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Formalizing a Hierarchical File System

Wim H. Hesselink
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M.I. Lali
2

Dept. of Computing Science, University of Groningen
P.O.Box 407, 9700 AK Groningen, The Netherlands

Abstract

In this note, we define an abstract file system as a partial function from (absolute) paths to data. Such a
file system determines the set of valid paths. It allows the file system to be read and written at a valid path,
and it allows the system to be modified by the Unix operations for removal (rm), making of directories
(mkdir), and moving (mv). We present abstract definitions (axioms) for these operations.
This specification is refined towards a pointer implementation. To mitigate the problems attached to partial
functions, we do this in two steps. First a refinement towards a pointer implementation with total functions,
followed by one that allows partial functions. These two refinements are proved correct by means of a number
of invariants. Indeed, the insight gained mainly consists of the invariants of the pointer implementation
that are needed for the refinement functions.
Finally, each of the three specification levels is enriched with a permission system for reading, writing, or
executing, and the refinement relations between these permission systems are explored.

Keywords: File System, Specification, Verification, Refinement, Permission System, Theorem Proving.

1 Introduction

What is a hierarchical file system? Although most of us seem to know the answer,

it is difficult to find a definition, let alone a specification. In [1], e.g., we read: “Like

most modern operating systems, UNIX organizes its file system as a hierarchy of

directories” and “directories, which contain information about a set of files and are

used to locate a file by its name.” If this answers the question for the impatient, it

does not yield a specification. Yet, a specification is needed when we want to verify

the correctness of an implementation.

As file systems are at the core of the operating system kernel, even a simple error

can cause a crash of the system, possibly resulting in loss of stored data [2]. File

system errors are among the most dangerous errors because they can cause loss of

persistent data stored on the disk. The growing size and complexity of file systems
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indicates the need of verification of such systems for ensuring reliability. It is very

difficult to ensure reliability by testing techniques.

Testing and simulation are traditional techniques to check that the software

written is correct with respect to its functionality [3]. Many testing techniques are

available which help in eliminating coding errors. However, very few defects in end

products are due to coding errors. For example, in 197 critical faults, detected

during the testing phase of the Voyager and Galileo spacecraft, just three of them

were coding errors. About 50% of the faults were traced to requirements, 25% to

design, and the rest due to other errors. This is a typical example of a prevalent

problem that the majority of faults in software arise in requirements and design

and very few occur due to coding. Furthermore, such techniques do not cover all

possible behaviors of the system [4].

Formal verification uses the mathematical techniques for ensuring the design to

conform to the functional correctness. It can be applied to designs described for

many different levels of abstraction [5]. It helps in eliminating errors in the design

which can cause disaster at later stages.

In this paper, we formalize the most rudimentary aspects of a hierarchical file

system: only reading and writing files, deleting them, creating them, and moving

them. We do this in a top-down fashion, starting with the point of view of a user

who does not want to know anything of the implementation. This is refined into a

version with directories that hold subdirectories.

When formalizing this, one encounters the problem of partial functions. In the

first refinement step this is ignored by forcing the functions to be total. In the

second refinement step, we recognize the inherent partiality of our functions. From

the conceptual point of view, this may seem superfluous. For implementations,

however, it is crucial because this partiality corresponds to the potential occurrence

of unallocated pointers in the implementation.

We use the proof assistant PVS [6] for our formalization and the verification of

the refinement relations. The PVS proof script of our definitions, theorems, and

proofs is available at [7]. Our notation is partially based on PVS syntax, but we

also use concepts from Haskell, and standard mathematical notations.

The primary contribution is to formally define a file system at a very high level

with its five operations of reading and writing files, and creating, deleting and

moving files and directories, and to refine this specification in two steps to a system

with file identifiers as pointers, and to mechanically verify the refinement relations.

