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Analysis of Accelerated Gossip Algorithms

J. Liu, B. D. O. Anderson, M. Cao and A. S. Morse

Abstract— This paper investigates accelerated gossip algo-
rithms for distributed computations in networks where shift-
registers are utilized at each node. By using tools from matrix
analysis, we prove the existence of the desired acceleration
and establish the fastest rate of convergence in expectation for
two-register symmetric gossip. Some classes of networks with
regular graph topologies are studied in detail to validate the
analytical results by comparison with existing empirical data.
We also analyze convergence of second moment and provide a
necessary condition for convergence in multi-register symmetric
gossip. The proposed approach has the potential to be applied
to the more challenging open problem of asymmetric gossip.

I. INTRODUCTION

While sensor networks have been utilized in a wide range
of applications, a central theme of research that has remained
the focus over the past decade is the design of efficient
distributed computation algorithms, especially for the sce-
narios where sensors are constrained by limited sensing,
computation and communication capabilities. In this context,
much attention has been given to the distributed consensus
problem in which all sensors are required to agree, using
distributed averaging, on the same estimate of some variable
of interest. The existing distributed algorithms that solve this
problem include those known as gossip algorithms, which
can be classified into probabilistic ones and deterministic
ones, see for example [1] and [2] respectively. The authors
of [3] propose a randomized gossip algorithm where at each
time instant a single randomly chosen pair of nodes in a
network update their values together to the mean of their
current values. Such an algorithm is easy to implement and
only requires simple computations at each node. However,
the convergence rate of the algorithm is relatively slow,
which is a critical drawback and needs to be improved.

A number of papers have studied this issue of slow
convergence of gossip algorithms and various strategies have
been studied to improve the convergence rate. In [4], the
authors establish the necessary and sufficient conditions for
the convergence of distributed linear iterations and propose
computational methods for obtaining the fastest iteration. In
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[5], a lower bound on the convergence rate for a class of
network consensus algorithms is given through a graphical
approach. A consensus propagation algorithm is proposed in
[6] to achieve better scaling properties than pairwise aver-
aging. The authors of [7] introduce simple and numerically
stable algorithms with better worst-case performance. In [8],
a probabilistic counting mechanism is utilized to improve the
convergence rate and in [9] sensors’ location information is
exploited to boost the convergence. Among all the proposed
acceleration strategies, there is one particular approach that
has motivated the research in this paper. In [10] it has
been demonstrated through simulations that by installing
shift-registers to sensors and thus enabling the utilization
of computational results in each sensor’s finite memory,
substantial acceleration (up to 10 folds) can be achieved
for the stochastic gossip algorithms. However, the theoretical
explanation for the observed improvement is not complete in
[10]. Follow-up works, e.g. [11], have tried to establish the
necessary and sufficient conditions for convergence, but no
one has been able to describe the accelerated convergence
rate of gossip algorithms with shift-registers in a rigorous
and precise fashion.

The main contribution of this paper is that we are able
to thoroughly analyze the two-register gossip algorithm,
first proposed in [10], under the symmetric assumption.
The fastest rate of convergence in expectation is provided
in closed-form, which depends on the given probabilistic
strategy according to which sensors are activated to gossip
together. In section II, we review the original gossip algo-
rithm studied in [3] and the accelerated gossip algorithms
introduced in [10]. In section III, we first establish a com-
plete analysis of convergence in expectation for two-register
symmetric gossip; then we validate the theoretical results
by exploring some specific regular graphs and using the
experimental results in [10]; finally we study second moment
convergence and establish a necessary condition of speeding
up convergence for general multi-register symmetric gossip.

