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ABSTRACTIN this paper, we present several extensions of epistemic With update operators

modelling public information change. Next to the well-kngwblic announcement operators,
we also study public substitution operators. We prove mdittyeoresults regarding expressivity
and completeness using so-called reduction axioms. Weageaegeneral method for using
reduction axioms and apply it to the logics at hand.

KEYWORDSdynamic epistemic logic, reduction axioms, speech actiqtes

1. Introduction

There are many scientific theories about information, fetance information the-
ory, probability theory, statistics, computer sciencalgaophy of science, and logic.
The branch of logic called epistemic logic deals with infatian explicitly. It was
initially developed by Hintikka (1962), whose main goal véasonceptual analysis of
knowledge and belief. In epistemic logic the focus is onestagnts such as ‘I know
thatp’, ‘I know that you know thap’ and ‘I know that he knows that we know thglt
Epistemic logic is especially useful when applied to sitwa involving more than one
agent. One can model the information an agent has about teddwds of the world
and the information an agent has about other agents’ infiiwma.e., higher-order
information This ability to model higher-order information distingbies epistemic
logic from other scientific theories about information.

The focus on higher-order information has led to invesiigestinto group notions
of information of which common knowledge is a prime exampepropositionp is
common knowledgemong a group of agents iff everybody in the group knows that
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p, everybody knows that everybody knows thaand so orad infinitum This notion

is of crucial importance if one wants to understand commatioa, because common
knowledge is often exactly what communication aims to a@hieEpistemic logic
with temporal operators has been applied to the analysistefriet communication
protocols and it has been used in formal specifications ofiragent systems (Fagin
et al, 1995; Meyeret al, 1995). There are also dynamic epistemic logics, where
change is not modelled by the passage of time, but with upajagéeations. These
logics were developed specifically to analysmngeof higher-order information. It
has been a very active research field in the past years (R1838; Gerbrandgt al,,
1997; Gerbrandy, 1998; Baltag al,, 1999; van Ditmarsch, 2000; Baltag, 2002; Kooi,
2003; van Ditmarscht al,, 2003; Baltaget al., 2004; Renardel de Lavalette, 2004; van
Benthemet al, 2006).

In epistemic logic, the information the agents have is miedddy Kripke models.
In dynamic epistemic logic, information change is modelbydmanipulating these
Kripke models. The focus has mostly been on information ghatue to communi-
cation. One of the characteristics of communication isitrddies not change the bare
facts of the world, but only the information agents have alfoeiworld and each other.
Hence, the issue of information change due to changes & et mostly been left
out of consideration. Notable exceptions are papers by fdehde Lavalette (2004)
and van Ditmarsclet al. (2005b). In this paper, updates where the bare facts of the
world can change are studied alongside updates that moaehaaication.

The focus in this paper is not on full-fledged dynamic epistelogics with op-
erators for complex communicative updates. Instead thesfteon the simple case
of public updates events where all agents get the same information and whége i
common knowledge (among all agents) that they get the saiomriation. Such pub-
lic updates can be of two forms: communicative or fact chaggm he technical term
for the former ispublic announcemergnd for the latter | use the terpublic sub-
stitution Public announcements are public updates where all thetagemmonly
receive the information that a certain formula is true. la femantics the effect of
a public announcement is modelled by adapting the model thathall the worlds
where that formula is false are no longer considered pasdiplthe agents. This
was first introduced by Plaza (1989) and independently bypaaedy and Groeneveld
(1997). Public substitutions are public updates wheréalbigents commonly receive
the information that the truth value of a certain proposidbvariable has changed
to the truth value of a (possibly) complex formula. In the aatits the effect of a
public substitution is modelled by adapting the model sinet after the substitution
the propositional variable is true in those worlds whereciiaplex formula was true
before the substitution.

A logic with both these kinds of operators was introduced by Ditmarschet
al. (2005b), but the issues of axiomatisation and expressiviise not addressed in
that paper. This led to the investigations reported in tkesemt paper, concerning the
axiomatisation and expressivity of a whole range of logith these operators. As it
turns out, the logic introduced by van Ditmarsathal. (2005b) is more expressive than
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the logic without public substitutions. Based on the obagown that its expressivity is
equal to the logic ofelativised common knowledgethe present paper a sound and
complete axiomatisation is obtained.

In Section 2, the languages and semantics of the logics tldierstudied are in-
troduced. In Section 3, | prove general theorems about sgjity and completeness
via so-called reduction axioms. In Section 4, these resutsapplied to the logics
introduced in Section 2. A case of special interest is stlidaparately in Section 5.
In Section 6, conclusions are drawn and directions for &rtesearch are indicated.

2. Languages and semantics

We introduce a number of logical languages and their sestitat will be stud-
ied in this paper. Relativised common knowledge is alsmthiced, because it will
turn out to be quite important when we look at the expressafiepistemic logic with
public announcements, substitutions, and common knowledgse the style of nota-
tion from propositional dynamic logic (PDL) for modal opeyes which was also used
by van Benthenet al. (2006).

DEFINITION 1 (LANGUAGES). — Let afinite set of agentd and a countably infinite
set of propositional variable® be given. The languag&’apscr is given by the
following Backus-Naur Form (wherg are formulas,a are modalities, andr are
public substitutions):

o = plop | (eAe) | [ale
a == alpl|o| B | (B?)"
o u= pi=¢ | p=po0

wherep € P, a € A, andB C A. Besides the usual abbreviatiofi3], will be used

as an abbreviation of\ ,. z[a]y. Only substitutiong such that any propositional
variable p occurs at most once on the left side of:a"are considered. In this way

o can be seen as a finite, and hence patrtial, function from psitipmal variables to
formulas. By abuse of language, | usép) to refer to the formula assigned foif

p € dom(o), and to refer top otherwise. Various sublanguages will be considered,
whereq is restricted. The subscripts & below indicate whetheAgents Public
announcement$SubstitutionsCommon knowledgeor Relativised common knowl-
edgeare included. For instance? 4 s i is the language with agents, substitutions and
relativised common knowledge.
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The non-standard expressions in the definition above aceaz#ollows:

[a]p Agenta knows thatp.

[Blp Everybody in groupB knows thatp.

[p]e) 1 is the case after the announcement that

[o]e v is the case after the substitution

p:=,q:=1 pchanges tgp and simultaneously changes ta.
[BT]p @ is common knowledge among the members of

groupB.
[(B;?p) ] 1 is common knowledge among the members of
group B relative top.