1.1 Related work

The 15 year old grand challenge in software verification proposed by Hoare in [8] was

refined by Joshi and Holzmann in [9] to a mini-challenge to build a small verifiable

file system for flash memory. The current status of the grand challenge is discussed

in [10]. Earlier, in [11], C. Morgan and B. Sufrin proposed abstract specifications

of some of the data structures in the UNIX file system. The POSIX file store us-

ing Z/Eves with refinements based on [11] is described in [12,13]. The paper [12]

provides a concrete implementation of an abstract specification by means of Java
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HashMaps, taken from JML annotations given in [14]. Wenzel [15] analyses aspects

of the Unix file system security with the proof assistant Isabelle/HOL. Galloway et

al. [16] verify the existing Linux Virtual File System (VFS) using model checking

techniques by extracting and validating a model from an available implementation

of VFS. Yang et al. [2] build their own model checker “FiSC” to find serious file

system errors. This paper shows that even the most popular file systems contain

serious bugs which can cause damage to the stored data. Therefore, it is impor-

tant to consider correctness proofs even of existing file system implementations. In

this regard, a correctness proof of operations like reading and writing in a Unix

based file system is presented in [17] using Athena, an interactive theorem-proving

environment.

In 2008, inspired by Hughes’ specification [18] of a visual file system in Z, Dam-

choom, Butler, and Abrial [19] have modeled a tree structured file system in Event-

B and Rodin. This paper gives one of the first specifications of a hierarchical file

system in which the tree structure can be modified. It is close to our work. An

important difference, however, is that it is more abstract in the sense that it ignores

file names and paths, which are central concepts in our specifications.

1.2 Overview

In section 2, we construct an abstract specification of a hierarchical file system based

on the “user point of view”. Section 3 contains the first refinement step towards a

file system with pointers that are modelled as total functions. Section 4 presents

the second refinement step to a system with pointers modelled as partial functions.

In section 5, we indicate how file permissions as used in Unix can be specified in

our set-up. Conclusions are drawn in section 6.

2 The User’s Point of View

From the user’s point of view, a file store associates a file or a directory to an

absolute path. For simplicity, we do not distinguish files and directories, i.e., we

allow a file to be associated to a directory. In some later refinement, we may want

to make the distinction, e.g., by restricting the data associated to a directory.

A path is thus a finite sequence of (directory) names, and the type of paths is

defined by

Path = finite sequence[Name] .

A store determines the valid paths, and the associated data for each valid path. We

therefore define an abstract store as a partial function from Path to Data, according

to the following type definition:

StoreA = [Path → lift[Data]] ,

where we use the PVS definition lift[X] = X ∪ {⊥}. The set of valid paths for an

abstract store x is given by

Valid(x) = {p | x(p) �= ⊥} .
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We use the operator ++ for concatenation of paths as finite sequences. This

operator is associative, i.e., (p ++ q) ++ r = p ++(q ++ r), and has the empty path

ε as two-sided unit, i.e., ε ++ p = p = p ++ ε. Path p is called a prefix of q, with

notation p � q, iff there is a path r with p ++ r = q. Relation � is an ordering of

the set Path, i.e., it is reflexive and transitive, and p � q � p implies p = q.

The empty path ε holds the root of the file system and should therefore always

be valid. A prefix of a valid path should be valid. We therefore define a store x to

be legitimate if

ε ∈ Valid(x) ∧ (∀ p, q : p � q ∧ q ∈ Valid(x) ⇒ p ∈ Valid(x)) .

Reading the data of a path p in store x is just asking for x(p), which yields ⊥
iff p /∈ Valid(x).

Writing a file means modifying the data according to some recipe, e.g., writing

from a certain offset. Such a recipe can be regarded as an element of the type

Modifier = [Data → Data] .

Writing with modifier m at path p in store x is only successful when p is valid;

otherwise nothing happens. For simplicity, we do not yet include error messages for

failure. We therefore lift every modifier m to lift[Data] by defining m(⊥) = ⊥
and define writing by:

write : [Path × Modifier × StoreA → StoreA] ,

write(p,m, x) = (x with [(p) := m(x(p))]) ,

or equivalently: write(p,m, x)(q) = (q = p ? m(x(p)) : x(q)) .

Here we use the with notation of PVS for function modification, with a C-like

conditional expression as an alternative. If x is legitimate, then write(p,m, x) is

also legitimate.

Remark 2.1 In an earlier version, the second argument of write was the new value

for x(p), of type Data. This was not expressive enough, because in actual file

systems, writing often means replacing a part of the file or appending something to

a file. All this can be expressed by means of modifiers.