II. GOSSIP ALGORITHM

We use a graph G to describe the topology of a given sen-
sor network with n nodes. Let each node in the network be
a vertex of G and each link be an edge. Let N = {1, . . . , n}
denote the vertex set of G and E be the edge set. Let xi(0)
denote the initial value at node i and xave = 1

n

∑
i xi(0) be

the average of all the initial values. The goal of gossip is
to compute xave via a distributed algorithm. In this paper,
we use the synchronous model; in other words, all nodes act
according to the same time sequence {1, 2, . . .}. For each
i ∈ {1, ..., n}, let xi(t) denote the value of node i at time t.
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At any time t ∈ {1, 2, ...}, there is one and only one node
to be activated; each node has an equal probability 1

n of
being activated. If node i is activated, then with probability
pij node i chooses node j to update their values together,
where pij > 0 only if i 6= j and (i, j) ∈ E ; the values
of all the remaining nodes remain the same. Let P be an
n × n stochastic matrix whose ijth entry is pij . For clarity
of expression, we assume that P has 1 as a simple eigenvalue
and all the remaining n − 1 eigenvalues strictly less than 1
in magnitude. A gossip problem is called symmetric if for
all i and j, there holds pij = pji.

Consider any probabilistic algorithm characterized by ma-
trix P , the set of node value update rules can be written in
state form. Toward this end, we use the symbol Q to denote
a suitably defined set, indexing the class of all pairs of nodes
defined on n vertices: Q = {(i, j) : i 6= j, i, j = 1, ..., n}.
For each pair of nodes (i, j) ∈ Q, let A(i,j) be the random
matrix that describes the update rule when nodes i and j are
activated, then

x(t + 1) = Aσ(t)x(t) (1)

where x is the state vector x = [x1 x2 · · · xn]′ and σ :
{0, 1, ...} → Q is a switching signal whose value at time t,
is the index representing the randomly chosen pair of nodes
at time t. For simplicity, we will adopt the notation Aij

instead of A(i,j) in the sequel. Letting the mean of the (i.i.d.)
matrices Aσ(t) be denoted by Ā, we have E[x(t)] = Ātx(0).

We first review the original gossip algorithm studied in
[3]. At time t, let node i be activated with probability 1

n and
suppose it chooses some neighboring node j, with probability
pij , to update their values together to the average of their
current values, then Aij = I − 1

2 (ei− ej)(ei− ej)′ where ei

is the n×1 unit vector with the ith component equal to 1 and
I is the n-dimensional identity matrix. Obviously the Aij’s
are doubly stochastic matrices, so therefore is Ā. It has been
proved in [3] that the system (1) converges in expectation to
the average value xave if and only if Ā has 1 as a simple
eigenvalue and all the remaining n − 1 eigenvalues strictly
less than 1 in magnitude. It is also pointed out in [4] that the
spectral radius of Ā− 11′/n, denoted by ρ(Ā− 11′/n), is
equal to the asymptotic convergence factor, where 1 denotes
the n-dimensional all ones column vector and the asymptotic
convergence factor is defined by

r(Ā) = sup
x(0) 6=xave1

lim
t→∞

( ‖x(t)− xave1‖2
‖x(0)− xave1‖2

)1/t

The conclusion has been generalized to any expectation
matrix, which we will discuss later. Therefore, for any
randomized gossip algorithm, each node’s value converges
in expectation to the same value (which may not be xave) if
and only if its expectation matrix has 1 as a simple eigenvalue
and all the remaining eigenvalues strictly less than 1 in mag-
nitude; the rate of convergence in expectation is governed
by the second largest eigenvalue in magnitude. Furthermore,
the authors of [3] establish a sufficient condition for second
moment convergence, which is that E[A′ijAij ] has all but
one eigenvalue less than 1; the rate of convergence in mean

square is governed by Ā’s second largest eigenvalue, which
is nonnegative since Ā is positive semidefinite.

