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Simulation Refinement

for Concurrency Verification

Wim H. Hesselink1 ,2

Dept. of Mathematics and Computing Science
University of Groningen

P.O.Box 407, 9700 AK Groningen, The Netherlands

Abstract

In recent years, we extended the theory of Abadi and Lamport (1991) on the existence of refinement
mappings. The present paper gives an overview of several extensions of the theory and of a
number of recent applications to practical verifications. It concludes with a sketch of the results
on semantic completeness, and a discussion of the relationship between semantic completeness and
methodological convenience.
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1 Introduction

The aim of this paper is to present an overview of the methods and results
we developed in several verifications of concurrent algorithms during the last
years.

The design of an algorithm ideally starts with the specification and pro-
ceeds via a number of motivated refinement steps to conclude with an im-
plementation. In the field of concurrency, however, this ideal is more often
proclaimed than executed. In our practice, the designer starts with an idea
for a concurrent algorithm, and while trying to develop and prove the al-
gorithm, they change the algorithm until it is concrete enough and has an
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associated proof. Just as often, at the other side of the spectrum, there may
be an algorithm with or without any proof, and one may want to decide its
correctness.

In other words, for concurrent algorithms, I do not believe in refinement
as the one and only design methodology. Refinement is for me the relation
between specification and implementation that is to be verified, and, as such,
fundamental to the processes of design and verification of concurrent algo-
rithms.

Indeed, one of the first problems with concurrent algorithms is the spec-
ification. They are usually reactive programs: they start in a rather blank
initial state, interact in meaningful ways with their environment, and when
they terminate it is often by mishap. In particular they cannot be specified
by preconditions and postconditions only.

The starting point of refinement theory is that programs and algorithms
are nothing but specifications that happen to be executable. The next point
is to define and construct implementation and simulation relations between
specifications, of various types and for various purposes. Our formalism is a
variation of [1].

Overview. Section 2 gives the basic formalism with specifications, execu-
tions, behaviours, invariants, strict implementations and simulations, refine-
ment functions and forward simulations. In section 3, we discuss a range of
(non)atomicity conditions, to be used in section 4 where we verify a lock-free
implementation of a row of atomically modifiable variables.

In section 5, we introduce prophecies. Three formalizations are treated:
backward simulations, eternity extensions, and episodic simulations with Lip-
ton’s simulation as a special case. We give an exampe of an eternity extension,
which shows an invariant that cannot be proved by induction from the initial
states. In section 6, we discuss stutterings and introduce nonstrict implemen-
tations and simulations.

In section 7, we present the result of semantic completeness of our simula-
tion concepts [16] and sketch the tension between semantic completeness and
methodological convenience. We conclude in section 8 with remarks that link
our efforts to the use of the theorem provers NQTHM and PVS.

2 Specifications and strict simulations

A specification [1] is defined to be a tuple K = (X, X0, N, P ) where X is a
set, X0 is a subset of X, N a reflexive relation on X, and P is a property over
X (see section 6.1). The set X is called the state space, its elements are called
states, the elements of X0 are called initial states. Relation N is called the

W.H. Hesselink / Electronic Notes in Theoretical Computer Science 214 (2008) 3–234



next-state relation. The set P is called the supplementary property.

An initial execution of K is defined to be a finite or infinite sequence xs

over X with xs(0) ∈ X0 and such that every pair of consecutive elements
belongs to N . A behaviour of K is an infinite initial execution xs of K with
xs ∈ P . The requirements that relation N is reflexive and that set P is
a property, are imposed to allow stuttering: if xs is a behaviour of K, any
sequence ys obtained from xs by repeating elements of xs or by removing
subsequent duplicates must also be a behaviour of K.

We write Beh(K) to denote the set of behaviours of K. By definition, we
have that Beh(K) = [[ X0 ]]∩�[[ N ]]

2
∩P . It follows that Beh(K) is a property.

Specifications are only useful by what we can observe. We therefore as-
sume that our specifications are visible, i.e., have a given observation function
obs from the state space X to some set of observables. In principle, we are
therefore primarily interested in the observed behaviours, the sequences obs◦xs

where xs ranges over the behaviours.

A subset J ⊆ X is called an invariant if xs(n) ∈ J for every behaviour xs

of K and every n ∈ N. A subset J is called inductive if X0 ⊆ J and y ∈ J
for every pair (x, y) ∈ N with x ∈ J . It is well-known and easy to verify that
every inductive set is invariant. It is not true that an invariant necessarily
contains all reachable states. See section 5.3 for a counterexample.

The components of specification K = (X, X0, N, P ) are denoted states(K) =
X, start(K) = X0, step(K) = N and prop(K) = P .

2.1 Strict implementations and simulations

A visible specification K is said to strictly implement a visible specification L
if every observed behaviour of K is an observed behaviour of L. In order to
prove such a thing, however, we must be able to look behind the scenes. We
therefore introduce simulation relations.

A relation F between the state spaces of specifications K and L is called a
strict simulation from specification K to specification L (notation F : K −� L)
if, for every xs ∈ Beh(K), there exists ys ∈ Beh(L) with (xs, ys) ∈ Fω where

(xs, ys) ∈ Fω ≡ (∀ i : (xs(i), ys(i)) ∈ F ) .