The Unix function ls associates to a given store x and a valid path p the set of

names n that occur in the directory of p. We need to distinguish an empty directory

from a nonexistent one. We therefore define:

ls : [Path × StoreA → lift[P[Name]]] ,

ls(p, x) = (p ∈ Valid(x) ? {n | p ++ n ∈ Valid(x)} : ⊥) ,

where a name n is implicitly coerced to a singleton list. If the path is not valid, ls

yields ⊥ .

We specify a function create that makes a new entry with data d in the store for

a given path p. It does so only when path p is not yet valid and has a valid parent

directory. Otherwise, create has no effect. Here, for a nonempty path p, the parent

path parent(p) is defined as the unique maximal strict prefix of p, which satisfies

|parent(p)| = |p| − 1, where |p| stands for the length of p.
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create : [Path × Data × StoreA → StoreA] ,

create(p, d, x) =

(x(p) �= ⊥ ∨ x(parent(p)) = ⊥ ? x : x with [(p) := d]) .

If store x is legitimate, the store y = create(p, d, x) is legitimate because Valid(y) =

Valid(x) ∪ {p}.

Deletion of a path p from an abstract store x also deletes all descendant direc-

tories. It is therefore specified by

deleteG : [Path × StoreA → StoreA] ,

deleteG(p, x)(q) = (p � q ? ⊥ : x(q)) .

If store x is legitimate and p �= ε, the store y = deleteG(p, x) is legitimate because

Valid(y) = Valid(x) \ {q | p � q}.

Moving is more complicated. A move from p to q has the effect that the old

directory q (if it was valid) is completely overwritten by p, whereas the old directory

p disappears. Let store y = moveG(p, q, x) be the result of the move. For a path r

of the form r = q ++ s, we therefore have y(r) = x(p ++ s). For q � r, this implies

y(r) = x(p ++ drop(|q|, r)) where drop(k, r) is the suffix of r obtained by removing

the first k elements. We thus obtain:

moveG : [Path × Path × StoreA → StoreA] ,

moveG(p, q, x)(r) =

( q � r ? x(p ++ drop(|q|, r))
: p � r ? ⊥
: x(r) ) .

It is easy to see that moveG(p, p, x) = x for any x and p. If store x is legitimate

and p /∈ Valid(x), then moveG(p, q, x) = deleteG(q, x).

Theorem 2.2 Let x be a legitimate abstract store. Assume that q �= ε and p ��
parent(q), and that parent(q) ∈ Valid(x). Then move(p, q, x) is legitimate.

Because of the case distinctions in the definition of move, the proof of this result

is rather complicated. A key step in the proof is the observation that, if q � s and

r � s and q �� r, then r � parent(q).

On the other hand, when p ∈ Valid(x) is a strict prefix of q, then y = move(p, q, x)

satisfies y(p) = ⊥ and y(q) = x(p) �= ⊥, so that store y is not legitimate.

We extended the names deleteG and moveG with G, because we need versions

of these functions that preserve legitimacy. We thus define

delete(p, x) = (p = ε ? x : deleteG(p, x)) ,

move(p, q, x) = ( x(p) = ⊥ ∨ q = ε ∨ x(parent(q)) = ⊥ ∨ p � q ? x

: moveG(p, q, x) ) .

These functions delete and move indeed preserve legitimacy. With respect to move,

we are slightly more restrictive than needed for Theorem 2.1. We let move do

nothing if p is not valid or if p is a prefix of q itself, because moving is not useful if

p is not valid or equal to q.

We finally specify an initial store with arbitrary data d and an empty directory:
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initstoreA : [Data → StoreA] ,

initstoreA(d)(p) = (p = ε ? d : ⊥) .

It is easy to see that initstoreA(d) is legitimate.

3 Refining the Store

The usual implementation of a file store is by means of the standard pointer im-

plementation of a tree. We use a simple type Fid of file identifiers as the pointer

type. The root of the tree is given by a constant rootId ∈ Fid. For now, we define

a directory to be a total function that associates file identifiers to names. We use a

constant null ∈ Fid as a default file identifier for nonoccurring names. We postulate

that rootId �= null.

We thus allow nodes also for invalid paths. They always hold a directory, which

may be empty, and they may have data. A total store is a total function from file

identifiers to nodes.

DirT = [Name → Fid] ,

NodeT = [# data : lift[Data] , dir : DirT #] ,

StoreT = [Fid → NodeT] .