Cao et al. [10] introduce a technique which uses memory
in the form of shift-registers to accelerate the original gossip
algorithm. Each node has the same number of registers,
the first of which stores the sensor’s current value, and the
remainder of which store earlier values corresponding to the
sensor. The algorithm changes how a pair of nodes update
their values once they decide to update together. For each
node i ∈ {1, ..., n}, let xir denote the value stored in its
rth register. In the case where each sensor is provided with
two registers, the algorithm can be described as follows. Let
nodes i and j be the pair of nodes updating their current
values together at time t, then



xi1(t + 1) = ω( 1
2xi1(t) + 1

2xj1(t)) + (1− ω)xi2(t)

xi2(t + 1) = xi1(t)

xj1(t + 1) = ω( 1
2xi1(t) + 1

2xj1(t)) + (1− ω)xj2(t)

xj2(t + 1) = xj1(t)
(2)

where 1 ≤ ω < 2 is a constant; the values of the registers
of all the other nodes remain the same. In the case where
each sensor is provided with m > 2 registers, the accelerated
gossip algorithm at each node, when nodes i and j are the
pair to update their current values together, is generalized as
follows:



xi1(t + 1) = ω1( 1
2xi1(t) + 1

2xj1(t)) +
∑m

r=2 ωrxir(t)

xir(t + 1) = xi(r−1)(t), r = 2, ..., m

xj1(t + 1) = ω1( 1
2xi1(t) + 1

2xj1(t)) +
∑m

r=2 ωrxjr(t)

xjr(t + 1) = xj(r−1)(t), r = 2, ..., m
(3)

where ωr (r = 1, ..., m) are constants satisfying
∑m

r=1 ωr =
1; the values of the registers of all the other nodes remain
the same. The experiments in [10] use random geometric
graphs with four different configurations of shift-registers.
The first three, denoted by D2, D4 and D8, consist of 2,
4 and 8 registers respectively for which only the first and
last register are used to compute the new value of the first
register (i.e., ωr = 0 when r 6= 1,m). For the fourth one,
denoted by X4, all of the registers are used to compute the
new value of the first register. The results of the experiments
show that by employing more registers and choosing a clever
combination of coefficients, the algorithms can improve the
convergence rate substantially.

III. ANALYSIS
In this section, we provide a theoretical analysis for

the accelerated algorithms so that we can find the fastest
rate of convergence in expectation and the corresponding
optimal coefficients for symmetric gossip. We also establish
convergence in mean square. First we consider the case
where each node is provided with two registers.
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Boyd et al. [3] write the expectation matrix of the original
algorithm as Ā = I − 1

2nD + 1
2n (P + P ′) where D is a

diagonal matrix with entries dii = 1 +
∑n

j=1 pji. Notice
that the symmetry of Ā does not depend on P being
symmetric. However, for symmetric P , it can be easier
to calculate certain quantities, for example D = 2I and
Ā = (1 − 1

n )I + 1
nP . Now we consider the changes that

arise with the accelerated algorithm. The probabilities stay
the same, but the new update equations are (2). Define the
enlarged state vector as z = [x11 · · · xn1 x12 · · · xn2]′. The
matrices corresponding to Aij and Ā of dimension n×n are
then replaced by matrices of dimension 2n×2n. Denote the
enlarged matrices by Bij and B̄, we have

Bij =
[ ∑

k 6=i,j eke′k + ω
2 (ei + ej)(ei + ej)′

eie
′
i + eje

′
j

(1− ω)(eie
′
i + eje

′
j)∑

k 6=i,j eke′k

]

B̄ =
[

I + ω
2

P+P ′
n + (ω

2 − 1)D
n (1− ω)D

n
D
n I − D

n

]

For arbitrary ω, it is not hard to check that the row sums
of Bij and B̄ are all equal to 1; however, not all entries are
nonnegative because of the upper right block.

A. Convergence in Expectation

In this subsection, we prove the existence of the desired
convergence in expectation and study the behavior of ρ2(B̄),
the second largest magnitude of any eigenvalue of B̄. As a
first step, we need the following fact.

Lemma 1: Suppose A is an n× n matrix, and let B be a
2n× 2n matrix given by

B =
[

A aI
bI cI

]

where (to avoid trivialities) ab 6= 0. Consider the eigenvalue
equation B[α1 α2]′ = λ[α1 α2]′ with α1 and α2 not both
zero, then Aα1 = µα1 where α1 is necessarily nonzero and

µ = λ− ab

λ− c
(4)

Conversely, given µ and α1 6= 0 satisfying Aα1 = µα1,
and with λi (i = 1, 2), the two solutions of (4), and α2i =
bα1/(λi − c), there holds B[α1 α2i]′ = λi[α1 α2i]′.

