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Unfalsified Adaptive Switching Supervisory Control

of Time Varying Systems

Giorgio Battistelli, João Hespanha, Edoardo Mosca and Pietro Tesi

Abstract— In recent years, unfalsified adaptive switching
supervisory control (UASSC) has emerged as an effective
technique for tackling the problem of controlling uncertain
plants only on the basis of the plant I/O data. The aim of
this paper is to construct a novel switching logic, which, when
combined with appropriate test functions, makes it possible to
extend UASSC, so far restricted to time-invariant systems, to
the case of systems whose dynamics are subject to infrequent
but possibly large variations.

I. INTRODUCTION

One approach for controlling uncertain plants relies on

the introduction of adaptation in the feedback loop. In

recent years, adaptive switching supervisory control (ASSC)

has emerged as an alternative to conventional countinuous

adaptation. ASSC resembles an adaptive variant of classic

gain-scheduling control, in that it extends gain-scheduling

control to applications where the supervisor has only access

to I/O data from a time-varying plant P belonging to a,

possibly unknown, plant uncertainty set P . More precisely,

if Pt represents the time-invariant system that is obtained

by freezing the time-varying parameters of the process P ,

a their values at time t ∈ N
△
= {0, 1, . . .}, we assume that

each Pt belongs to a class P of single-input single-output

finite-dimensional linear time invariant systems (FDLTI).

In an ASSC system, a data-driven “high-level” unit S,

called the supervisor, aims at controlling the uncertain system

by switching at any time in feedback with P one controller

from a finite family C of N FDLTI candidate controllers.

The scheduling task (when to substitute the acting controller)

and the routing task (which controller to switch on) are car-

ried out in real-time by monitoring data-driven test functions

(e.g. see [1] for an in-depth overview).

The input u and the output y of the plant are affected

by unknown additive disturbances nu and ny , respectively

(see fig. 1). The resulting noisy closed-loop switched system1

Σ
△
= (P/Cσ(·)) can be represented as

Σ :

{

y(t) = P (u+ nu)(t) + ny(t)
u(t) = Cσ(t)(r − y)(t)

, t ∈ N (1)

where r is the reference to be tracked by y and σ(t) the

index that identifies the candidate controller connected in
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1Hereafter, given a plant Π and a controller C, the notation (Π/C) is
used to denote the linear system consisting of the plant Π fed-back by the
controller C.
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Fig. 1. Typical ASSC scheme.

feedback to P at time t. In this paper, we consider the

unfalsified ASSC (UASSC) framework initiated in [2]-[3].

In contrast to model-based schemes (e.g., in [4]-[7]), the

UASSC supervisors infer the performance of the alternative

candidate controllers without resorting to estimation errors

constructed from a collection of nominal process models,

making it possible to ensure stability under mild assumptions

([8]).

To date, with the notable exception of [9], UASSC only

provide stability guarantees for time-invariant process mod-

els, viz. Pt = P ◦ ∈ P , ∀t ∈ N. The Aim of this paper is

to show that it is possible to extend UASSC to cover the

case of systems whose dynamics are subject to infrequent

but potentially large variations.

II. UNFALSIFIED ASSC BACKGROUND

Let S be the linear space of all the real-valued sequences

on N. Given an infinite sequence s ∈ S, we denote its

truncation up to time t by st △
= {s(0), s(1), . . . , s(t)}. The

l∞ norm of the truncated sequence st is defined as

‖st‖∞
△
= max

τ∈{0,1,...,t}
|s(τ)| ,

and the linear space consisting of the uniformly bounded

sequences s ∈ S is denoted as l∞(N). To any sequence s
belonging to l∞(N) one can associate the norm

‖s‖∞
△
= lim

t→∞
‖st‖∞ .

Further, given a positive real λ < 1, the λ-exponentially

weighted l2 norm of a truncated sequence st is defined as

‖st‖2
2,λ

△
=

t
∑

τ=0

λt−τ s2(τ) .

Finally, |w| denotes the Euclidean norm of the vector w.
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Denoting by z
△
= [u, y] the I/O pair of the system P in

(1), the following stability notion will be used:

Definition 1: Σ is said to be l∞ stable if

r, nu, ny ∈ l∞(N) ⇒ z ∈ l∞(N) , (2)

for every bounded initial condition.