If K and L are visible, a relation F between the state spaces of specifications
K and L is called nondisturbing if obs(x) = obs(y) for all pairs (x, y) ∈ F .

It is easy to see that K strictly implements L if and only if there is a
nondisturbing simulation F : K −� L. We can therefore use simulations to
prove implementaton relations, and we are mainly interested in nondisturbing
simulations. Mostly, however, we take nondisturbingness for granted, and
even ignore all visibility aspects.
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2.2 Refinement mappings and forward simulations

A central aim in the methodology of concurrency verification is to eliminate
behaviours as much as possible from our considerations and rather argue about
states and the next state relation. It is therefore important to give criteria
for simulations which are as much as possible in terms of states and the next
state relation.

If K and L are specifications, a function f : states(K) → states(L) is
called a refinement mapping [1] from K to L iff
(f0) f(x) ∈ start(L) for every x ∈ start(K);
(f1) (f(x), f(x′)) ∈ step(L) for every pair (x, x′) ∈ step(K);
(f2) f ◦ xs ∈ prop(L) for every xs ∈ Beh(K).

In practice, condition (f1) is often stronger than necessary and convenient.
Let us therefore define a function f to be a refinement function iff it satisfies
conditions (f0), (f1f) and (f2), where (f1f) is given by
(f1f) K has an invariant J such that (f(x), f(x′)) ∈ step(L) for every pair
(x, x′) ∈ step(K) ∩ (J × J).

Every refinement mapping is a refinement function since we can use states(K)
itself as an invariant.

It is well-known that refinement functions are not enough to prove all
simulation relations. A natural way to prove that one specification simulates
another is by starting at the beginning and constructing the corresponding
behaviour in the other specification inductively. This idea is formalized in
forward simulations [7,22,23], defined as follows.

A relation F between states(K) and states(L) is called a forward simulation
from specification K to specification L iff

(F0) For every x ∈ start(K), there is y ∈ start(L) with (x, y) ∈ F .
(F1) For every pair (x, y) ∈ F and every x′ with (x, x′) ∈ step(K), there is y′

with (y, y′) ∈ step(L) and (x′, y′) ∈ F .
(F2) For every initial execution ys of L and every behaviour xs of K, we have
that (xs, ys) ∈ Fω implies ys ∈ prop(L).

The following well-known lemma justifies the nomenclature and shows the
relationships between refinement functions, simulations and forward simula-
tions.

Lemma 2.1 (a) Let f : states(K) → states(L) be a refinement function from
a specification K to a specification L, say with invariant J . Then the graph
{(x, y) | x ∈ J ∧ f(x) = y} is a forward simulation from K to L.
(b) Let F be a forward simulation from K to L. Then F is a strict simulation
F : K −� L.
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In view of this Lemma, we use the notation f : K −� L also for a refinement
function from K to L.

3 Safeness, atomicity, and atomic modification

In order to illustrate the refinement concepts, let me recall (or introduce) some
concepts of safeness and atomicity of shared variables.

The minimal correctness assumption for a shared variable is that the cor-
rectness of its read and write operations is guaranteed if and only if these
operations are performed under mutual exclusion. In other words, chaos can
result whenever two processes concurrently access the variable. Let us call
such variables unsafe.

Following [19], a shared variable is called safe if read operations that over-
lap with a single write operation are allowed in the sense that they return
legitimate values of the domain of the variable. Write operations need to be
performed under mutual exclusion because concurrent write operations may
give chaos.

A shared variable is called atomic iff read and write operations behave as
if they never overlap but always occur in some total order that refines the
precedence order (an operation precedes another iff it terminates before the
other starts).

A shared variable is said to be atomically modifiable if the operations to
inspect and modify it behave as if they never overlap but always occur in some
total order that refines the precedence order. Atomically modifiable variables
are stronger than usually considered, but for some purposes they are useful,
and we shall give a method to implement rows of them.

We introduced formal models for unsafe and safe variables in [9,15]. Here,
we ignore such details but concentrate on the refinement relations.

By convention, shared variables are written in typewriter font and private
variables are written slanted.

We use the following general format for atomic modification. The actions
to be performed are described by

C(in arg : Arg, ref x : Node, out result : Item) .

In command C, parameter x is a reference variable, arg is an input variable,
and result is an output variable. We express the semantics of command C by
the four place predicate C(arg, x, x+, result+) where x+ and result+ stand for
the values after execution.

A CAS variable (compare and swap) is a special case of an atomically
modifiable variable. It is a shared variable, say x, that can be read and
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written atomically, but it also supports the conditional update:

CAS(x, u, v) : B =
〈 if x = u then x := v ; return true

else return false end 〉 ,

where u and v are private variables or expressions of the acting process. The
angular brackets 〈 and 〉 are used to indicate atomicity.

A CAS variable can be used for a lock-free implementation of an atomically
modifiable variable in the following way:

repeat u := x ; v := u ; C(arg, v, result) ;
until CAS(x, u, v) .

Note that the correctness of this implementation is not threatened by the ABA
phenomenon that x �= u can happen between the assignment u := x and a
subsequent succeeding CAS.

