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Robustness of quantized continuous-time nonlinear systems to

encoder/decoder mismatch

Claudio DE PERSIS

Abstract— The robustness of quantized continuous-time non-
linear systems with respect to the discrepancy (mismatch)
between the ranges of the encoder and the decoder quantizers is
investigated. A condition which guarantees asymptotic stability
and which describes the interplay between quantization density
and mismatch is derived.

I. INTRODUCTION

In a quantized control system, control inputs and/or mea-

surement outputs are quantized, i.e. they are processed by

a quantizer, which is a discontinuous map from the state

space to a finite set of values. As a result quantized controls

or measurements are piece-wise constant signals which take

value in a finite set. These signals can be transmitted over

finite bandwidth communication channels, and in such a case

a quantizer will be present at the coder side, and another one

at the decoder side.

Early results on quantized nonlinear systems have been

established in [9] for the class of systems which are input to

state stable (ISS) with respect to perturbations, and consid-

ering a general class of quantizers. More specific examples

of quantizers are the uniform quantizers, the logarithmic

quantizers ([10]), etc. Since in many cases it is difficult

to guarantee a robustness property like ISS for nonlinear

systems, the author of [2] derived stability results for the

class of stabilizable systems. Typically this approach results

in quantized control laws which are particularly easy to

implement ([3]). Both [9], [2] did not explicitly take into

account the notion of solutions for quantized systems, which

is a delicate issue since quantized systems are systems with

a discontinuous vector field. Different kind of solutions for

quantized systems were discussed in [1], where the analysis

was carried out relying on stability theory for differential

inclusions. The solutions studied in [1] included the hys-

teretic solution adopted in [5] for systems with logarithmic

quantization.

All the results discussed above assume that the parameters

of the quantizer at the coder and of the quantizer at the

decoder are the same. The recent papers [7], [6] have posed

the problem of studying the stability of quantized linear

control systems when the ranges of the two quantizers are

different. The two papers present slightly different points

of view on the problem: While the former is interested

in understanding under what conditions stability is retained

despite of the mismatch, the latter redesign the coder/decoder
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to cope with the mismatch. On the other hand, both the

papers deal with either a sampled-data or a discrete-time

model of the quantized system.

In this paper, we want to propose an approach to the

problem which, although close in spirit to [7], is substantially

different. In fact, we are interested to investigate quantized

continuous-time systems in the presence of mismatch, with-

out relying on a sampled-data model of the system, but deal-

ing directly with the continuous-time system in the presence

of a discontinuous map representing the quantizer. This is a

major difference, because in this way the transmission of the

information from the encoder to the decoder occurs whenever

the state crosses certain thresholds, while the adoption of a

sampled-data model for the system implicitly assumes that

the transmission occurs at the sampling times. We adopt loga-

rithmic quantizers with hysteresis ([5]) to bypass the problem

of defining a notion of solution for a system which presents

a nonlinear right-hand side with discontinuous (quantized)

terms ([1]). The same class of quantizers with hysteresis

has been adopted in [5] to study quantized adaptive control

systems, in [3] to study robustness of quantized control

systems with respect to parametric uncertainties, and in [4],

where quantized control systems are designed to be robust

with respect to pointwise delays. Dealing with hysteresis is

simple when the quantizers are logarithmic, but other choices

are possible (see e.g. [8] for the case of uniform quantizers

with hysteresis). In fact, in principle, the methods we present

can be applied with any kind of quantizers. Finally, unlike

[7], [6], our focus is on nonlinear systems. The results for

linear systems are given as a special case.

In Section II, we introduce some preliminaries, namely

the class of systems under consideration, the quantizers, the

notion of mismatch and the formulation of the problem. In

Section III, the main results of the paper are discussed, and

conclusions are drawn in Section IV.