The most difficult of these is relativised common knowledgae can understand it in
the same way one can understand ordinary common knowlegdgecbmmon knowl-
edge if everyone knows thatis common knowledge” is a way of explaining what it
means that something is common knowledge. The circulafitiis explanation can
be understood as a fixed point construction. In the same wayaweharacterise rela-
tivised common knowledgeis'is common knowledge relative bif everyone knows
that if ¢, theny is common knowledge relative 0.

Logics with substitution operators have been studied leefddne of the epis-
temic actions considered by Baltag (2002) is a ‘flip’ actiamere the extension of
a propositional variable (the set of worlds in which the &bk is true) changes to its
complement. Renardel de Lavalette (2004) considers marergkechanges of truth
values where the extension of a propositional variable ¢emge to the extension
of an arbitrary formula, but this logic does not contain a coon knowledge opera-
tor. Simultaneous substitutions were added to action nsdaeVan Eijck (2004), and
actions models with substitutions were adopted in the laficommunication and
change (LCC) by van Benthem et al. (2006). Here they areestiati modal operators
in themselves. One might expect that simultaneity addsessprity, yet it does not
make a difference in terms of expressivity (see Section dyéver, simultaneity does
allow more succinct formulas.

Although the terms ‘knowledge’ and ‘common knowledge’ ased, | also con-
sider belief and common belief. In fact the semantics giveliows is more suited for
the case of belief. The results below also apply to the gémeoaal case, where
these operators do not even have an epistemic or doxagipiatation. In order to
keep things simple | only use the terms ‘knowledge’ and ‘camrknowledge’. The
language is interpreted in multi-agent Kripke models.

DEFINITION 2 (MULTI-AGENT KRIPKE MODELS). — Let a finite set of agents
A and a countably infinite set of propositional variablBsbe given. A multi-agent
Kripke model)M is a triple (W, R, V') such that

— W is a non-empty set of worlds,
— R: A — o(WW x W) assigns an accessibility relation to each agent
- VP — p(W) assigns a set of worlds to each propositional variable.
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A multi-agent Kripke model/ with a distinguished worldy € W is called a pointed
model(M, w). Below we will also refer to pointed models as models.

The accessibility relation assigned to an agent in thesesiadslinterpreted epis-
temically: (w,v) € R(a) indicates that ifw is the actual world, then ageatcannot
rule out that world is the actual world on the basis of its information.

Since the results below do not depend on whether the acdiggiblations be
reflexive, transitive, or euclidean, these extra requirgsare not imposed. The lan-
guage is interpreted in pointed models, where the distsigpd world is taken to be
the actual world.

DEFINITION 3 (SEMANTICS). — Let a multi-agent Kripke modélM, w) with M =
(W,R,V) begiven. Lett € A, B C A, andp, ) € Lapscr.

(M, w) =p iff weV(p)

(M, w) =~ f(M,w) i

(Mow) =pnw it (Mw) = pand(M,w) = ¢

(M, w) |= [a]p iff (M,v) = ¢ forall v such thatw,v) € R(a)
(M, w) = [p] it (Me,w) =

(M. w) = ol it (M7 w) =

(M,w) = [BT]p iff (M,v) = ¢ forall v suchthatw,v) € R(B)*
(M,w) = [(B;?¢)" ]y iff  (M,v) =« for all v such that

(w,v) € (R(B) N (W x [¢] )"

The updated model/¥ = (W, R¥, V) is defined by restricting the accessibility re-
lations to those worlds wherg holds. [¢],, denotes the setv € W|M,v |= ¢}.
Now

R¥(a) =det R(a) N (W x [] ) (= {(w,v) € R(a) | (M,v) = ¢}).

The updated modél/® = (W, R, V?) is defined by changing the valuation accord-
ingly.
V7 (p) =det [0 ()] as

In the clauses fofB*]y and[(B;?¢)*]y we useR(B) to denotel J,. z R(a) and
the superscript+ denotes the transitive closure. (The transitive closura bfnary
relation R is the smallest transitive relation that contaiRs)

A formulay is a tautology iffy is true in all models:(M, w) |= ¢ for all (M, w).
This is denoted ajs= ¢.

The semantics differs a little from the semantics given by Zetmarschet al.
(2005b), where only the S5 case was considered. In ordeegepre S5 under public
announcements it was required that the announced formtriagsotherwise the an-
nouncement cannot be executed, &¥a) = R(a) N ﬂ@]]?w. Definition 3 provides
the semantics for the general modal case where the publat@paerely restricts ac-
cess to the worlds whergis true, butp may be false in the actual world. In a belief



236 JANCL —17/2007. Belief revision and dynamic logic

setting, a public announcement represents the event winergents simplyakethe
information to be true, even though they may be wrong.

Many performative speech acts classified by Austin (196 2xascitivesare ex-
amples of public substitutions. For example:

1) You're disqualified.

2) | choose George.

3) You're fired.

4) | sentence you to death.

5) I pronounce you husband and wife.

When the sentences above are uttered in the right circuoegtatineir utterance makes
them true. So, all these examples could be expressed in giceldanguage ag':=

T’ (or as ‘p := L’). Such performative speech acts cannot be modelled ascpubl
announcements. Public announcements, considered ahsmeccould be classified
asexpositiveswhere the utterance of a sentence merely informs the éstehat the
sentence is true.

The following is another simple example of a public subsitt. Suppose there
are two agenta andb in a room. Agent is blind, and can therefore not see whether
the light in the room is on. Ageritis not visually impaired, and can therefore see
whether the light is on. All this is common knowledge among #igents. Lep be
the proposition ‘the light is on’. Suppose that now the lighitch is flicked. Neither
agentis deaf and this is also common knowledge among bottiado, it is common
knowledge among the agents that the substitution= —p’ has occurred. Ageni
still does not know whether the light is in fact on or not, boed know that the truth
value ofp has changed. Agertdoes know whethep. This public substitution is
illustrated by Figure 1. This example shows that one mighitwa substitute using
complex formulas rather than justor L. It is also clear that if more than one fact
changes at once, then one wants to model this using simoliarsibstitutions.