A pre-requisite for an ASSC system is that the set of

candidate controllers C must be adequately chosen relatively

to P . In particular, we shall consider the following require-

ments:

A1 (Problem Feasibility): For each frozen model P ◦ ∈ P ,

there must exist at least one index i ∈ N such that the

spectral radius of (P ◦/Ci) is smaller than
√
λ < 1.

A2 : The reference r and the disturbances nu and ny

belong to l∞(N).

In UASSC, the feedback adaptation task of classic adaptive

control is replaced by controller falsification. The active

controller can be falsified via a comparative experiment,

by resorting to the virtual reference concept introduced in

[3]. Let each controller Ci, i ∈ N
△
= {1, 2, · · · , N}, be

represented by a difference equation of the form

Ci : Ri(d)u(t) = Si(d)(r(t) − y(t)), t ∈ N ,

with Ri and Si coprime polynomials in the unit backward

shift operator d, and Ri monic, viz. Ri(0) = 1. In UASSC,

one solves in real-time the difference equation

Ri(d)u(t) = Si(d)(vi(t) − y(t)), t ∈ N , (3)

with respect to the virtual reference vi, which can be done

provided that Ci is causal, and causally stably invertible

(CCSI).

The recursion (3) is initialized at time t = 0 with zero

initial conditions, viz. vi(t), y(t), u(t) = 0 for t < 0. In

words, vi can be viewed as a fictitious reference that, if

injected into the feedback system Σi
△
= (P/Ci), would

reproduce z, that is, if the closed-loop Σ is intended as a

causal transformation (1) mapping (r, nu, ny) into z, one

has

z = Σ(r, nu, ny) = Σi (vi, nu, ny) .

A. Controller implementation and switching logic

There are many way for implementing the switching

adaptive controller Cσ(·). At each switching time, the state of

Cσ(t) can be initialized to keep the control output as smooth

as possible (bumpless transfer [11]), or a common-state

multicontroller scheme can be used (e.g. [1]). For the sake of

simplicity, we shall consider the following implementation:

when the supervisor switches from Cj to Ci at time t, the

state of Ci is chosen as

xi(t) := [εi(t− 1), · · · εi(t− p), u(t− 1) · · ·u(t− p)]
′
,

where ε := vi − y and p is the maximum order of any

controller in C , so that the output of Ci is given by

u(t) = [si1, · · · , sip,−ri1, · · · ,−rip]xi(t) + si0 ε(t) (4)

where ε := r − y; sij and rik, j + 1 ∈ p+ 1 and k ∈ p,

are the coefficients of the polynomials Si(d) =
∑p

n=0 sind
n

and, respectively, Ri(d) = 1+
∑p

n=1 rind
n. By (3), a direct

consequence of this implementation is that vσ(t) = r(t) for

every t ∈ N.

This kind of implementation hinges upon the existence of

the virtual references vi as defined in equation (3). Due to

lack of space, the extension of UASSC to cover different

controllers implementations will not be pursued here.

The choice of the control action to use, among all the

available candidate controllers in C , is carried out via

the evaluation of N nonnegative test functions Ji(t) :=
Ji(t, z

t), t ∈ N, each one associated with a specific

candidate controller Ci. At every t ∈ N, the supervisor

compares the N test functionals and selects the controller

index via the following Hysteresis Switching Supervisory

Logic (HSSL):

σ(t+ 1) = arg min
i∈N

{

Ji(t) − h δi,σ(t)

}

, (5)

where h > 0 is the hysteresis constant, δi,j the Kronecker’s

index, which is equal to one when i = j and zero otherwise.

The recursion (5) is initialized with some σ(0) = σ0

arbitrarily chosen.

III. STABILITY RESULTS FOR LTI SYSTEMS

We analyze first the case of time-invariant plant dynamics.

In this case, Pt ≡ P ◦, ∀t ∈ N, and the switched system Σ
reduces to Σ◦ = (P ◦/Cσ(·)).

To this end, consider the class K of every possible

switching functions σ. As a consequence of the results in

[12], the next HSSL lemma establishes the limiting behavior

of the switching closed-loop Σ◦ subject to (5).

Lemma 1: For any initial condition, any reference r, and

any disturbances nu, ny , let σ : N 7→ N be the switching

function resulting from (1) and (5). Then, assuming that

- Ji(t) is monotone nondecreasing for every i ∈ N , and

every σ ∈ K;

- there exists a finite positive real J such that

mini∈N Ji(t) ≤ J , for every t ∈ N, and every σ ∈ K,

there is a finite time tf beyond which σ is constant. More-

over, Jσ(tf )(t) ≤ J+h for every t ∈ N, and the total number

of switches is bounded by N ⌈J/h⌉.