Notation. R>, R≥ denote respectively the set of positive and

non-negative real numbers. Given a symmetric and positive

definite matrix P , λmax(P ), λmin(P ) denote respectively the

largest and the smallest eigenvalue of P . A class-K∞ func-

tion α : R≥ → R≥ is continuous, strictly increasing, zero

at zero, and unbounded. With a slight abuse of terminology,

we define a class KL-function β(r, s) : R≥ × R≥ → R≥

as a function such that β(·, s) is a class-K∞ function for

every fixed s, and β(r, ·) is a decreasing function for which

lims→+∞ β(r, s) = 0 for each fixed r. The system

Ẋ(t) = F (X(t)) t 6= tk
X(t+) = G(X(t)) t = tk
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represents an impulsive system, i.e. a system whose state

undergoes the reset X(t+) = G(X(t)) at the (switching)

times t0, t1, t2, . . ., and flows continuously according to the

equation Ẋ(t) = F (X(t)) during the inter-switching time.

II. PRELIMINARIES

Process. We consider non-linear continuous-time systems

of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

with x ∈ R
n, u ∈ R

m, and f, g continuously differentiable

maps. There is no special reason for considering input-affine

systems as (1) except that of giving the stability conditions

in the simplest possible form.

We assume the origin x = 0 to be an unstable equilibrium

point which can be stabilized by a locally Lipschitz control

law u = k(x). Namely there exist a continuously differen-

tiable Lyapunov function V (x) such that

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V

∂x
[f(x) + g(x)k(x)] ≤ −αV (x) ,

(2)

with α1, α2 class-K∞ functions, and α > 0 a real number.

The existence of a Lyapunov function (2) is the standing

assumption for the results below.

Quantizer. The quantizer we focus on is the logarithmic

quantizer introduced in [10] for linear discrete-time systems

and adopted for non-linear continuous-time system also in

[5], [1]. Following [5], the quantizer includes a hysteretic

switching mechanism to avoid the difficulties with the def-

inition of a notion of solutions with quantized nonlinear

systems ([1]) and to avoid the occurrence of chattering.

Actually, one of the reasons for us to adopt a specific class

of quantizers rather than general quantizers lies in the fact

that the analysis of quantized systems with hysteresis is

particularly simple when quantizers are logarithmic ([5], [1]),

or uniform ([8]). But the same results can be given for other

classes of quantizers as well.

By logarithmic quantizer we mean the multi-valued map (see

Fig. 1):

ψ(s) =





ψ0
ψ0

1 + δ
< s

ψ0

1 + δ

ψ0

(1 + δ)2
< s ≤ ψ0

(1 + δ)(1 − δ)
,

ψi
ψi

1 + δ
< s ≤ ψi

1 − δ
,

0 ≤ i ≤ j
ψi

1 + δ

ψi
(1 + δ)2

< s ≤ ψi
(1 + δ)(1 − δ)

,

0 ≤ i ≤ j

0 0 ≤ s ≤ ψj
1 + δ

−ψ(−s) s < 0 .

(3)

-

6ψ(s)

s

1 − δ

1 + δ

ψ0

ψ0

1 + δ

ψ1

1 + δ

o

b a

c d

ψ0(1 + δ)−2

ψ1

ψ0(1 + δ)−1ψ1(1 + δ)−1

Fig. 1. The multi-valued map ψ(s) for s > 0, and with j = 1.

where ψi = ρiψ0, i = 0, 1, . . . , j, ρ = 1−δ
1+δ , δ ∈ (0, 1), j is

a positive integer and ψ0 is a positive real number. In what

follows, we let ψ0 be positive real number arbitrarily fixed

and δ, j parameters to design. The number of quantization

levels is equal to 4j + 1. We refer to the set of points s
such that |s| ≤ ψ0(1 − δ)−1 as the range of the quantizer,

and we say that the quantizer undergoes overflow whenever

the argument of the quantizer is outside the range of the

quantizer. Moreover, the set of points such that |s| ≤ ψj(1+
δ)−2 is the deadzone of the quantizer.

