

 University of Groningen

Analysis of Architecture Pattern Usage in Legacy System Architecture Documentation
Harrison, Neil B.; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Harrison, N. B., & Avgeriou, P. (2008). Analysis of Architecture Pattern Usage in Legacy System
Architecture Documentation. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute
for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/60639e30-b542-41bc-b86b-0dba0175125d

Analysis of Architecture Pattern Usage in Legacy System Architecture
Documentation

Neil B. Harrison1,2 and Paris Avgeriou2

1 Department of Computing and Networking Sciences, Utah Valley State College,

Orem, Utah, USA, harrisne@uvsc.edu
2 Department of Mathematics and Computing Science, University of Groningen, Groningen, the Netherlands, paris@cs.rug.nl

Abstract

Architecture patterns are an important tool in

architectural design. However, while many
architecture patterns have been identified, there is
little in-depth understanding of their actual use in
software architectures. For instance, there is no
overview of how many patterns are used per system or
which patterns are the most common or most
important for particular domains. In addition, little is
known of how architecture patterns ay interact with
each other. We studied architecture documentation of
47 systems to learn about their architecture patterns.
Most systems had two or more architecture patterns,
and certain patterns were prominent in different
application domains. We identified several patterns
that are commonly used together, and are beginning to
learn how such combinations may impact system
quality attributes. This information can be used to help
designers select architecture patterns, can help people
learn both architectures and patterns, and can be
useful in architectural reviews.

1. Introduction

Architecture patterns are an established tool for
designing and documenting software architectures.
They are proven approaches to architectural design.
Numerous architecture patterns have been identified,
based on extensive experience with real systems.
Because the impact of patterns on software architecture
is so critical, it is important to understand better how
patterns are used in practice, in real systems. There are
several things it is important to learn:
How many architecture patterns are usually applied in
a system? Is there an optimal number of patterns and
what are the effects on the architecture?

Which architecture patterns are most commonly used,
especially in certain application domains? This can
help people understand which patterns to learn and
analyze. Architects that have experience in certain
domains usually know the most appropriate patterns
for that domain even if it is only implicitly. However it
is important to make this knowledge explicit: to map
the patterns to the domains they are most frequently
used, and to reason about this mapping.
How can patterns help us understand the impact of an
architecture on the system’s quality attributes? The
consequences of individual patterns are in general
documented but combinations of patterns make the
impact more complex; which pairs are important?
Grady Booch has collected architecture documentation
of many software systems [5]. This forms a rich library
of diverse systems, representing many different
domains. We analyzed the architecture documentation
of each of the systems in the library to find the
architecture patterns that were apparent from the
documentation. We confirmed that patterns are a
dominant part of software architectures. We learned
which patterns were most common in different
domains. We also observed combinations of patterns
used, and have begun to study the significance of
pattern combinations.

This paper describes the results of this ongoing
study. In the next section, we describe the gallery of
architecture documentation and our method of
analyzing it. Section 3 describes the results, and
section 4 lists some limitations of the study. Section 5
describes several uses of the study, and we conclude
with future work and conclusions.
2. The architecture gallery

The collection of software architectures is the product
of work by Grady Booch in his efforts to create a
handbook of software architecture [5]. He states, “The

Seventh Working IEEE/IFIP Conference on Software Architecture

0-7695-3092-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WICSA.2008.18

147

Seventh Working IEEE/IFIP Conference on Software Architecture

0-7695-3092-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WICSA.2008.18

147

primary goal of the Handbook of Software
Architecture is to fill this void in software engineering
by codifying the architecture of a large collection of
interesting software-intensive systems, presenting them
in a manner that exposes their essential patterns and
that permits comparisons across domains and
architectural styles.” Part of this work has been to
collect documentation of architecture of systems for
the purpose of analysis. The architecture diagrams
have been collected into a gallery of representative
systems.

The architecture gallery consists of architectural
diagrams from 47 different software systems from a
wide variety of applications. The diagrams were all
box-and-line diagrams, and each diagram had its own
semantics for the boxes and lines. We mapped the
diagrams to the 4+1 architecture views from Kruchten
[17] as shown in Table 1. This view model was chosen
because it is widely known, but there can be other
mappings according to other view models, such as the
ones described in [7]. Most diagrams included
elements from several of the 4+1 views; however, in
most cases, we were able to identify one view that was
more prominent than the others. The development and
process views were the most commonly used views.
We believe this is partly due to the nature of the
documents from which they came – the audience was
software professionals, not managers or customers. So
they would tend to be more interested in views that
support implementation.

