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a b s t r a c t

We study quasi-periodic tori under a normal-internal resonance, possibly withmultiple eigenvalues. Two
non-degeneracy conditions play a role. The first of these generalizes invertibility of the Floquetmatrix and
prevents drift of the lower dimensional torus. The second condition involves a Kolmogorov-like variation
of the internal frequencies and simultaneously versality of the Floquet matrix unfolding. We focus on the
reversible setting, but our results carry over to the Hamiltonian and dissipative contexts.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Persistence results for quasi-periodicmotionswere first proved
for maximal tori in Hamiltonian systems and became known
as Kolmogorov–Arnol’d–Moser (KAM) theory. In [31] this was
extended to lower dimensional tori and to other contexts like
volume preserving and reversible systems. The rôle of the
‘modifying terms’ in terms of system parameters was clarified
in [14,24] and the Rüssmann condition [13,35] allows one to
subsequently reduce the high number of parameters to the bare
minimum.
These results yield what is called quasi-periodic (or normal

linear) stability, i.e. families of invariant tori persist under suffi-
ciently small perturbations when restricted to certain (measure-
theoretically large) Cantor sets. The theorems in [13] make the
crucial assumption that all eigenvalues of the matrix Ω describ-
ing the normal linear behavior be simple. This implies in partic-
ular that detΩ 6= 0 (except for the dissipative case and the
high-dimensional volume preserving case, where this condition is
explicitly added). Multiple resonances are admitted in [11,17,22]
and the aim of the present paper is to admit zero eigenvalueswith-
out weakening the conclusion of quasi-periodic stability.

∗ Corresponding author.
E-mail address:mcristina.ciocci@gmail.com (M.C. Ciocci).
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1.1. Setting and results

We work on the phase space M = Tn × Rm × R2p, where
Tn = (R/2πZ)n is the n-torus on which we use coordinates x =
(x1, . . . , xn)(mod 2π), while on Rm and R2p we use respectively
y = (y1, . . . , ym) and z = (z1, . . . , z2p). In such coordinates a
vector field onM takes the form

ẋ = f (x, y, z), ẏ = g(x, y, z), ż = h(x, y, z),

or in vector field notation:

X(x, y, z) = f (x, y, z)∂x + g(x, y, z)∂y + h(x, y, z)∂z . (1.1)

We assume that the vector field X depends analytically on all
variables, including possible parameterswhichwe suppress for the
moment; referring to [14,24,33] we note that our results remain
valid when ‘analyticity’ is replaced by ‘a sufficiently high degree
of differentiability’. An invariant torus T of a vector field X is
called parallel if a smooth conjugation exists of the restriction
X |T with a constant vector field ẋ = ω on Tn. The vector
ω = (ω1, ω2, . . . , xn) ∈ Rn is the (internal) frequency vector of
T . The parallel torus is quasi-periodic when the frequencies are
independent over the rationals.

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:mcristina.ciocci@gmail.com
http://dx.doi.org/10.1016/j.physd.2008.10.004
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We are concerned with persistence of quasi-periodic tori under
small perturbations, and to fix thoughts we concentrate1 on the
reversible setting. To define reversibilitywe consider an involution
(i.e. G2 = I)

G : M −→ M, (x, y, z) 7→ (−x, y, Rz), (1.2)

with R ∈ GL(2p,R) a linear involution on R2p such that

dim Fix(R) = dim
{
z ∈ R2p | Rz = z

}
= p.

The vector field X is then called G-reversible (or reversible for
short) if

G∗(X) = −X .

Using (1.1) this reversibility condition takes the explicit form

f (−x, y, Rz) = f (x, y, z),
g(−x, y, Rz) = −g(x, y, z),
h(−x, y, Rz) = −Rh(x, y, z),

valid for all (x, y, z) ∈ M .
Following [12–14,24] the vector field X is called integrable if it

is equivariant with respect to the group action

Tn ×M −→ M, (ξ , (x, y, z)) 7→ (ξ + x, y, z)

of Tn onM , or in other words, if the functions f , g and h in (1.1) are
independent of the x-variable(s). Such an integrable vector field

X(x, y, z) = f (y, z)∂x + g(y, z)∂y + h(y, z)∂z (1.3)

is reversible if

f (y, Rz) = f (y, z), g(y, Rz) = −g(y, z) and
h(y, Rz) = −Rh(y, z) (1.4)

for all (y, z) ∈ Rm × R2p; this implies g(y, z) = 0 for all (y, z) ∈
Rm × Fix(R). In case h(0, 0) = 0 the2 n-torus T0 = Tn × {0} × {0}
is invariant under the flow of the vector field X . The normal linear
part N(X) of (1.4) at T0 is given by

N(X)(x, y, z) = ω∂x +Ωz ∂z, (1.5)

with

ω = f (0, 0) and Ω = Dzh(0, 0).

We denote the subspace of infinitesimally reversible linear
operators on R2p by gl−(2p;R) and by gl+(2p;R) the subspace of
all R-equivariant linear operators on R2p, i.e.

gl±(2p;R) = {Ω ∈ gl(2p;R) | ΩR = ±RΩ}.

In order to define the non-degeneracy of (1.3) at the invariant torus
T0 we consider the subspaces

X±Glin =
{
ω∂x +Ωz∂z | ω ∈ Rn,Ω ∈ gl±(2p;R)

}
of the spaces X−G of all G-reversible vector fields on M and X+G

of all G-equivariant vector fields, satisfying G∗(X) = +X . For X ∈
X−G the adjoint operator

adN(X) : X −→ X, Y 7→ [N(X), Y ]

mapsX±G intoX∓G; a similar statement is true forX±Glin .

1 We give explicit formulations for reversible vector fields, but the results remain
valid for e.g. dissipative, Hamiltonian or volume-preserving systems (vector fields
and maps), where equivariance is also optional.
2 Often one has a whole family Ty = Tn × {y} × {0} of invariant tori. While we
are especially interested in bifurcations, the variable y will still act as a parameter,
now unfolding the bifurcation scenario.
Our interest concerns purely G-reversible vector fields, and
G-reversible vector fields that are furthermore equivariant with
respect to

Fl : M −→ M, (x, y, z) 7→
(
x1 −

2π
l
, x∗, y, zI , e

2π i
l zII

)
. (1.6)

Here zII ∼= z2j−1 + iz2j singles out two of the z-variables in
a complexified form and zI = (z1, z2, . . . , z2j−2, z2j+1, . . . , z2p)
contains the remaining z-variables. To allow for a unified
formulation of our results we define a reversing symmetry group
Σ and a character (a group homomorphism) χ : Σ −→ {±1} as
follows:

(i) In the purely reversible case we set Σ := {Id,G} and χ(G) :=
−1.