The law according to which ψ(s) takes value as s evolves

with time is described by the automaton in Fig. 2. The initial

state at which the automaton lies is chosen according to the

law below:

ψ(s(0)) =



ψ0
1

1 + δ
ψ0 < s(0)

ψi
1

1 + δ
ψi < s(0) ≤ 1

1 − δ
ψi ,

0 ≤ i ≤ j

0 0 ≤ s(0) ≤ 1

1 + δ
ψj

−ψm(−s(0)) s(0) < 0 .

This law is also used to determine the state of the

automaton each time the argument of ψ is reset. This happens

during the zooming-in phase (see Theorem 1 below). The

value of ψ(s(0)) identifies a node of the graph. If the value

of s(0) fulfills one of the conditions of the edges leaving the

node, then a transition is triggered and the quantizer takes

the new value which is denoted by ψ(s(0+)) given by the

destination node. For t > 0, ψ(s(t)) remains constant until

s(t) triggers a transition of ψ(s(t)) to the new value, denoted

by ψ(s(t+)), again chosen according to the graph of Fig. 2.

It is straightforward to verify that, by definition, ψ(s)
satisfies the following inclusion (cf. [1]):
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ψ(s) = −ψ0 ψ(s) = −
ψ0

1 + δ

s = −
ψ0

1 + δ

s = −
ψ0

1 − δ2

s = −
ψ0

(1 + δ)2

s = −
ψ0

1 + δ

. . . ψ(s) = −
ψj

1 + δ

s = −
ψj

1 + δ

s = −
ψj

1 − δ2

ψ(s) = 0

s = −
ψj

(1 + δ)2

s = −
ψj

1 + δ

ψ(s) =
ψj

1 + δ

s =
ψj

1 − δ2

s =
ψj

1 + δ

s =
ψj

1 + δ

s =
ψj

(1 + δ)2

. . . ψ(s) =
ψ0

1 + δ

s =
ψ0

1 + δ

s =
ψ0

(1 + δ)2

ψ(s) = ψ0

s =
ψ0

1 − δ2

s =
ψ0

1 + δ

Fig. 2. The graph illustrates how the function ψ(s) takes values depending on s. Each edge connects two nodes, and is labeled with the condition (guard)
which triggers the transition from the starting node to the destination node.

ψ(s) ∈





{(1 + λδ)s, λ ∈ [−1, 1]} ,
ψj

1 + δ
< |s| ≤ ψ0

1 − δ

{λ(1 + δ)s, λ ∈ [0, 1]} ,
ψj

1 + δ
≥ |s| .

(4)

Observe that in the former case |ψ(s) − s| ≤ δ|s| ≤ δ ψ0

1−δ ,

while in the latter case |ψ(s) − s| ≤ |s| ≤ ψj

1+δ .

Quantized measurements. We assume that n sensors are

available, each one measuring one and only one of the state

components. Each component is quantized. The ranges of the

quantizers are adjusted dynamically through the positive real

number µc which changes over time. The vector of quantized

measurements is then

Ψc(x) = µcΨ

(
x

µc

)
:= µc




ψ
(
x1

µc

)

...

ψ
(
xn

µc

)


 .

Encoder/decoder mismatch. The vector of quantized mea-

surements Ψ( x
µc

) is received at the other end of the channel,

where each decoder quantizer uses the range parameter µd.

Hence, the decoder generates the signal

Ψd(x) = µdΨ

(
x

µc

)
.

Typically it is assumed that the ranges of the quantizers at

the encoder and at the decoder are the same, but due to

uncertainty in the parameters of the quantizers, this may not

be always the case. Following [7], we consider here the case

in which there is a mismatch between the ranges of the two

quantizers, namely µd(t) = r−1µc(t), with r ∈ (0, 1) an

unknown parameter which measures the discrepancy between

the two parameters.

III. RESULTS

The line of the arguments is the following. We first give

a preparatory lemma in which we study the conditions

for practical stability. Afterwards, we show how to iterate

the argument to make the origin asymptotically stable. We

consider the case in which both the encoder and the decoder

know an upper bound on the size of the set of initial

conditions of (1), so that they can choose their initial range

to avoid overflow. The case in which the bound is unknown

poses no challenge and could be tackled similarly to [7], [9].