Figure 1. Two Kripke models: the left one represents the situationreehe public
substitutionp := —p; the one on the right represents the situation after the jgubl
substitutiorp := —p. A world wherep is true is represented by a solid bullet. A world
wherep is false is represented by an open bullet

As a final example of how public substitutions can be usedsiden the Sum and
Product puzzle. Mr. Sum and Mr. Product do not know the legthidth of a room.
They do know that these are natural numbers between 2 anddRbairthe length is
at least as large as the width € w <1 < 99.) The sum of these numbers is given
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to Mr. Sum, and their product is given to Mr. Product. All ticcommon knowledge
among Mr. Sum and Mr. Product. Now the following convergatakes place:

Mr. Product: | don’t know the numbers.

Mr. Sum: | knew you didn’t know. | don’t know either.
Mr. Product: Now | know the numbers.

Mr. Sum:  Now | know them too.

The length and width of the room can be deduced from the digdyy an out-
sider! The original formulation and solution of the problem wasegivwy Freudenthal
(1969; 1970) in Dutch. The formulation above is by McCarth940). This problem
has been analysed usidgspc by van Ditmarsctet al. (2005a). The utterance ‘I
knew you didn’t know’ poses a problem for this approach. Thstpense cannot be
represented i¥, p. Van Ditmarsclet al. (2005a) solve this by noting that the first
announcement is superfluous given the second: the dialogyle just as well start
with Mr. Sum saying ‘I know that you don’t know what the numlage.” However,
such solutions are not generally available in all scenaviosre a past tense occurs.

In Z4psc there is a more natural way to represent past tenses (attipwguld
be quite unsatisfactory to a linguist). Suppose that afteannouncement that one
learns that) was the case before the update. The formula

[p := ¥llgllplx

wherep does not occur inp, ¢ or x, expresses this. It is as if the truth valueyof
has been put into an envelope before the update, and theopevislopened publicly
afterwards, thereby making it common knowledge what thetmith value ofy is.
Using this general approach one could show with the sengoficZs psc that the
adaptation of the scenario proposed by van Ditmaeset. (2005a) is indeed correct.
Another approach to announcements involving the past ists@xtend the language
with temporal operators. This is investigated by Yap (2006)

3. Reduction

In the completeness proofs of many of the logics introdune®kiction Zeduction
axiomsplay an important role. A typical example of a reduction axis

[pllaly < [a](¢ — [p]¥)

This is called a reduction axiom because going from the Iethe equivalence to
the right the complexity of the formula to which the announeat operator is ap-
plied reduces These reduction axioms also play an important role in tesabbout

the expressivity of the logics under consideration. If teduction can be continued

"Y9aMIY] puUR INOoJ 818 SIaquinu ay |
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depending on the logical form af until no announcement operators remain, one can
show that the language with announcement operators isgust@essive as the lan-
guage without them. The method of proving completeness qudl @xpressivity for
dynamic epistemic logic using reduction axioms has beed osy times in the lit-
erature (Plaza, 1989; Gerbrandy, 1998; Ba#tgl., 1999; van Bentherat al.,, 2006).
Here we provide a uniform setup, that provides such a geperapective on reduc-
tion axioms that it can be applied to many logics. In thisisect provide this general
method, which is applied to the logics under consideratioBéction 4.

The general setup is given by two logical languagésand %, such that¥; is
a sublanguage of%. The only difference is that’, contains additional operators.
In order to show that the languages are equally expressigeneads to be able to
translate each formula from %, to an equivalent formula in .#;. This translation
procedure is captured by the reduction axioms. These axioahep andy provably
equivalent. In this way one can obtain completenessApria completeness fo# .
After giving a general definition of reduction axioms in Sent3.1, | prove a general
theorem about expressivity and reduction axioms in Se@&i@nand prove a general
theorem about completeness and reduction axioms in Sexfion

3.1. Depth and reduction axioms

Reduction axioms allow one to reduce the depth of the forstalavhich the addi-
tional operators apply. In the proof of Theorem 10 (whichestaufficient conditions
for two languages to be equally expressive) three notiodgpth are needed, namely:
(ordinary) depth© depth, andD reduction depth. The main induction is on the
depth, and in the induction step of this proof another iniducon theO reduction
depth is embedded. The definition of a reduction axiom isrgiveterms of theO
reduction depth. Let us first define the notion of ordinarytbgpecisely.

DEFINITION 4 (DEPTH). — Let a logical language” be given. The depith: ¥ —
N is given inductively as follows:

d(p) =qef 0 if no logical operators occur ip
d(O(p1,---,¢n)) =det 1+ max({d(p;)|1<i<n})

where is somen-ary operator.

This is a very abstract way of looking at logical language. &ooncrete language
one has to specify what the logical operators are and whatatiy is. The language
ZLapscr contains formulas and other expressions. It is clear tbaipnstance, con-
junction is a binary operator. We take] to be unary operator. An announcement
operator is a binary operator. For instance in the formyla, the two arguments are
» andy. A substitution operatdwp| is an(n + 1)-ary operator, where is the cardi-
nality of dom(o): for instance a formula of the forip := ¢, r := ¢]x takesyp, ¥,
andy as arguments. Therefod[p := ¢, r := ]x) = 1 + max(d(p), d(¢),d(x)).
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A limit case would be a nullary operator. Since a nullary @p@r has no arguments
its depth is 1 (the maximum depth of formulas in the emptys6).

For the operators one wants to eliminate from the languagpeaial notion of
depth is needed, which indicates to what extent the extreatqrs are nested.

DEFINITION 5 (O DEPTH). — Let O be a set of operators i¥. TheO depth
Od : ¢ — Nis given inductively as follows:

Od(p) =gef 0 if nological operators occur inp
_ [ max({0d(¢) [ 1<i<n}))  fO¢O
Od(D(er; - n)) - =aer { 1+ max({0d(p;) | 1<i<n}) if0€O.

Below we will takeO to be the set of logical operators that occur only4h, i.e.
the language to be reduced. The third notion of depth isctétleO-reduction depth,
which indicates how complex the formulas are to which an routst O operator
applies.

DEFINITION 6 (O REDUCTION DEPTH. — LetO be a set of operators it. The
O reduction deptlOrd : . — N is defined inductively as follows.

Ord(yp) =qet 0 if no logical operators occur i
_ max({Ord(p;) | 1<i<n}) ifO¢O0
Ord(0(¢1, .-, ¢n))  =det { 1+ 57 d(er) f0co.

Note that in the second case of the second clause of this titafitihe ordinary
notion of depth is used. A general definition of reductionoaxs can be given in
terms ofO reduction depth.