The simple proof is omitted. For symmetric P , there holds

B̄ =
[

(1 + ω−2
n )I + ω

nP 2(1−ω)
n I

2
nI (1− 2

n )I

]

Let A = (1 + ω−2
n )I + ω

nP , a = 2(1−ω)
n , b = 2

n , and c =
1 − 2

n . Lemma 1 implies that the 2n eigenvalues of B̄ are
determined by the n eigenvalues of A with the relation (4). If
we denote the n eigenvalues of P as 1 = λ1(P ) > λ2(P ) ≥
λ3(P ) ≥ · · · ≥ λn(P ) > −1, the n eigenvalues of A can
also be written as a non-increasing sequence with the values
µi(A) = 1+ ω−2

n + ω
nλi(P ). Thus, the 2n eigenvalues of B̄

are determined by the n eigenvalues of P . For each µi(A),
we can obtain two eigenvalues of B̄, denoted by λi1 and λi2.

We assume that λi1 ≥ λi2 if they are both real. When µi(A)
satisfies the condition that equation (4) has two real roots,
we get

λi1,2 = 1 +
1
n

[
1
2
ω(1 + λi(P ))− 2

]

± 1
2n

√
ω2(1 + λi(P ))2 − 16(ω − 1) (5)

First, we notice that dλi1/dλi(P ) > 0, which implies that the
real eigenvalues λi1 (i belongs to a subset of {1, 2, ..., n})
form a non-increasing sequence. Second, from (5) we can
get λi2 ≥ 0, which indicates that all the real eigenvalues
of B̄ are nonnegative. Third, λ11 and λ12 are always real
when 1 < ω < 2; λ11 = 1 is the largest real eigenvalue
of B̄. Furthermore, if λ21 and λ22 are real as well, the
second largest real eigenvalue of B̄ is the larger one between
λ12 and λ21. On the other hand, if for some µi(A), the
roots of equation (4) are complex, the magnitude of the two
eigenvalues are the same,

|λi1,2| = |λi1| = |λi2|

=

√
1− 4

n
+

ω

n
(1 + λi(P )) +

2ω

n2
(1− λi(P )) (6)

Lemma 2: When 1 < ω < 2, B̄ has 1 as a simple
eigenvalue and all the remaining 2n − 1 eigenvalues are
strictly less than 1 in magnitude.

Proof: For any complex eigenvalue, d|λi1,2|/dω > 0 and
d|λi1,2|/dλi(P ) ≥ 0, which indicates that |λi1,2| increases as
either ω or λi(P ) increases, then an upper bound for |λi1,2|
is given from (6) with ω = 2 and λi(P ) = 1, |λi1,2| ≤
(1 − 2

n )1/2 < 1. Recall that all the real eigenvalues of B̄
are nonnegative, and 1 is the largest one. In addition, the
second largest real eigenvalue is always smaller than 1 when
1 < ω < 2. Therefore, 1 is a simple eigenvalue of B̄. ¥

Lemma 3: Given an n×n matrix M and vectors c, d ∈ Rn,
the equation lim

t→∞
M t = dc′/c′d holds if and only if c′M =

c′, Md = d, and ρ(M − dc′/(c′d)) < 1, where ρ(·) denotes
the spectral radius of a matrix. Moreover, ρ(M − dc′/(c′d))
is equal to the asymptotic convergence factor.

This is Theorem 2 of [4]. Note that ρ(M − dc′/(c′d)) =
ρ2(M) and ρ(M − dc′/(c′d)) < 1 implies that 1 is a simple
eigenvalue of M .

Theorem 1: Given the sensor network with the state
evolution equation z(t+1) = Bσ(t)z(t) using the symmetric
accelerated gossip algorithm (2), each node’s value will con-
verge in expectation to the desired value zave = 1

n

∑
i xi1(0)

if each node’s two registers are initialized so that xi1(0) =
xi2(0) for all i = 1, ..., n.