Here [# and #] are constructors for record types as used in PVS. The corresponding

element constructors are (# and #) used below. For a node v, we write v.data and

v.dir for its data and its directory. At this point, the nodes are more general than

usual. Later on, we may want to impose conditions on the data for a node that

contains a nonempty directory. A new node with data d and without children is

declared by

nodeT(d) = (# data := d , dir := (λ n : null) #) .

The initial store is defined by

initstoreT(d) = (λ f : f = rootId ? nodeT(d) : nodeT(⊥)) .

Since a store x is supposed to be a total function, we postulate an invariant to

ensure that no data are hidden in or beyond null, viz.

J0(x) : x(null) = nodeT(⊥) .

The file identifier associated to a path in a given store is defined recursively.

For this purpose, we define a function last : [Path → Name] such that, for every

nonempty path p, we have

p = parent(p) ++ last(p) .

The file identifier of a path is given by the recursive lookup function L defined by:

L : [Path × StoreT → Fid] ,

L(p, x) = ( p = ε ? rootId : x(L(parent(p), x)).dir(last(p)) ) .

We only want to find data = ⊥ at the node of null. This is expressed in the invariant

J1(x) : ∀ p : x(L(p, x)).data = ⊥ ⇒ L(p, x) = null .
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The abstraction function from total stores to abstract stores is defined by

abstract : [StoreT → StoreA] ,

abstract(x)(p) = x(L(p, x)).data .

It is straightforward to prove that abstract(initstoreT(d)) = initstoreA(d). Using

J0(x) and J1(x), one can easily prove

p ∈ Valid(abstract(x)) ≡ L(p, x) �= null .

Using invariant J0, we prove that

L(p, x) = null ∧ p � q ⇒ L(q, x) = null .

Using the postulate rootId �= null, this implies that abstract(x) is legitimate.

Reading is defined by

read(p, x) = abstract(x)(p) = x(L(p, x)).data .

The contents of a directory are found by means of function ls defined by

ls(p, x) = (L(p, x) = null ? ⊥ : ls(x(L(p, x)).dir)) , where

ls(di) = {n ∈ Name | di(n) �= null} .

Using the invariants J0 and J1, it is easy to prove the refinement theorem that

ls(p, abstract(x)) = ls(p, x).

For writing, we use the PVS conventions for modifying functional structures.

We thus define:

write(p,m, x) =

( L(p, x) = null ? x

: x with [(L(p, x)).data := m(x(L(p, x)).data)] ) .

Writing does not change L, because writing affects only field data, while L only

uses field dir. In other words, we have the easy result that

L(q,write(p,m, x)) = L(q, x) .

The specification of section 2 implies that writing at a path p only affects path p.

This implies that the total store must be a tree, in the sense that different valid

paths have different file identifiers. This is postulated in the invariant:

J2(x) : ∀ p, q : L(p, x) = L(q, x) �= null ⇒ p = q .

We now prove

Theorem 3.1 Assume J0(x), J1(x), and J2(x). Then we have

abstract(write(p,m, x)) = write(p,m, abstract(x)).

The challenge is now to define implementation functions for create, delete, and

move that behave in the same way as the corresponding functions on StoreA, and

to prove such facts.
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3.1 Removals from the store

Given x : StoreT, a path p can only be deleted from it if it is not the root and it is

valid. Deletion then amounts to removing its last name from its parent directory:

delete(p, x) =

( p = ε ? x : x with [ (pp).dir(last(p)) := null ] )

where pp = L(parent(p), x).

We postpone garbage collection to section 3.4.

It turns out that the invariants obtained above are enough to prove:

Theorem 3.2 Assume that J0(x) and J2(x). Then we have abstract(delete(p, x)) =

delete(p, abstract(x)).

Proof. We first claim that

(0) L(q,delete(p, x)) =

(p �= ε ∧ p � q ? null : L(q, x)) .

This is proved by induction on the length of q, because L is defined recursively. The

invariant J2 is needed because store x is modified at pp.dir(last(p)), and at several

points we therefore need to ensure that the arguments we are interested in differ

from this.