In other applications, the ABA phenomenon can be a problem. This prob-
lem is avoided in the load-linked, store-conditional primitive LL/SC, which
for a shared variable x is described as follows. The variable x gets a field links

of type set of process.

LL(x) = 〈 add self to x.links ; return x 〉 .
SC(x, v) = 〈 if self /∈ x.links then return false

else x.links := ∅ ; x := v ; return true end 〉 .

Here self is the process identifier of the acting process. LL/SC can be used
for a lock-free implementation of atomic modification in the following way.

repeat v := LL(x) ; C(arg, v, result) ;
until SC(x, v) .

4 Lock-free atomic modification

When CAS variables or LL/SC variables are offered by the concurrency plat-
form, they have simple types like Integer. It is therefore important to imple-
ment atomically modifiable variables of arbitrary types by means of CAS or
LL/SC variables of simple types. Alternatively, one may look for wait-free
implementations of LL/SC variables by means of CAS or LL/SC variables of
simple types, e.g. [17].

In [5,6], we considered the problem of implementing a row of atomically
modifiable variables of an arbitrary type by means of safe variables of the
same type. Given are N processes and M shared variables. Every process
needs repeatedly to inspect and modify some variable according to some given
argument. Logically the actions on the variables must be independent (done
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under mutual exclusion), but a lock-free implementation is asked for. We will
concentrate on the specification, and the implementation by means of simple
LL/SC variables cf. [5]. We refer to [6] for an implementation with simple
CAS variables. Actually, in both cases, we solved a slighly different version,
which was more suitable to the intended application in [4].

4.1 Specifying a row of atomically modifiable variables

As announced, there are M shared variables of type Node. Each process has
a private variable k that points into the array of nodes, a program counter pc,
and variables to hold arguments and results. We thus declare:

var node : Node[M ] ;
privar k, pc : N, arg : Arg, result, out : Item .

For every process p, its environment provides the calls and the arguments, and
inspects the results according to

env .p : [] pc = 0 → choose k < M ; choose arg ; pc := 10 .
[] pc = 1 → out := result ; pc := 0 .

The system, located at 10, is specified to perform an atomic modification by

sys.p : [] pc = 10 → C(arg, node[k], result) ; pc := 1 .

The progress condition required is that, whenever the system as a whole is
enabled, eventually it will do something:

�((∃ q : pc.q = 10) ⇒ �(∃ q : pc.q = 10 ∧ pc+.q = 1)) .

The system is not allowed to modify arg and out. The only observable
variables are out.p for all p. In other words, the observation function removes
all other variables. The types Node, Arg , Item and command C are param-
eters of the problem. In particular, command C can be used to observe the
values of array node via result.

4.2 An LL/SC implementation by means of safe variables

We turn to the implementation [5] with LL/SC variables of integer type. The
main idea is a formalization of an idea of Herlihy [8] to extend the array of
nodes with nodes that can be kept private for the processes, and to model the
array of the specification via indirection.

var ar : safe Node[M + N ] ,
indir : LL/CS N[M ] ,

with the intention that
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(1) ∀ i : i < M ⇒ ar[indir[i]] = node[i] .

Array ar is declared to consist of safe shared variables. Therefore, concurrent
calls of C(u, ar[j], v) with the same j are not allowed, but other processes may
concurrently read ar[j] although this may give nondeterministic results.

The implementation uses some additional private variables

privar mi, mp : N, tmp : Item .

with the intention that mi.q is a local copy of indir[k.q] and that mp.q is an
index in array ar that is secure against interference. More precisely, we intend
the invariants that all values of indir and mp are distinct:

Aq0 : indir[i] = indir[k] ⇒ i = k ,
Aq1 : indir[i] �= mp.q ,
Aq2 : mp.q = mp.r ⇒ q = r .

We therefore propose the initial condition:

(∀ i : i < M ⇒ indir[i] = i)
∧ (∀ q : q < N ⇒ pc.q = 0 ∧ mp.q = M + q) ,

where we assume that the process identifiers q are natural numbers < N . We
propose to implement sys.p by the unbounded loop:

10: mi := LL(indir[k]) ;
ar[mp] := ar[mi] ;
C(arg, ar[mp], tmp) ;
if SC(indir[k], mp) then mp := mi ; result := tmp ; goto 1
else goto 10 end .

The private variable tmp is superfluous, but in some sense convenient for the
proof. We come back to this.

Before dealing with the correctness of this algorithm, we need to model
the assumption that the elements of array ar are not more than safe. This
means that during a modification of ar[mp], writing by some other process
leads to chaos, while reading may return an arbitrary value. We model this
by means of a boolean array wr[M +N ], initially false, with the intention that
wr[j] indicates that some process is writing ar[j]. We introduce a location 11
where the acting process sets the flag wr(mp) to indicate that it will be writing
there. If it is set already, chaos results. In the next instruction, reading of
ar[mi] gives a nondeterministic result when wr[mi] holds. The flag at mp is
reset after command C(arg, ar[mp], tmp). We thus obtain:

10: mi := LL(indir[k]) ;
11: if wr[mp] then CHAOS else wr[mp] := true end ;
12: if wr[mi] then choose ar[mp] else ar[mp] := ar[mi] end ;
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13: C(arg, ar[mp], tmp) ; wr[mp] := false ;
14: if SC(indir[k], mp) then mp := mi ; result := tmp ; goto 1

else goto 10 end .