DEFINITION 7 (REDUCTION AXIOMS). — Given are two language¥, and.%
such that¥; is a sublanguage o/, because?, contains more logical operators,
assembled in a set of operataps Areduction axionis a formula of the fornp «
such thatOrd(yp) > Ord().

Of course, such axioms are only useful if they are sound aedthof system
actually allows one to perform substitutions. The rule oraats to use in this case
is the rule ofsubstitution of equivalentsin a proof system this rule allows one to
infer from <« 1, thaty < x’, wherey’ can be obtained frony by substituting an
occurrence of by 1.

3.2. Equal expressivity via reduction
Let us clarify what it means for one logical language to beermxpressive than

another. Let us first distinguish thiehnessof a language from itexpressivity When
one language contains more logical operators than andfieeone language is richer.
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In many cases a new operator is added to enrich a languagedeetteere is an im-
portant concept that is not yet captured in the languages dbées not imply that
the expressivity is actually extended. When one languagenake more distinctions
in the class of models in which it is interpreted than anqgttieen the one language
is more expressive than the other. In propositional loggjudction is an important
concept. However, when one adds it to the language thatgliemtains conjunction
and negation it does not add any expressivity. Let us defipeesszivity formally.

DEFINITION 8 (EXPRESSIVITY). — Let two logical languages”, and.%, that are
interpreted in the same class of models be given.

— % is at least as expressive &, iff for every formulap, € % there is a
formulap; € % such thatp; andy, are true in the same models. This is denoted as
L = L.

— % and.%; are equally expressive if; = % and % = £. This is denoted
as? = %.

— 2 is more expressive that, iff £ = % and. % # £). Thisis denoted as
L = D

Note that this definition focuses on the expressivity of folas. One could just
as well focus on the expressivity of modalities and see whétdtions on the set of
worlds and on the class of models can be expressed. Here w&dodhe expressivity
of formulas.

The presence of reduction axioms for a set of operators stgjtfeat the language
with the additional operators is just as expressive as tigilage without them. In this
section and the next we will give very general conditionsamalhich the presence
of reduction axioms yields two equally expressive langsaa® general conditions
under which these axioms can provide a complete proof syfstetime richer language.
One of the conditions is that gets its usual interpretation, and that hence the rule of
substitution of equivalents is valid. The following lemnsauised in the induction step
of the main theorem regarding expressivity (Theorem 10).

LEMMA 9. — Given are two language$” and .%, such that%» is an extension
of % with a set of logical operator®. Moreover,.%, contains«. Given is also a
semantics for%, (and hence a semantics fof;) in some class of models. Finally a
setA of reduction axioms fo€ is given such that every formula which is not#j
has at least one subformujasuch that there is a formula andy < ¢ isinA. If the
reduction axiom#\ and the rule of substitution of equivalents are sound$er then
forall p € % with Od(p) = 1, there is a formula) € %, such that= ¢ + .

PROOF — Suppose tha®d(¢) = 1. The remainder of the proof is by induction
on Ord(yp). Suppos&@rd(y) = 0. Thereforep contains no operators i1, and so
p € 2. Since= p + ¢, we are done.

Suppose as induction hypothesis that for evesuch thaOrd(p) < n, thereis a
formulay € % such that= ¢ < 1.
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Suppose thabrd(p) = n + 1. Thereforep contains at least one formula of the
formO(x1, ..., xx) whered € O andOrd(O(x1, - - ., xr) = n+1. According to our

assumptiorid(x1, . . ., xx) has at least one subformula such that there is a reduction
axiom for it. But, since th& depth ofO(x1, ..., xx) equals 1 by assumption, the
only formula for which that can be true iS(x, ..., xx) itself. So there must be a

formulaé such thatd(x1,...,xx) < & € AandOrd(d(x1, ..., xx)) > Ord(€).
Now, the induction hypothesis applies§@nd therefore there is a formufa € .4
that is equivalentt@(x, ..., xx). Thereis such a formula for each subformulgof
which has the fornd(xy, . . ., xx) whereOrd(d(x1, ..., xx) < n+1. By repeatedly
applying the rule of substitution of equivalents one carawba formulay € .%;.
Since the reduction axioms are sound and the rule of sutistitof equivalents is
sound it follows that= ¢ « . [ ]

This lemma will be used in the induction step of the followthgorem.

THEOREM10. — Given are two language¥’ and.%, such that¥ is an extension
of % with a set of logical operator§). Moreover,.%, contains«s. Given is one
semantics for?, in some class of models. Given is a Aadf reduction axioms fo)
such that every formula which is not i#f; has at least one subformula such that
there is a formulayy andp < ¢ isin A. If ¢ + ¢, the reduction axiomé and
the rule of substitution of equivalents are sound. 6, then.#, and. %, have equal
expressivity.

PrROOF — Itis given that%, is a sublanguage of,. So it is clear thatz, > .Z.
In order to show that?; > % we have to prove that for every formujac %5, there
is a formulay € £, such that= ¢ < . We show this by induction on the depth.
If the O depth is0, theny € ;. ltis clear that= ¢ + .

Suppose as induction hypothesis that for everg % with Od(y) < n, then
thereis ap € % such that= ¢ + .

Suppose thaOd(y) = n + 1. Thereforep contains at least one subformula
of the formO(x1,...,xx) whered € O. For all x; it holds thatOd(y;) < n.
Therefore, by the induction hypothesis for eaghthere is a&; € % such that
E xi ¢ &. By repeatedly applying the rule of substitution of equaves one can
show that= O(x1,...,xx) < O(&,...,&). TheO depth of (&, ..., &) is 1.
Now by Lemma 9 there is a formutae ¢, such that= O(&, ..., &) < & Since

an arbitrary subformula gp was taken, one can repeatedly apply the rule of substitu-
tion of equivalents and find a formulaih € ., such that= ¢ < . [ |

3.3. Completenessvia reduction

In the previous section it was shown how reduction axiomshmmnsed to show
that two languages are equally expressive: for every foarimihe one language there
exists an equivalent formula in the other language. Thefpridoreduction axioms
was quite constructive. Given a set of reduction axioms @refmd an equivalent
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formula in the poorer language in a systematic way by repbaseibstituting subfor-
mulas according to reduction axioms, all the time decrepie O reduction depth.
Therefore if the reduction axioms and the rule of substitudf equivalents are added
to a complete proof system for the poorer language, onerabtéatomplete proof sys-
tem for the richer language, because the reduction can n@xptace within the proof
system. In this way provablyequivalent formula is found. The proof of completeness
is quite similar to the case of expressivity.