We verify the final step by observing for every path q:

abstract(delete(p, x))(q)

= { definition of abstract; write y = delete(p, x) }
y(L(q, y)).data

= { (0) and J0 for y }
(p �= ε ∧ p � q ? ⊥ : y(L(q, x)).data)

= { x and y are equal on data }
(p �= ε ∧ p � q ? ⊥ : x(L(q, x)).data))

= { definitions of delete and abstract }
delete(p, abstract(x))(q) .

This completes the proof. �

3.2 Creating new entries

In order to preserve J2 when creating new entries in the store, we need an unbounded

heap. We formally ensure this by postulating that the type Fid is infinite and that

the stores we consider are all finite, according to the invariant

J3(x) : #range(x) < ∞ , where

range(x) = {null, rootId} ∪ {f ∈ Fid | ∃ g, n : f = x(g).dir(n)} .

This enables us to define a choice function new : StoreT → Fid with the property:

(1) J3(x) ⇒ new(x) /∈ range(x) .

Function create at this level of abstraction is defined by
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create(p, d, x) =

( pp = null ∨ L(x, p) �= null ? x

: x with [ (pp).dir(last(p)) := ln , (ln) := nodeT(d) ] )

where pp = L(parent(p), x) and ln = new(x).

Function create satisfies the refinement theorem:

Theorem 3.3 Assume that J0(x) ∧ J2(x) ∧ J3(x). Then we have

abstract(create(p, d, x)) = create(p, d, abstract(x)).

Proof. One first proves that the failure conditions of both versions of create are

equivalent, because abstract(x)(q) = ⊥ if and only if L(x, q) = null. Now assume

both versions modify the store. We then prove, by induction on the length of q,

that

(2) L(q, create(p, d, x)) =

( q = p �= ε ∧ L(parent(p), x) �= null = L(p, x) ? new(x)

: L(q, x) ) .

We verify the final step by observing for every path q:

abstract(create(p, d, x))(q)

= { definition of abstract; write y = create(p, d, x) }
y(L(q, y)).data

= { (2) }
( q = p �= ε ∧ L(parent(p), x) �= null = L(p, x) ? y(new(x)).data

: y(L(q, x)).data)

= { definition y and new ; L(q, x) �= new(x) }
( q = p �= ε ∧ L(parent(p), x) �= null = L(p, x) ? d

: x(L(q, x)).data))

= { write x′ = abstract(x); definition of abstract }
( q = p �= ε ∧ x′(parent(p)) �= ⊥ = x′(p) ? d : x′(q))

= { abstract definition of create }
create(p, d, x′)(q) .

This completes the proof. �

3.3 Moving files and directories

Function move at this level is defined by:

move(p, q, x) =

( q = ε ∨ p � q ∨ L(p, x) = null ∨ qq = null ? x

: x with [(qq).dir(last(q)) := L(p, x) ,

(pp).dir(last(p)) := null ] )

where qq = L(parent(q), x) and pp = L(parent(p), x)

Note that J2(x) implies that the file identifiers pp and qq are equal if and only if p

and q have the same parent. If so, then p �� q implies that last(p) and last(q) differ.

The refinement theorem for move is:
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Theorem 3.4 Assume that J0(x) ∧ J1(x) ∧ J2(x). Then we have

abstract(move(p, q, x)) = move(p, q, abstract(x)).

We have proved this with PVS (see [7]). The structure of the proof is the same

as for delete and create. Due to the many case distinctions, it is cumbersome. We

omit it because it is not illuminating.

3.4 Garbage collection

Unreachable nodes in the tree are useless. Garbage collection amounts to the re-

moval of useless nodes. In the present context this is impossible because every store

x is a total function. The best we can do is minimize the unreachable nodes. This

is done as follows.

The set of reachable file identifiers is defined by

reach(x) = {f | ∃ p : L(p, x) = f} .

As unreachable file identifiers are never inspected, we define garbage collection by

gc : [StoreT → StoreT] ,

gc(x)(f) = (f ∈ reach(x) ? x(f) : nodeT(⊥)) .

By a straightforward induction on the length of p, one proves that L(p, gc(x)) =

L(p, x) for all paths p. Having done this, one can easily prove that abstract(gc(x)) =

abstract(x). In words, garbage collection does not influence the meaning of the

store.