(ii) In the equivariant-reversible case we define Σ as the group
generated byG and Fl anddefineχ byχ(G) := −1 andχ(Fl) :=
1.

In both cases Σ is isomorphic to Z2 n Zl, the dihedral group of
order 2l.When l = 1 the generator F1 = Id of course is superfluous.
For both cases we put

X+ = {X ∈ X | E∗(X) = X for all E ∈ Σ}
X− = {X ∈ X | E∗(X) = χ(E)X for all E ∈ Σ}

together withX±lin = X±Glin ∩X±. Furthermore we letB+ andB−

consist of the constant vector fields in X+ and X−, respectively
and denote by

O(Ω0) =
{
Ad (A) ·Ω0 := AΩ0A−1 | A ∈ GL+(2p;R)

}
the orbit under the adjoint action of GL+(2p;R) on gl−(2p;R).

Definition 1 (Broer, Huitema and Takens [14]). The parametrized3
vector field Xλ with linearization N(Xλ)(x, y, z) = ω(λ)∂x +
Ω(λ)z∂z is non-degenerate at λ = λ0 ∈ Rs if

bht(i) ker adN(Xλ0) ∩B+ = {0};
bht(ii) at λ = λ0 the mapping (ω,Ω) : Rs −→ Rn ×

gl−(2p;R), λ 7→ (ω(λ),Ω(λ)) is transverse to {ω(λ0)} ×
O(Ω(λ0)).

The two non-degeneracy conditions bht(i) and bht(ii) generalize
the condition that adN(Xλ0) has to be invertible, a requirement
that lies at the basis of Mel’nikov’s conditions ((1.7) with |`| 6=
0). One also speaks of BHT non-degeneracy. Compared to the
formulation in [14], Section 8a2 the requirement thatΩ(λ0) have
only simple eigenvalues is dropped. The extension to multiple
normal frequencies was developed in [11,17,22] for invertible
Ω(λ0); we return to the original formulation of bht(i).
To formulate the strong non-resonance condition necessary for

persistence of invariant tori we introduce for Ω ∈ gl−(2p;R)
the normal frequency mapping α : gl−(2p;R) −→ R2p where
the components of α(Ω) are equal to the imaginary parts of the
eigenvalues ofΩ ∈ gl−(2p;R). Highermultiplicities are taken into
account by repeating each eigenvalue as many times as necessary.

Definition 2. A pair (ω,Ω) ∈ Rn × gl−(2p;R) is said to satisfy a
Diophantine condition if there exist constants τ > n− 1 and γ > 0
such that

|〈k, ω〉 + 〈`, α(Ω)〉| ≥ γ |k|−τ (1.7)

for all k ∈ Zn \ {0} and ` ∈ Z2p with |`| ≤ 2.

3 The rôle of the external parameter λ occurring in Definition 1 can be (partially)
taken by the internal parameter y.
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This condition is independent of theway inwhichwe have ordered
the components of α(Ω); also, if (ω,Ω) satisfies (1.7) then the
same is true for all (ω, Ω̃) with Ω̃ ∈ O(Ω). For each Γ ⊂ P we
define the associated Diophantine subset

Γγ := {λ ∈ Γ | (ω(λ),Ω(λ))satisfies (1.7)} .

When Γ is a small neighborhood of some λ0 ∈ P where
X is non-degenerate then Γγ is nowhere dense but with large
measure (provided that γ is sufficiently small), cfr. eg. [13,15,18].

Theorem 3. Let X ∈ X− be a family of Σ-reversible integrable
vector fields that is non-degenerate at λ0 ∈ P. Then there exists
γ0 > 0 such that for all 0 < γ < γ0 the following is true. There
exists a neighborhoodΓ of λ0, neighborhoodsY andZ of the origin in
respectively Rm and R2p, and a neighborhoodU of X in the compact-
open topology on X− such that for each Z ∈ U one can find a
mapping Φ : Tn × Y × Z× Γ −→ M × P of the form

Φ(x, y, z, ω, µ) =
(
x+ Ũ(x, ω, µ), y+ Ṽ (x, y, ω, µ), z

+ W̃ (x, y, z, ω, µ), ω + Λ̃1(ω, µ), µ+ Λ̃2(ω, µ)
)

for which the following holds.

(i) The mapping Φ isΣ-equivariant, real-analytic in the x-variable
and normally affine in the y and z variables.

(ii) The mapping Φ is C∞-close to the identity and is a C∞-
diffeomorphism onto its image.

(iii) The restriction of Φ to the Cantor set Tn × {0} × {0} × Γγ of
Diophantine X-invariant tori conjugates X to Z. The restriction of
Φ to Tn×Y×Z×Γγ also preserves the normal linear behavior
to these invariant tori.

In terms of [13,14], the conclusion of Theorem 3 expresses that
the family X is quasi-periodically stable, i.e., structurally stable
on a union of (Diophantine) quasi-periodic tori. This allows to
condense Theorem 3 to the statement that non-degenerate Σ-
reversible integrable vector fields are quasi-periodically4 stable.
Quasi-periodic stability implies that for every small perturbation Z
there exists a Z-invariant ‘Cantor set’ V ⊂ M × P which is a C∞-
near-identity diffeomorphic image of the foliationTn×{0}×{0}×
Γγ ofn-tori. In the tori this diffeomorphism is an analytic conjugacy
from X to Z , which also preserves the normal linear behavior.

1.2. Normal-internal resonances

Resonances are at the core of the problems one has to solve
when trying to prove quasi-periodic stability — persistence of
elliptic invariant tori

Ty = Tn × {y} × 0 ⊆ N := Tn × Rm × R2p

under small perturbation. The strong non-resonance conditions
(1.7) exclude in fact four types of resonances. An internal resonance

〈k, ω〉 = 0 for some 0 6= k ∈ Zn

prevents the parallel flow on Ty to have a dense orbit whence the
invariant torus is not a (minimal) dynamical object, but rather
the union of closed invariant subtori. One cannot expect such an
n-torus to persist, cf. [32,36], for the same reason that a circle
consisting of equilibria breaks up under perturbation (generically
with only finitely many equilibria in the perturbed system). Such
resonances are excluded by (1.7) when taking ` = 0.