Proof: It can be shown that

Bij

[
1
1

]
=

[
1
1

]
(7)

and (Lemma 1 in [10])
[

1
2−ω1′ 1−ω

2−ω1′
]
Bij =

[
1

2−ω1′ 1−ω
2−ω1′

]
(8)

Because B̄ = E[Bσ(t)] =
∑

ij
1
npijBij is a convex com-

bination of Bij , equations (7) and (8) also hold for B̄.
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number of real eigenvalues

2n 2n-2 4 2

1n 122n
1 2

0 2 2n-4 2n-2

number of complex eigenvalues

Fig. 1. Distribution of B̄’s real and complex eigenvalues

We have proved in Lemma 2 that under the symmetric
gossip constraint, B̄ has all but one eigenvalue less than
1 in magnitude. According to Lemma 3, it can be easily
checked that, if xi1(0) = xi2(0), the desired convergence in
expectation is achieved. ¥

In the sequel we will write the second largest magnitude
of any eigenvalue of B̄ as a function of ω, ρ2(B̄(ω)), and
then find the optimal point of ω ∈ (1, 2), denoted by ω∗,
which minimizes the function.

First we explore the distribution of the number of real and
complex eigenvalues of B̄. From (5) we know that whether
λi1 and λi2 are real or not depends on the sign of a second
order polynomial f(ω) = (1+λi(P ))2ω2−16ω +16. Since
f(1) ≥ 0 and f(2) ≤ 0, f(ω) has a unique zero point
between 1 and 2, which is

ω(λi(P )) =
8− 4

√
4− (1 + λi(P ))2

(1 + λi(P ))2

Therefore, for each λi(P ), if 1 < ω ≤ ω(λi(P )), λi1 and
λi2 are real; if ω(λi(P )) < ω < 2, λi1 and λi2 are complex.
In addition, dω(λi(P ))/dλi(P ) > 0, which indicates that
ω(λi(P )) is an increasing function of λi(P ); in particular,
ω(1) = 2. If we denote ω(λi(P )) as ωi−1, i = 2, ..., n, we
get 1 < ωn−1 ≤ ωn−2 ≤ · · · ≤ ω1 < 2. If 1 < ω ≤ ωn−1,
B̄ has 2n real eigenvalues; · · · ; if ω1 < ω < 2, B̄ has 2 real
eigenvalues and 2n− 2 complex eigenvalues. See Figure 1.

Lemma 4: When 1 < ω ≤ ω1, ρ2(B̄(ω)) = λ21(ω).
The proof of Lemma 4 can be found in the full length

version of this paper.
When ω1 < ω < 2, B̄ only has two real eigenvalues, 1

and λ12. The largest magnitude of any complex eigenvalue
is determined by λ2(P ). So the second largest magnitude of
any eigenvalue of B̄ is the larger one between λ12 and |λ21|.
It can be checked that λ12(ω) ≥ |λ21(ω)| if and only if

g(ω) = 4ω2 +(3n−λ2(P )n+2λ2(P )−18)ω+16−4n ≥ 0

Since g(ω1) < 0 and g(2) > 0, g(ω) has a unique zero
point between ω1 and 2, denoted by ω0. Therefore, when
ω1 < ω < ω0, |λ21| > λ12; when ω0 ≤ ω < 2, λ12 ≥ |λ21|.
This leads to the following lemma.

Lemma 5: When ω1 < ω < ω0, ρ2(B̄(ω)) = |λ21(ω)|;
when ω0 ≤ ω < 2, ρ2(B̄(ω)) = λ12(ω).

Combining Lemmas 4 and 5, we see that ρ2(B̄(ω)) is
continuous on the interval (1, 2), and corresponds to a
real eigenvalue for the intervals (1, ω1] and [ω0, 2). Figure
2 provides an overview of ρ2(B̄(ω)). The dashed curve

111

21

12

2 13 0
1 2

Fig. 2. Overview of ρ2(B̄(ω))

denotes the largest magnitude of any complex eigenvalue; it
is discontinuous at ω1, ω2, ... because {λi(P )} is a discrete
set.

