖x0‖ + c2

(

‖d‖L∞[0,t] + cP
)

∀ t ∈ R+, (20)

showing in particular that (19) is input-to-state stable with bias cP . Furthermore,
by Lemma 4,

lim
t→∞

d(t) = 0 =⇒ lim sup
t→∞

‖x(t)‖ ≤ c2cP . (21)
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