Table 1: Most Prominent of the 4+1 Architecture
Views per system in the Architecture Diagrams

View Frequency
Logical 6

Development 18
Process 11
Physical 8
No View
Dominant

4

We classified the systems into seven application
domains. (Some systems could fall into more than one
domain; in that case, we chose the primary domain.)
The application domains were as follows:

1. Embedded Systems: These were systems built
to run in special purpose machines, often on
specialized hardware. Examples included a
pacemaker and a fire alarm. We found 11
such systems.

2. Dataflow and Production: These systems
support assembly-line type operations, as well
as processing and responding to streaming

data. Examples include manufacturing
support, automated cargo routing, process
monitoring, and air traffic control. There were
10 systems in this domain.

3. Information and Enterprise Systems: These
were data processing applications. There were
9 systems.

4. Web-based Systems: These were web
applications and servers. There was some
overlap between this category and the
Information and Enterprise Systems, because
some of them are web-based. The systems
here were those where web interaction was
the primary function. There were 5 such
systems.

5. CASE & Related Developer Tools: Tools
designed to help software developers
comprised this category. There were 4 such
systems.

6. Games: There were 4 interactive game
systems.

7. Scientific Applications: These systems were
marked by their diversity: they included a
system for chemical calculations and a speech
system. There were 4 scientific applications.

We studied the architectures in the following manner:
1. We began by studying an architecture

diagram, looking for architecture patterns that
were used. The most obvious clue was the use
of the name of an architecture pattern in the
diagram. In 12 out of the 47 architectures,
architecture patterns were explicitly named.

2. We used the names of the boxes and the lines
between them to understand their functions
and their collaborations with other
components. We looked for mappings to
components and connectors found in the
architecture patterns.

3. Where possible, (in 37 out of 47 cases) we
followed up on the references to additional
documentation that were associated with each
pattern diagram in [5] to confirm the patterns
we found. In all cases, the documentation
consisted of architectural descriptions from
which the diagrams were taken.

4. We consulted the architecture pattern
literature [2, 6, 22, 23, 24] to confirm the
presence of patterns and to look for other
patterns.

5. Finally, we made another pass through all the
architecture diagrams to confirm the patterns
selected, and to resolve the patterns that were
uncertain. If it was still unclear, we omitted
the pattern from the final list.

148148

Note that we did not consider the domain classification
as we identified the patterns; in fact we classified the
systems into domains after we studied them. This was
done in order to avoid bias that might creep in by
assuming that systems in a certain domain should have
certain patterns. In addition, we attempted to avoid
bias by studying them in the order they are given on
the website – alphabetical order.

3. Findings

Analysis of the data led to a number of insights about
typical pattern usage. They are described in the
following sub-sections.

3.1. Pattern Density

Patterns were very prevalent in the diagrams. Every
system had at least one pattern. A total of 110 patterns
were identified. The average number of patterns used
per system was 2.36, and the mode (most frequent)
was 2 patterns. The distribution of pattern density was
as follows:

Table 2: Pattern Density per System

Number of
Patterns
Found

Number of
Systems

1 10
2 22
3 9
4 4
5 0
6 1
7 0
8 1

We note that over 85% of the systems used between
one and three architecture patterns.

3.2. Pattern Frequency

Twenty different architecture patterns were identified.
Their frequency is shown in Table 3. It is noted that
not all architecture patterns have standardized names
that are universally adopted. We used the names from
the classification in [2], except for the patterns State
Transition [24] and Half Sync, Half Async [22].

Table 3: Pattern Frequency

Pattern Name Frequency
Layers 18
Shared Repository 13
Pipes and Filters 10
Client-Server 10
Broker 9
Model-View-Controller 7
Presentation-Abstraction- Control 7
Explicit Invocation 4
Plug-in 4
Blackboard 4
Microkernel 3
Peer to Peer 3
C2 3
Publish-Subscribe 3
State Transition 3
Interpreter 2
Half Sync, Half Async 2
Active Repository 2
Interceptor 2
Remote Procedure Call 1
Implicit Invocation 1

The most popular patterns (higher frequencies in Table
3) did not come as a surprise, as they also receive the
greater attention in the software architecture literature.
It is more interesting and useful to investigate the
patterns in particular domains.