While trying to prove the invariants Aq0 , Aq1 , Aq2 , we are forced to
invent three other related invariants. Firstly, to prove that command 11 never
gives CHAOS forces us to postulate the invariant:

Aq3 : wr[mp.q] ⇒ pc.q ∈ {12, 13} .

Let us write set[i] = indir[i].links. Note that initially set[i] = ∅ for all i.
The intention that mi.q be a local copy of indir[k.q] is strengthened to the
invariant:

Aq4 : q ∈ set[i] ⇒ mi.q = indir[i] ∧ i = k.q ∧ pc.q > 10 .

The proofs of these invariants completely concentrate on commands 11 and
14. Aq0 is preserved because of Aq1 and Aq3 . Aq1 is preserved because of
Aq0 , Aq2 , Aq3 , and Aq4 . Aq2 is preserved because of Aq1 , Aq3 , and Aq4 .
Aq3 is preserved because of Aq1 , Aq2 , Aq4 , and the new predicate

Aq5 : wr[j] ⇒ (∃ q : j = mp.q) .

Aq4 and Aq5 are preserved because of Aq3 . All this only serves to preclude
unwanted interferences.

The purpose of the computation is in the values computed in 13 and trans-
ferred in 12 and 14. We expect that the invariants for the values will be forced
upon us by the proof of the refinement function. In the concrete algorithm,
progress only occurs when the SC in 14 succeeds. We therefore take this event
as the linearization point. In view of formula (1), we propose the refinement
function

fca(x) = (# out := x.out ,
arg := x.arg ,
result := x.result ,
k := x.k ,
node := x.ar ◦ x.indir ,
pc := λ q : ipc(x.pc.q)

#) ,

where ipc(k) = k for k < 10 and otherwise ipc(k) = 10.

When proving with PVS that this is indeed a refinement function, we find
that we only need the invariants Aq1 , Aq3 , and the additional invariant:

Aq6 : pc.q = 14 ∧ q ∈ set(k.q)
⇒ C(arg.q, ar[indir[k.q]], ar[mp.q], tmp.q) ,
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where predicate C(u, x, y, v) means that the call C(u, x, res) may result in
x = y and res = v.

When proving the invariance of Aq6 , it turns out that we also need the
invariant

Aq7 : pc.q = 13 ∧ q ∈ set(k.q) ⇒ ar[indir[k.q]] = ar[mp.q] .

The proof of Aq6 needs Aq1 , Aq2 , Aq3 , and Aq7 . The proof of Aq7 needs
Aq1 , Aq2 , Aq3 , Aq4 , and Aq5 .

We come back to the private variable tmp used in lines 13 and 14. The
programmer can just as well replace tmp by result in 13 and omit the as-
signment to result in 14. Then, however, the refinement function fca is no
longer correct because result changes in the line 13, which corresponds to a
skip statement in the abstract specification. The easiest solution would be to
introduce a history variable, say prev , that remembers the previous value of
result, and to use prev in the refinement function. The introduction of prev

would need a forward simulation.

4.3 Progress

According to the specification, progress of the abstract algorithm can be ex-
pressed by �(A ⇒ �B) where A ≡ (∃ q : pc.q ≥ 10) and B is the next state
relation

B ≡ (∃ q : pc.q ≥ 10 ∧ pc+.q = 1) .

The expressions here are chosen in such a way that they can also be used on
the concrete specification. We therefore have to show that the implementation
does B steps often enough. In [12], we introduced the “leads to” relation
Q o→ BR, for state predicates Q and R and a next state relation B, to mean
�(Q ⇒ �(R ∨ B)), i.e., if a state in any behaviour satisfies Q ∧ ¬R the
behaviour will do a B step or have a later R state. Relation o→ B is reflexive
and transitive.

For our concrete algorithm, we claim:

pc.q > 10 ∧ q /∈ set[k.q]
o→ B pc.q = 10
o→ B pc.q = 11 ∧ q ∈ set[k.q]
o→ B pc.q = 12 ∧ q ∈ set[k.q]
o→ B pc.q = 13 ∧ q ∈ set[k.q]
o→ B pc.q = 14 ∧ q ∈ set[k.q]
o→ B false .

This formula implies �(A ⇒ �B) and thus proves progress.
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The methods and results of [12] seem to be strong enough to verify progress
with the proof assistant PVS, but we did not do this.

5 Prophecies

Sometimes, when matching a concrete specification with the abstract specifi-
cation it is supposed to implement, the verifier feels that the abstract spec-
ification does a certain nondeterministic step earlier than the concrete spec-
ification. In order to get a simulation between the two, they may then feel
forced to extend the concrete specification with a ghost variable the value of
which is guessed nondeterministically. This is called a prophecy. We give an
example in section 5.3 below.

