

 University of Groningen

Towards Using Architectural Knowledge
Avgeriou, Paris; Lago, Patricia; Kruchten, Philippe

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Avgeriou, P., Lago, P., & Kruchten, P. (2009). Towards Using Architectural Knowledge. In EPRINTS-
BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/90414b90-de5c-4020-bee3-7f1fee53c297

Towards Using Architectural Knowledge

Paris Avgeriou
University of Groningen

The Netherlands
paris@cs.rug.nl

Patricia Lago
VU University
Amsterdam

The Netherlands
patricia@cs.vu.nl

Philippe Kruchten
University of

British Columbia
Vancouver, Canada

pbk@ece.ubc.ca

DOI: 10.1145/1507195.1507219

http://doi.acm.org/10.1145/1507195.1507219

Abstract
The third workshop on Sharing and Reusing Architectural Know-
ledge (SHARK) was held jointly with ICSE 2008 in Leipzig, Ger-
many. It featured two keynote talks, thirteen research position
statements and three working groups that discussed on focused
topics. This report presents the themes of the workshop, summariz-
es the results of the discussions held, and suggests some topics for
future research.

Introduction
Software architecture plays an important role in managing the
complex interactions and dependencies between stakeholders and
serves as a reference artifact that can be used by stakeholders to
share knowledge about the design of a system. Architecture also
facilitates early analysis of the system, especially with respect to
quality attributes and maintainability of the system. Current ap-
proaches of software architecting focus heavily on documenting
components and connectors and fail to document the design deci-
sions that produced the architecture – as well as the organizational,
process and business rationale underlying those design decisions.

This lack of relevant architectural knowledge and documentation
can negatively impact maintenance costs and lead to architectural
erosion and mismatch. The SHARK 2008 workshop focused on
current approaches that tackle this problem: methods, languages,
and tools that can be used to extract, represent, share, apply, and
re-use architectural knowledge.

Architectural Knowledge (AK) is defined as the integrated repre-
sentation of the software architecture of a software-intensive sys-
tem or family of systems along with architectural decisions and
their rationale, external influence and the development environ-
ment.

The Keynote Talks
The two keynote speakers work on the domain of Requirements
Engineering and were asked to present their viewpoints on AK in a
way that bridges the problem and the solution domain. Professor
Axel van Lamsweerde from the University of Louvain, Belgium
talked about Goal Models as a type of Architectural Knowledge.
He started from the typical intertwining between Requirements

ACM SIGSOFT Software Engineering Notes Page 27 March 2009 Volume 34 Number 2

mailto:paris@cs.rug.nl�
mailto:patricia@cs.vu.nl�

Engineering (RE) and Architecture Design (AD) [1], and discussed
how they both involve making decisions by selecting among alter-
natives. His thesis was to use goals as a means to bridge the gap
between RE and AD. He distinguished between different types of
AK and categories of design decisions and demonstrated how late
RE involves selecting between alternative options, thus making
early AD decisions. Finally, he presented a concrete way to derive
specific architecture solutions (dataflow architecture views, selec-
tion of architectural styles, recursive refinement) starting always
from a number of goals (architectural, functional and non-
functional). With this approach, RE and AD take place simulta-
neously in a systematic manner, with architectural structures expli-
citly linked with goals (and therefore the rationale).

The second keynote speaker, Dr. Jon Hal, from the Open Universi-
ty, UK, presented Problem-Oriented Engineering [2]: an approach
that tackles the challenges of design by exploring both the problem
and the solution space. He discussed the notion of (software) de-
sign, and how it is driven by the relation between problem and
solution, as well as the argument (e.g. rationale) for both. Essen-
tially designing involves recursively developing the problem and
its argument, developing the solution and its argument, and finally
relating the problem and solution again with an argument. The
argument comes from validating both the problem and the solu-
tions, as well as their match. He went on to discuss the challenges
in both finding and validating problems and solutions and some
established techniques for each case. He also discussed several
challenges that arise during this process like solving unfamiliar
problems, satisfying quality requirements, making tradeoffs, facing
problems that come in groups etc.