3.5 Proofs of the invariants

It is straightforward to prove that the operations write, delete, create, move, and

gc preserve the invariant J0, i.e., J0(x) implies J0(write(p,m, x)) for all x : StoreT,

and similarly for the other functions. The same is done for the invariant J1. Preser-

vation of J3 under these five operations follows from the fact that they add at most

one element (in the case of create) to the range of the store.

The invariant J2 uses function L, which is defined recursively. We therefore

define two simpler invariants, which express that the file tree has no cycles and that

all occurring file identifiers �= null are different:

J2a(x) : ∀ f, n : x(f).dir(n) �= rootId ,

J2b(x) : ∀ f, g,m, n : x(f).dir(m) = x(g).dir(n) �= null ⇒ f = g ∧ m = n .

Here, f and g range over Fid and m and n range over Name. By induction on the

lengths of the paths, one proves that these two invariants, together with J0, imply

J2. It is fairly easy to prove that write, delete, move, and gc preserve the invariants

J2a and J2b. For create, we use J3 and formula (1).

Finally, it is straightforward to prove that initstoreT(d) satisfies the invariants

J0, J1, J2a, J2b, and J3.
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4 Implementing the Store

We now replace the total functions of the previous section by “finite maps”, i.e.,

partial functions with a finite domain. We thus use the types declared in:

DirI = [Name → lift[Fid]] ,

NodeI = [# data : Data , dir : DirI #] ,

StoreI = [Fid → lift[Node]] .

Working with partial functions in a theorem prover like PVS gives technical

difficulties that, from a conceptual point of view, seem inessential and distracting.

In the implementation, however, these difficulties correspond to the usual prob-

lems with unallocated pointers. It is therefore important to get it correct at the

theoretical level.

In our presentation here, we make one simplification of the PVS code. If X

is a type, the PVS type lift[X] represents X ∪ {⊥}, but X is not a subset of

lift[X]. Instead, there is an injection up : [X → lift[X]] and an inverse coercion

down : [X ′ → X] where X ′ ⊆ lift[X] is the image of up. In the presentation below,

we suppress the functions up and down, and regard X and X ′ as identical.

We construct a refinement function refine from the present system to the one of

the previous section in:

refine : [StoreI → StoreT] ,

refine(x)(f) =

(x(f) = ⊥ ? nodeT(⊥)

: (# data := x(f).data ,dir := ψ ◦ (x(f).dir) #) )

where ψ(g) = (g = ⊥ ? null : g).

4.1 Reading and writing the store

The file identifier null is no longer needed in the implementation, but we allow and

use it as an alias for ⊥ . We therefore define for x : StoreI the invariant:

K0(x) : x(null) = ⊥ .

On the other hand, we want that all other file identifiers used in the store hold

genuine nodes, as expressed in the invariant:

K1(x) : ∀ f ∈ range(x) ⇒ f = null ∨ x(f) �= ⊥ , where

range(x) = {null, rootId} ∪ {f ∈ Fid | ∃ g, n : f = x(g).dir(n)} ,

where, by convention, x(g).dir(n) /∈ Fid when x(g) = ⊥ or x(g).dir(n) = ⊥ .

At this refinement level, we use the lookup function L given by

L : [StoreI × Path → Fid] ,

L(p, x) = ( p = ε ? rootId

: x(L(parent(p), x)) = ⊥ ∨
x(L(parent(p), x)).dir(last(p)) = ⊥ ? null

: x(L(parent(p), x)).dir(last(p)) ) .

The invariants K0(x) and K1(x) imply the rule:
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K01(x) : L(p, x) = null ≡ x(L(p, x)) = ⊥ .

In PVS, reading store x : StoreI at path p is defined by

read(p, x) = (x(L(p, x)) = ⊥ ? ⊥ : x(L(p, x)).data) .

A practical implementation would use the test L(p, x) = null rather than the equiv-

alent x(L(p, x)) = ⊥. Doing this in PVS, however, would raise the objection that

x(L(p, x)).data is defined only if x(L(p, x)) �= ⊥ . In other words, the function read

would only be defined on the stores where K01 holds. Although we shall prove that

K01 holds for all reachable stores, we prefer to define read as a total function in

PVS and therefore use the definition above. The same argument applies to several

of the definitions below.

Using a straightforward induction on the length of path p, one can prove

L(p, x) = L(p, refine(x)) .