4 In [11] one speaks of ‘normal linear stability’ instead.
For |`| = 1 the inequalities (1.7) constitute the first
Mel’nikov condition, cf. [3,30,40], and concern the normal-internal
resonances

〈k, ω〉 = αj with fixed k ∈ Zn and j ∈ {1, . . . , p}. (1.8)

Passing to co-rotating co-ordinates onN yields this resonancewith
k = 0, cf. [10,16]. This is a 2-step procedure. First k is brought
into the form k = (k1, 0, . . . , 0) by means of a preliminary
transformation

N −→ N, (x, y, z) 7→ (σ x, y, z) (1.9)

with σ ∈ SL(n,Z). For the second step we again write zI =
(z1, z2, . . . , z2j−2, z2j+1, . . . , z2p), zII = (z2j−1, z2j) and complexify
zII ∼= z2j−1 + iz2j. Then we perform a Van der Pol transformation

N −→ N, (x, y, z) 7→ (x, y, zI , eik1x1zII). (1.10)

The transformed vector field has a vanishing normal frequency
αj = 0. Hence, already constant perturbations

β∂z = β2j−1∂z2j−1 + β2j∂z2j , β2j−1, β2j ∈ R

make the tori Ty move in a way that cannot be compensated on
the linear level. Condition bht(i) in Definition 1 prevents such
perturbations whence Theorem 3 yields quasi-periodic stability,
see also Corollary 6 in Section 3. An alternative to this condition is
to take (generic) higher order terms of the unperturbed vector field
into account. This typically results in bifurcation scenarios that
turn out to be quasi-periodically stable (in an appropriate sense)
as well, cf. [5,10,20,21,38].
The remaining possibility |`| = 2 in (1.7) excludes the normal-

internal resonances

〈k, ω〉 = αi ± αj with fixed k ∈ Zn and i 6= j ∈ {1, . . . , p} (1.11)

and

〈k, ω〉 = 2αj with fixed k ∈ Zn and j ∈ {1, . . . , p}. (1.12)

For (1.11) one can again achieve k = 0 in co-rotating co-ordinates,
cf. [40], turning this normal-internal resonance into the normal
resonance

0 6= αi = ±αj, i 6= j ∈ {1, . . . , p}.

While now the invertibility ofΩ does yield quasi-periodic stability
of Ty, see [11,17] and Corollary 4 in Section 3, the normal
behavior still may be drastically affected. Using the y-variable as
a parameter, e.g. the normal linear matrix 0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


in a conservative setting unfolds (or deforms) both to elliptic and
to hyperbolic behavior. Here it is the bifurcation scenario involving
the surrounding tori of dimension n+ 1 and n+ 2 that can only be
captured by taking higher order terms of the unperturbed vector
field into account; quasi-periodic stability was achieved in [7,9,21,
22] for the simplest conservative bifurcation scenarios.
The remaining case (1.12) is meaningful only if not already

implied by (1.8), so assume that (1.7) holds with |`| ≤ 1. Then
we can still achieve k = 0 in co-rotating co-ordinates, but now
on a 2-fold coveringM −→ N defined as follows. The preliminary
transformation (1.9) brings the resonance vector k into the form
k = (k1, 0, . . . , 0) with k1 odd. The Van der Pol transformation is
no longer a mapping from N to itself, but a covering mapping from
M = Tn × Rm × R2p onto N defined by

Π : M −→ N, (x1, x∗, y, z) 7→ (2x1, x∗, y, zI , eik1x1zII).
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Here x1 ∈ T1 and x∗ = (x2, . . . , xn) ∈ Tn−1. The deck group
Z2 = {Id, F} of this 2-fold covering is generated by the involution

F : M −→ M, (x1, x∗, y, zI , zII) 7→ (x1 − π, x∗, y, zI ,−zII).
(1.13)

This means that

Π ◦ F = Π .

Note that this is the special case l = 2 of (1.6), the correspond-
ing quasi-periodic stability is stated in Corollary 5 of Section 3. The
resulting frequency halving (or quasi-periodic period-doubling)
bifurcation scenarios are quasi-periodically stable in the dissipa-
tive [5] and Hamiltonian [21] settings and similarly reversible
frequency-halving bifurcations may be expected to occur if appro-
priate non-degeneracy conditions on the higher order terms are
fulfilled.
In [3,40]5 the second Mel’nikov condition ((1.7) with |`| =

2) is avoided completely, i.e. also simultaneous normal-internal
resonances (1.11) and (1.12) with differing k ∈ Zn are allowed.
The price to pay for this approach is that any control on the
linear behavior is completely lost. For instance, double eigenvalues
±iα1 = ±iα2 generically unfold to a Krein collision, where
an elliptic torus evolves a 4-dimensional normal direction of
focus–focus type. Such changes cannot be captured without
persistence of the (normal) linear behavior.

1.3. Contents and conclusions

This paper fits in the framework of parametrizedKAM theory [5,
7,9,10,13,15,21] that originates fromMoser [31]; in factwe present
a generalization of [11,12,14], as well as of [17,22,24]. In the next
section we explicitly work out two examples to which Theorem 3
applies. In Section 3 we elaborate the conditions of Theorem 3
and also formulate three corollaries; the Corollaries 5 and 6 make
the novel results of this paper explicit. The proof of Theorem 3 is
sketched in Section 4. The necessary unfolding theory, which plays
a key rôle, is deferred to the Appendix.
Our approach allows for normal-internal resonances (1.11)

and (1.12) (and possibly also (1.8)) with k ∈ Zn fixed. The
ensuing deformations of the linear behavior coming from the
perturbation are taken care of by considering a versal unfolding
of the linear part ż = Ωz of the unperturbed vector field, i.e., an
unfolding that already contains all possible deformations. The
necessary parameters are provided by y ∈ Rm; the possibility that
m ≥ n distinguishes the reversible context from the Hamiltonian
setting. An alternative is to let the system depend on external
parameters λ, where variation of (y, λ) versally unfolds the linear
part.
The proof in Section 4 is formulated in terms of filtered Lie

algebras and therefore exceeds the reversible setting, carrying
over to other contexts that can be formulated in these terms,
notably the dissipative, volume preserving and Hamiltonian
contexts; possibly combined with equivariance, cf. [11,13]. In the
Hamiltonian case this answers a conjecture formulated in [21] to
the positive. For dissipative systems this has already been used
in [5] when proving quasi-periodic stability of the frequency-
halving bifurcation scenario. We expect that appropriate higher
order terms in (3.9) allow one to obtain a similar result for
reversible systems.
The unfolding (A.8) recovers the result for the case p = 2

that was obtained in [25]. There a 4-dimensional reversible system

5 These papers consider Hamiltonian systems, but we expect the results to carry
over to the reversible context.
with a codimension 2 singularity at the origin is studied by formal
normal forms together with the persistence of the associated
codimension 1 bifurcation phenomena. It would be interesting
to investigate the persistence of the corresponding bifurcation
scenario in the kam setting. Note that an additional F-equivariance
next to the G-reversibility would enforce the origin to be an
equilibrium for the entire non-linear family, an assumption that
is made in [25].

2. Applications

We illustrate our results with two examples that explicitly
show how our assumptions enter and what extra conclusions can
be drawn.

