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(Super-)Gravity in Three Dimensions
Eric A. Bergshoeff

Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the
Netherlands

Abstract. We present a new unitary model of gravity in three dimensions containing a particular
combination of terms of higher-order derivatives in the gravitational field. We discuss some prop-
erties of this model. In particular, we present the N = 1 supersymmetric extension and discuss the
role of the auxiliary scalar in the presence of the higher-derivative terms.

Keywords: three-dimensional gravity, massive supergravity,
PACS: 04.20.Cv, 04.60.-m, 04.60.Kz, 11.30.Pb

INTRODUCTION

It is well-known that Einstein’s theory of gravity is a theory of interacting massless spin-
two particles around a Minkowski spacetime background. Unfortunately, as it stands, the
theory is not renormalizable. One way to try to improve the situation is to add terms to
the usual Einstein-Hilbert term which are of higher-order derivatives in the gravitational
field. This has the beneficial effect that the behaviour of the propagators improve such
that the theory could become renormalizable. However, in the presence of these higher-
derivative terms it is not guaranteed that the theory only describes a unitary spin-two
particle. In fact, it has been shown a long time ago that this is not the case [1] and that
higher-derivative gravity in four spacetime dimensions is perhaps renormalizable but
non-unitary.

To tackle the outstanding problem of quantum gravity in four spacetime dimensions
it is useful to reconsider this issue in the simpler setting of three spacetime dimensions.
Pure Einstein gravity is rather trivial in the sense that it does not describe any prop-
agating degree of freedom [2]. The situation becomes more interesting after a higher-
derivative Lorentz Chern-Simon terms has been added [3]. This so-called “Topological
Massive Gravity” (TMG) model decribes a massive particle of helicity +2 or —2, de-
pending on the sign of the Chern-Simons term. Note that the TMG model breaks parity,
due to the presence of the Chern-Simons term.

Recently, we showed that there is another unitary higher-derivative gravity model in
in three spacetime dimensions [4]: ghosts are avoided if (i) the EH term appears with the
‘wrong-sign’ and (ii) the following curvature-squared scalar K is added to the Einstein
term

3

K:RuvR“V—§R27 (1

where R,y is the Ricci tensor. In its Minkowski vacuum, this “new massive grav-
ity” (NMG) model propagates, unitarily, two massive modes of helicities +2 and is
power-counting super-renormalizable since the corresponding four-dimensional theory
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is renormalizable [1]. Unitarity has since been confirmed by other methods [3, 6], as has
super-renormalizability [7]. A more general model is obtained by adding both a Lorentz
Chern-Simons term and the higher-derivative K term to the Einstein action [4]. This so-
called “Generalized Massive Gravity” (GMG) model propagates two spin 2 modes with
different masses. By taking one of the two masses to infinity one gets the TMG model of
[3]. Finally, in order to obtain interesting black hole solutions, a cosmological constant
may be added to the above models resulting into cosmological versions of these models.
The most general model, containing all other ones by truncation, is obtained by adding
a cosmological constant to the GMG model leading to the CGMG model which is the
topic of this talk.

A USEFUL ANALOGY: SPIN 1

Before we consider spin 2 in three spacetime dimensions, it is instructive to consider the
spin 1 case first. It is well-known that a massive spin | particle in D = 3, with helicities
+1 and -1, is described by the Proca Lagrangean

| |
L =g P By — EmZA WL (2)

The equations of motion corresponding to this Lagrangean are given by
(0" 0y —m*)4* =0, A, =0. (3)

In three spacetime dimensions the Proca equation can be written in the following fac-
torised form

[O(—m)O(m)]," 4y =0, Oy (m)=mé," +¢€," ;. (4)
Each of the two factors describes a particle of a single helicity:

[ﬁ(m)]”vAv - O or mAu - gquva 5 (5)
where Fyp, = dvA, — dp Ay is the curvature tensor. Integrating these equations of motion
leads to the following model [8]:

1
§= E/d3x(8“v”AM8vAp At Ay, ©)

which we dub, for obvious reasons, the v/ Proca model.
The above construction suggests the following natural generalization of the Proca
model to two particles, one with helicity +1 and mass m,, and another with helicity -1

and mass m_:
[O(m)O(m_)]" 4y = 0. (7)
Integrating these equations of motion leads to the following action
1 1 1
5= / P (= g By 31 Ay 0y Ay — S0 A A, (8)
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with

u=2(ms—m_) and m? =mym._ . 9

Taking m = m_, i.e. g = 0, leads to the original Proca model, whereas upon taking the
limit m_y — oo, one of the two particles decouples and one is left with the v/ Proca model.

Starting from the +/Proca model there is a natural way to construct an equivalent
action where each term contains one more derivative. This procedure goes as follows.
Denoting the basic vector field of the v/Proca model by A4 u« the equations of motion of

the v/Proca model are given by

mAy = ey "PFyp, M Ay =0. (10)

One now solves the constraint in terms of another independent vector field A4, of
different mass dimension [10]:

My =0 = Ay =€,"P0vA,. (11)

Substituting this solution back into the equations of motion leads to new equations of
motion for the vector fields 4. Integrating out these equations of motion leads to the
massive topological spin 1 model [9]

1 1
S= / @ (= g g gme™P Ay dp) (12)

Note that we start with a model without gauge symmetry but we end up with one that
has such a symmetry.

This concludes our discussion of spin 1 models in three spacetime dimensions. Sum-
marizing we learned two things:

1. Due to a factorization of the Proca model in three spacetime dimensions we can
take the square root of that model leading to the so-called v/ Proca model.

2. By solving a subsidiary constraint we obtain a duality between the v/ Proca model
and the higher-derivative topological massive spin 1 model.

Concerning the second point we stress that the outlined procedure in general guarantees
on-shell equivalence but it does not guarantee physical equivalence between the two
models. In particular, if more helicities are involved, one needs to verify whether in the
new dual action all helicities occur with the right sign or whether they are ghosts. For a
more detailed discussion of this point, see [11].

In the next section we wish to apply the above lessons to the spin 2 case.

GRAVITY IN THREE SPACETIME DIMENSIONS

For our present purposes it is enough to consider linearized gravity. For each model we
have to ask ourselves whether it allows a generalization to non-linear gravity. This will
only be the case for a subset of the models we consider. Nevertheless, it is instructive
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to consider all models here, independent of whether they do or do not allow for an
extension to the non-linear case.
We first consider the linearized Einstein-Hilbert action

lln /d3xhﬂthn ) (13)

where we have linearized around the Minkowski vacuum, guv = Nuv + Ky . The
linearized Einstein tensor is given by

; 1
G}fb(h) - Egynpgvraanafhp(y . (14)

It satisfies the identity 8“Gﬂr“,(h) = 0. Furthermore, the trace of the linearized Einstein
tensor is equal to the the linearized Ricci scalar RI™(/):

LRI (15)
2
Of course, the linearized Einstein equations Glln "(h) = 0 do not describe massless prop-
agating gravitons. To obtain (massive) propagatmg degrees of freedom we must add
higher-derivative terms to the Einstein-Hilbert action.

To show how this can be done we first consider the Fierz-Pauli model which is the
analogue of the Proca theory describing massive spin-2 particles with helicities £2. This
theory cannot be extended to the non-linear level but it is suitable for our purposes. The
Fierz-Pauli Lagrangean is given by

nquhn (h) _

1 1
Lp = —Eh“"%v(h) — EmZ(WhW — 1), (16)

where Ay, is a symmetric tensor. The two mass terms occur in a precise combination
such that the equations of motion do not lead to extra ghost-like particles:

(0" 9y —m*)hyy =0, *hyy =0, h=0. (17)