THEOREM11. — Given are two language%) and.%, such that%; is an extension

of £, with a set of logical operator§). Moreover,.%, contains«s. Given is one
semantics fors, in some class of models. Given is a Hilbert style proof sy$tém
which is sound and complete f&f; with respect to the given semantics and class of
models. Given is a sét of reduction axioms fo© such that every formula which is
not in %, has at least one subformulasuch that there is a formulaé andy +

is in A. If the proof systen®S + A together withy ++ ¢ and the rule of substitution
of equivalents (which we also refer to 8 + A) is sound for.%, then it is also
complete for%s.

PROOF — Analogous to the proof of Theorem 10, we can show that byef@ry
formulay € %, thereis aformula) € ., such that-ps,a ¢ < 1. The proof is by
induction onOd(y), where the induction step is an induction ©nd(y). We do not
provide details.

To prove completeness, suppose teap for a formula in%. Thereis a) € %
such that-ps1a ¢ « 1. By the soundness &S + A it follows that|= ¢. By
completeness fa#; of PS it follows thattps 4. Since a proof irPS is also a proof
in PS + A, it follows thatkps, A 1 as well. By the rule of substitution of equivalents
it follows thatkpsa . [ |

4. Reducing public updates

In this section | will apply the results obtained in the pms§ section to some of
the logics that were defined in Section 2. In order to applydselts we need:

1) semantics for the relevant sublanguagesafscr,

2) sound and complete Hilbert style proof systems for theveeit sublanguages
of Zapscr,

3) soundness of the rule of substitution of equivalents, and

4) aset of reduction axioms.

The semantics for the entire languagé pscr has been provided in Section 2, and
thereby also for all its sublanguages. Fortunately, tleeditire provides Hilbert style
proof systems for the logics without public updates. Segi(ret al., 1995; Meyelet
al., 1995) for systems faZ, and.Z1¢, and see (Kocét al., 2004) for a proof system
for Z4r. So all that remains to be shown is that the rule of substitutif equivalents
is sound. Moreover, we need to provide a set of reductionnagi@specially for the
public announcement operafar] and the substitution operatfor].
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Let us briefly discuss the earlier completeness and expitysgsults regarding
these logics. Plaza (1989) introduc&t p and provided a sound and complete proof
system for it. Indeed Plaza used reduction axioms and shtveed’y and. %, p are
equally expressive, thus obtaining an easy completenesd pia completeness for
£4. The fact thatZ,¢ is more expressive tha®’, is folklore. A complete proof
system for.Z 4 was obtained by adapting the results on propositional dynkmic,
of which the most readable completeness proof is considerkd Kozen and Parikh
(1981). Baltaget al. (1999) showed, contrary to what was expected given Plaza’s
result, thatZ4 pc is more expressive tha®’ . This makes a completeness proof
for Z1pc much harder, and one cannot make do with just reduction axioret a
proof system forZ, pc is provided by Baltaget al. (1999). Kooi and van Benthem
(2004) provided a complete proof system & i, also based on the paper by Kozen
and Parikh (1981), and it was shown th#h r and_Zapr are equally expressive by
reduction axioms. It was established tii4f ; is more expressive tha#fy pc by van
Benthemet al. (2005). These results are shown in Figure 2 together witmtve
results obtained in this section.

All the new results regarding expressivity and completeradsthese logics ex-
cept completeness fa¥s psc (see Section 5) will be dealt with using the following
reduction axioms.

DEFINITION 12 (REDUCTION AXIOMS). —

U](@Aw) ([l A [o]¥)
< [a][o]e
U][Bﬂso ;—> (BT [0l

1) [¢lp < p

2) [p]=% < [y

3) so](w/\x) (Il A [elx)

4) [pllaly < [a ](90 = [pl)

5) [l[(B; 7)) T ]x & [(B; ?( A [p]) Hwlx
6) [o]p < a(p)

7)

8)

)

oll(B; 7) "¢ & [(B; ?[o]e) Flo]e
B+]<ﬂ < [(B;?T) e
(B; 7)Y & [p:=y][¢][BT]p wherep does not occur irp.

[
[
[
[
[
[
{U]_“P < —oly
[
0) [
[
[

Although these axioms are called reduction axioms, theyareeduction axioms
in themselves, but, following Definition 7, only relative $ome set of logical oper-
ators. Indeed, in some cases (such as in the proof systet@fet) they cannot
be construed as reduction axioms. Below it will be clear thahe proper context
they are reduction axioms for their leftmost logical opera®ne can immediately see
that, in that case, th€® reduction depth is strictly less on the right hand side of the
equivalence. Axioms 1, 6, 12 and 13 are unlike the other mimluexiom in that they
directly reduce th&® depth (thereby reducing th@ reduction depth). Axioms 1 and
6 might well be dubbed elimination axioms, since there islease modal operator on
the right hand side. Remember that in axiom 6 we abuse theidayggsuch that(p)
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refers to the formula assigned paf p € dom(s), and to refer tg otherwise. One
might say axioms 12 and 13 are translation axioms, becals@tops are replaced.
Thatp does not occur irp is called afreshness conditiarThis kind of condition also
occurs in the axioms for quantifiers in first order logic. ld@rto apply the theorems
of the previous section, it needs to be established tha¢ tnxeéesms are sound.

LEMMA 13. — All reduction axioms are sound.

PROOF — For the soundness of reduction axioms 1-4 | refer to PI&289). For
the soundness of reduction axiom 5 | refer to Kooi and van Bamt(2004). In all the
proofs below we use the semantics provided in Definition 3.

6) (M,w) |= [o]p iff (M7,w) |= p. The latter is the case iff € V7 (p). This is
the case iff{ M, w) |= o(p).

7) (M,w) [ [o]-¢ iff (M7,w) = —¢. The latter is the case iffM 7, w) [~ ¢.
This is the case iffM, w) [~ [o]p, which is equivalent td M, w) = —[o]e.

8) (M,w) = [o](¢p A) iff (M7,w) = (¢ A ). The latter is the case iff
(M°,w) E ¢ and (M°,w) E v, which is equivalent taq M,w) = [o]¢ and
(M,w) = [o]. This is equivalent td M, w) [= [o]p A [o].