Example 1 (Quasi-Periodic Response Solutions). To show how to
check the appropriate assumptions we consider the simple
example of a 1-parameter family of quasi-periodically forced
oscillators

z̈ = fµ(t, z, ż) = hµ(t, ωt, z, ż), (2.1)

with a fixed frequencyω, for instance we takeω = 1
2 (
√
5−1) (the

golden mean number). The forcing hµ is 2π-periodic in the first
two arguments. The search is for quasi-periodic response solutions
with this same frequency vector (1, ω).
Putting z1 = z, z2 = ż we can rewrite (2.1) as an autonomous

system

ẋ1 = 1
ẋ2 = ω
ż1 = z2
ż2 = hµ(x, z) = h̄µ(z)+ h̃µ(x, z)

on T2 × R2 where we split hµ into the average h̄µ over T2 × {z}
and the oscillating part h̃µ = hµ − h̄µ. The integrable vector field
Xµ given by

ẋ1 = 1
ẋ2 = ω
ż1 = z2
ż2 = h̄µ(z)

has invariant 2-tori for all z1 ∈ R with h̄µ(z1, 0) = 0. These
correspond to response solutions of the forced oscillator.
Note that we allowed for hµ to depend explicitly on z2 whence

z2 7→ −z2 is not a reversing symmetry. We impose the system to
be reversible with respect to

(x1, x2, z1, z2) 7→ (−x1,−x2,−z1, z2),

in particular h̄µ depends on z1 only through z21 and we concentrate
on the invariant torus at z = 0. The dominant part

N(Xµ) = ∂x1 + ω∂x2 +Ω(µ)z∂z

has the parameter-dependent 2× 2 matrix

Ω(µ) =

(
0 1

∂1h̄µ(0) ∂2h̄µ(0)

)
which is invertible whenever ∂1h̄µ(0) 6= 0. However, the non-
degeneracy condition bht(i) is also fulfilled if ∂1h̄µ(0) = 0 since
the eigenvector to the resulting eigenvalue 0 is not invariant under
the involution

R =
(
−1 0
0 1

)
.
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From this we conclude that condition bht(i) is always satisfied.
The non-degeneracy condition bht(ii) is satisfied when

d
dµ
∂1h̄µ(0) 6= 0. (2.2)

Thus, the system is BHT non-degenerate as soon as (2.2) holds true.
Therefore, given this by Theorem 3 (for an explicit formulation see
Corollary 6), if the oscillating part h̃ is sufficiently small, the forced
oscillator (2.1) has a response solution near z = 0, with linear
behavior changing where ∂1h̄µ(0) passes through zero.

Remarks. (i) Earlier for the existence of a response solution as an
extra requirement the condition ∂1h̄µ(0) 6= 0was needed [11–
13,30,31].

(ii) The stability change of the response solution as ∂1h̄µ(0) passes
through zero leads in the periodic case to additional periodic
solutions bifurcating off from z = 0, cf. [28,29,34]. We expect
such bifurcations to carry over to the quasi-periodic case.

We now return to the setting of the introduction where the
normal-internal resonance (1.12) led to a perturbation problem on
a 2:1 covering space. The next example shows how the normally
linear vector fields on the covering and the base-space relate to
one another.

Example 2 (Multiple Normal-Internal Resonance). On the phase
space

N = T2 × R3 × R4 = {x, y, z}

we consider the normally linear vector field

Y = 2∂x1 + ω∂x2 +Ω(µ)z∂z

with

Ω(µ) =

 0 −1− µ1 1 0
1+ µ1 0 0 1
−µ2 0 0 −1− µ1
0 −µ2 1+ µ1 0


where we think of the parameters ν = (ω, µ) ∈ R3 as having
been obtained from y ∈ R3 by localization (3.7). The eigenvalues
±i(1+µ1)±

√
−µ2 ofΩ(µ) yield atµ = 0 the normal frequency

α = ±i that has two normal-internal resonances (1.11) and (1.12)
with the same k = (1, 0) ∈ Z2. Complexifying both ζI ∼= ζ1 + iζ2
and ζII ∼= ζ3 + iζ4 on the covering space

N̂ = R/(4πZ)× T× R3 × R4 = {ξ1, ξ2, η, ζ }

we have the covering mapping

Π : N̂ −→ N,

(ξ1, ξ2, η, ζ ) 7→ (ξ1mod(2πZ), ξ2, η, diag[e
1
2 iξ1 ]ζ ).

This leads to the deck transformation

F : N̂ −→ N̂, (ξ1, ξ2, η, ζ ) 7→ (ξ1 − 2π, ξ2, η,−ζ ) (2.3)

and the lifted vector field

Ŷ = ω̂1∂ξ1 + ω2∂ξ2 + Ω̂(µ)ζ∂ζ

on N̂ satisfyingΠ∗Ŷ = Y , compare with [8]. In this setting ξ̇1 = ẋ1,
implying that ω̂1 = 2 and the corresponding periods are T̂1 = 2π
and T1 = π , so T̂1 = 2T1 as should be expected.
Regarding the Floquet matricesΩ and Ω̂ we have

ż = diag
[
1
2
iξ̇1e

1
2 iξ1

]
ζ + diag

[
e
1
2 iξ1
]
ζ̇

= diag[e
1
2 iξ1 ]

(
1
2
iξ̇1ζ + Ω̂ζ

)
= diag[e

1
2 iξ1 ]

(
iId+ Ω̂

)
ζ

= diag[e
1
2 iξ1 ]

(
iId+ Ω̂

)
diag[e−

1
2 iξ1 ]z.

Apparently

Ω = diag[e
1
2 iξ1 ]

(
iId+ Ω̂

)
diag[e−

1
2 iξ1 ] = iId+ Ω̂,

and the resulting family

Ω̂(µ) = Ω(µ)− iId =

 0 −µ1 1 0
µ1 0 0 1
−µ2 0 0 −µ1
0 −µ2 µ1 0


of matrices is the lcu of

Ω̂(0) =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
Every perturbation of Y on N can be lifted to a perturbation of Ŷ
on N̂ that respects the deck transformation (2.3) and rescaling
time we can always arrange ẋ1 = 2, i.e. that the first frequency
equals 2. Applying Theorem 3 (for an explicit formulation see
Corollary 5) we may conclude that Ŷ is quasi-periodically stable
and this implies quasi-periodic stability of Y .

It should be noted that such an application of kam Theory goes
beyond the possibilities of [11,17,22]. For n = 1 the full bifurcation
scenario has been addressed in [6] and it would be interesting to
develop the extension from periodic to quasi-periodic orbits.