Theorem 2: The minimum of ρ2(B̄(ω)) on the interval
(1, 2) is unique, and the value of the optimal point of ω at
this minimum is

ω∗ = ω1 =
8− 4

√
4− (1 + λ2(P ))2

(1 + λ2(P ))2
(9)

Proof: When 1 < ω ≤ ω1, λ21 is a real eigenvalue.
Because of Lemma 4 and the fact that λ21(ω) is a decreasing
function of ω, λ21(ω1) gives a lower bound of ρ2(B̄(ω))
when 1 < ω ≤ ω1. When ω1 < ω < 2, λ21 is a complex
eigenvalue. Because |λ21(ω)| is an increasing function of ω,
|λ21(ω1)| gives a lower bound of ρ2(B̄(ω)) when ω1 < ω <
2. In addition, ρ2(B̄(ω)) is continuous at ω1. Therefore ω1

is the unique point which minimizes ρ2(B̄(ω)). ¥
Notice that ρ2(Ā) = λ2(Ā) since Ā is symmetric positive-

semidefinite. Since it can be checked that ρ2(B̄(ω1)) <
ρ2(Ā), we get the following result.

Corollary: Under the symmetric constraint, the accelerated
gossip algorithm utilizing two shift-registers at each node has
faster rate of convergence in expectation than the original
gossip algorithm.

Here we define the acceleration ratio as

η =
log ρ2(B̄(ω1))

log ρ2(Ā)

to measure the speedup of the accelerated algorithm in
symmetric gossip. For large n,

η ≈ 2λ2(P )− 2 + 2
√

4− (1 + λ2(P ))2

1− λ2(P )2

then η becomes a function only depending on λ2(P ). It can
be checked that η > 1 when −1 < λ2(P ) < 1.

B. Experimental Validation

According to (9), ω∗ depends on the second largest
eigenvalue of P . We are now interested in how the value
of ω∗ varies with different symmetric P . We assume that
each node, if activated, communicates with its neighbors with
equal probability, which is the assumption also made in the
experiments in [10]. Imposing these requirements means that
we are exploring in more detail what happens with regular
graphs. For each integer d ∈ {2, 3, ..., n−1}, A = dP is the
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adjacency matrix of a d-degree regular graph, and we have
λi(P ) = µi(A)/d. We consider two special cases of regular
graphs: the complete graph Kn with d = n−1 and the cycle
Cn with d = 2. First, the spectrum of Kn consists of n− 1
with multiplicity one and −1 with multiplicity n− 1. Then
λ2(P ) = −1/(n−1), which reaches the minimum of λ2(P ).
For n ≥ 10000, λ2(P ) ' 0 and ω∗ ' 1.0718. Second,
the spectrum of Cn consists of the numbers 2 cos(2πi/n),
i = 1, ..., n [12]. Then λ2(P ) = cos 2π

n . For n ≥ 10000,
λ2(P ) ' 1 and ω∗ → 2.

The authors of [13] proved that for any fixed d and for
any infinite family of d-regular graphs Gi, lim inf µ2(Gi) ≥
2
√

d− 1, and conjectured that almost all d-regular graphs G
on n vertices satisfy µ2(G) ≤ 2

√
d− 1+ o(1) as n tends to

infinity, which has been proved by Friedman [14]. We take
2
√

d− 1 as an estimate of µ2(A), then λ2(P ) ' 2
√

d− 1/d.
Now we consider a different class of regular graphs, two-
dimensional grid graphs. Grid graphs can be seen as a crude
approximate of the topology of a sensor network (a random
geometric graph) when sensors are uniformly distributed
and sensors have the same sensing radius. If we ignore the
boundary effect and substitute d = 4 into the equation, we
get λ2(P ) = 0.866 and then ω∗ = 1.47, which agrees with
the experimental result that ω∗ should lie between 1.4 and
1.5, see TABLE II in [10].