In the lemma, the ranges of the quantizers are kept

constant and equal to their initial value. Hence, the closed-

loop system obeys the equations (we regard µc and µd as

state variables)




ẋ(t) = f(x(t)) + g(x(t))k
(
µd(t)Ψ

(
x(t)
µc(t)

))

µ̇c(t) = 0
µ̇d(t) = 0 .

(5)

Because of the encoder/decoder mismatch, at the time t̄,
µd(t̄) = r−1µc(t̄), and therefore µd(t) = r−1µc(t) for all

t ≥ t̄ along the solutions of (5). Hence, we have





ẋ(t) = f(x(t)) + g(x(t))k

(
1

r
µc(t)Ψ

(
x(t)

µc(t)

))

µ̇c(t) = 0
µ̇d(t) = 0 .

(6)

We can rewrite the x-subsystem as 1 ([2])

ẋ(t) = f(x(t)) + g(x(t))k(x(t))+

g(x(t))h

(
x(t),

1

r
µc(t)Ψ(

x(t)

µc(t)
)

)
· 1

r
µc(t)·

·
(

Ψ(
x(t)

µc(t)
) − x(t)

µc(t)
+ (1 − r)

x(t)

µc(t)

)
,

(7)

where

h(x,w) =

∫ 1

0

[
∂k(y)

∂y

]

y=(1−a)x+aw

da .

1First observe that:

f(x) + g(x)k
(
µdΨ

(
x
µc

))
= f(x) + g(x)k(x) + g(x)·

·
(
k

(
µdΨ

(
x
µc

))
− k(x)

)

Set w = µdΨ
(

x
µc

)
and k̃(a) = k((1−a)x+aw), with a ∈ [0, 1]. Then

k
(
µdΨ

(
x

µc

))
− k(x) = k̃(1) − k̃(0) and

k̃(1)− k̃(0) =

∫ 1

0

dk̃(a)

da
da =

∫ 1

0

[
∂k(y)

∂y

]

y=(1−a)x+aw

(w− x)da .

Hence

k

(
µdΨ

(
x

µc

))
− k(x) = h

(
x, µdΨ

(
x

µc

))
· (µdΨ

(
x

µc

)
− x) ,

and also

f(x) + g(x)k
(
µdΨ

(
x

µc

))
= f(x) + g(x)k(x) + g(x)·

·h
(
x, µdΨ

(
x

µc

))
· (µdΨ

(
x
µc

)
− x) .

Recalling that µd = 1
r
µc, (7) follows.
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Let υ, κr be continuous, non-decreasing (υ also zero at zero)

functions defined as

υ(s) = υ̃(α−1
1 (s)) , υ̃(s) ≥ max

|x|≤s

∣∣∣∣
∂V

∂x
g(x)

∣∣∣∣ ,

κr(s) = κ̃r(α
−1
1 (s)) , κ̃r(s) ≥ max

|x|∞ ≤ s
r
2
|w|∞ ≤ s

|h(x,w)| .

Without loss of generality assume that υ(s) > 0 for s > 0.

For the system (7), the following result states conditions on

the quantization density δ, the number of quantization levels

j, ad the mismatch parameter r under which any trajectory

which starts from the (arbitrarily large) level set Ωθ = {x ∈
R
n : V (x) ≤ θ} converges in finite time to the (arbitrarily

small) inner level set Ωγ2θ:

Lemma 1: Let M > 0, 0 < γ < 1, ψ0 ∈ R>, and θ ∈
[0,M ]. Suppose:

(i) There exist 0 < δ, r < 1 and an integer j such that

2υ(θ)κr(θ)α
−1
1 (θ)∆ ≤ αγ2θ (8)

with

∆ =

√
n(ρj + δ) + 1 − r

r
and ρ =

1 − δ

1 + δ
.