Working Group Discussions
The workshop accepted 13 research and position papers1 for inclu-
sion in the proceedings. The papers can be divided into three dis-
tinct categories: software patterns as means to codify architecture
knowledge in different domains (e.g., SOA, Global Software De-
velopment); extending the traditional software architecting process
with general or specific reusable knowledge (e.g., in selecting con-
nectors or in evolving the system); aspects of using AK in research
and practice. The authors of accepted papers were invited to
present their ideas to the workshop in the form of a position state-
ment. The presentations2

• The role of software patterns in creating, sharing and using
AK

 of the accepted papers provided the basis
for further dialogue among the workshop participants in several
working group sessions. The topics selected for further discussion
were:

• Design Rationale and AK
• AK in support of software evolution, in particular in the

context of software product lines
The following sections elaborate on the results of the discussions
in the working groups.

1 Papers accepted for the SHARK 2008 workshop are availa-
ble at the ACM Digital Library
2 PDF versions of the presentation slides are available at the
SHARK wiki http://www.cs.rug.nl/shark/

Software Patterns and AK
The workshop had a significant number of papers related to the use
of software patterns, which is not surprising: the patterns commu-
nity has always advocated sharing of generic knowledge in the
form of patterns as small, digestible chunks. The working group
started by discussing an existing approach that proposes software
patterns as an effective and inexpensive means to capture signifi-
cant architecture decisions during the architecting process [4].
Based on this approach we decided to find a broader set of poten-
tial ways of using software patterns as generic AK, as well as the
issues and challenges that lie ahead.

One of the results of the first SHARK workshop [10] was to look
at AK as both a product and a process. The former concerns arti-
facts of AK, e.g., design decisions, domain models, languages and
architecture views. The latter concerns using AK during the soft-
ware development process, such as use cases, methods, tools and
services. Patterns that provide knowledge on how to structure a
system and focus on the functionality, behavior and quality of that
system clearly belong to the first category, since the application of
patterns corresponds to making decisions. On the other hand, pat-
terns that provide knowledge on how to structure an organization
and manage the software development process belong to the
second category. In certain cases the distinction between the two
categories is not clear; for example agile patterns concern primari-
ly the development process but also provide knowledge about the
products (e.g. code artifacts and test cases).

Table 1 shows the types of patterns that can be used as valuable
AK, both as a product and as a process. The former are further
categorized under the different phases of the development life-
cycle. Please note that the in each category, only the most repre-
sentative/seminal work is referenced; in fact there are many other
sources in the literature that contain patterns for the various phases.
Furthermore there are more categories of patterns in the literature
than the ones listed here.

Table 1 – Patterns as Architecture Knowledge

AK as a product

Requirements Analysis Architecture Design Implem-
entation

Problem
Frames [3]

Analysis
Patterns
[7]

Pattern-
Oriented
Software
Architecture
[5]

Object-
Oriented
design
Patterns
[6]

Software
Factories
[11]

Domain–specific Pattern Languages
e.g. SOA, Enterprise Applications

AK as a process

Agile
patterns
[12]

Global soft-
ware Devel-
opment

Organizational
patterns [13]

Open Source
Software Devel-
opment

The use of patterns in both categories and their sub-categories in-
dicates a wealthy amount of AK that can be used throughout the
development lifecycle. Unfortunately the different pattern languag-

ACM SIGSOFT Software Engineering Notes Page 28 March 2009 Volume 34 Number 2

es are currently not linked to each other which inhibits a more ho-
listic approach of using the entire corpus of patterns knowledge
coherently. It also hinders traceability between the different arti-
facts, e.g. between requirements, architecture decisions and the
implementation. One of the research challenges is to attempt to
integrate the different pattern languages that span through the dif-
ferent lifecycle phases, in a similar fashion to Model-Driven Engi-
neering: going from abstract to specific through refinement.

We further discussed how the patterns for software engineering
processes support using AK. During the second SHARK workshop
we had made the distinction between codification techniques that
make AK explicit in a model or a document, and personalization
techniques that tailor the knowledge system to specific people and
organizations, keeping most AK tacit [14]. In this respect, agile
process focus heavily on personalization, sharing the knowledge in
a face-to-face communication. There is also typically an informal
“yellow pages” directory, so that people are aware of which team
member has knowledge about which aspect of the system devel-
opment. Personalization techniques work very well in agile me-
thods, as long as the total number of team members is small to
medium; otherwise there may be scalability issues. On the other
hand, more heavyweight process, focus mostly on codification, i.e.
writing down AK into formal or semi-formal documentation and
models. Some personalization is also used in heavyweight
processes, as it is usually not possible to document everything or to
keep the documentation up-to-date.