While [10] contains comprehensive experimental results,
the analysis developed in this paper has not yet reached the
point where a full set of comparisons can be made. This
is because the tools developed in this paper are tailored for
symmetric P ’s while most of the graphs considered in [10]
are random geometric graphs, and rarely have a symmetric
P . This explains why the analytical values of ω∗ in the cases
of Kn and Cn are quite different from the experimental
results. Even though we conjecture that the ω∗ of non-regular
graphs is almost the same as that of d-regular graphs if
d̄ = d, where d̄ denotes the average degree, TABLE II in
[10] indicates that d̄ ¿ n − 1 and probably d̄ is obviously
larger than 2. When d = 15 and d = 45 (which can be
viewed as loose estimations of d̄ in the experiments), ω∗

equals to 1.2038 and 1.1364 respectively.

C. Convergence of Second Moment
In this subsection, we investigate the convergence in

mean square, which in some ways is more important than
convergence in expectation. Let y(t) = z(t) − zave1 and
consider its evolution,

y(t + 1) = Bσ(t)z(t)− zaveBσ(t)1 = Bσ(t)y(t)

The first equation holds because of the fact that 1 is an
eigenvector for all Bσ(t). Thus, y evolves according to the
same linear system as z. Then we can get

E[y(t + 1)′y(t + 1)|y(t)] = y(t)′E[B′
σ(t)Bσ(t)]y(t)

The matrices Bσ(t) are identically distributed, we shorten
Bσ(t) to B for convenience. Since BT B is symmetric
positive-semidefinite,

y(t)′E[B′B]y(t) ≤ λ1(E[B′B])‖y(t)‖2 (10)

where λ1(E[B′B]) is the largest eigenvalue of E[B′B].
Repeatedly using (10), we obtain the bound

E[y(t)′y(t)] ≤ λt
1(E[B′B])‖y(0)‖2 (11)

If y(t) is constrained to be orthogonal to the eigenvector
of E[B′B] corresponding to the maximum eigenvalue, then
in (11) we have λ2 (the second largest eigenvalue) rather
than λ1. Therefore, we get a sufficient condition for the
convergence of second moment. However, it can be easily
checked that when ω = 1 and P = P ′, λ1(E[B′B]) is
greater than 1; the same property holds for ω near to 1 by
continuity. Also, we cannot always have λ2(E[B′B]) strictly
less 1. In the sequel, we will present a new approach to
investigate the second moment convergence.

Suppose that N is a nonsingular matrix; observe that if Nz
and Ny converge, then so do z and y, and conversely. Thus,
we can study Nz and Ny rather than z and y. Consider the
new system involving N , the evolution of ŷ = Ny becomes

ŷ(t + 1) = N−1BNŷ(t)

Thus B is replaced by N−1BN , and importantly, B′B is
replaced by N ′B′N

′−1N−1BN . Let C = N−1BN , the
eigenvalue properties of C are the same as those of B; but
the eigenvalue properties of C ′C are not the same as those
of B′B. We are interested in the eigenvalues of E[C ′C], and
in particular its second largest eigenvalue. If we select N as
a diagonal block matrix,

N =
[

αI 0
0 α−1I

]

where α = 4
√

ω − 1, then

C =
[ ∑

k 6=i,j eke′k + ω
2 (ei + ej)(ei + ej)′√

ω − 1(eie
′
i + eje

′
j)

−√ω − 1(eie
′
i + eje

′
j)∑

k 6=i,j eke′k

]

The determinant of N is 1. It leaves the two diagonal block
entries of B the same; it causes the two block off-diagonal
entries of B to be equal and opposite in sign. Then we can get
the expression for E[C ′C] involving P and D, in particular,
when P = P ′, E[C ′C] equals

[
(1− 4

n + 2ω
n + ω2

n )I + ω2

n P −ω
√

ω−1
n (P + I)

−ω
√

ω−1
n (P + I) (1− 4

n + 2ω
n )I

]

It is immediate that when ω = 1, the largest eigenvalue of
E[C ′C] equals to 1. In addition, its second largest eigenvalue
is strictly less than 1; it follows by continuity that for ω near
to 1, the same property will hold. Therefore, we prove the
convergence of second moment for ω close to 1.