5.1 Backward simulations

Prophecies can be formalized with prophecy variables [1] or (more or less
equivalently) backward simulations [18,22]. Let us use the following definition
[11]. Relation F between states(K) and states(L) is defined to be a backward
simulation from K to L if
(B0) Every pair (x, y) ∈ F with x ∈ start(K) satisfies y ∈ start(L).
(B1) For every pair (x, x′) ∈ step(K) and every y′ with (x′y′) ∈ F , there is y
with (x, y) ∈ F and (y, y′) ∈ step(K).
(B2) For every behaviour xs of K there are infinitely many indices n for which
the set {y | (xs(n), y) ∈ F} is nonempty and finite.
(B3) Requirement (F2) above.

The soundness of these simulations relies on an application of König’s
Lemma. The finiteness requirement in (B2) therefore cannot be omitted.
These simulations therefore usually cannot be applied with infinite nondeter-
minacy, e.g. [11, 3.8].

Unfortunately, in the rare cases where we needed prophecies, we had to
prophesy a sequence number greater than some value. This is infinite nonde-
terminacy. We therefore developed in [11] an alternative that is simpler (to
prove the soundness of) and theoretically more powerful: the eternity exten-
sion.

The idea of the eternity extension is that it is an extension with an im-
mutable variable that is chosen nondeterminately at the start of the execution.

5.2 Eternity extensions

Let K be a specification. Let M be a set (of values for an eternity variable m).
A binary relation R between states(K) and M is called a behaviour restriction
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of K iff, for every behaviour xs of K, there is an m ∈ M with (xs(n), m) ∈ R
for all n ∈ N.

If R is a behaviour restriction of K, the corresponding eternity extension
is defined as the specification W given by

states(W ) = R ,
start(K) = R ∩ (start(K) × M) ,
((x, m), (x′, m′)) ∈ step(W ) ≡ (x, x′) ∈ step(K) ∧ m = m′ ,
ws ∈ prop(W ) ≡ fst ◦ ys ∈ prop(K) .

Here fst is the natural projection from R to states(K) and fstω is the lifting
of fst to infinite lists. It is easy to verify that cvf = {(x, w) | x = fst(w)} is a
strict simulation K −� W .

In some sense the difficulty is moved to the user. The soundness proof
of backward simulations is much more difficult than the soundness proof of
eternity extensions. In order to adequately use an eternity extension, however,
one has to collect into one eternity variable m all prophecies that may be needed
in the entire behaviour, to formalize the requirements in a relation R, and to
prove that R is a behaviour restriction.

5.3 An example

We give a simple example to show how a nontrivial eternity variable is used
to prove that a given relation is a (strict) simulation. Let the specification K
and L be given by

K : var j : N := 0, b : B := false ;
[] ¬ b → j := j + 1 ;
[] j > 0 → b := true ;
prop � b .

L : var k, n : N := 0, 0 ;
[] n = 0 → k := 1 ; choose n > 0 ;
[] k < n → k := k + 1 ;
prop �(k = n) .

In both specifications, j or k is incremented a positive number of times after
which a stable state is reached. Specification L may look strange: it has finite
initial executions that cannot be extended to behaviours with the property
�(k = n). This is expressed by saying that L is not machine closed [1].

Let relation F between the two state spaces be given by

((j, b), (k, n)) ∈ F ≡ j = k .
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In every behaviour, L chooses the upper bound for k as a first step. For
specification K, the upper bound is chosen in the last nonstuttering step. It
therefore requires a prophecy to construct the behaviour in L from the one in
K.

We therefore factor relation F over an eternity extension. We form the
eternity extension of K with an eternity variable m : N and the relation

R ≡ (¬ b ∨ j = m) .

Every behaviour xs of K has a first state where b holds after which j cannot
change anymore. If we choose m equal to the final value of j, it is easy
to see that all states of xs satisfy R. This proves that R is a behaviour
restriction. Let W be the corresponding eternity extension with the strict
simulation cvf : K −� W .

We form a refinement function f : W −� L by f(j, b, m) = (j, (j = 0 ? 0 :
m)). It is clear that f maps initial states to initial states. A step where b
becomes true corresponds to a skip step of L. In order to prove that a step of
W where j is incremented is mapped to a step of L, it suffices to prove that
W has the invariant J : j ≤ m.

Predicate J does not hold in all reachable states of W (indeed all states
(j, b, m) with b = false are reachable in W ). Predicate J does hold for all states
that occur in behaviours of W . Indeed, if w = (j, b, m) is in a behaviour of
W , there is a sequence of steps from w in which eventually b = true holds.
At that point, we have j = m because of behaviour restriction R. Since steps
in W never decrease j and never modify m, it follows that j ≤ m holds in w.
An invariant like this, which is not proved by forward induction, but by going
backwards from infinity, is called a backward invariant.

5.4 Episodic simulations

Recently, we found a compromise between forward simulations and backward
simulations that avoids the finiteness condition in (B2). The idea is to require
that, from time to time, all prophecies have been fulfilled. Periods with pos-
sibly outstanding prophecies are called episodes. Episodic simulations behave
as backward simulations during episodes, and forward simulations elsewhere.

Let K = (X, X0, N, P ) be a specification. We define an episodic set of K
to be a subset V of states(K) that satisfies

(EpS0) X0 ∩ V = ∅ ,
(EpS1) Beh(K) ⊆ ��(¬V ) .