3.3. Pattern Density by Domain

We found that the domains showed very little
difference in the median number of patterns per
system: all were close to 2 patterns per domain. The
table below shows which patterns were most
prominent in the different domains. With the exception
of the scientific domain (see note below), the table
included patterns that appear twice or more in a
domain.

Table 4: Prominent Patterns per Domain

Domain #
Sys

Pattern Freq

Embedded
Systems

11 Pipes & Filters 4

 Client-Server 3
 Presentation

Abstraction Control
3

 State Transition (note
1)

3

149149

 Explicit Invocation
(note 2)

2

 Shared Repository 2
 Layers 2
Dataflow
and
Production

10 Layers 6

 Shared Repository 3
 Presentation

Abstraction Control
2

 Broker 2
 Plugin 2
Information
and
Enterprise
Systems

9 Shared Repository 6

 Layers 4
 Model View Controller 4
 Presentation

Abstraction Control
(note 3)

2

 Broker (note 4) 2
Web-Based
Systems

5 Broker (note 5) 2

 Layers 2
 Pipes & Filters (note 6) 2
 Explicit Invocation 2
CASE &
Related
Developer
Tools

4 Layers 4

 Broker 2
Games 4 Model View Controller 2
 Pipes & Filters 2
 Blackboard 2
Scientific
Applications

4 Pipes & Filters 1

 Shared Repository 1
 Client-Server 1
 Presentation

Abstraction Control
1

 Blackboard 1
 Layers 1
 Plugin 1

Notes about the table are as follows:
Embedded Systems:

Embedded systems often have important realtime
constraints. In addition, they usually have limited
resources such as memory and external storage. This
makes the Pipes and Filters pattern a good match: it is

often efficient, and can be configured to use little
intermediate storage. The systems are often state-
based. It appears that some embedded systems are
getting more powerful, and have some capabilities for
human interfaces and storage, which accounts for the
Client-Server, Shared Repository, and Layers patterns.

1. The State Transition pattern [24] is probably
even more prevalent than indicated here. In
particular, one of the systems was an ATM,
which is likely state-driven. However, the
pattern was not apparent in that system’s
diagram.

2. Explicit Invocation is useful where the
components have tight coupling. The
constraints of embedded systems tend to lead
to tight coupling, so this pattern is appropriate
here.

Dataflow and Production

Like embedded systems, dataflow and production
systems often have some realtime concerns, but do not
have the limitations of embedded systems, such as
limited memory and hard realtime constraints. They
can be more general purpose and more interactive;
usability and extensibility may be significant attributes.
Therefore, patterns related to data processing, such as
Layers, Shared Repository, and Presentation
Abstraction Control are prominent.

Information and Enterprise Systems

In these systems, data processing is central, hence the
dominance of Shared Repository. Maintainability,
extensibility, usability and security are important. This
justifies again the use of Shared Repository as well as
Layers. User interface needs are supported by
Presentation Abstraction Control and Model View
Controller.

3. Presentation Abstraction Control and Model
View Controller are alternate approaches to
improve the modifiability of GUI-based
systems; they were observed 6 times in these
systems.

4. The presence of Broker indicates that some of
these systems are distributed.

Web-Based Systems

The web-based systems in this sample were generally
limited to the server side. Key quality attributes would
include performance, extensibility, security, and

150150

availability. The pattern distribution is quite flat, with
Broker, Layers, Pipes and Filters, and Explicit
Invocation all showing equal prominence. These are all
well suited to web systems. This category is somewhat
small, but several information systems and CASE tools
are web based as well.

5. It is a bit surprising that Broker and Client-
Server were not observed in most web-based
systems. However, many web-based systems
have thin clients, where the client is
architecturally insignificant (e.g., the user’s
web browser).

6. This might be a bit surprising for web-based
systems. However, many web-based systems
have significant performance needs; our
sample included the Google search engine, for
example.

CASE and Related Developer Tools

Our sample included only four such systems. Each of
them used the Layers pattern, which supports
maintainability, extensibility, security, and flexibility;
all important to these tools. The Broker pattern
probably indicates that two of the systems support
distributed operation. Overall, these systems used few
patterns; perhaps they are too specialized and diverse
to incorporate very many patterns.