Like in the Proca theory, the equations of motion can be written in a factorized form with
each of the factors describing a particle with one helicity, +2 or -2. The theory describing
only one of these two particles can be dubbed the +/Fierz— Pauli model. Its equations
of motion are given by

mh”v - gﬁpcaphov 5 h - O . (18)

Using a general second-rank tensor /4, these equations of motion can be integrated to
the following first-order action

S:/d3x(sﬂvphfavhpc—m(hwhw—hz)). (19)

The equations of motion corresponding to this action imply (18) together with the
algebraic constraint /1, = 0.
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In the same way that the v/Proca action (6) could be boosted up with one derivative by
solving a differential constraint, we will now show that the +/Fierz— Pauli action (19)
can be boosted up with two derivatives by solving a similar constraint. Our starting point
is the v/Fierz — Pauli model where we denominate the fundamental field with 4,y From
the equations of motion (18) it follows that the following differential constraint must be
solved:

This constraint can be solved in the same way as in the Proca model except that now
we are dealing with a two-index tensor field which implies that the solution of the
differential constraint involves two Levi-Civita tensors and two spacetime derivatives
instead of one. In fact, the solution involves the linearized Einstein tensor and expresses
ﬁw in terms of a new independent field /1,y of different mass dimension

huy = Gy (h). @1
In terms of /i,y the equations of motion for ﬁ”v and the constraint 7 = 0 read

UGy (h) = enPO Gy (1), R (h)=0. (22)

One may verify that these are precisely the equations of motion of the linearized TMG
model. Therefore, surprisingly, after boosting up the \/Fierz— Pauli action with two
derivatives we obtain an alternative model that can be extended to the non-linear level
with an action given by

Stvaclg] = %/aﬁx (—V/=gR+ %chs) : (23)

The Lorentz-Chern-Simons Lagrangean is given by the following expression in terms of
the Christoffel symbols:

1 B 2ra v B
Lics = ES“V” {FﬁﬁQVFpaJrgFﬂYFvﬁFpa . (24)

Inspired by this construction we now come to the formulation of the NMG model. The
only difference with the previous construction is that we now start from the Fierz-Pauli
model, indicating the fundamental field by ﬁw, instead of the +/Fierz — Pauli model.
We encounter precisely the same constraint (20) which is solved exactly as before, see
(21), in terms of a new fundamental field /. This leads us to the following equations
of motion for /iy :

(9°9p — )Gy (h) =0, R () =0. (25)

These equations of motion can be integrated to an action which turns out to be the
linearization of the following non-linear action describing the NMG model [4]:

Swwclel = o5 [ xR (- R+ —K), 26)
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where the curvature-squared terms K are given in (1). Note that at the linearized level
the Fierz-Pauli and NMG models are equivalent. However, only one of them, the NMG
model, can be extended to the non-linear level. We have verified, by a canonical analysis,
that the action (26) describes two equal-mass particles of helicity £2 which both are
unitary [10].

The TMG and NMG models can easily be combined into the following “generalized”
massive gravity (GMG) model:

| | |
Slel = — / Pxy=g[-R+ —K] + o fics. 27)

This GMG model describes two particles, one of helicity +2 and mass m.,, and another
one of helicity —2 and mass m_. The mass parameters m are related to the mass
parameters m and {, occurring in (27), as follows
2 mym_
MT=mim_, u o—m (28)

The special case m | = m_ leads to the NMG model with two equal-mass particles of
helicity +2 and -2. Taking the limit m — oo one of the particles decouples and we are
left with the TMG model which describes a single particle with helicity +2 or 2.