(ii) The initial condition (x(t̄ ), µc(t̄ ), µd(t̄ )) satisfies

V (x(t̄ )) ≤ θ ,
α−1

1 (θ)

µc(t̄ )
=

ψ0

1 + δ
, µd(t̄ ) = r−1µc(t̄ ) .

Then any solution of the system (5) satisfies

V (x(t)) ≤ max
{
e−

α
2
(t−t̄)θ, γ2θ

}
, ∀t ≥ t̄ ,

and there exists a finite T such that V (x(t)) ≤ γ2θ for all

t ≥ t̄+ T .

Proof: As far as x(t) ∈ Ωθ, the Lyapunov function

V (x(t)) computed along the solution of the system away

from the switching times (the x-system is a switched system)

satisfies

V̇ (x(t)) ≤ −αV (x(t)) + υ(θ)κr(θ)
µc(t)

r

∣∣∣∣ψ
(
x(t)

µc(t)

)
+

− x(t)

µc(t)
+ (1 − r)

x(t)

µc(t)

∣∣∣∣

where we have exploited the fact that α1(|x(t)|) ≤ θ and 2

∣∣∣∣h
(
x(t),

1

r
µc(t)Ψ(

x(t)

µc(t)
)

)∣∣∣∣ ≤ κr(θ) .

If we prove that V̇ (x(t)) < 0 for almost all t such that

x(t) ∈ Ωθ\
◦

Ωγ2θ , then the thesis holds. In particular, observe

2Indeed observe that, by (4),

∣∣∣∣Ψ
(
x(t)

µc(t)

)∣∣∣∣
∞

= ψ

(
|x(t)|∞

µc(t)

)
≤ (1 + δ)

|x(t)|∞

µc(t)
< 2

|x(t)|∞

µc(t)

and therefore

∣∣∣ 1
r
µc(t)Ψ(

x(t)
µc(t)

)
∣∣∣
∞
< 1

r
µc(t) · 2

|x(t)|∞
µc(t)

.

Hence, if α1(|x(t)|) ≤ s, for some s ≥ 0, then

∣∣∣ 1
r
µc(t)Ψ(

x(t)
µc(t)

)
∣∣∣
∞
<

2
r
α−1

1 (s).

that x(t) ∈ Ωθ and
α

−1

1
(θ)

µc(t̄)
= ψ0

1+δ imply
|x(t)|
µc(t̄) ≤ ψ0

1+δ , i.e.

each quantizer is never in overflow.

Further observe that there exists an integer 0 ≤ m ≤ n,

whose value depends on
x(t)
µc(t)

, such that n−m components

of
x(t)
µc(t) are in absolute value larger than

ψj

1+δ . Hence

∣∣∣∣Ψ
(
x(t)

µc(t)

)
− x(t)

µc(t)

∣∣∣∣ ≤
√
n
ψj

1 + δ
+
√
nδ

|x(t)|
µc(t)

Then, since µc(t) = µc(t̄) = 1+δ
ψ0
α−1

1 (θ), the bound on

V̇ (x(t)) writes as

V̇ (x(t)) ≤ −αV (x(t)) + υ(θ)κr(θ)
µc(t)
r

[√
n
ψj

1+δ+

+ (
√
nδ + 1 − r)

|x(t)|
µc(t)

]

= −αV (x(t)) + υ(θ)κr(θ)
1

r

√
nρjα−1

1 (θ)+

+υ(θ)κr(θ)

√
nδ + 1 − r

r
|x(t)|

≤ −αV (x(t)) + υ(θ)κr(θ)α
−1
1 (θ)∆ .

(9)

Because of the condition in (8), observe that − 1
2αV (x(t))+

υ(θ)κr(θ)α
−1
1 (θ)∆ ≤ 0 and V̇ (x(t)) ≤ − 1

2αV (x(t)). As a

consequence the thesis holds. In particular, since V̇ (x(t)) ≤
−αV (x(t))

2 ≤ −α
2 γ

2θ, if T ≥ (1 − γ2)
α
2 γ

2
, then V (x(t)) ≤

max
{
e−

α
2
(t−t̄)θ, γ2θ

}
for t ∈ [t̄, t̄+ T ].