D. Multi-Register Symmetric Gossip

In order to achieve faster convergence, we analyze general
multi-register symmetric gossip. We take X4 of [10] as
an example, in which all of the 4 registers are used to
compute the new value of the first register. We define the
state vector as a 4n-dimensional column vector ordering the
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entries in the same way as we did in the two-register case.
The matrices corresponding to Aij and Ā are now replaced
by 4n-dimensional Dij and D̄. Using a similar analysis as
presented earlier, we obtain

D̄ =




A1
2ω2
n I 2ω3

n I 2ω4
n I

bI cI 0 0
0 bI cI 0
0 0 bI cI




where A1 = (1 + ω1−2
n )I + ω1

n P , b = 2
n , and c = 1 − 2

n .
A1 is symmetric because P is. The 4n eigenvalues of D̄ are
determined by the n eigenvalues of A1 through the equation

µ = λ− 2ω2

n

b

λ− c
− 2ω3

n

b2

(λ− c)2
− 2ω4

n

b3

(λ− c)3

where λ denotes the eigenvalue of D̄ and µ denotes the cor-
responding eigenvalue of A1. It is easy to extend the results
to the general multi-register symmetric gossip problem. That
is, for the m-register accelerated algorithm (3) with P = P ′,
the mn eigenvalues of mn×mn matrix D̄ are determined by
the n eigenvalues of n× n matrix A1 through the equation

µ = λ−
m∑

r=2

2ωr

n

(
b

λ− c

)r−1

(12)

while the eigenvalues of A1 are determined by the eigenval-
ues of P through the relation

µi(A1) = 1 +
ω1 − 2

n
+

ω1

n
λi(P ), i = 1, ..., 2n

In particular, λ1(P ) = 1 and µ1(A1) = 1 + 2(ω1 − 1)/n.
Although it becomes much harder to get an explicit expres-
sion for λ from equation (12) when m > 2, we can establish
a necessary condition of the combination for ωr’s to ensure
the convergence in expectation. To obtain a contradiction,
suppose λ = 1 + ε, where ε ≥ 0, the righthand side of (12)
can be then expressed as a function of ε

h(ε) = 1 + ε−
m∑

r=2

2rωr

n(2 + nε)r−1

Notice that h(0) = µ1(A1), which is the largest eigenvalue of
A1. Because when ε > 0, λ = 1+ ε cannot be an eigenvalue
of D̄, we must have h′(0) ≥ 0. Therefore, we get a necessary
condition for ωr’s,

1 +
m∑

r=2

ωr(r − 1) ≥ 0 (13)

If only the first and last register are used to compute the
new value of the first register, ωr = 0, r = 2, ..., m− 1, and
ωm = 1− ω1. Then the necessary condition (13) becomes

ω1 ≤ 1 +
1

m− 1
(14)

It can be checked that the simulation result of X4 satisfies
(13) and the experimental results of D2, D4, D8 all satisfy
(14). See TABLE II in [10]. In addition, condition (14)
indicates that when only the first and last register are used,
as the number of registers m increases, the allowable range
of ω1 becomes smaller and smaller. For example, 1 ≤ ω1 ≤
1.032 when m = 32.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we have discussed the accelerated gossip
algorithm using two shift-registers on each node. We investi-
gate the spectrum of the enlarged expectation matrix and find
the optimal coefficient and the fastest rate of convergence
in expectation which depends on the probability matrix P .
The theoretical results are verified by looking into some
special classes of regular graphs. We have also established
convergence of second moment and studied multi-register
symmetric gossip algorithms through the similar approach
based on matrix analysis and established a necessary con-
dition for the combination of the coefficients. Currently
we are looking at the more challenging case where the
probability matrix P is asymmetric. The technical difficulty
is that the expectation of the system update matrix can
no longer be written as a clean block matrix as we have
done for the symmetric case, and thus it is hard to use the
spectrum analysis technique that we have heavily relied on
in this paper. Tools from the convergence analysis of infinite
sequences of nonnegative matrices may prove to be useful
for our research in the future.
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