3. Main results

In the perturbation problem we work on the phase space M =
Tn × Rm × R2p = {x, y, z}where we are dealing with a ‘dominant
part’

ẋ = ω, ẏ = 0, ż = Ωz, or X = ω∂x +Ωz∂z (3.1)

in vector field notation. While it is always possible to translate
a single given invariant torus to T0 = Tn × {0} × {0}, it is an
assumption on the system that this torus can be embedded in a
whole family Ty = Tn × {y} × {0} of invariant tori parametrized
by y. This can be equivalently stated as

h(y, 0) = 0 for all y ∈ Rm, (3.2)

and the non-degeneracy condition bht(i) in Definition 1 ensures
that this assumption can be justified. For each ε > 0 the scaling
operator

Dε : M −→ M, (x, y, z) 7→
(
x,
y
ε
,
z
ε2

)
(3.3)

commutes with G and with the Tn-action on M , and hence
preserves reversibility and integrability. Using (1.3) and the
linearity ofDε the push-forward (Dε)∗ X of X underDε takes the
form

(Dε)∗ X(x, y, z) = Dε

(
X
(
D−1ε (x, y, z)

))
= f (εy, ε2z)∂x +

1
ε
g(εy, ε2z)∂y +

1
ε2
h(εy, ε2z)∂z .
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We can use (1.4) to find that N(X) := limε→0 (Dε)∗ X is the
dominant part (1.5) of X . The vector field N(X) = ω∂x + Ωz∂z is
again reversible and integrable; it is characterized by the frequency
vector ω = (ω1, . . . , ωn) ∈ Rn which describes the flow along
the invariant tori Ty, and by the matrix Ω ∈ gl(2p;R) which
determines the linear flow in the z-direction normal to the family
of invariant tori.
Since Ω does not depend on the angular variable x ∈ Tn the

vector field N(X) is in normal linear Floquet form. The Floquet
matrix Ω is infinitesimally reversible, satisfying ΩR = −RΩ
because of the reversibility of the vector field X . Observe that if
µ ∈ C is an eigenvalue of Ω ∈ gl−(2p;R) then so is −µ.
Hence, the eigenvalues ofΩ can be grouped into complex quartets,
conjugate purely imaginary pairs±iα, symmetric real pairs and the
eigenvalue zero with even algebraic multiplicity.

3.1. Non-degeneracy conditions

Since GL+(2p;R) is algebraic it follows that the orbitO(Ω0) is a
smooth submanifold of gl−(2p;R). The tangent space atΩ0 to this
orbit is given by

TΩ0O(Ω0) = {ad (A) ·Ω0 = AΩ0 −Ω0A | A ∈ gl+(2p;R)}

= ad (Ω0)
(
gl+(2p;R)

)
, (3.4)

where we have used the fact that ad (A) ·Ω = −ad (Ω) · A for all
A,Ω ∈ gl(2p;R). An unfolding ofΩ0 is a smooth mapping

Ω : Rs −→ gl−(2p;R), µ 7→ Ω(µ)

such that Ω(0) = Ω0. An unfolding is versal if it is transverse
to O(Ω0) at µ = 0, which requires that s ≥ codimO(Ω0); a
versal unfolding with the minimal number of parameters (i.e. with
s equal to the codimension of O(Ω0) in gl−(2p;R)) is called
miniversal. Using the Implicit Function Theorem it is easily seen
that given a miniversal unfolding Ω : Rs −→ gl−(2p;R) of
Ω0 ∈ gl−(2p;R) we can write each Ω̃ ∈ gl−(2p;R) near Ω0 in
the form Ω̃ = Ad (A) · Ω(µ) for some (A, µ) ∈ gl+(2p;R) ×
Rs close to (Id, 0) and depending smoothly on Ω̃ . In case all
eigenvalues of Ω0 are different from each other a miniversal
unfolding amounts to simultaneously deforming the eigenvalues,
see [14]. Our approach yields persistence results independent of
the eigenvalue structure of Ω0 (see [39] for some other step
towards such general persistence results). For more details on
versal, miniversal (or universal) unfoldings we refer to [1,2,19].
Property bht(i) generalizes the invertibility condition required

in the definition of non-degeneracy as it was formulated in [11,12,
17,22]. What is really needed for the proofs is the invertibility of
the linear operator

adN(Xλ0) : B
+
−→ B− (3.5)

and since dim Fix(R) = dim Fix(−R) this is fully captured by bht(i).
Computing

adN(Xλ0)(β∂z) = −Ω(λ0)β∂z (3.6)

shows that this certainly holds true if detΩ(λ0) 6= 0. However, the
condition bht(i) can still be satisfied if detΩ(λ0) = 0, for example
when ker(Ω(λ0)) ⊂ Fix(−R). The Floquet matrixΩ(λ0)may have
zero eigenvalues as long as the corresponding eigenvectors do not
lie inB+.

Remarks. (i) Up to now, the condition detΩ0 6= 0 was one
of the central assumptions for normal linear stability in the
general dissipative context aswell as in the volume preserving,
symplectic and reversible contexts. Replacing this condition by
bht(i) allows one to extend the known theorems to the singular
case of eigenvalue zero.
(ii) Property bht(i) is persistent under small variation of λ near
λ0 because of the upper-semi-continuity of the mapping λ 7→
dim kerΩ(λ).

Property bht(ii) means that locally the frequency vector ω(λ)
varies diffeomorphically with λ, while ‘simultaneously’ the local
family λ 7→ Ω(λ) is a versal unfolding of Ω(λ0) in the sense
of [1,2]. For earlier usage of this method in reversible kam Theory,
see [11,12,17]. In the Appendix we develop an appropriate versal
unfolding that depends linearly on λ.
When trying to answer the persistence problem for Ty it is

convenient to focus on (a sufficiently small neighborhood of) each
of the invariant tori Tν (ν ∈ Rm) separately, considering the label
ν ∈ Rm of the chosen torus as a parameter; formally this can be
done by a localizing transformation, setting

y = ν + yloc and Xloc(x, yloc, z; ν) := X(x, ν + yloc, z). (3.7)

This way we get a parametrized family of reversible and
integrable vector fields, still on the same state space M; in this
localized situation we concentrate on the persistence in a small
neighborhoodof the invariant torus T0, corresponding to (yloc, z) =
(0, 0). For simplicity we absorb the additional parameter ν with
the other parameters which we may have and we also drop the
subscript ‘loc ’.
The non-degeneracy condition bht(ii) requires that s ≥ n +

codimO(Ω(λ0)); in case all parameters originate from a lo-
calization procedure this means that we should have m ≥

n + codimO(Ω(λ0)). Assume now that Xλ is non-degenerate
at λ0 ∈ Rs, and let (ω0,Ω0) := (ω(λ0),Ω(λ0)). Using a re-
parametrization and a parameter-dependent linear transforma-
tion in the z-space we may assume that the parameter λ takes the
form λ = (ω, µ, µ̃) and belongs to a neighborhood P of λ0 :=
(ω0, 0, 0) inRn×Rc×Rs−n−c , while the dominant part of the vec-
tor field reads

N(X)(x, y, z, ω, µ, µ̃) = ω∂x +Ω(µ)z∂z, (3.8)

where Ω : Rc −→ gl−(2p;R) is a given miniversal unfolding
of Ω0. The µ̃-part of the parameter does not appear in this
expression for the (unperturbed) vector field X; although it might
appear explicitly in the perturbations it turns out that µ̃ plays no
role at all in the further analysis. Therefore we suppress µ̃ and just
keep the essential parameters (ω, µ) and set s = n + c , with
c = codimO(Ω(0)). The question of a particular choice for the
miniversal unfolding Ω(µ) appearing in (3.8) is addressed in the
Appendix.