Remark. The right-hand side of (8) models the pertur-

bation due to the presence of the quantization and the

encoder/decoder mismatch in the Lyapunov inequality (9).

Condition (i) makes sure that such a perturbation does not

destroy the stability property of the (unperturbed) system

guaranteed by (2). Condition (ii), on the other hand, makes

sure that the initial state of the system (1) lies within the

quantization range of the encoder (and the decoder).

We illustrate the lemma above by a simple example:

Example. Consider the nonlinear system

ẋ = −x+ x2 + u (10)

and take as stabilizing feedback the law u = k(x) =
−x2. Hence, condition (2) is satisfied with V (x) = x2/2,

α1(|x|) = α2(|x|) = |x|2/2, a = 2. It is easy to check

that h(x,w) = −(x + w), from which we derive that

k̃r(s) = (1+ 2
r
)s, and kr(s) = (1+ 2

r
)α−1

1 (s) = (1+ 2
r
)
√

2s.
Moreover, since ∂V

∂x
g(x) = x, we have υ̃(s) = s and

therefore υ(s) = α−1
1 (s) =

√
2s. Condition (8) in this case

rewrites as

2(1 +
2

r
)
ρj + δ + 1 − r

r

√
2θ ≤ γ2 (11)

Thus, Lemma 1 applies provided that the parameters r, j, δ
satisfy the inequality above. This is indeed possible no matter

what the values of θ > 0 and 0 < γ < 1 are. ⊳

To obtain asymptotic stability the ranges of the encoder

and the decoder quantizer must be updated. The rationale

([9]) is that, since after a finite time the state is closer to
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the origin of the state space (see previous lemma), then the

range of the quantizers can be decreased. Since the number

of quantization levels is the same, reducing the range of the

quantizers implies the quantization errors to be smaller, and

this in turn yields that the state will approach even further

the origin. The update of the ranges of the encoder and the

decoder is done through the nonlinear map

Ωin(µ) =
1 + δ

ψ0
α−1

1

(
γ2α1

(
ψ0

1 + δ
µ

))
. (12)

The closed-loop system then takes the form

ẋ(t) = f(x(t)) + g(x(t))κr

(
µd(t)ψ

(
x(t)

µc(t)

))

µ̇c(t) = 0
µ̇d(t) = 0 t 6= tk

x(t+) = x(t)
µc(t

+) = Ωin(µc(t))
µd(t

+) = Ωin(µd(t)) t = tk

(13)

Using the lemma above repeatedly, it is not hard to show

asymptotic stability of the system under mismatch:

Theorem 1: Let ψ0 ∈ R+, γ ∈ (0, 1) and R > 0.

Suppose:

(i) There exist 0 < δ, r < 1 and a positive integer j such

that for all θ ∈ [0,M ], with M = α2(R), (8) holds.

(ii) The initial conditions (x(t0), µc(t0), µd(t0)) satisfy

|x(t0)| ≤ R, µc(t0) = 1+δ
ψ0

α−1
1 (γ2M) ,

µd(t0) = r−1µc(t0) .
(14)

Define the sequence of times tk = t0 + kT , with T ≥
2
α
( 1
γ2 − 1).

Then there exists a class-KL function β such that any

solution of (13) satisfies |X(t)| ≤ β(R, t− t0) for all t ≥ t0,

with X = (xT µc µd)
T .