9) (M,w) [ [o][ale iff (M7,w) [= [a]e. The latter is the case ifM 7, v) = ¢
for all v such thatw, v) € R(a), which is equivalent tg)M, v) = [o]¢p for all v such
that(w,v) € R(a). Thisis equivalentt¢M, w) = [a][o]e.

10) (M,w) E [o][BT]p iff (M7,w) E [B*]e. The latter is the case iff
(M?,v) | ¢ for all v such thatw,v) € R(B)", which is equivalent t4M,v) =
[o]¢ for all v such thatw, v) € R(B)*. This is equivalent t¢ M, w) = [BT][o]ep.

11) (M, w) |= [o][(B;?¢) "¢ iff (M7, w) = [(B;?¢)*]¢. The latter is the case
iff (M7,v) | v for all v such that(w,v) € (R(B) N (W x [¢],.)", which is
equivalent ta(M, v) |= o]y for all v such tha{w,v) € (R(B) N (W x [[a]e] )T
This is equivalent td M, w) = [(B; ?[o]e) " ][o]).

12) Notethat?(B) C (W xW) and tha{T] = W. ThereforeR(B)* = (R(B)N
(W x [T])*T. (M,w) E [BT]piff (M,v) = ¢ forall v such tha{w,v) € R(B)™".
Given the observation above, the latter is equivalerifitov) = v for all v such that
(w,v) € (R(B)N (W x [T]))*. Thisis equivalent t§ M, w) = [(B;?T)"]e.

13) Sincep does not occur inp, the substitutiorp := ¢ does not affect the
extension ofp. Therefore[y],, = [¢lym=e. SO (M,w) E [(B;?¢)T]y iff
(M,v) [= ¢ for all v such that(w,v) € (R(B) N (W X [¢]—+))". Note that
the relation(R(B) N (W x [¢]»—+))" is identical toR¢(B)*. Note also that
= ¥ [p = Y]p. Therefore(M,w) &= [(B;?) 1w iff (M,v) [ [p == ¢]p for
all v such that(w,v) € R¥(B)*, which is equivalent td M=% v) |= p for all v
such thatw,v) € R¥(B)T. This is equivalent t M?=¥ w) |= [][B*]p, which is
equivalent toq M, w) = [p := ¢¥][][BT ]p. [ |

Note that the rule of substitution of equivalents is soundafbthe logics under
consideration.

LEMMA 14. — The rule of substitution of equivalents is sound.
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The proof of this lemma is left to the reader. It is not thafidifit to show that this
rule is derivable irK (see Hughes and Cresswell (1996, p.32)). The lemma follgws b
the soundness of the proof systems. It is also possible te 8tat this rule is derivable
in all the systems we are going to consider (if we have netztigsi and distribution
for a), but since this would distract from the main line of the papee just add it to
the proof systems.

4.1. Expressivity of public updates

Now that the soundness of the reduction axioms and the rusalodtitution of
equivalents is established, it is easy to obtain expragsesults for a great number of
logics using the reduction axioms. See Figure 2 for a grafg@gcesentation of these
results together with previously established results.

In this paper only the equal expressivity of languages isatly shown. The fact
that some languages are more expressive than others fdlomsthese new results
combined with previously obtained results.

THEOREM15. —

l) .,%A Epr EgAsEfAPS

2) Lac = ZLasc

3) Lar = ZLapr = ZLaSrR = ZLarsr = Lacr = Lascr = LApcrR =
ZLAPSCR = ZLAPsc

PrROOF — Inall three cases above Theorem 10 applies. We have orensiesifor

Zapscr, and all languages under consideration are sublanguagesve¢ already
showed that all reduction axioms are sound as well as thefoulsubstitutions of
equivalents (Lemma 13 and 14). All that remains to be showimeisfor each formula
in the richer language which is not in the poorer languageetieea subformula for
which there is a reduction axiom.

1) To see thatZs = Zap, let the set of reduction axiom be reduction ax-
ioms 1-4 of Definition 12. It is easy to see that each formul&np that is not in
£, contains a subformula for which there is a reduction axiomimermost nested
occurrence of an announcement operator precedes a forrhidh i8 either a propo-
sitional variable, a negation, a conjunction, or a knowkefigmula. For each of these
cases there is a reduction axiom. Therefore, by Theoren¥’k0= Lap.

To see that?s = Zas, let the set of reduction axioms be reduction axioms 6—

9 of Definition 12. Again, it is easy to see that each formuladhs that is not

in £, contains a subformula for which there is a reduction axionher&fore, by
Theorem 10,24 = Zas.

To see thatZy = Zaps, we simply take the union of the sets of reduction axioms
above. Now one simply takes one of the innermost nested wwmas of a substitution
or a public announcement operator to see that every formul&ips which is not

in £, contains a subformula for which there is a reduction axionher&fore, by
Theorem 10,24 = Zaps.
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ASCR APSCR
AN /
ASR APSR

Figure2. An arrow S — T indicates that?y is more expressive tha#s. A double
arrow S «» T indicates thatZs is equally expressive agr. The dashed arrows
indicate previously established results. The black arrowlécate new results. For the
sake of readability all reflexive arrows are omitted and nbtansitive arrows are
shown. The differently shaded areas indicate the equicaletasses. The lighter gray
the area is, the more expressive the languages in it are

2) Here we take reduction axioms 6—10 of Definition 12. Fronedrem 10 it
follows that-Z4- = Zasc by similar reasoning as above.

3) To see thatZar = ZLapr = Lasr = ZLapsr is completely analogous to
the caseZy = Lap = Las = Laps, except now axioms 5 and 11 of Definition 12
are used as well.

Using axiom 12 of Definition 12 it can be shown thely g = ZLacr, that Lapr =
Zapcr, thatLasgr = Lascr, and thatZspsr = Laprscr.

To see thatZ, psc also belongs to this set of languages, observe that it cahdvers
thatZapsc = Zapscr With axiom 13 of Definition 12. [ |

The most surprising of these results is théir = ZLapsc. The logic of rela-
tivised common knowledge was introduced in (Kebal,, 2004) for a rather technical
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reason. The aim was to have a reduction axiom for public amcements and com-
mon knowledge. Now it turns out to correspond to a quite r@togic.