Proof. We only need to prove the bound on the number

of switches, since the other properties follow from [12]. To

this end, notice that, by virtue of the HSSL (5) and the

monotonicity of the test functions, Ji increases at least by h
every time the index i is falsified. Since mini∈N Ji(t) ≤ J ,

t ∈ N, every index can be selected at most ⌈J/h⌉ times. In

fact, if it is selected one more time, its test functional would

exceed J at the switch-on time, contradicting (5).

A. Plant input-output data behavior

To utilize the convergence properties of HSSL in the

context of virtual references one needs to use test functions

WeAIn3.4
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adapted to a specific type of input-output stability. In this

respect, consider the following performance indices

Ji(t)
△
= max{Li(τ), τ ∈ {0, · · · , t}}, t ∈ N , (6)

where

Li(t)
△
=

|z(t)|
µ+ ‖vt

i‖2,λ
, t ∈ N , (7)

and µ is a positive constant. As discussed hereafter, the test

function (7) allows one to describe the input-ouput plant data

trend obtained from Σ◦. More precisely, it is possible to

derive an upper-bound on the norm of the plant’s state on

each time interval over which a controller is not falsified.

To this end, first note that under assumptions A1 and A2

there exist indices i ∈ N such that the spectral radius of

(P ◦/Ci) is smaller than
√
λ, so that an upper bound on the

smallest test function in J can be obtained. More specifically,

by defining e
△
= max {‖r‖∞, ‖ny‖∞, ‖nu‖∞} and

x(t)
△
= [y(t− 1), · · · y(t− n), u(t− 1) · · ·u(t− n)]

′

n denoting the maximum among the orders of any process

in P and any controller in C , the next proposition follows:

Proposition 1: Let the plant P be time-invariant, and

suppose that A1 and A2 hold. Then, there exist positive reals

g1, g2, g3 such that, for any t ∈ N,

min
i∈N

Ji(t) ≤
1

µ
(g0 |x(0)| + g1 e) + g2 =: J◦ . (8)

Proof: The result follows from the fact that for any feedback

system (P ◦/Ci) with spectral radius smaller than
√
λ, we

have (cf. [10])

|z(t)| ≤ g0λ
t/2 |x(0)| + g1e+ g2 ‖vt

i‖2,λ, t ∈ N

where the gk’s are the maximum values taken amongst all

the stable loops (P ◦/Ci), P
◦ ∈ P .

Hereafter, w.l.o.g. we assume that g0 ≥ 1. Consider now

the sequence {ij}j∈N
, i0 := 0, of time instants at which the

controller changes, so that

Ij
△
= {ij , · · · , ij+1 − 1} , j ∈ N

represents an interval over which σ(t) = σj , t ∈ Ij . The

bound J◦ can be used to establish a bound on the plant’s state

x(t) over Ij as long as σj is not falsified. On the other hand,

the performance degradation causing the switch from one

controller to another one at time ij+1 can be upper bounded

as a function of the sets (P,C ). More precisely, by virtue

of the controller implementation (4) at the switch-on times,

it is an easy matter to show that there exists a finite positive

real δ ≥ 1 such that, for every j ∈ N and every t ∈ Ij

|x(t+ 1)| ≤ δ (|x(t)| + |xσj
(ij)| + e),

In this respect, it is convenient to summarize such a fact as

follows:

Proposition 2: For every time-invariant feedback (Pt/C),
Pt ∈ P and C ∈ C , there exists a positive real δ ≥ 1 such

that

|x(t+ 1)| ≤ δ (|x(t)| + ‖vij−1
σj

‖2,λ + e), (9)

for every j ∈ N, and t ∈ Ij .

On that basis, the main result of this section can be stated.

The proof is omitted due to lack of space.

Theorem 1: Let the plant P be FDLTI, and the HSSL be

used along with the test function (6). Provided that A1 and

A2 hold, there exist constants α, β and γ such that

i) for every j ∈ N, and t ∈ Ij

|x(t)| ≤ χj , ‖vt
i‖2,λ ≤ Aj , i ∈ N

where

χj := n max{(J◦ + h) (γ +Aj−1), |x(0)|} (10)

Aj := αAj−1 + β (χj +Aj−1 + e) (11)

with A−1 = 0, h is the hysteresis constant, and δ as

taken from (9);

ii) Σ◦ is l∞ stable, with |x(t)| ≤ χj◦ for every t ∈ N,

where j◦ := N ⌈J◦/h⌉.