Games

The patterns in games systems show the different
important aspects of gaming systems. User interface is
very important, hence the Model View Controller
pattern. Performance is also critical, so the Pipes and
Filters pattern was used in some systems. It was
particularly interesting to see that the game systems
were developed in different years (1996, 2000, and
two in 2004), Over time, the systems became more
complex, and more patterns were observed. The last
two used the Blackboard pattern, surely to support
artificial intelligence.

Scientific Applications

The scientific applications were a very diverse group,
and no patterns were prominent. With a larger sample
of scientific systems, the domain might be divided into
sub-domains, which might have some prominent
patterns. We see evidence of artificial intelligence
(Blackboard) as well as high-performance computing
(Pipes and Filters.)

3.4. Pattern Interactions

One of the areas of research in architecture patterns is
how the patterns interact with each other. In particular,
architecture patterns have well-understood and often
significant impacts on various quality attributes of a
system. Because the quality attributes can be key
characteristics of a system, it is important to
understand how architectural decisions (including the
use of patterns) impact them [12, 15]. While the impact
of individual architecture patterns on quality attributes
has been studied [3, 6, 8, 13, 20, 24], little is known
about the combined impact of architecture patterns.
The impact, though, of multiple patterns can also be
significant. One pattern may impact a quality attribute
in a positive way, while another pattern may impact
the same quality attribute in a different way. On the
other hand, both patterns may impact the quality
attribute in similar ways. If the impact is positive, this
can be very good; if it is negative, the combined
impact could spell disaster for the system. For
example, the Layers pattern tends to have a negative
impact on performance, as does Presentation
Abstraction Control. If used together, the performance
impact could be significant.
Avgeriou and Zdun have cataloged 25 different
architecture patterns [2]. In addition, there are certainly
other architecture patterns as well [4, 10]. This gives
hundreds of different possible pairs of architecture
patterns to examine. Therefore, it makes sense to
identify the pairs of patterns most commonly used
together, and examine their interactions. The most
frequent pairs of patterns are listed in Table 5.
The majority of the systems we studied had two or
fewer patterns: only 15 out of the 47 had more than
two patterns. This means examination of pairs of
patterns will be fruitful, while it is lower priority to
examine triplets of patterns or groups of even higher
degree. In addition, even where more than two
architecture patterns are used in a system, it will
certainly be helpful to study the pairwise interactions
of patterns. The most common pairs of architecture
patterns we identified were as follows:

Table 5: Frequency of Architecture Pattern Pairs

Pattern Pair Frequenc
y

Layers – Broker 6
Layers – Shared Repository 3
Pipes & Filters – Blackboard 3
Client Server – Presentation
Abstraction Control

3

151151

Layers – Presentation Abstraction
Control

3

Layers – Model View Controller 3
Broker – Client-Server 2
Shared Repository – Presentation
Abstraction Control

2

Layers – Microkernel 2
Shared Repository – Model View
Controller

2

Client Server – Peer to Peer 2
Shared Repository – Peer to Peer 2
Shared Repository – C2 2
Peer to Peer – C2 2
Layers – Interpreter 2
Layers – Client Server 2
Pipes & Filters – Client Server 2
Pipes & Filters – Shared Repository 2
Client Server – Blackboard 2
Broker – Shared Repository 2
Broker – Half Sync/Half Async 2
Shared Repository – Half Sync/Half
Async

2

Client Server – Half Sync/Half Async 2

There were a large number of pattern pairs that
appeared once; 67 in all. However, the vast majority of
these pairs, 51, came from the systems with four or
more patterns. These represent less than 15% of the
systems we examined, so these pattern pairs are
expected to be unusual.
Many of the most common pairs seem to logically go
together, in particular, the following pairs:

1. The Layers – Broker connection is very
common among distributed applications. A
server is often implemented with Layers. The
Broker pattern coordinates communication
from remote clients. The patterns also have a
symbiotic relationship with respect to
security: layered systems often have an outer
authentication layer, while the Broker can
provide some protection against intrusion
attacks. Brokers may be implemented in
layers [27], and layered applications are
common in distributed communication (e.g.,
the ISO/OSI stack.)

2. The Broker and Client-Server patterns are a
natural pair for distributed applications. The
Client-Server pattern defines the relationship
between providers of services and consumers
of the services (clients.) Brokers coordinate
the communication between them. Broker is
also used to implement efficiency,

availability, and security, which are common
concerns in client-server systems.

3. A Shared Repository is obviously designed to
allow multiple access, but may need security
and some access restrictions. Layers are often
used to provide an interface to a Shared
Repository, and can thus provide the
necessary security and other screening of
requests.