Proof: As initial step, apply the previous lemma for

t ∈ [t0, t1], with θ = M . This is possible because |x(t0)| ≤
R implies V (x(t0)) ≤M , and µc(t0) =

1 + δ

ψ0
α−1

1 (γ−2M)

and the definition of Ωin(µc) imply
α−1

1 (M)

µc(t
+
0 )

=
ψ0

1 + δ
. As a

result, V (x(t)) ≤ max
{
e−

α
2
(t−t0)M,γ2M

}
for t ∈ [t0, t1]

and V (x(t1)) ≤ γ2M . Now suppose that for some k ≥ 0

V (x(t)) ≤ max
{
e−

α
2
(t−tk)γ2kM,γ2(k+1)M

}

for t ∈ [tk, tk+1] ,

V (x(tk+1)) ≤ γ2(k+1)M ,

α−1
1 (γ2kM)

µc(t
+
k )

≤ ψ0

1 + δ
.

We want to prove that the same inequalities hold with k
replaced by k+1. We resort once again to the lemma above,

this time applied with t̄ = tk+1, θ = γ2(k+1)M . The first

two properties immediately follow. Regarding the last one,

namely
α−1

1 (γ2(k+1)M)

µc(t
+
k+1)

≤ ψ0

1 + δ
,

recall that µc(t
+
k+1) = Ωin(µc(t

+
k )), and therefore the

inequality above is true if and only if

α−1
1 (γ2(k+1)M)

1+δ
ψ0

α−1
1

(
γ2α1

(
ψ0

1+δµc(t
+
k )

)) ≤ ψ0

1 + δ
.

This is in turn equivalent to

α−1
1 (γ2kM)

µc(t
+
k )

=
ψ0

1 + δ

which actually holds true by hypothesis. By induction we

conclude that for each k ≥ 0

V (x(t)) ≤ max
{
e−

α
2
(t−tk)γ2kM,γ2(k+1)M

}

for t ∈ [tk, tk+1] or, what is the same 3

V (x(t)) ≤ e−α̃(t−t0)M ,

with α̃ = min

{
α

2
,
2| ln γ|
T

}
. Hence,

|x(t)| ≤ α−1
1

(
e−α̃(t−t0)M

)
, M = α2(R) .

On the other hand, the following holds:

µc(t) = µc(t
+
k ) = 1+δ

ψ0
α−1

1

(
γ2kM

)

≤ 1+δ
ψ0

α−1
1

(
γ2ke−

2| ln γ|
T

(t−t0)M
)

It is easy now to find a class-KL function β such that

|X(t)| ≤ β(R, t− t0). In fact,

|( x(t)T µc(t) µd(t) )T |
≤ |x(t)| + µc(t) + µd(t) = |x(t)| +

(
1 + 1

r

)
µc(t)

≤ α−1
1

(
e−α̃(t−t0)M

)
+

+
(
1 + 1

r

)
1+δ
ψ0

α−1
1

(
γ2ke−

2| ln γ|
T

(t−t0)M
)

≤ max
{

1,
(
1 + 1

r

)
1+δ
ψ0

} [
α−1

1

(
e−α̃(t−t0)M

)
+

+α−1
1

(
γ2ke−

2| ln γ|
T

(t−t0)M
)]

≤ 2 max
{
1,

(
1 + 1

r

)
1+δ
ψ0

}
α−1

1

(
e−α̃(t−t0)M+

+γ2ke−
2| ln γ|

T
(t−t0)M

)

≤ 2 max
{
1,

(
1 + 1

r

)
1+δ
ψ0

}
α−1

1

(
2e−α̃(t−t0)α2(R)

)

= β(R, t− t0) .

Example. (Cont’d) Consider again the system (10). In this

case, M = R2/2 and and we need to verify that (11) holds

3The following relations are easily derived:

(i) max
{
e−

α
2

(t−tk)γ2kM,γ2(k+1)M
}

=

max
{
e−

α
2

(t−tk), γ2
}
γ2kM

(ii)γ2 = e2 ln γ = e−2| ln γ| ≤ e−2
| ln γ|

T
(t−tk) ⇒

max
{
e−

α
2

(t−tk), γ2
}
≤ e

−min
{

α
4

,2
| ln γ|

T

}
(t−tk)

(iii)γ2k = e−
2| ln γ|

T
(tk−t0) .
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for all θ ∈ [0, R2/2]. This is guaranteed if (11) holds for

θ = R2/2, i.e. if

2(1 +
2

r
)
ρj + δ + 1 − r

r
R ≤ γ2 .