3.2. Consequences

We are given a family of integrable vector fields

X(x, y, z, ω, µ) = [ω + f (y, z, ω, µ)] ∂x + g(y, z, ω, µ)∂y
+ [Ω(µ)z + h(y, z, ω, µ)] ∂z (3.9)

on the product M × P of phase space M = Tn × Rm × R2p and
parameter space P ⊆ Rs = Rn × Rc with reversing symmetry
groupΣ generated by (1.2) and (1.6). For l = 1 the latter is just the
identity, but for l ≥ 2 the composition

Hl := Fl ◦ G : M −→ M,

(x, y, z) 7→
(
2π
l
− x1, x∗, y, SlRz

)
, (3.10)

is another reversing symmetry and one may also characterize the
vector fields in X− as being reversible with respect to the two
mappings G and Hl. Note that in this characterization Hl may be
replaced by F il ◦ G for any i relative prime to l.
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The coefficient functions f , g and h entering X are higher
order terms in z, satisfying f (y, 0, ω, µ) = g(y, 0, ω, µ) =
h(y, 0, ω, µ) = Dzh(y, 0, ω, µ) = 0 for all y ∈ Rm, (ω, µ) ∈ P .
WithinX− we consider perturbations Z of X and write

Z(x, y, z, ω, µ) =
[
ω + f̃ (x, y, z, ω, µ)

]
∂x + g̃(x, y, z, ω, µ) ∂y

+

[
Ω(µ)z + h̃(x, y, z, ω, µ)

]
∂z;

here the coefficient functions f̃ , g̃ and h̃ may contain lower order
terms but are close to f , g and h, respectively. In this situation
Theorem 3 allows one to conjugate Z to X as far as Diophantine
tori are concerned.
The condition that Φ be a full conjugation from X to Z means

that Φ∗(X) = Z , or equivalently
(
Φ−1

)
∗
(Z) = X . What is actually

proved is the existence of a local diffeomorphismΦ such that(
Φ−1

)
∗
(Z)(x, y, x, ω, µ) = N(X)(x, y, z, ω, µ)+ O(|y|, |z|)∂x

+O(|y|, |z|2)∂y + O(|y|, |z|2)∂z (3.11)

for all (ω, µ) ∈ Pγ which are sufficiently close to (ω0, 0). The
property (3.11) implies that for all parameter values (ω, µ) in the
indicated Cantor set the X-invariant torusTn×{0}×{0} is mapped
by Φ into a Z-invariant torus on which the Z-flow is conjugate to
the constant flow ω∂x on Tn. This means that a Cantor subset of
large measure of the family Tn × {0} × {0} × P of X-invariant
tori survives the perturbation to Z . The preservation of the normal
linear behavior means that the normal linear vector fields N(X)
and N(Z) along two corresponding invariant tori are conjugated
by the derivative of the C∞-near-identity diffeomorphism.
In comparison to earlier results on persistence of lower-

dimensional tori the condition that all eigenvalues be simple
is dropped in Theorem 3 and the condition detΩ(0) 6= 0 is
weakened to bht(i). Indeed, we have the following corollary.

Corollary 4 (Ciocci [17], Broer, Hoo and Naudot [11]). Let the family
X ∈ X− of G-reversible integrable vector fields satisfy the non-
degeneracy condition bht(ii) at λ0 = (ω0, 0) ∈ P, with Ω(0)
invertible. Then X is quasi-periodically stable.

Next to the above purely reversible case l = 1 also the case l = 2 of
a reversing symmetry group Σ = {Id, F ,G,H} merits an explicit
formulation. Here H = H2 is given by (3.10) and yields

f (y, SRz) = f (y, z), g(y, SRz) = −g(y, z) and
h(y, SRz) = −SRh(y, z) (3.12)

for integrable vector fields where S(zI , zII) = (zI ,−zII). From [7,
9,11,17] it follows that f , g are even in zII , while h is odd in zII .
Moreover, (1.4) and (3.12) imply that g(y, z) = 0 for all (y, z) ∈
Rm × Fix(R) and also for all (y, z) ∈ Rm × Fix(SR).

Corollary 5. Let X ∈ X− be a family of G-reversible F-equivariant
integrable vector fields that satisfies the non-degeneracy condition
bht(ii) at λ0 = (ω0, 0) ∈ P, withΩ(0) invertible on Fix(S). Then X
is quasi-periodically stable.

Again we allow for multiple eigenvalues, in particular the
eigenvalue 0 may have multiplicity larger than two. A similar
statement holds in case of equivariance with respect to (1.6)
instead of (1.13).
In the covering setting of Section 1, we observe that the lift of

an integrable vector field again is integrable. In fact, if X̂ is the lift
to M of an integrable vector field X on N , then Π∗(X̂) = X and
F∗X̂ = X̂ . In case the second Mel’nikov condition is violated by a
resonance (1.12) we can apply Corollary 5 on a 2:1 covering space.
In Example 2 of Section 2 we do this for a double normal-internal
resonance with fixed resonance vector k ∈ Z2.
Corollary 6. Let X ∈ X− be a family of G-reversible integrable
vector fields that satisfies the non-degeneracy condition bht(ii) at
λ0 = (ω0, 0) ∈ P. If kerΩ(0) is contained in Fix(−R) then X is
quasi-periodically stable.

If kerΩ(0) ⊆ Fix(+R) we generically expect a quasi-periodic
center-saddle bifurcation to take place, cf. [20]. Here violation
of the first Mel’nikov condition prevents persistence of the
corresponding tori if not embedded in an appropriate bifurcation
scenario. The scaling (3.3) also can be applied to non-integrable
systems, making the non-integrable higher order terms a small
perturbation. It is then not automatic that the resulting dominant
part is in Floquet form. This is a necessary extra requirement that
can be thought of as generalization of integrability under which
quasi-periodic stability can still be achieved. For a more thorough
discussion of these questions see [14].