For future reference, it is convenient to summarize the

results of Theorem 1 by saying that there exist functions

ϕ, ψ (increasing w.r.t. all their arguments) such that, for any

initial condition and exogenous inputs,

|x(t)| ≤ ϕ(|x(0)|, A−1, J
◦, e), t ∈ N

‖vt
i‖2,λ ≤ ψ(|x(0)|, A−1, J

◦, e), t ∈ N, i ∈ N

The reason for highlighting the dependence of the upper

bounds on A−1 (even if in the context of Theorem 1 A−1 is

always initialized at 0) will become clear when we address

the case of a time-varying plants.

Remark 1: The proof of Theorem 1 suggests that linearity

is not key to this result. In particular, it appears that it is

possible to derive analogous results for nonlinear systems

having an input-output decription of the type

y(t) = g(u(t− 1), · · · , u(t− n), y(t− 1), · · · , y(t− n))

where g : R
2n 7→ R is a sufficiently smooth nonlinear

operator (e.g. globally Lipschitz), with (9) replaced by

|x(t+ 1)| ≤ f (|x(t)|, ‖vij−1
σj

‖2,λ, e),

for some nonlinear function f : R+ × R+ × R+ 7→ R+. ♦

IV. A HYSTERESIS SWITCHING SUPERVISORY LOGIC

WITH RESET

As in most approaches to ASSC, the monotonicity of the

test functions is a key property for the analysis of the switch-

ing mechanism (cf. [6]). In the specific context of UASSC,

the adoption of the maximum operator is needed to ensure

that all the test functions always admit a limit (see Lemma 1).

However, in dealing with systems whose dynamics vary with

time, one needs to consider switching policies that discount

WeAIn3.4

807



old data, which may not be not representative of the current

system behavior.

A simple mechanism that can be used to accomplish this

consists of resetting the maximum operator in (6). Unfortu-

nately, this complicates the analysis significantly because one

loses the monotonicity of the test functions. The remaining

part of this section shows how an appopriate reset rule can be

devised to forget old data without compromising stability..

Let {tk}k∈N
, t0 := 0, be the sequence of time instants at

which the supervisor resets the computation of the maximum

in the test functions (6) so that, over each interval

Tk
△
= {tk, · · · , tk+1 − 1} , k ∈ N,

each test function (6) can be replaced by

Ji(t)
△
= max{Li(τ), τ ∈ {tk, · · · , t}}, t ∈ Tk. (12)

To illustrate how the reset instants tk’s are chosen so as

to ensure stability to the feedback control system Σ, some

preliminary definitions are needed. Let

A(t)
△
= max{‖vτ

i ‖2,λ, i ∈ N, τ ∈ {tk, · · · , t}} (13)

for every t ∈ Tk, and let

t∗
△
= min {t ∈ Tk | σ(t+ j) = σ(t) &

A(t+ j) ≤ A(t) + h1, j > 0} (14)

for some positive hysteresis constant h1. In words, the

difference t− t∗ provides the magnitude of the elapsed time

since i) the maximum operator was last reset, ii) the acting

controller was last changed, and iii) A(t) has last increased

more than the hysteresis constant h1. Since the greater the

difference t − t∗ the longer the time interval during which

the ASSC system Σ has shown a “steady” behavior, the

following reset rule can be introduced.

Reset Condition: Given tk, k ∈ N, and a positive real ρ,√
λ < ρ < 1, one has a reset at time tk+1 > t∗ provided

that

ρ tk+1−t∗ A(t∗) < ǫ (15)

for some finite positive constant ǫ.

With this reset mechanism, the HSSL in (5) is replaced

by the following HSSL with Reset (HSSLR):

Algorithm HSSLR:

1 Set k := 0, t∗ := −1, t := 0; choose σ(0);
2 Compute A(t);
3 If σ(t) 6= σ(t∗) OR A(t) > A(t∗)+h1 go to 5;

4 If ρ t−t∗ A(t∗) < ǫ set k := k + 1, tk := t and

go to 5; otherwise go to 6;

5 Set t∗ := t;
6 Set t := t+ 1, compute σ(t) and go to 2;

A. Properties of the reset rule

A first important observation is that, under suitable condi-

tions, the proposed HSSLR always leads to a reset in finite

time. Specifically, the next proposition is a straightforward

consequence of the reset rule (15).