Finally, in order to obtain interesting black hole solutions, we can add a cosmological
constant to the Lagrangean containing a new cosmological parameter A. To stay flexible,
when we study other vacua than the Minkowski vacuum, we also keep the sign ¢ = £1
in front of the Einstein-Hilbert term free. This leads to the so-called “cosmological”
GMG model:

1 1 1
Sle] = 2 /d3x \/—g[GR + WK_ 27Lm2] + H.ZLCS . (29)

Restricting to the NMG model its cosmological extension allows besides the
Minkowski vacuum also other maximally symmetric de Sitter and anti-de Sitter vacua.
Requiring a maximally symmetric vacuum solution Gy = —Agyy , with cosmological
constant A, leads, after substitution into the equations of motion, to the following
quadratic equation for A [12]:

A?+4mPoA —4im* = 0. (30)

For ¢ = —1 and m? > 0 this leads to the vacua indicated by the parabola in Figure 1.
For each choice of the cosmological parameter A > —1 in the Lagrangean there are two
possible values of the cosmological constant A. Note that even for 4 = 0 there exists
besides the Minkowski vacuum a de Sitter vacuum solution [13]. For the critical value
A = —1 the two vacuum backgrounds coincide while for 4 < —1 there are no maximally
symmetric solutions.

Considering fluctuations around the different vacuum backgrounds, we encounter the
same issues as in the TMG model. There is one region of backgrounds, indicated by the
fat line in Figure 1, where the spin-2 particles have positive energy and another disjoint
region, indicated by the dashed line, where the BTZ black hole solutions, allowed by
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FIGURE 1. The vacuum solutions of the cosmological NMG model indicated in the Figure apply to the
case ¢ = —1,m? > 0. The fat (dashed) line indicates the vacua around which the spin-2 particles (BTZ
black holes) have positive energy.

the NMG model, have positive energy. The turn-over point happens at A = 3 which is
another point where the vacuum solution develops special properties [12].

Turning on the LCS term, corresponding to the GMG model, leads, for a critical
value of the parameters, to the extra possibility to decouple the bulk spin-2 particles.
This is in complete analogy to the TMG model [14]. However, like in the TMG model,
at this critical point new logarithmic solutions develop [15] and the original problem of
defining a theory with only positive energy solutions remains [16, 17]. The situation for
the cosmological GMG model has been investigated in [18].

Instead of focussing on the properties of the cosmological GMG model we now turn
our attention to unitary massive supergravity models. One of the lessons to be drawn
from these studies is that the presence of auxiliary fields, which are rather harmless in
standard supergravity theories, can have a dramatic impact on the properties of higher-
derivative supergravity models.

MASSIVE SUPERGRAVITY

Our starting point is the off-shell .4~ = 1 supergravity multiplet

{eﬂa7Wﬂ7S}7 (31)

where e, is the dreibein, yy, the gravitino and § a real scalar auxiliary field. With-
out higher-derivative terms, the purpose of the auxiliary field is to provide for a off-shell
closed supersymmetry algebra, i.e. the commutator of two supersymmetries closes with-
out the use of any equation of motion. Its dynamics is trivial in the sense that it occurs
like # ~ S? in the Lagrangean leading to the rather trivial equation of motion S = 0.

It turns out that in the supersymmetry rules the dreibein and the auxiliary scalar
naturally occurs together in the form of a torsionfull spin connection [10]:

Q% = 0, (e) + Sy, (32)
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where @, (e) is the usual spin connection and 4% is the three-dimensional Levi-Civita
symbol. We use here both signs of the torsion since these signs are connected to each
other inside the Riemann tensor according to the following identity

Rabcd(Q+> :Rcdab(Qf> . (33)

It turns out that there exist two possible .4~ = 1 supersymmetric R>-type invariants.
The first one is a supersymmetrization of a Riemann-tensor squared term which in
D =3 is a combination of Ricci tensor and Ricci scalar squared terms which is different
from the K combination occurring in the NMG model. The explicit construction of
this Riemann tensor squared invariant is facilitated by making use of a formal analogy
between Poincare supergravity and the off-shell vector multiplet

{4 2"}, (34)

where / is a Yang-Mills index. A supersymmetric invariant for this vector multiplet,
which starts with the kinetic term for the vector field .« ~ (F[Lv)z, is easily constructed.
We first make use of the observation that the supersymmetry rule of the torsionfull
spin connection Qw”b is in form precisely the same as the one of the vector field
A{L provided we consider the anti-symmetric Lorentz pair ab as a Yang-Mills index
I. A supersymmetric action for the Riemnann-tensor squared invariant is now easily
constructed by starting from the supersymmetric invariant for the vector multiplet and
next making the following substitutions:

{4l 2" = Q™ v}, (35)

where y“ is the gravitino curvature tensor.