4. Sketch of proof

The proof of Theorem 3 follows [4,11,14] almost verbatim (see
also [12,17,22]) and here we just concentrate on the novel aspects.
The quite universal set-up of [14,31] is based on a Lie algebra
approach, using a standard Newtonian linearization procedure.
The conjugation Φ between the integrable and the perturbed
family is produced as the limit of an infinite iteration process. The
central ingredient of the proof is the solution of the linearized
problem, the so-called homological equation. The structure at
hand, that is, the reversible symmetry groupΣ , is phrased in terms
of the Lie algebrasX±,X±lin andB± and is therefore automatically
preserved. Here we content ourselves showing how the non-
degeneracy conditions bht(i) and bht(ii) enter when solving the
homological equation.
At each iteration step we look for a transformation (ξ , η, ζ , σ ,

ν) 7→ (x, y, z, ω, µ)withω = σ+Λ1(σ , ν) andµ = ν+Λ2(σ , ν)
independent from the variables (ξ , η, ζ ) so that the projection
to the parameter space P is preserved. The transformation in the
variables is generated by a Σ-equivariant vector field Ψ ∈ X+

that we write as

Ψ = U∂x + V∂y +W∂z .

The homological equation reads

adN(X)(Ψ ) = L+ N (4.1)

with

Lσ ,ν(ξ , η, ζ ) = {Z − X}lin,d and
Nσ ,ν(ξ , η, ζ ) = Λ1(σ , ν)∂ξ +Ω(Λ2(σ , ν))ζ∂ζ

and determines the unknown U , V ,W ,Λ1 andΛ2 according to

Uξσ = Λ1 + f̃

Vξσ + VζΩ(ν)ζ = g̃ + g̃ηη + g̃ζ ζ (4.2)

Wξσ + [Ω(ν)ζ ,W ] = Ω(Λ2)ζ + h̃+ h̃ηη + h̃ζ ζ .

Here U, V ,W , f̃ , g̃, h̃ and their derivatives depend on (ξ , 0, 0, σ ,
ν). Moreover, Greek subscripts denote derivatives, while Uξσ =
Σnj=1Uξjσj and similarly for V and W . These linear equations are
solved by suitably truncated Fourier series. Note that the left
hand side of (4.2) consists of the components of the vector field
adN(Xσ ,ν)(Ψ ), where

N(Xσ ,ν)(ξ , η, ζ ) = σ∂ξ +Ω(ν)ζ∂ζ .

For a given Z (and hence L), the goal is to find Ψ ∈ X+lin,d and
N ∈ ker adN(X)T ⊆ X+lin,d so that the homological equation (4.1)
is satisfied. HereX+lin,d = X+lin∩X+d denotes the intersection set of
the Taylor and Fourier truncations of vector fields inX+.
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Wemake the ansatz

V (ξ , η, ζ , σ , ν) = V0 + V1η + V2ζ and
W (ξ , η, ζ , σ , ν) = W0 +W1η +W2ζ (4.3)

for the unknown Ψ , where Vj and Wj (j = 0, 1, 2) depend on
ξ and on the multiparameter (σ , ν). Fourier expanding in ξ and
comparing coefficients in (4.2) yields the following equations for
an explicit (formal) construction of Ψ . To avoid clumsy notation
we suppress the dependence on (σ , ν).
For k 6= 0, (4.2) implies

i〈k, σ 〉Uk = f̃k (4.4)

i〈k, σ 〉V0,k = g̃k, (4.5)

i〈k, σ 〉V1,k = (̃gη)k (4.6)

V2,k [i〈k, σ 〉Id+Ω(ν)] = (̃gζ )k (4.7)

[i〈k, σ 〉Id−Ω(ν)]W0,k = h̃k (4.8)

[i〈k, σ 〉Id−Ω(ν)]W1,k = (̃hη)k (4.9)

[i〈k, σ 〉Id− adΩ(ν)]W2,k = (̃hζ )k (4.10)

and, similarly, for k = 0

−Λ1 = f̃0 (4.11)
V2,0Ω(ν) = (̃gζ )0 (4.12)

−Ω(ν)W0,0 = h̃0 (4.13)

−Ω(ν)W1,0 = (̃hη)0 (4.14)

−adΩ(ν)W2,k −Ω(Λ2) = (̃hζ )0. (4.15)

On the one hand, it is clear by the Diophantine conditions that for
k 6= 0 none of the coefficients at the right hand sides of (4.4)–(4.9)
is in the kernel, i.e. none of the eigenvalues i〈k, σ 〉, i〈k, σ 〉 ± λj,
with λj eigenvalue of Ω(ν) are zero. For k = 0, the (4.12)–(4.14)
are solvable by the non-degeneracy condition bht(i) since the right
hand sides lie in B−. The so-called solvability condition (4.11)
determines the ∂ξ -component

Λ1(σ , ν) = −
1

(2π)n

∫
Tn
f̃ (ξ , 0, 0, σ , ν)dξ

of N in (4.1). Turning our attention to Eq. (4.10), we see that it
admits the solution

W2,k = [i〈k, σ 〉Id− adΩ(ν)]−1 (̃hξ )k

if and only if the operator [i〈k, σ 〉Id− adΩ(ν)] is invertible, which
boils down to the condition

i〈k, σ 〉 6= λj − λl

on the spectrumof adΩ(ν), whereλj is an eigenvalue ofΩ(ν). This
inequality is the secondMel’nikov condition and again guaranteed
by the Diophantine conditions. For k = 0 the splitting

im(ad +(Ω0))⊕ ker(ad −(ΩT0 )) = gl−(2p,R), (4.16)

detailed in the Appendix lies at the basis of solving equation (4.15).
Indeed, the non-degeneracy condition bht(ii) guarantees that we
may choose the lcu for Ω . Using the Implicit Function Theorem
and the fact that Ω (by construction) is an isomorphism between
parameter spaces, it follows that (4.15) admits the solution

Λ2(σ , ν) = Ω
−1 (
−π

(̃
hζ ,0 + adΩ(ν)W2,0

))
, (4.17)

where the mapping π denotes the projection of gl−(n,R) onto the
subspace ker(ad −(ΩT0 )) according to the splitting (4.16). Compare
with [17], Lemma 8.1.
Note added in proof

The generalization of the approach in [3,40] to which we
alluded in footnote 5 at the end of Section 1.2 has already been
obtained; see Ref. [41].
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Appendix. Unfolding reversible linear matrices

Let Ω0 ∈ gl−(2p;R) be given; the aim of this appendix is
to summarize some results from [17,23,27,37] which allow to
describe a miniversal unfolding ofΩ0, and to work out the details
for two particular cases. See also [26].
LetΩ0 = S0+N0 be the Jordan–Chevalley decomposition ofΩ0

into commuting semisimple and nilpotent parts. The uniqueness
of this decomposition implies that both S0 and N0 belong to
gl−(2p;R). Also

ker ad (Ω0) = ker ad (S0) ∩ ker ad (N0), (A.1)

as easily follows from the fact that S0 and N0 commute, and as
shown in [17,27] furthermore

ker ad (ΩT0 ) = ker ad (S0) ∩ ker ad (N
T
0 ). (A.2)

We know from (3.4) that TΩ0O(Ω0) = im (ad +(Ω0)), while
a classical result from linear algebra shows that the subspace
ker (ad −(ΩT0 )) of gl−(2p;R) forms a complement of the tangent
space TΩ0O(Ω0) to the orbit throughΩ0. Finally, ker (ad −(Ω

T
0 )) =

ker (ad −(S0)) ∩ ker (ad −(N T
0 )) by (A.2), and hence we obtain the

following result.