4. Many interactive applications are designed as
layered systems. Management of the user
interface is often encapsulated in a separate
component, becoming the outer layer. The
user interaction can be managed using the
Model View Controller pattern, with the bulk
of the layered system becoming the Model,
and the interface (outer layer) managed with
the View and Controller. Alternatively, the
layered system can present an abstract
representation of the user interface
functionality for use with the Presentation
Abstraction Control pattern. Each of these
alternate user interface patterns was paired
with the Layers pattern three times.

5. The Presentation Abstraction Control pattern
was also paired with Client-Server three
times. Different clients may require different
presentations of the functionality from the
server. This can be accomplished by using the
Presentation component, with the Abstraction
and the Control residing with the server.

Other common pairs of patterns have less apparent
relationships, and further research is required to
determine their relationships. Possibly the combination
of patterns in some cases cannot be generalized, but
specific variants of patterns were combined to satisfy
individual system requirements.
In the pairs described above, some of the symbiosis
appears to be related to quality attributes, such as
performance, usability, and security. It appears that in
many cases, the patterns provide structure to
implement some functionality, but one pattern may
have particular impact on important quality attributes
of the system. For example, the Client-Server pattern
defines the basic structure, and the Broker pattern adds
some functional capabilities, but is particularly strong
in the quality attributes. It may be that some patterns
are selected primarily for their functional capabilities,
while others are selected in order to support quality
attributes. (We have observed this once in a system
design experiment, in which participants selected the
Layers pattern for functionality, and the Broker pattern
for availability and security [14].) While research into
the interaction among architecture patterns is in its

152152

infancy, this may be an indicator of how architecture
patterns work together.
Since the most common number of patterns in a system
was two, it is instructive to look at the pairs of patterns
that appeared as pairs in these systems. These are
likely to be smaller, less complex systems than those
with more than two patterns. Only a few were used
more than once. They are listed below, with the
frequency of appearance.

Table 6: Pairs of Patterns in Systems with Two
Architecture Patterns

Pattern Pair Frequency
Layers – Broker 4
Layers – Model View Controller 2
Client-Server – Presentation
Abstraction Control

2

Layers – C2 1
Pipes & Filters – Shared Repository 1
Active Repository – Presentation
Abstraction Control

1

Pipes & Filters – Blackboard 1
Client-Server – Plugin 1
Layers – Presentation Abstraction
Control

1

Shared Repository – Presentation
Abstraction Control

1

Broker – Plugin 1
Layers – Plugin 1
Layers – Microkernel 1
Broker – Client-Server 1
Pipes & Filters – Interpreter 1
Pipes & Filters – Shared Respoitory 1
State Transition – Shared Repository 1
State Transition – Layers 1

We note that the Layers pattern is particularly
prominent: 11 out of 23 pairs involve Layers. It is
paired with 7 different patterns. While this is to be
expected due to the frequency of the Layers pattern
overall, it does underscore the compatibility of Layers
with other patterns for relatively simple systems
(where only two architecture patterns are used,) as well
as for all systems.
On the other hand, the second most common pattern,
Shared Repository, is paired with few patterns in two-
pattern systems. It was most common in larger
systems, such as information and enterprise systems.
We compared the pattern interactions we discovered to
the pattern interactions suggested in published
literature. Not much has been published about pattern
interactions, except for the work in [2], which

describes a rich set of interactions. The relationships
are varied, including use, is-a, variants, realizes, and
alternatives. In a single architecture, only the “use”
relationship is visible: all the others concern selection
of a pattern (e.g., selecting between two alternate
patterns.) From all the pattern pairs in Table 6, only
three match the “use” relationships described in [2].
The reason we found many more pairs is likely
because we were examining complete architectures
which must create complete solutions. This introduces
rich possibilities for multiple patterns to be used.
Further research will be useful to determine which of
the pattern pairs are most useful.

4. Limitations

There are several limitations in this study which should
be taken under consideration. In some cases, further
research is warranted.