From Theorem 15 together with earlier results, it followatttf s psc < ZLapc,
sinceZar < Lapc andZLir = Zapsc. As can be seen in Figure 2 this is the only
case where adding public substitutions to a language extgmexpressive power.
This is also quite surprising.

As an aside, observe that the substitution in translatidonaxX 3 is just one sub-
stitution, i.e. we do not need to change more propositioagaables simultaneously.
This raises the question whether one can just make do witfesgubstitutions. This
is indeed the case. Consider the schéme= ¢, o]y < [q := ¢][o][p := ¢]v where
g does not occur iffo]y. This formula is a tautology, and allows one to show that
simple substitutions are equally expressive as simultaneobstitutions.

4.2. Completenessfor public updates

There are two problems for a direct approach to proving cetepkss for update
logics: modal logics with update operators are notmal modal logic$ and modal
logics with a transitive closure operator (such as (reilsgid) common knowledge) are
notcompacti.e. it is not the case that an infinite set of formulas iss$iatble, if every
finite subset of that infinite set.

Modal logics with update operators are not normal becausette of uniform
substitution is no longer sound. This rule allows one to stute a propositional vari-
able for an arbitrary formula uniformly. The idea behindfonin substitution is that if
a formula is a tautology, then it is true in every model no eraithat the extension of
the propositional variables in the formula is. Therefore can uniformly substitute
a propositional variable for a complex formula, which alss la certain extension.
In public update logics propositional variables play a &gdaole. Their truth value
is not effected by public announcements, although the tralhe of complex formu-
las can be effected by them. Examples of such formulas acalged unsuccessful
updates formulas that become false by their announcement (Gedyra®98; van
Ditmarschet al, 2006), a concept closely related to Moore’s paradox. Clemsi
the tautology[p][a]p. If we replacep with (p A —[a]p) the result is the formula
[(p A =[a]p)][a](p A —[a]p). This is not a tautology. Hence the uniform substitution
is unsound in this case. In the case of public substitutiopgsitional variables also
play a special role. Only the extension of propositionalalzles can be changed di-
rectly, not of complex formulas. Moreover, given that théeesion of a propositional
variable can be set to the extension of a complex formula hybkéigsubstitution, the
extension of propositional variables cannot be seen ag laghitrary within the scope
of a public assignment. Consider the tautoldgy= T]q + ¢, wherep andq are

2. See of Hughes and Cresswell (1996, p.25) or Blackbuai. (2001, p.33) for the definition
of normal modal logics.
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different propositional variables. If we replag&vith p, we getp := T]p « p, which

is not a tautology. So, the rule of uniform substitution iscalinsound in this case.

General methods for proving completeness for a modal logigeared towards nor-

mal modal logics (for example Blackbuet al. (2001)). Therefore one cannot apply
these methods directly to dynamic epistemic logics.

The other difficulty in providing completeness results fityrfamic) epistemic log-
ics, is that when (relativised) common knowledge is in theglaage, the logic is no
longer compact. Therefore one cannot easily construct andea model where the
worlds are maximal consistent sets of formulas, becausaibccur that an infinite set
of formulas is consistent, but not satisfiable. This probéso occurs in propositional
dynamic logic, where it is solved by making a finite canonizaldel, depending on
the particular formula one is interested in (Kozgral, 1981). In this way only weak
completeness is attainéd One can adopt a similar method for dynamic epistemic
logics with common knowledge, as was done by Battbgl. (1999).

Compared to a direct approach to completeness for dynarnsteagc logics, an
approach with reduction axioms is much more straightfodwaknd given the gen-
erality of the approach we can easily deal with many loginsuianeously. We will
reduce the logics under consideration to three base laeguafy, Lac and Zarg.
As we remarked earlier, for these there are known compldteeHistyle proof sys-
tems. Table 1 shows which reduction axioms for the additioparators should be
added to which base system. The numbers refer to the redwtioms in Defini-
tion 12. The extensions that are not considered are lefkblan

Table 1. The table indicates which reduction axioms are to be addéetdase proof
systems

P S c
L 1-4| 6-9
Zac 6-10
Zar | 1-5| 6-9,11| 12

THEOREM16. —

3. Strong completeness of a proof systefhwith respect to a class of framésis the property
thatT' =r ¢ implies thatl’ Fps ¢ for every set of formulag® and every formulap. This
generalises weak completeness, wHeis empty.

4. The cell in the upper right of the table is left blank, besmadding common knowledge_ 64
yields Zac, which is dealt with in the second row. The cell below is ldétrtk because adding
common knowledge to a language that already contains conkmonledge does not make a
difference. The cell in the middle left column of the tabldaf blank because adding public
announcements to the language with common knowledge,sy&ldore expressive language,
which can therefore not be dealt with using reduction axioms
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1) The proof system fa#’4 together with the appropriate reduction axioms from
Table 1 and the rule of substitution of equivalents is cotefler £ 4 p, for £as and
for Laps.

2) The proof system fa#4 - together with reduction axioms 6—10 and the rule of
substitution of equivalents is complete &1 5.

3) The proof system fa#4  together with the appropriate reduction axioms from
Table 1 and the rule of substitution of equivalents is cotepler Zapr, -Lasr,
ZLApSRy LACR, LAPCR, LAscr, ANALapscr.

PROOF — In order to prove all these results Theorem 11 is appliece aeady
showed that all the reduction axioms and the rule of sultistitiuof equivalents are
sound. From the literature, complete proof systems#ar £ and_Z4r were ob-

tained. In the same way as was shown in the proof of Theoremd 6an show that in
each case a formula in the richer language contains a subfatmwhich a reduction
axioms applies. Therefore by Theorem 11 all the proof systera complete. W

5. A complete proof system for Z4psc

The only new result that cannot be obtained using the reslu@kioms given
in the previous section is a complete proof system_#{psc. In the proof that
Lar = Zapsc | showed thatZapsc = ZLapscr Where Zapscr Was reduced
to Lapsc. SinceZapscr also reduces tdZ, g it followed that.Zar = Zaprsc.

S0 . Zapsc wasnot reducedo %4 r. Such a reduction is in fact impossible, since
neither language is a sublanguage of the other. This exdegde to a more general
question how one might obtain a complete proof system forlamguage by using a
known proof system for an equally expressive logic, buthegiis a sublanguage of
the other. In Section 6 we return to this question. In thisiseave solve a particular
problem of this kind.