Finally we addressed the issue of architecture recovery, and espe-
cially how to re-create the AK that has evaporated through the use
of patterns. A common practice to achieve this is through architec-
ture retrospectives or even better architecture reviews. In both cas-
es AK can be recovered by finding the patterns used, the specific
variants of the patterns selected and potential exceptions to those
patterns enforced by the system requirements. These are all con-
scious or subconscious decisions. The rationale behind these deci-
sions can be found in the patterns documentation, as it usually
contains a number of forces, which are balanced by the patterns
and also the consequences that the patterns entail on a system. Par-
ticular attention should be paid, when a specific part of the system
does not follow any pattern. Another source of information to re-
cover AK is the sequence that the patterns have been applied, by
interviewing the involved architects or designers. This indicates the
sequence of decisions made, especially throughout the system evo-
lution.

We agreed that one of the most challenging research topics in the
use of software patterns as AK is the provision of intelligent sup-
port by appropriate tooling, which is currently missing. Tools
should help software engineers to reuse AK in an efficient way,
and at the same time document the produced AK in an unobtrusive
way, i.e. without getting in the way of the natural flow of design or
architecting. Such tools should not be prescriptive; rather they
should actively provide suggestions giving the software engineers
the freedom to make informed decisions.

On Design Rationale
The discussion focused on the major research questions on ratio-
nale behind architectural design decisions, and the answers so far.

This working group counted a balanced number of industrial and
academic participants, in both architecture and requirements engi-
neering. We agreed on the following list of remaining open re-
search questions:

1. What is the best way to keep track of Rationale? Rationale
management is not a new field; much work has been carried
out in this area in the past. However we still miss effective and
pragmatic process support to record rationale ‘while doing’
rather than documenting it in a ‘post-mortem’ additional
activity. A related question is: when is the right time to capture
Rationale?

2. What is the minimal set of Rationale to be recorded? If
recorded, rationale should be easy to search and locate. In
other disciplines, we know that quantity never ensures quality;
on the contrary quantity often hinders usage (as research in the
field of Software Reuse taught us). What knowledge entities
about rationale are the most useful in a later stage? Some
examples mentioned are: less obvious, most relevant, most
complicated, most controversial, exposing risk.

3. Who is the target? A problem hindering rationale
documentation is that rationale is not used now (e.g. “by me,
in my current project, by my current client”), but it is meant to
be used in the future, eventually by others. It is hence essential
to reflect on who is the future consumer of rationale
knowledge. Is it meant for the readers of the written
documentation? Is this useful for peers? Or for myself?
Understanding the target is further essential to determine what
to record (i.e. to scope question 2.).

4. What does “documenting Rationale” essentially means? Is it
about pointing to the right pieces of information, and/or
eventually the right people (personalization strategy)? Or do
we mean to create some kind of Rationale view?

5. Why do we need Rationale at all? Potential reasons include: to
reach consensus in case of conflicts; for education/knowledge
transfer; to build trust; to prioritize requirements; for impact
analysis; to evolve/change decisions. While some reasons are
meant to support technical/engineering activities, others
support business or broader organizational objectives.
Rationale behind keeping track of Rationale is of course also
essential for scoping.

6. How to elicit and capture Rationale? While question 1 focuses
on integration in the architecting process, here we address tool
support, i.e. what technical solutions fit best in a certain way
of integrating Rationale tracking in the architecting process.

In conclusion, in spite of the consistent body of work and tool sup-
port already existing in the area of rationale modeling and man-
agement, we still lack satisfactory answers to the questions above.
A possibility is to abandon general-purpose approaches (which
seem to get too complicated or not pragmatic enough) and try to
research domain- or organization-specific solution following the
questions identified.

AK and evolution of a family of software product
The discussion was focused on the role of architectural knowledge
(including rationale) for effectively evolving architectures of a

ACM SIGSOFT Software Engineering Notes Page 29 March 2009 Volume 34 Number 2

single system or a family of systems. We discussed the kind of
needs that architectural knowledge can serve while evolving a sys-
tem's architecture, especially for performing impact analysis, en-
suring architectural integrity and consistency, and making all the
changes in conformance with the overall vision and purpose of the
architectural decisions. The group also discussed the importance of
the availability of architectural knowledge for product derivation
based on the core assets of a family of products. It was discussed
that rationale underpinning the variability models and identified
variation points is extremely important to ease the pain during the
derivation process. One of the main challenges identified were the
scalability of the available approaches to capture and maintain
architectural knowledge with a minimum amount of resources
usually available to project teams for value-added activities like
knowledge management. The group also emphasized the need for
standardized or semi-standardized ways of documenting the know-
ledge and rationale that is absolutely necessary to support the arc-
hitectural level modifications and evolutions. We also debated the
role of rationale in Model-Driven Development and how the quali-
ty of the models built at different levels of abstractions and gener-
ated code can be improved by improving the management of the
knowledge that underpins the models.