4.1. Pattern Identification

We saw that identification of the patterns depends on
several different factors. These factors can
significantly increase or decrease the number of
patterns identified in a system. These factors assume
that the architecture documentation is being examined
without the help of the original (or even current)
architects – obviously, the ideal is that the architect
personally explains the architecture and the patterns
used. Without the benefit of communication with the
architect, the following factors should be considered.
Additional documentation beyond the architecture
diagrams was helpful in identifying some patterns, but
it did not add as much as one might expect. Part of the
study illustrates this: Fifteen of the systems came from
Fayad et al [11]. The diagrams were analyzed first, and
then the book was consulted to verify the analysis. In
the subsequent analysis, four systems had patterns
added, two had questionable patterns removed, and
nine stayed the same.
Some of the diagrams were easier to understand than
others, and where the diagrams were difficult to
understand, it was difficult to discover the patterns. It
was difficult to figure out what made some diagrams
more difficult than others, but it appeared that the more
abstract the diagram was, the harder it was to
understand. In order to increase visibility of the
patterns in diagrams, architects might annotate the
module with the patterns used, use the pattern name in
the name of the module, or capture the patterns used
with an architectural decision capture tool (see [16].)

153153

It stands to reason that the more experience an analyst
has with the architecture patterns, the more likely he or
she is to find patterns. We found this to be true: a
novice and an expert studied the same patterns, and the
novice found a subset of the patterns found by the
expert. In addition, it is likely that familiarity with
certain patterns by the analyst leads to their ready
identification. This illustrates the proverb that if all you
have is a hammer, everything looks like a nail. Less
well-known patterns are likely to be found less often.
They are also less likely to be used in the first place.
For example, the C2 pattern was identified in two
systems , and an author of the C2 pattern was involved
in both systems [19, 21, 26]. Other people might not
recognize or use it.
An important consideration is how accurate is the
pattern identification, and what are the consequences
of wrong answers. It is impossible to judge completely
without a detailed architecture review, including
conversations with the architects. However, we were
able to assess the accuracy of pattern identification
based only on the diagram versus analysis of both the
diagram and supporting documentation. We examined
15 systems that were described in Fayad et al [11] first
based only on the diagrams, and then augmented by
the documentation. We found that of the patterns
identified, 60% were identified correctly, 27% were
missed, and 13% were over-identified (identified, but
not really present.) This gives us moderate confidence
in pattern identification from the diagrams alone, and
good confidence if additional documentation is used.
The consequences of missing patterns would be that
less information about the utility of patterns might be
available. The consequences of over-identification
might be that a pattern is used in a domain where it is
not appropriate. We have attempted to minimize this
possibility by focusing on patterns that are found
frequently in domains, as described above.

4.2. Pattern Density

While the majority of the systems contained either one
or two patterns, several contained more; as many as 8
patterns. Since patterns are vehicles of system
comprehension, multiple patterns can aid in
understanding all the important components of the
system. However, too many patterns can actually
hinder analysts from identifying the patterns and their
functions. This happens when patterns begin to overlap
– when system components fill functions in multiple
patterns.
On the other hand, the absence of any identifiable
patterns in an architecture can also hinder
comprehension – one cannot relate it to any established

approach to the architecture. Fortunately, all the
systems contained patterns, though we have observed a
subsystem that had no patterns, and it was difficult to
comprehend.
There may be a “sweet spot” for the number of
architecture patterns in an architecture – the optimal
number of patterns to aid design as well as
comprehension. Our data indicate that most systems
have between one and three patterns; since this is
common practice it may be considered as a good
design heuristic. However. it may be worthwhile to
study whether this is the optimal number of patterns in
a system; it may depend on factors such as system size
and the problem domain.

4.3. Sample Coverage

How well does this sample represent the body of
software in the world? The coverage is broad, but not
very deep. In particular, the sample does not attempt to
represent a profile of the world’s software, which is
undoubtedly skewed in a few areas, such as (currently)
web applications. In this case, we believe that breadth
of study is more helpful than depth, since a wider body
of knowledge is being created.

4.4. Pattern Variations

As patterns are used, they are often changed from the
“pure” definition given in the pattern literature. It
appeared that many of the patterns were used with
variation. However, we found it difficult to identify
whether a pattern was used in its “pure” form, or
whether it was used with variation – such detail was
not to be found in either the diagrams or the supporting
documentation. Variations to patterns are often made
to accommodate the quality requirements of the
system, such as performance, security, reliability, etc.
Some of the most common variations are published in
the patterns; mainly in Buschmann et al. [6]. However,
the usage of pattern variants may well make the
pattern’s use in the system more difficult to
understand. By the same token, the variant use of
patterns almost certainly made it harder for us to
identify the patterns, and may have obscured some
patterns altogether. But this makes sense: if a pattern’s
use is changed so much that the pattern becomes
difficult to recognize, then one can argue that the
pattern is no longer being used at all.