Proposition 3: Let the HSSLR be used along with the test

functions (12) and suppose that there exist positive reals Ak

and Jk such that, for every t ∈ {tk, . . . , tk + ∆k},

A(t) < Ak , min
i∈N

Ji(t) ≤ Jk ,

where

∆k :=

⌈

Jk

h

⌉ ⌈

Ak

h1

⌉

logρ

(

ǫ

Ak

)

. (16)

Then, a reset always occurs in a finite time, and, in particular,

tk+1 − tk ≤ ∆k .

Eq. (15) can be used to provide a condition that still

allows the supervisor to detect instability, even though the

reset mechanism ”erases” data about the past process state.

More precisely, it can be shown that the denominators of the

test functions as well as the plant input-output data x(t) are

always uniformely bounded when a reset occurs, provided

that the following design condition is enforced:

Design Condition: The parameter λ in (7) must be such

that, for every Ci ∈ C , the spectral radius of C−1
i is smaller

than
√
λ.

Note that this design condition can always be satisfied

once the controllers are CCSI. By defining

J◦
k

△
= min

i∈N
Ji(tk+1 − 1) , (17)

the following result can be stated.

Lemma 2: Let n denote the maximum among the orders

of any plant in P and any controller in C , and let the HSSLR

be used along with the test functions (12). Then, if

- assumptions A1 and A2 hold and

- the design condition is satisfied,

i) there exist finite positive constants γ1, γ2, and η such

that, for every k ∈ N

‖vtk−1
i ‖2,λ ≤ A◦

k
△
= γ1 + γ2 J

◦
k−1, i ∈ N (18)

|x(tk)| ≤ χ◦
k

△
= η max

j∈{−1,...,k−1}
J◦

j (19)

where J◦
−1 := J◦.

ii) whenever tk − tq ≥ n, k > q, we have

χ◦
k = η max

j∈{q,...,k−1}
J◦

j (20)

Proof : See the appendix.

Thanks to Lemma 2, it is immediate to conclude that, over

each interval Tk, the same recursions of Theorem 1 hold.

More precisely, for every Ij ⊆ Tk

χj = n max{(J◦
k + h) (γ +Aj−1), χ

◦
k} ,

WeAIn3.4
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Aj = αAj−1 + β (χj +Aj−1 + e) ,

with A−1 := A◦
k. This fact can be summarized as follows:

Proposition 4: Under the assumptions of Lemma 2, for

every t ∈ Tk

|x(t)| ≤ ϕ(χ◦
k, A

◦
k, J

◦
k , e),

‖vt
i‖2,λ ≤ ψ(χ◦

k, A
◦
k, J

◦
k , e), i ∈ N ,

where the functions ϕ and ψ are defined as in Section III.

By virtue of the previous results, it is simple to show that,

when the plant P is FDLTI, the stability of the switched

system Σ is preserved under the proposed HSSLR. Indeed,

in light of Proposition 4, one has J◦
k ≤ J◦ for every k ∈ N.

from which one concludes that for every t ∈ N,

|x(t)| ≤ ϕ(η J◦, γ1 + γ2 J
◦, J◦, e), (21)

‖vt
i‖2,λ ≤ ψ(η J◦, γ1 + γ2 J

◦, J◦, e), i ∈ N . (22)

Furthermore, by invoking Proposition 3 with Jk = J◦

and Ak equal to the r.h.s. of (22), an upper bound on the

maximum interval between consecutive resets is obtained.

We shall see next, that similar stability results can be derived

also in the case of finite-dimensional linear time-varying

(FDLTV) systems subject to potentially large but infrequent

jumps in the dynamics.

V. STABILITY RESULTS FOR TIME-VARYING PLANTS

The reset criterion (15) serves as a basis for the analysis of

FDLTV plants. In particular, for systems subject to infrequent

but sudden potentially large changes in their dynamics. To

this end, let {ℓc}c∈N, with ℓ0 := 0, be the subsequence of

time instants at which changes occur in the plant dynamics,

so that

Lc
△
= {ℓc, · · · , ℓc+1 − 1}

represents a time interval over which Pt = Pℓc
, t ∈ Lc. Due

to assumption A1, for every t ∈ Lc, there exist indices i ∈ N
such that

|z(t)| ≤ g0 λ
(t−ℓc)/ 2 |x(ℓc)| + g1 e+ g2 ‖vt

i‖2,λ . (23)

Then, the following proposition can be stated, whose proof

is omitted due to lack of space.