The elements of V are called of episodic states. (EpS0) expresses that start
states are never episodic; (EpS1) expresses that episodes always terminate.
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Now let L be a second specification. A relation F between X and states(L)
is called an episodic simulation from K to L for V iff V is an episodic set and
relation F satisfies the conditions (F0) and (F2) of forward simulations and
moreover

(epFW) (x, x′) ∈ N ∧ (x, y) ∈ F ∧ x, x′ ∈ X \ V
⇒ ∃ y′ : (x′, y′) ∈ F ∧ (y, y′) ∈ step(L) ,

(epBW) (x, x′) ∈ N ∧ (x′, y′) ∈ F ∧ x, x′ ∈ V
⇒ ∃ y : (x, y) ∈ F ∧ (y, y′) ∈ step(L) ,

(epTot) (x, x′) ∈ N ∧ x ∈ V ∧ x′ /∈ V
⇒ ∃ y, y′ : (x, y) ∈ F ∧ (y, y′) ∈ step(L) ∧ (x′, y′) ∈ F ,

(epCon) (x, x′) ∈ N ∧ x /∈ V ∧ x′ ∈ V ∧ (x, y) ∈ F ∧ (x′, y′) ∈ F
⇒ (y, y′) ∈ step(L) .

These four conditions are graphically summarized in:

FW BW Tot Con

K : x x′� x x′� x x′� x x′�

L : y y′
� y y′

� y y′
� y y′

�

F

? ? ? ?

The conditions (epFW) and (epBW) are restricted versions of (F1) and
(B1) for forward and backward simulations. Conditions (epTot) and (epCon)
serve to connect episodes with nonepisodic periods. One may note that the
graph of a refinement mapping is an episodic simulation for every episodic set.

Theorem 5.1 Let F be an episodic simulation from K to L. Then F is a
strict simulation K −� L.

Proof. Let xs be a behaviour of K. In order to construct a corresponding
behaviour of L, we define the set Φ to consist of the nonempty finite initial
executions ys of L that satisfy (xs(i), ys(i)) ∈ F for 0 ≤ i < #ys. Let Φ+ be
the set of ys ∈ Φ with xs(#ys − 1) /∈ V .

The set Φ+ is nonempty because of the conditions (F0) and (EpS0). We
next prove that every sequence in Φ+ is a prefix of a longer sequence in Φ+.

Let ys ∈ Φ+, say with n = #ys. Then n ≥ 1 and xs(n − 1) /∈ V . If
xs(n) /∈ V , condition (epFW) enables us to extend ys with a single element
in such a way that it remains in Φ+. Otherwise xs(n) ∈ V . By condition
(EpS1), there is a number k > n such that xs(k) /∈ V and xs(i) ∈ V for
n ≤ i < k. By condition (epTot), we can choose ys(k − 1) and ys(k) with
(xs(k−1), ys(k−1)) ∈ F and (ys(k−1), ys(k)) ∈ step(L) and (xs(k), ys(k)) ∈
F . Working backward with (epBW), we can choose ys(i) with (xs(i), ys(i)) ∈
F and (ys(i), ys(i + 1)) ∈ step(L) for all i with k − 1 > i ≥ n. By (epCon),
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we also have (ys(n − 1), ys(n)) ∈ step(L). In this way, ys is extended to an
initial execution of length k > n, while remaining in Φ+.

Since Φ+ is nonempty, and every sequence in it can be extended to a
longer sequence in it, we can make an infinite initial execution ys of L with
(xs, ys) ∈ Fω. Condition (F2) finally implies that ys is a behaviour of L. �

5.5 Lipton’s simulation

A special case of this kind of simulation is the Lipton simulation [21]. We
simplify and slightly weaken the results of [3]. Given an episodic set V of K,
the idea is to construct a specification L together with an episodic simulation
F : K −� L. The state space of L is the complement W = X \ V . We assume
that the step relation N of K is approximated by related relations NV and N0

on X with

(Lip0) N ∩ (V × X) ⊆ N0 ∪ NV ,
(Lip1) NV ⊆ V × X ,
(Lip2) N0 ⊆ N \ (V × W ) .

The binary relations NV and N0 on X can be composed (with the operator
;), and repeatedly composed to form N+

V
and N∗

V
, etc. We need to postulate

the commutation rule:

(Lip3) N0; NV ⊆ N∗

V
; N0 .

We define the relations S on W , and F between X and W by

S = (N ; N∗

V
) ∩ W 2 ,

F = N∗

V
∩ (X × W ) .

We define Q ⊆ W ω by

ys ∈ Q ≡ ∃ yt ∈ W ω, xt ∈ Beh(K) : ys � yt ∧ (xt, yt) ∈ Fω .

Let specification L be given by L = (W, X0, S, Q). Condition (EpS0) ensures
that X0 can be taken as start space of L. Relation S is reflexive on W , as
required. The complicated definition of Q ensures that Q is insensitive to
stuttering.

Theorem 5.2 Let V be an episodic set of K. Let W = X \V . Let NV and N0

be chosen such that (Lip0) up to (Lip3) hold. Then relation F is an episodic
simulation K −� L.