This enables us to prove that K01(x) implies read(p, refine(x)) = read(p, x).

On this level, function ls is defined by

ls(p, x) = (x(L(p, x)) = ⊥ ? ⊥ : ls(x(L(p, x)).dir)) , where

ls(di) = {n ∈ Name | di(n) �= ⊥ ∧ di(n) �= null} .

Using the invariant K0, it is easy to prove the refinement theorem that ls(p, refine(x)) =

ls(p, x). Writing of store x is defined by

write(p,m, x) =

( x(L(p, x)) = ⊥ ? x

: x with [(L(p, x)).data := m(x(L(p, x)).data)] ) .

Using K01(x), one can prove that refine(write(p,m, x)) = write(p,m, refine(x)).

4.2 Tree modification

Analogously to the definition in section 3.1, here removal is defined by

delete(p, x) =

( p = ε ∨ L(p, x) = null ? x

: x with [ (pp).dir(last(p)) := ⊥ ] )

where pp = L(parent(p), x).

Note that in the second branch, L(p, x) �= null implies that x(L(parent(p), x)) �= ⊥.

Therefore this node indeed has a directory that can be modified. The equality

refine(delete(p, x)) = delete(p, refine(x)) is proved with the invariant K01(x).

For making a directory, we again need finiteness of the store as expressed in the

invariant

K2(x) : #range(x) < ∞ .

We can therefore define a function new : [Store → Fid] that satisfies new(x) /∈
range(x) for every x with K2(x). We need a different node constructor (compare

section 3):
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nodeI(d) = (# data := d , dir := (λ n : ⊥) #) .

Analogously to section 3.2, a new node is created by

create(p, d, x) =

( x(pp) = ⊥ ∨ L(p, x) �= null ? x

: x with [ (pp ).dir(last(p)) := ln , (ln) := node(d) ] )

where pp = L(parent(p), x) and ln = new(x).

It is easy to prove that range(refine(x)) = range(x). We also get new(refine(x)) =

new(x), because we can use the same choice function. Using K01(x), one can then

prove the equality refine(create(p, d, x)) = create(p, d, refine(x)).

Function move is defined almost as in section 3.3:

move(p, q, x) =

( q = ε ∨ p � q ∨ L(p, x) = null ∨ x(qq) = ⊥ ? x

: x with [(qq).dir(last(q)) := L(p, x) ,

(pp).dir(last(p)) := ⊥ ] )

where qq = L(parent(q), x) and pp = L(parent(p), x).

At this point, the identification of type Node with a subtype of lift[Node] simplifies

the presentation. Working in PVS, we need to make a case distinction whether the

file identifiers pp and qq are equal or differ. Nevertheless, we formally proved the

equality refine(move(p, q, x)) = move(p, q, refine(x)), using the invariant K01.

The verification that the invariants K0, K1, and K2 are preserved by the op-

erations write, delete, create, and move are straightforward. These invariants also

hold for the initial store defined by

initstoreI(d) = (λ f : f = rootId ? nodeI(d) : ⊥) .

Moreover, refine(initstoreI(d)) = initstoreT(d).

It follows that the composition abs = abstract ◦ refine is a genuine refinement

function Store → StoreA.

4.3 Garbage and garbage collection

Garbage collection is more useful at this level than in section 3.4. Again we define:

reach : [StoreI → P[Fid]] ,

reach(x) = {f | ∃ p : L(p, x) = f} .

Garbage collection now means removal of unreachable nodes:

gc : [StoreI → StoreI ] ,

gc(x)(f) = (f ∈ reach(x) ? x(f) : ⊥) .

As before, one first proves that L(p, gc(x)) = L(p, x) for all paths p and x : StoreI .

Then it is, indeed, straightforward to prove that function gc preserves the three

invariants K0, K1, and K2.

It is easy to prove that refine(gc(x)) = gc(refine(x)). It follows that the com-

position abs : [StoreI → StoreA] satisfies abs(gc(x)) = abs(x) for all x : StoreI .
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5 File Permissions at Three Levels

File system permissions form a core issue in every operating system. Not all users

must be able to read and modify all data. We therefore overload the six file system

functions by adding a user as a new first argument, where User is a new type,

uninterpreted for now. For the sake of orthogonality, we deviate somewhat from

the standard Unix conventions.