Acknowledgments
This workshop is part of the dissemination activities of the Dutch
Joint Academic and Commercial Quality Research & Development
(Jacquard) program on Software Engineering Research via contract
638.001.406 GRIFFIN: a GRId For inFormatIoN about architec-
tural knowledge.

We extend our thanks to all those who have participated in the
organization of this workshop, particularly to the program commit-
tee, which was comprised of:

• Pierre America, Philips Research, the Netherlands
• Muhammad Ali Babar, LERO, Ireland
• Martin Becker, Fraunhofer IESE, Germany
• Jan Bosch, Intuit, USA
• Rafael Capilla, Universidad Rey Juan Carlos, Spain
• Torgeir Dingsoyr, Sintef, Trondheim, Norway
• Rich Hilliard, independent consultant, USA
• Ralph Johnson, University of Illinois at Urbana-Champaign,

USA
• Axel van Lamsweerde, Universite Catholique de Louvain
• Ivan Mistrik, independent consultant, Germany
• Bashar Nuseibeh, Open University, UK
• Eltjo Poort, LogicaCMG, The Netherlands
• Antony Tang, Swinburne University of Technology, Australia
• Hans van Vliet, VU University Amsterdam, Netherlands
• Uwe Zdun, Technical University of Vienna, Austria

References
[1] Axel van Lamsweerde (2008) Systematic Requirements En-
gineering - From System Goals to UML Models to Software Speci-
fications. Wiley.

[2] Jon G Hall, Lucia Rapanotti, and Michael Jackson (2008)
Problem Oriented Software Engineering: Solving the Package

Router Control problem. IEEE Transactions on Software Engi-
neering, 34 (2). pp. 226-241.

 [3] Michael Jackson, Problem Frames (2001) Analyzing &
Structuring Software Development Problems, Addison Wesley
Professional.

[4] Neil Harrison, Paris Avgeriou and Uwe Zdun (2007) Archi-
tecture Patterns as Mechanisms for Capturing Architectural Deci-
sions, IEEE Software 24 (4), July-August 2007, pp. 38-45.

[5] Frank Buschmann, K. Henney, Douglas Schmidt, Pattern-
Oriented Software Architecture: A Pattern Language for Distri-
buted Computing Wiley Software Patterns Series.

[6] Erich Gamma, Richard Helm and Ralph Johnson (1995) De-
sign Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley.

[7] Martin Fowler (1997) Analysis Patterns for Reusable Object
Models, Addison-Wesley,.

[8] IEEE Std 1471:2000 – Recommended practice for architec-
tural description of software intensive systems. Los Alamitos, CA:
IEEE, 2000.

 [10] Patricia Lago and Paris Avgeriou (2006) First ACM Work-
shop on SHAring and Reusing architectural Knowledge (SHARK);
Final workshop report. ACM SIGSOFT Software Engineering
Notes,31 (5), Sept. 2006, pp. 32-36.

[11] Jack Greenfield and Keith Short (2004) Software Factories,
Wiley.

[12] James O. Coplien and Neil B. Harrison (2005) Organizational
Patterns for Agile Software Development, Prentice Hall.

[13] David M. Dikel, David Kane, and James R. Wilson (2001)
Software Architecture: Organizational Principles and Patterns, 1st
edition, Prentice-Hall.

[14] P. Avgeriou, P. Kruchten, P. Lago, P Grisham, and D. Perry
(2007) Architectural knowledge and rationale: issues, trends, chal-
lenges, SHARK workshop at the 29th Int. Conf. on Software Engi-
neering (ICSE 2007), May 20-26, 2007, Minneapolis, ACM
SIGSOFT Software Engineering Notes, 32 (4), pp. 41-46.

ACM SIGSOFT Software Engineering Notes Page 30 March 2009 Volume 34 Number 2