A complete proof system fa?4 psc can also be constructed based on the ob-
servation thatZs psc is equally expressive a¥4r. The way to do it is as follows.
There is a complete proof system f&f, that is also complete faZ4pscr if it
is extended with the appropriate reduction axioms. Theedifice between the lan-
guageZapscr and Z4psc is that the latter does not contain relativised common
knowledge, but there is a reduction axiom for it (reducticiom 13). The idea is
that if we apply this reduction axiom to the proof system f6f ps-r we obtain a
complete proof system fo#4 psc. In other words, we lefp := 9][¢][B]p play the
role of [( B; 7¢) "]y and thus adapt the proof system f#ty pscr. Every occurrence
of [(B; ?¢) v is replaced byp := 9][¢][B*]p and the freshness pfis set as a side
condition. In this way the following proof system preseisgif.

DEFINITION 17. — The proof systemPAPSC consists of reduction axioms 1-4 and
6-9 from Definition 12 together with the rule of substitutimhequivalents and the
following axioms and rules.

1) all instantiations of propositional tautologies
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2) [al(p = ¢) = ([ade = [a]¥)
3) [p=4][Pl[B*lp ¢ [Bl(p = (¥ A [p:=4][¢][B*]p))
wherep does not occur irp.
4) [p:= (¥ = [Bl(¢ = ¥))][¢l[BT]p = ([Bl(¢ = ¥) = [p:= ¥][¢][BF]p)
wherep does not occur irp.
5) [¢llp = YIIXI[BFIp ¢ [p = [lY][v A [P]X][BT]p))
wherep does not occur irig]e.
6) [o]lp := Ll[YI[B*]p «> [p := [ole]l[o]4][BT]p))
wherep does not occur irfio]i.
7) [BTlp  [p:=][T][B"]p

8) Fromy andy — 1, infer
9) Frome, infer[a]e

Axioms 3 and 4 look really difficult, but close examinatioveals that they are
direct translations of the mix axiom and the induction axi@mrelativised common
knowledgé respectively. Axioms 5, 6 and 7 are direct translations efréduction
axioms 5, 11 and 12 from Definition 12 respectively.

THEOREM 18 (COMPLETENESY. — Foreveryp € ZLapsc if = ¢, thenFapsc ¢.

PROOF — Suppose= ¢, wherep € Zspsc. This formula is also inZ4pscr.
Therefore, by Theorem 16, there is a proof of this formulahi@ proof system for
ZLapscr using the proof system faf’sr with the appropriate reduction axioms.
With the proof system forZspsc one can simulate this proof by replacing every
expression of the forrf(B; 7)™ ¢ with [p := ¢][¢][BT]p. So, indeed-apsc . M

6. Conclusion and further questions

In this paper dynamic epistemic logics with public annoumeats and public sub-
stitutions were studied. With these logics one can studgapacts and model other
kinds of public information change, including learninganfhation about the past. The
focus of this paper is mainly on completeness and exprégsia reduction axioms.
The general method given in Section 3 can actually be apmiether logics outside
the field of dynamic epistemic logic as well. The results ict®® 5 suggest that the
method could also be extended to cases where one is presdétiidtiree languages
2, % and %, where., C % and.% C %3, and there are reduction axioms to
reduce; both to.%, and.%. If a complete proof system is available for o, a
complete proof system fa#, can be obtained by applying the reduction axioms for

5. The mix axiom and induction axiom are the following:

[(B;7¢) ]v < [Bl(v — (¢ A[(B; 79) " ]¥))
[(B; 70)*1(4 = [Bl(v — ¢)) = ([Bl(¢ = %) = [(B; 7¢)"]9)

See also (Kooet al.,, 2004).
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% to the proof system far; extended with the reduction axioms that allowed the
reduction of.%; to .% .

The method of using reduction axioms seems related to worleion rewriting
systems, as is also indicated by Bal&t@l. (1999). Reduction axioms can be seen as
rewrite rules, and, interpreted in these terms Lemma 168sthgat the term rewriting
system terminates. In fact this follows from a general teeofrom term rewriting
that states that a term rewriting system terminates iffetesists a so-called reduction
order. The order induced by th@ reduction depth is such a reduction order. See
Baader and Nipkow (1998, p.102-103) for a definition of reiduncorders and the
theorem. The connection between reduction axioms and tewriting should be
further explored.

As the results show, the logi#s psc is really more expressive tha#fs pc. Re-
markably, this is the only example where the language withlipisubstitutions is
more expressive than the language without public subistitsit In all other cases the
expressivity remained the same. It is still the case howeasgethe examples in Sec-
tion 2 show, that it is very convenient to have these opesatothe language.

It would be interesting to study the relation between thedegresented in this
paper and the notion of update as it is studied in the field bébeevision (Katsuno
et al, 1992; Herziget al,, 1999), where the term ‘update’ is given quite a different
meaning than in dynamic epistemic logic. One receives tfeerimation that a formula
o has become true, and one has to adapt one’s informationtstateommodate this
information. In terms of the logics presented in this papehsan update can best be
conceived of as an announcement that some private sulmstih#s occurred of which
the postconditioris ¢. In dynamic epistemic logic, announced formulas are talen a
preconditionsof the announcements.

If one were to generalise the notion of substitution to idelyrivate substitution
and further enrich the language, it seems that the statefnentK x ¢ regarding
update$in the belief revision literature would correspondltd{c | [o]¢}][a]v)), i.e.
after you learn that the world has somehow changed suclptisatow true, you know
thaty). When it is assumed that this change is minimal, the corredipg formulation
would be[u{o | [o]p}][a]v), i.e. after you learn that the smallest change has occurred
such thatp has become true, you know that

This perspective shows that there are different questioesay want to answer
when the world changes.

— Given some preconditions and an action, what are the podittans?
— Given an action and some postconditions, what are the pdétans?
— Given some preconditions and some postconditions, whianaenable this?

Dynamic epistemic logic tries to answer the first questibeeéms that the approaches
to update in the belief revision literature try to answer Il question: a question

6. The expressiony € K * g indicates that) is in the knowledge bas& after it has been
updated withp.
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at the centre of computer science. Given an algorithmiclpropbone knows what
desired output is given the input, but not which algorithnpiements the transition.
The second question seems interesting from the point ofndistges. It is known

which program is running and what the results are, and on&olfagure out what the

initial conditions were. A systematic integrated accodratiithree questions certainly
seems worthwhile.
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