Then the theorem applies provided that the map which

updates the ranges of the quantizers is chosen as in (12),

which now becomes Ωin(µ) = γµ. From the proof of the

theorem, we also observe that the function β which describes

the convergence of the state X = (xT µc µd)
T to the origin

takes the form

β(R, t− t0) = 2
√

2Rmax

{
1,

(
1 +

1

r

)
1 + δ

ψ0

}
e−

α̃
2
(t−t0),

with α̃ = min
{
1, 2γ2| ln γ|

1−γ2

}
.

Remark. The condition under which the theorem holds

is (8). It captures through ∆ the interplay of the design

parameters δ, j, r to guarantee stability of the closed-loop

system. Loosely speaking, a larger mismatch (r → 0) can be

counteracted by a denser quantization δ → 0, and a coarser

quantization (δ → 1) is tolerant to a smaller mismatch.

Conditions which guarantee robustness with respect to the

encoder/decoder mismatch can be given forms different from

(8). Other conditions, for instance, can be derived from the

results of [9] and [2] taking into account the mismatch

parameter as in the results above. ⊳

There is a special class of systems for which the condition

takes a particularly simple form, and this is the class of linear

systems

ẋ(t) = Ax(t) +Bu(t) , (15)

with (A,B) a stabilizable pair, considered in [7], [6]. The

standing assumption is the existence of a symmetric positive

definite matrix P , and a matrix K such that (A+BK)TP +
P (A + BK) = −I . Then the Lyapunov function V (x) =
xTPx satisfies (2), with k(x) = Kx. Theorem 1 for linear

systems can be stated as follows:

Corollary 1: Let ψ0 ∈ R+, γ ∈ (0, 1), R > 0. Suppose:

(i) There exist 0 < δ, r < 1 and a positive integer j such

that for all θ ∈ [0,M ], with M = λmax(P )R2,
√
n(ρj + δ) + 1

r
≤ γ2 λmin(P )

λmax(P )

1

2||PB|| ||K|| + 1 . (16)

(ii) The initial conditions (x(t0), µc(t0), µd(t0)) satisfy

|x(t0)| ≤ R, µc(t0) = γ 1+δ
ψ0

√
M

λmin(P ) ,

µd(t0) = r−1µc(t0) .

Let tk = t0 + kT , with T = 2λmax(P )( 1
γ2 − 1).

Then any solution of

ẋ(t) = Ax(t) +BKµd(t)Ψ
(
x(t)
µc(t)

)

µ̇c(t) = 0
µ̇d(t) = 0 t 6= tk

x(t+) = x(t)
µc(t

+) = γµc(t)
µd(t

+) = γµd(t) t = tk

satisfies |X(t)| ≤ δ̃e−
α̃
2
(t−t0)R, for all t ≥ t0, with δ̃ =

2 max{1,
(
1 + 1

r

)
1+δ
ψ0

}
√

2λmax(P )
λmin(P ) .

Proof: The statement is obtained by considering the

form taken by the functions αi, i = 1, 2, υ, κr in the

case of linear systems. Clearly, α = 1
λmax(P ) , υ(θ) =

2||PB||α−1
1 (θ) = 2||PB||

√
θ

λmin(P ) , κr(θ) = ||K||. There-

fore condition (8) becomes

2||PB|| θ

λmin(P )
||K||∆ ≤ αγ2θ ,

that is (16). The exponential bound on |X(t)| derives from

the expression of the function β given in the proof of the

previous theorem, again specialized to the case in which α1

and α2 are quadratic functions. Details are straightforward

and therefore omitted.

IV. CONCLUSION

We derived a simple condition which guarantees the sta-

bility of quantized continuous-time nonlinear systems in the

presence of encoder/decoder mismatch and which describes

the interplay between quantization density and mismatch. We

consider quantizers with hysteresis and the resulting system

is a switched system.
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