5. Practical Uses

154154

There are several potentially important uses for this
information. It is a contribution to the idea of a
software architecture handbook, used to guide
architects and developers in proven practices of
software development. Booch notes, “It is a sign of
maturity for any given engineering discipline when we
can name, study, and apply the patterns relevant to that
domain.” Software maintenance consumes much of the
total cost of software development, and one of the
most expensive activities in maintenance is
understanding the software.
Architecture patterns are a valuable tool in creating the
system architecture. Numerous architecture methods
accommodate the use of patterns. In addition,
architectural design methods that focus on architecture
patterns are being developed [12]. This work can make
these processes more effective by showing system
designers which patterns are commonly used,
particularly in certain domains. It can also point to
common combinations of patterns.
Architecture patterns are also emerging as an important
tool in the software architecture review process. A
prominent part of software architecture development is
the architecture review [1, 8, 18]. We are developing
review methods that focus on patterns, with an
emphasis on the impact of the patterns on the system’s
quality requirements. This work contributes by
identifying the most common patterns, their frequency
in certain domains and most frequent combinations of
patterns.
This study has educational applications as well.
Software architecture, including architecture patterns,
are beginning to be taught in graduate and
undergraduate computer science and software
engineering curricula [25]. This work can give
guidance about which patterns are most commonly
used, in which application domains, and which
patterns work well together as pairs.

6. Future Research

Additional studies of architectures, including more
from Booch’s architecture gallery can be added to
further validate this work.
More detailed study of pattern-based evaluation of
architectures can be done. In particular, it would be
useful to analyze a system’s architecture for patterns
and get feedback from the architects about the patterns
found. We have begun to do this as part of the pattern-
based architecture review process we are developing,
and early results confirm its accuracy and usefulness.
The area of patterns’ impact on system quality
attributes is an important area of study. Studies have

been done [9, 20] and are ongoing [13] to understand
the impact of individual patterns. The impact of
combinations of patterns, and more generically,
approaches (see [8]), appears to be particularly
important to quality attributes. Further study into the
frequency of pattern combinations and their impact on
quality attributes will make it possible to study the
impact of the most common pattern combinations. This
is one of the most important areas of long term study.
This work underscores the importance of studying
pattern variants. Existing pattern variants should be
studied both at a structural level and for their impact
on quality attributes. In addition, undocumented
pattern variants should be studied and common
undocumented variants should be documented.
We noted that the architecture diagrams represented
different views of the systems, and most incorporated
elements of more than one of the 4+1 views. It is
possible that architecture patterns are more readily
apparent in different views. We intend to study which
views match certain patterns better in the sense that the
patterns become more visible and explicit. Ideally one
specialized view per pattern would solve this problem,
but the combination of patterns can complicate things.
Finally we have observed the difficulty in identifying
patterns in system diagrams due to the lack of pattern
names or individual pattern element names. We intend
to look into what are the best practices that architects
follow in documenting the use of specific patterns in
architecture diagrams. In specific we are looking for
simple yet efficient ways to “annotate” diagrams with
information on patterns and their variations used.

7. Conclusions

Architecture patterns are an important tool of
software architects. This work confirms that nearly
every system contains one or more of the known
architecture patterns; in most cases two or more
patterns. It begins to shed light on which architecture
patterns are most commonly used. It also identifies
commonly used pairs of architecture patterns. This
information can be used to help architects design
systems, students learn architecture methods, and
reviewers identify quality attribute-related issues
associated with architecture patterns.

8. Acknowledgments

We would like to thank Grady Booch for promoting a
software architecture handbook, and for assembling
the collection of software architectures.

155155

9. References

[1] Abowd, G. et al., “Recommended Best industrial Practice
for Software Architecture Evaluation”, Technical Reoprt
CMU/SEI-96-TR-025, CMU Software Engineering Institute,
January 13, 1997.

[2] Avgeriou, P. and Zdun, U. “Architectural Patterns
Revisited – a Pattern Language”, 10th European Conference
on Pattern Languages of Programs (EuroPLoP 2005), Irsee,
Germany.

[3] Bass, L,, Clements, P. and Kazman, R. Software
Architecture in Practice Addison-Wesley, 2003.