Proposition 5: Consider a finite time ℓc ∈ N. Then, under

the assumptions of Lemma 2,

i) there exist finite positive reals Ac and Jc such that for

every t < ℓc+1, and every i ∈ N

‖vt
i‖2,λ ≤ Ac , min

i∈N
Ji(t) ≤ Jc ;

ii) for every k ∈ N such that tk+1 < ℓc+1, we have

tk+1 − tk ≤
⌈

Jc

h

⌉ ⌈

Ac

h1

⌉

logρ

(

ǫ

Ac

)

=: ∆c ;

iii) there exists a finite time

ℓc := ∆c

(

2 +

⌈

n

∆c

⌉)

,

such that, if ℓc+1 > ℓc + ℓc, we have

|x(t)| ≤ χΣ, t ∈ {ℓc + ℓc, · · · , ℓc+1} (24)

Ji(t) ≤ χΣ/µ, t ∈ {ℓc + ℓc, · · · , ℓc+1 − 1}, i ∈ N, (25)

where χΣ := ϕ(η JΣ, γ1 + γ2 JΣ, JΣ, e), and

JΣ :=
1

µ
(g0 ǫ+ g1 e) + g2 ,

where ǫ is the parameter of the reset condition (15).

As a consequence of these properties, the l∞ stability of

the ASSC system Σ turns out to be equivalent to the uniform

boundedness of the sequences
{

Jc

}

c∈N
and

{

Ac

}

c∈N
. As

shown below, this is guaranteed provided that, for any c ∈ N,

the jumps in the plant dynamics occur each time after a

prespecified dwell-time τdwell, i.e.,

ℓc+1 − ℓc > τdwell ⇒ Jc ≤ J∗ , Ac ≤ A∗ ,

for some finite positive reals J∗ and A∗.

A. Dwell-Time Computation

We stress that the choice ℓ0 = 0 amounts to regard t = 0
as the first time at which the plant dynamics change. This

choice is arbitrary and does not affect the generality of the

result. Otherwise, an analogous analysis can be easily carried

out. As pointed out in Proposition 5, for every ℓc ∈ N, there

exists a finite time ℓc after which (24) and (25) hold. In this

respect, ℓc represents the time instant after which a jump

may occur in a safe way, since JΣ does not depend on the

switching history; being only a function of the sets P and

C . In fact, we can prove that, if ℓc+1 > ℓc + ℓc for any

c ∈ N, the smallest test function can be upper bounded as

Jc ≤ J∗ =
1

µ
(g0 max{|x(0)|, χΣ} + g1 e) + g2, (26)

and, as a staightforward application of Lemma 2 and Propo-

sition 4, for every t ∈ N, and i ∈ N , one obtains

|x(t)| ≤ ϕ(ηJ∗, γ1 + γ2J
∗, J∗, e) =: χ∗, (27)

‖vt
i‖2,λ ≤ ψ(ηJ∗, γ1 + γ2J

∗, J∗, e) =: A∗, (28)

(cf. the results derived in Section IV).

Theorem 2: Consider a FDLTV plant P , Pt ∈ P for

every t ∈ N. Under the assumptions of Lemma 2, the

switched system Σ is l∞ stable if, for every c ∈ N,

ℓc+1 − ℓc > ∆
(

2 +
⌈ n

∆

⌉)

△
= τdwell , (29)

where

∆ :=

⌈

J∗

h

⌉ ⌈

A∗

h1

⌉

logρ

( ǫ

A∗

)

,

where J∗ and A∗ as in (26), respectively, (28).

Proof. The proof can be constructed by showing that the

dwell-time defined in (29) implies that (26) holds for every

c ∈ N. Consider c = 0, and notice that J∗ ≥ J◦, where J◦

as in (8) represents the worst-case minimum cost in case no
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jumps occur after t = 0. As a straightforward application of

Proposition 5, we have

Ji(t) ≤ χΣ/ µ, t ∈ {τdwell, · · · , ℓ1 − 1}, i ∈ N ,

and |x(ℓ1)| ≤ χΣ. Consequently, by (23), over the subse-

quent interval L1, the worst-case minimum cost is still J∗.