Theorem 7. Let Ω0 ∈ gl−(2p;R) be given, and let Ω0 = S0 + N0
be the Jordan–Chevalley decomposition of Ω0. Then

Ω : ker (ad −(S0)) ∩ ker (ad −(N T
0 )) −→ gl−(2p;R),

A 7→ Ω0 + A, (A.3)

forms a miniversal unfolding of Ω0 ∈ gl−(2p;R).

The unfolding Ω(µ) is in the centralizer of S0. In the present
context of linear systems one calls such an unfolding a linear
centralizer unfolding (lcu for short). Also note that Ω(µ) −
Ω0 is linear in the unfolding parameters. For the convenience
of the reader we now explicitly work out a linear centralizer
unfolding (A.3) for three particular choices of (Ω0, R).

A.1. Unfolding multiple non-zero normal frequencies

For our first example we assume that Ω0 ∈ gl−(2p;R) has
a 1 : 1 : · · · : 1 resonance (or p-fold resonance), meaning
that Ω0 has a pair of purely imaginary eigenvalues, say ±i, with
algebraic multiplicity p; we furthermore assume that we are in
the generic situation, with geometric multiplicity 1. The subspaces
ker(N j

0) (1 ≤ j ≤ p) form a strictly increasing sequence
of subspaces invariant under S0 and R, with dim ker(N

j
0) −

dim ker(N j−1
0 ) = 2. With respect to a conveniently chosen basis
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{u+1 , u
−

1 , u
+

2 , u
−

2 , . . . , u
+
p , u

−
p } of R2p the linear matrices Ω0 and R

have the matrix form

Ω0 =



J2 J2 O2 . . . O2

O2 J2 J2
. . .

...
...

. . .
. . .

. . . O2
...

. . .
. . . J2

O2 . . . . . . O2 J2

 ,

R =



R2 O2 O2 . . . O2

O2 R2 O2
. . .

...
...

. . .
. . .

. . . O2
...

. . .
. . . O2

O2 . . . . . . O2 R2

 (A.4)

with

J2 =
(
0 1
−1 0

)
, O2 =

(
0 0
0 0

)
and

R2 =
(
1 0
0 −1

)
. (A.5)

From this one can compute an lcu ofΩ0 as follows.

Lemma 8. Fix an A ∈ ker (ad −(S0)) ∩ ker (ad −(N T
0 )). Then there

exist constants µ1, µ2, . . . , µp ∈ R such that if we set

Aj := A−
j∑
i=1

µiS
i
0

(
N T
0

)i−1
, (1 ≤ j ≤ p),

then Aj(Up−i) = {0} for 1 ≤ j ≤ p and 0 ≤ i ≤ j−1. In the particular
case that j = p we have

A =
p∑
i=1

µiS
i
0

(
N T
0

)i−1
. (A.6)

Combining (A.4) and (A.6) an lcu ofΩ0 takes the explicit form

Ω(µ) = Ω0 +



µ1J2 O2 O2 . . . O2

µ2J2 µ1J2 O2
. . .

...
...

. . .
. . .

. . . O2
...

. . .
. . . O2

µpJ2 . . . . . . µ2J2 µ1J2

 (A.7)

with unfolding parameters µ1, . . . , µp ∈ R. This construction
invariably leads to the same lcu, we therefore speak from now
on of the lcu. In case all eigenvalues of Ω0 ∈ gl−(2p;R) are
purely imaginary, non-zero and with geometric multiplicity 1,
the lcu of Ω0 can be obtained by considering the different pairs
of eigenvalues ±iαj, multiplying (A.7) with αj (using for each j
the appropriate dimension and a new set of parameters), and
juxtaposing the obtained unfoldings as blocks along the diagonal.

A.2. Unfolding multiple eigenvalue zero

For our second and third example we assume that Ω0 ∈
gl−(2p;R) has 0 as an eigenvalue with geometric multiplicity 1
and algebraic multiplicity 2p; then S0 = 0, N0 = Ω0, N

j
0 6= 0 for

1 ≤ j < 2p, and N
2p
0 = 0. The subspaces ker(N

j
0), 1 ≤ j ≤ 2p are

invariant under R; they form a strictly increasing sequence, with
dim ker(N j

0)−dim ker(N
j−1
0 ) = 1. With respect to a conveniently
chosen basis Ω0 = N0 is a classical nilpotent Jordan matrix with
1’s above the diagonal. The matrix form of R depends on whether
ker(N0) ⊂ Fix(R), in which case R has the same matrix form as in
(A.4), or ker(N0) ⊂ Fix(−R), whence the matrix form of R equals
minus the expression in (A.4).
To determine the lcu of Ω0 we first consider some A ∈

ker(ad (N T
0 )); one easily shows that A can be written as A =∑2p

j=1 νj
(
N T
0

)j−1, with some constants νj ∈ R (1 ≤ j ≤ 2p).
Imposing the further condition that A ∈ gl−(2p;R) gives νj = 0 for
j odd; setting µj := ν2j for 1 ≤ j ≤ pwe obtain then the following
lcu:

Ω(µ) = Ω0 +

p∑
j=1

µj
(
N T
0

)2j−1
, µ = (µ1, µ2, . . . , µp) ∈ Rp.

HenceΩ0 has co-dimension p and the lcu is given by

Ω(µ) =



0 1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 1 0 · · · 0

. . .
. . .

. . .
...

. . .
. . . 0
. . . 1

0



+



0
µ1 0
0 µ1 0
µ2 0 µ1 0

0 µ2 0
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

µp . . . 0 µ2 0 µ1 0


, (A.8)

alternating diagonals with unfolding parameters µj and diagonals
with 0. Note that we may alternatively fix R to be of the form (A.4)
and obtain the two cases by taking (A.8) and its transpose, with
Ω0 = N0 having its 1’s below the diagonal.
In case the condition dim ker(Ω0) = 1 on the geometric

multiplicity of the zero eigenvalue is dropped, the unfolding
changes drastically and requires more parameters, i.e., has higher
codimension. The same is true for our first example (non-zero
normal frequencies). Further information on these cases can be
found in [23].
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