Proof. It follows from (Lip1) that, for y ∈ W ,

(2) (x, y) ∈ F ∧ x ∈ W ≡ x = y ,
(x, y) ∈ F ∧ x ∈ V ≡ (x, y) ∈ N+

V
.
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By (EpS0), relation F satisfies (F0).

Condition (epTot) is proved as follows. Let (x, x′) ∈ N and x ∈ V and
x′ ∈ W . Then (x, x′) ∈ NV because of (Lip0) and (Lip2). Taking y = y′ = x′,
we have (x′, y′) ∈ F and (y, y′) ∈ S and (x, y) ∈ F .

Formula (epCon) clearly follows from the stronger formula

(3) (x, x′) ∈ N ∧ x ∈ W ∧ (x, y) ∈ F ∧ (x′, y′) ∈ F ⇒ (y, y′) ∈ S .

Formula (3) itself is proved as follows. Let (x, x′) ∈ N and (x, y) ∈ F and
(x′, y′) ∈ F and x ∈ W . We have x = y because of (2) and (x, y) ∈ F and
x ∈ W . We have (x′, y′) ∈ N∗

V
. Therefore (y, y′) ∈ (N ; N∗

V
) ∩ W 2 = S.

Condition (epFW) is proved as follows. Let (x, x′) ∈ N and (x, y) ∈ F
and x, x′ ∈ W . We have x = y and we can take y′ = x′ ∈ W with (x′, y′) ∈ F
by (2) and (y, y′) ∈ step(L).

Condition (epBW) is proved as follows. Let (x, x′) ∈ N and (x′, y′) ∈ F
and x, x′ ∈ V . Then (x′, y′) ∈ N+

V
because of (2). If (x, x′) ∈ N0, then

(x, y′) ∈ N0; N
+

V
⊆ N∗

V
; N0 because of (Lip3). Therefore there is y with

(x, y) ∈ N∗

V
and (y, y′) ∈ N0. By (Lip2), we have y ∈ W and (y, y′) ∈ N .

It follows that (y, y′) ∈ S and (x, y) ∈ F . Otherwise, we have (x, x′) ∈ NV

because of (Lip0). Therefore, (x, y′) ∈ N+

V
and we can take y = y′ ∈ W . Then

we have (y, y′) ∈ S and (x, y) ∈ F .

It is immediate that F satisfies condition (F2). This concludes the proof
that F : K −� L is an episodic simulation. �

The above is a variation of and heavily inspired by the paper [3]. This paper
describes the Lipton simulation in TLA, but gives no proofs. It partitions the
state space in three subsets rather than two. It has a third step relation,
say NU , with the condition NU ; N0 ⊆ N0; NU . In our first application, this
greater generality seems not to be needed. The theory is at least applicable
to semaphore programs [21] and mutex programs in Posix threads.

6 Stutterings and nonstrictness

In concurrency, we abstract from time, but not from the order in which phe-
nomena occur. This means that the fact that a state remains unchanged
during a finite number of steps is not observable. This is formalized by the
concept of stuttering. We have therefore to complicate matters by allowing
nonstrict implementations and simulations.
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6.1 Stutterings, and nonstrict implementation

A sequence ys is defined to be a stuttering of a sequence xs, notation xs � ys,
iff ys can be obtained from xs by replacing its elements by positive iterations
of them. For example, if, for a finite list vs, we write vsω to denote the
sequence obtained by concatenating infinitely many copies of vs, the sequence
(aaabbbccb)ω is a stuttering of (abbccb)ω. Formally, we define xs � ys to mean
that there is a monotonic surjective function g : N → N with ys = xs ◦ g. For
instance, if g(n) = �n/2� and xs is stutterfree then ys stutters twice for every
element of xs.

The difference between an infinite sequence and its stutterings must not
be observable. Therefore, in section 2, it is postulated that the supplementary
property P is a property [1]. This means that it is insensitive to stuttering,
i.e. that, for all xs, ys ∈ Xω,

xs � ys ⇒ (xs ∈ P ≡ ys ∈ P ) .

Recall that specification K is a strict implementation of specification L if
every observed behaviour of K is an observed behaviour of L. Now it may
happen that all observed behaviours of K are (abb)ω and its stutterings, while
the observed behaviours of L are (aab)ω and its stutterings. Therefore K is not
a strict implementation of L. Yet, K must be accepted as an implementation
of L [20].

According to [1], therefore, specification K is called an implementation
of specification L if every observed behaviour of K has a stuttering that is
an observed behaviour of L. We thus allow the observed behaviours of the
implementation to be slowed down by inserting stutterings. We now also get
nonstrict versions of simulations and forward simulations.

6.2 Nonstrict simulations

A relation F between states(K) and states(L) is defined to be a simulation [16]
from K to L (notation K −�� L) if every behaviour xs of K has a stuttering
xt such that (xt, ys) ∈ Fω for some behaviour ys of L. Again, it is easy to
see that K implements L if, and only if, there is a nondisturbing simulation
K −�� L.