For the construction of the second supersymmetric invariant, which starts with the
Ricci scalar squared term, we make use of a formal analogy between Poincare super-
gravity and the off-shell scalar multiplet

{¢. 4.7}, (36)

where ¢ is the physical scalar, A its supersymmetric partner and f an auxiliary scalar,
Le. & ~ (dud)* + f2. In this case we observe that the supersymmetry rules of ¢
and / behave precisely the same as those of S and the super-covariant Ricci scalar
R(Q), respectively. Again, it is a relatively easy matter to construct a supersymmetric
invariant for the off-shell scalar multiplet. The supersymmetric Ricci scalar invariant is
next obtained by making the following substitutions in the action for the scalar multiplet:

{¢7)L7f} - {S77ﬂbWab7]€(Q>}' (37)

Note that both supersymmetric invariants contain a kinetic term for the auxiliary field S.
However, the combination K occurring in the NMG model is such that the kinetic term
drops out leading to an algebraic equation of motion for §.

We are now ready to discuss the existence of supersymmetric AdS vacua solutions.
Before doing that we must also embed the cosmological term in a supersymmetric
invariant. In this case that is the invariant which starts with a term linear in S, i.e.
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—22m? — MS. (38)

In pure supergravity this term combines with the —26.S? term of the supergravity action
to yield the equation of motion

S= %GM . (39)
Imposing the constraint dsysyyy, = 0 for a supersymmetric AdS vacuum leads to the
condition S = —A. This means, in particular, that A has to be negative: supersymmetric
de Sitter vacua do not exist. Substituting this constraint on A into the equations of motion
we find that these equations are satisfied provided § is given by the expression given in
(39). But this is precisely the expression we got from pure supergravity in the absence
of any higher-derivative terms! What has happened is that the non-zero value of the
auxiliary scalar § precisely parallelizes the Riemann curvature tensor, i.e.

R (Q4) g5 =0. (40)

The lesson we draw from this is that auxiliary fields in higher-derivative supergravity
theories play a non-trivial role. In the present case, the construction of a supersymmetric
AdS vacuum would have been impossible without the help of the auxiliary scalar S.

CONCLUSION

We have constructed the first example of a power counting renormalizable and unitary
theory of gravity, be it a massive gravity theory in three spacetime dimensions. It remains
to be seen whether an explicit quantum calculation confirms this picture. It would be
interesting to see whether there is a relation between NMG and the bigravity model of
[19].

We briefly discussed the supersymmetrization of the NMG model and concluded that
the role of the auxiliary scalar is non-trivial: it makes the construction of a supersym-
metric AdS vacuum possible. It would be interesting to extend this result to .4~ > 1
supersymmetry. In particular, the .4 = 8 case is interesting since the .#” = 8 new mas-
sive supergravity model is expected to provide for a realization of the . 4" = 8 massive
supermultiplet that underlies the famous .4~ = 8 supergravity theory in four spacetime
dimensions.

One way to investigate further the NMG model is via the so-called AdS;/CFT,
correspondence, along the lines of [20]. Even if the outcome would be that the two-
dimensional boundary conformal field theory is non-unitary, like it is the case for
the TMG model, such a classical gravity description of a two-dimensional CFT is
interesting in view of possible condensed matter applications. With this application in
mind, recently black hole solutions have been constructed that do not asympote to AdS
but to a Lifshitz metric [21].

As a final note we wish to mention that it would be interesting to see whether the NMG
model is related to the recently proposed Hordva-Lifshitz model of quantum gravity in
four spacetime dimensions [22].
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