[4] Bianco, P., Kogtermanski, R., L., and Merson, P.
Evaluating a Service-Oriented Architecture ,(CMU/SEI-
2007-TR-015) Pittsburgh, PA: Software Engineering
Institute, 2007.

[5] Booch, G. “Handbook of Software Architecture: Gallery”
http://www.booch.com/architecture/architecture.jsp?part=Ga
llery accessed 10 September 2007.

[6] Buschmann F. et al., Pattern-Oriented Software
Architecture: A System of Patterns, Wiley, 1996.

[7] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers,
J.; Little, R.; Nord, R. & Stafford, J. Documenting Software
Architectures: Views and Beyond Addison-Wesley, 2002.

[8] Clements, P., Kazman, R. and Klein, M. Evaluating
Software Architectures: Methods and Case Studies, Addison-
Wesley, SEI Series, 2002.

[9] Cloutier, R. Applicability of Patterns to Architecting
Complex Systems, Doctoral Dissertation, Stevens Institute of
Technology, 2006.

[10] Cockburn, A. “Hexagonal Architecture”,
http://alistair.cockburn.us/index.php/Hexagonal_architecture,
accessed September 11, 2007.

[11] Fayad, M. and Johnson, R. Domain-Specific Application
Frameworks. Indianapolis, Indiana: Wiley, 2000.

[12] Harrison, N and Avgeriou, P. “Pattern-Driven
Architectural Partitioning - Balancing Functional and Non-
functional Requirements”, First International Workshop on
Software Architecture Research and Practice (SARP'07),
July 2007 – San Jose, CA, IEEE Computer Society Press.

[13] Harrison, N and Avgeriou, P. “Leveraging Architecture
Patterns to Satisfy Quality Attributes”, First European
Conference on Software Architecture, Madrid, Sept 24-26,
2007, Springer LNCS.

[14] Harrison, N. Avgeriou, P. and Zdun, U. “Focus Group
Report: Capturing Architectural Knowledge with

Architectural Patterns”, 11th European Conference on
Pattern Languages of Programs (EuroPLoP 2006), Irsee,
Germany.

[15] Harrison, N., Avgeriou, P. and Zdun, U. “Architecture
Patterns as Mechanisms for Capturing Architectural
Decisions”, IEEE Software, 24(4) 2007.

[16] Jansen, A. and Bosch, J. “Evaluation of Tool Support
for Architectural Evaluation”, Proc. of the 19th IEEE Intl
Conference on Automated Software Engineering (ASE2004),
Sept 2004, Linz, Austria, pp. 375-378.

[17] Kruchten, P. “The 4+1 View Model of Architecture”,
IEEE Software 12(6) 1995.

[18] Maranzano, J. et al., “Architecture Reviews: Practice
and Experience”, IEEE Software, 22(2) 2005, pp. 34-43.

[19] Medvidovic, N. et al., “Software Architectural Support
for Handheld Computing”, IEEE Computer, Sept 2003, p 69.

[20] O’Brien, L., Bass, L., and Merson, P. Quality Attributes
and Service-Oriented Architectures,(CMU/SEI-2005-TN-
014) Pittsburgh, PA: Software Engineering Institute, 2005.

[21] Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D. &
Wolf, A. "An Architecture-Based Approach to Self-Adaptive
Software." IEEE Intelligent Systems, May/June 1999, p. 58.

[22] Schmidt, D. Stal, M. Rohnert, H. and Buschmann, F.
Patterns for Concurrent and Distributed Objects: Pattern-
Oriented Software Architecture Wiley, 2000.

[23] Shaw, M. “Toward Higher-Level Abstractions for
Software Systems”, Proc. Tercer Simposio Internacional del
Conocimiento y su Ingerieria (Oct 1988) 55-61. Reprinted in
Data and Knowledge Engineering, 5 (1990) pp. 19-28.

[24] Shaw, M. and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline Addison-Wesley,
1996.

[25]SEI: “Resources for Educators in Software Architecture”
www.sei.cmu.edu/architecture/educators.html, accessed 27
November 2007.

[26] Taylor, R., Medvidov, N. et al., “A Component- and
Message-based Architectural Style for GUI Software”, IEEE
Trans. Softw. Eng. 22(6):390-406, 1996.

 [27] Voelter, M., Kircher, M. and Zdun, U. Remoting
Patterns: Foundations of Enterprise, Internet and Realtime
Distributed Object Middleware, Wiley, 2004.

156156