The nonstrict version of forward simulations is as follows. A relation F
between states(K) and states(L) is defined to be a stuttering forward simu-
lation [16] from K to L iff it satisfies the conditions (F0), (F2) for forward
simulations and

(SF1) For every pair (x, x′) ∈ step(K), there is an integer state function vf

on L such that, for every state y ∈ states(L) with (x, y) ∈ F , there is a state
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y′ ∈ states(L) with (y, y′) ∈ step(L) such that (x′, y′) ∈ F , or (x, y′) ∈ F and
vf (y) ≥ 0 and vf (y′) < vf (y).

It is not difficult to prove that, indeed, every stuttering forward simulation
is a simulation.

7 Completeness and methodology

In [7], it was proved that every data refinement relation between terminating
programs could be proved by a combination of forward and backward simula-
tions. Such a result is called semantic completeness.

Our setting of possibly nonterminating, concurrent algorithms follows [1].
There, it was proved that, if specification K is machine closed and specification
L has finite invisible nondeterminism and internal continuity, then every strict
simulation F : K −� L can be factored over a forward simulation, a backward
simulation, and a refinement mapping.

In [10], because we could not satisfy the technical assumption of finite in-
visible nondeterminism, we replaced the prophecy variables by eternity exten-
sions. In [11], we proved that every strict simulation that preserves quiescence
can be factored over a forward simulation, followed by an eternity extension
and a refinement mapping.

This result was strengthened considerably in [16] where we eliminated the
conditions of strictness and preservation of quiescence. We summarize the
main results here. It may be unexpected, but we have to introduce a history
variable that only expresses that time increases forever.

Let K be an arbitrary specification. We augment K with an integer vari-
able t (for time) that is incremented with 1 in every nontrivial step, and also
infinitely often. Formally, let W = cl(K) be the specification defined by

states(W ) = states(K) × N ,
start(W ) = start(K) × {0} ,
((x, t), (y, u)) ∈ step(W ) ≡

(x, y) ∈ step(K) ∧ (u = t + 1 ∨ (x = y ∧ t = u)) ,
ys ∈ prop(W ) ≡ fst ◦ ys ∈ prop(K) ∧ (∀ n : ∃ i : snd(ys(i)) ≥ n) .

It is easy to verify that step(W ) is reflexive and that prop(W ) is a property.
So, indeed, W is a specification. The projection function fst is a refinement
mapping W → K. Its inverse relation ivf = fst−1 is a strict simulation ivf :
K −� W because, for every behaviour xs of K, the sequence ys = λi : (xs(i), i)
is a behaviour of W with (xs, ys) ∈ ivf ω. It is called the clocking extension of
K.

Usually, ivf : K −� cl(K) is not a forward simulation because it does not
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satisfy condition (F2). Our version of semantic completeness reads as follows.

Theorem 7.1 Let K be a specification. The clocking extension cl(K) has an
eternity extension e : cl(K) −� E such that:
(a) for every strict simulation F : K −� L there is a refinement mapping
f : E −� L with (ivf ; e ; f) ⊆ F .
(b) for every simulation F : K −�� L there is a stuttering forward simulation
g : E −�� E′ and a refinement mapping f : E ′ −� L with (ivf ; e ; g ; f) ⊆ F .

In this theorem, the clocking extension and the stuttering forward simula-
tion g are needed merely to control the execution speed. The real power of the
theorem is in the eternity extension. In the strict case, we do not even need
arbitrary forward simulations. In the nonstrict case, the stuttering forward
simulation g is used only to enforce stutterings. In some sense the eternity ex-
tension is too powerful. We have come to regard it as a kind of sledge hammer
that is to be applied sparingly and with the utmost care.

Semantic completeness must not be confused with methodological conve-
nience. In the completeness result, we only used refinement mappings, but
no refinement functions and no strict forward simulations. Yet refinement
functions and strict forward simulations are the main tools used in practical
verifications.

In [13], we extended this repertoire with splitting simulations in which
the progress property (F2) of forward simulations is replaced by a condition
in terms of states and the step relation. This work needs further extension,
because (F2) is an invitation for sloppy reasoning but splitting simulations are
not often applicable. Indeed, whenever possible, it would be good to replace
even condition (f2) for refinement functions by a condition in terms of the
state and the step relation. Work in progress indicates that this can be done
when the supplementary properties are given in terms of weak fairness.

It may well be that the episodic simulations of section 5.4 and more specif-
ically the Lipton simulation can be used fruitfully more often than has been
done so far.

In [14], we proved a refinement criterion for atomicity of read-write vari-
ables. The proof of this criterion is based on forward simulations, refinement
functions, eternity extensions, and the new concept of gliding simulations.
These gliding simulations are conceptually easier than eternity extensions,
but technically nasty. The atomicity criterion provides a refinement justifica-
tion for some older verifications and is also used in the recent verification [15]
of algorithm C2 of Haldar and Vidyasankar.
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8 In conclusion

In the course of several verification projects of concurrent algorithms, we were
forced to use theorem provers, first NQTHM [2], later PVS [24], primarily
for the administration of proof obligations. Using theorem provers forced
us to emphasize the specifications that were to be proved. The adoption of
refinement was forced upon us when we needed prophecies of the transactions
in the serializable database interface of [10].

When working with a theorem prover, elegance is profitable because clumsy
proof efforts take much more time than elegant ones. This also encouraged us
to separate the practical verifications from the development of general theory
of specifications and simulations.
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