Then, it is immediate to conclude that the proof follows along

similar lines for c ≥ 1.

VI. CONCLUSIONS

In this paper we extend the UASSC approach to systems

whose dynamics vary with time. The analysis underscores

the potential benefit of UASSC in adaptive switching control.

The absence of explicit requirements about the system lin-

earity, indicate that it may be possible to further extend this

method to some classes of nonlinear systems. Furthermore,

this novel switching logic can also be used in conjunction

with model-based test functions, making it possible to im-

prove the closed loop behavior in case a set of nominal plant

models be available ([13]).

APPENDIX

Proof of Lemma 2 i) Consider first ‖vtk−1
i ‖2,λ. The

statement is true for k = 0, since ‖v−1
i ‖2,λ = 0, i ∈ N .

Consider next k ≥ 1. In case tk − t∗ < n (cf. (14)), it is

easy to check for every t ∈ Tk−1 and i ∈ N

‖vt
i‖2,λ ≤ A(t∗) + h1 ≤ ρ−n ǫ+ h1 (30)

Consider now the case tk − t∗ ≥ n. If σ denotes the index

generating the reset at tk, for every t ∈ {t∗, · · · , tk}

‖vt
σ‖2

2,λ = λt−t∗+1 ‖vt∗−1
σ ‖2

2,λ +

t
∑

n=t∗

λt−n r2(n)

< ρ2 (t−t∗) (A+)2 + (1 − λ)−1 ‖r‖2
∞

where A+ := A(t∗) + h1. Then, for any t ∈ {t∗, · · · , tk}

|z(t)| ≤ J+
k−1

(

γ + ρt−t∗ A+
)

(31)

with γ := µ+(1−λ)−1/ 2 ‖r‖∞ and J+
k := J◦

k +h. Further,

by virtue of Design Condition, the system (3) has a finite l2,λ-

to-l2,λ induced norm. This property implies that, if ζi(t) :=
[vi(t− 1), · · · , vi(t− n)], there exists a positive real c such

that, for every t ≥ t∗ + n and i ∈ N

‖vt
i‖2

2,λ ≤ c2λt−t∗ |ζi(t∗ + n)|2 + c2
t

∑

j=t∗+n

λt−j w2
i (j)

where wi(t) := Ri(d)u(t) + Si(d) y(t). Simple algebraic

calculations show that for some positive real ν

t
∑

j=t∗+n

λt−j w2
i (j) ≤ ν2

t
∑

j=t∗+n

λt−j max
ι∈{j−n,··· ,j}

|z(ι)|2

However, thanks to (31), for every j ≥ t∗ + n

max
ι∈{j−n,··· ,j}

|z(ι)| ≤ J+
k−1

(

γ + ρj−t∗−nA+
)

Since ‖vt
i‖2,λ ≤ A+ for any t ∈ Tk−1 and i ∈ N , we

conclude that there exists a positive real κ such that, for

every t ≥ t∗ + n

‖vt
i‖2,λ ≤ κ ρt−t∗A+ + κJ+

k−1

(

γ + ρ t−t∗A+
)

As a consequence, the fulfillment of (15) implies the exis-

tence of positive constants γ1, γ2 so that (18) holds.

We focus now the attention on x(tk). If tk − t∗ ≥ n, it is

immediate to conclude that for any t ∈ {tk − n, · · · , tk}
|z(t)| ≤ J+

k−1

(

γ + ρ−n ǫ+ h1

)

On the opposite, in case tk − t∗ < n, (30) implies that

|z(t)| ≤ J+
k−1

(

µ+ ρ−n ǫ+ h1

)

, t ∈ Tk−1

As a consequence, if ts denotes the greatest reset time instant

such that tk − ts ≥ n, for any t ∈ {tk − n, · · · , tk}

|z(t)| ≤ max
j∈{s,...,k−1}

J+
j

(

γ + ρ−n ǫ+ h1

)

(32)

If tk < n (hence ts < 0), since |x(0)| ≤ J◦
−1 γ = J◦ γ, we

conclude that (32) holds with s = −1, i.e.

|x(tk)| ≤ n max
j∈{−1,...,k−1}

J+
j

(

γ + ρ−n ǫ+ h1

)

which implies that (19) holds for some positive real η.

ii) It is a direct consequence of (32).
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