5.1 Permissions in the abstract system

We describe the file system permission model from the user’s point of view at the

abstract level. For the user, we have typical access types like reading, executing

and writing, and the owner can control the permissions to these operations. Fur-

thermore, there is the concept of a super user, who holds all access rights in the file

system.

We assume that the permissions attached to a node are encoded in the data of

the node by means of predicates:

px,pr,pw : P[User × Data] ,

where px stands for the permission to execute, pr to read, and pw to write. We do

not go into details of how these permissions are represented in the data. Instead,

we concentrate on the specification and verification that users can only access and

modify according to the permissions granted. As the functions px, pr, pw depend

on the user, they can also depend on the classification of the user as creator of the

file or directory, as a member of the group, etc. We can therefore here ignore these

issues. As we need to apply these predicates in stores at a given path, we overload

them to

px,pr,pw : P[User × Path × StoreA] ,

px(u, p, x) = x(p) �= ⊥ ∧ px(u, x(p)) ,

and similarly for pr and pw.

In case of files, readable, executable and writable means that the contents of a

file can be read, executed (if it is executable) and written. In case of directories,

readable corresponds to the listing of the directory entries, and executable means

that user is allowed to go into the directory, i.e., “change directory”. Writable

means the permission to create or remove entries in the given directory. Therefore,

for reading and writing in a file or directory at some path, the user needs execution

rights along the whole path in the file system [1, Section 2.8]. This implies that the

effective permissions are slightly more complicated functions that depend on the

user, the path, and the store. We thus define:

pX ,pR,pW : P[User × Path × StoreA] ,

pX(u, p, x) = (∀ q : q � p ⇒ px(u, q, x) ,

pR(u, p, x) = pr(u, p, x) ∧ (p = ε ∨ pX(u,parent(p), x)) ,

pW(u, p, x) = pw(u, p, x) ∧ (p = ε ∨ pX(u,parent(p), x)) .

Here, by convention, parent(ε) = ε. In some Unix variants, write permission may
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imply or require read permission. This can be modelled by adapting the relations

of pw and pr to the actual permission bits.

The user-adapted abstract versions of ls, read, and write are simply:

ls(u, p, x) = (pR(u, p, x) ? ls(p, x) : ⊥) ,

read(u, p, x) = (pR(u, p, x) ? x(p) : ⊥) ,

write(u, p,m, x) = (pW (u, p, x) ? write(p,m, x) : x) .

For creation the path must be nonempty and the user needs permission to execute

and write the parent directory. We therefore define

pY (u, p, x) = pX(u, p, x) ∧ pw(u, p, x) ,

create(u, p, d, x) = (pY (u,parent(p), x) ? create(p, d, x) : x) .

For deletion (assuming the node holds a directory), we require that the directory

at the node is empty and we need ls to verify this. We therefore define

delete(u, p, x) =

(pW (u,parent(p), x) ∧ ls(u, p, x) = ∅ ? delete(p, x) : x) .

Note that the user u needs read permission to obtain ls(u, p, x) = ∅. Otherwise

function ls yields ⊥, and ⊥ �= ∅.

For move, we propose:

move(u, p, q, x) =

(pY (u,parent(p), x) ∧ pW(u,parent(q), x) ? move(p, q, x) : x) .

5.2 Refinement of permissions

We now turn from the abstract stores of section 2 to the total stores of section

3. We extend the permission bit functions px, pr, pw to the type lift[Data] by

defining

px(u,⊥) = pr(u,⊥) = pw(u,⊥) = false .

The lookup function L that gives the file identifier of a path is now modified to

verify execution permissions along the path:

L : [User × Path × StoreT → Fid] ,

L(u, p, x) =

( p = ε ? rootId

: px(u, xpp.data) ? xpp.dir(last(p))

: null )

where xpp = x(L(u,parent(p), x)).

This expresses that the user can only traverse a path p if he has rights to execute

all strict ancestors of p. Indeed, under assumption of J0(x) and J1(x), we have

L(u, p, x) =

(p = ε ∨ pX(u,parent(p), abstract(x)) ? L(p, x) : null) .

The proof of this is complicated. The result is at the basis of the theorems that the

refinement function abstract respects (i.e., commutes with) the functions read, ls,
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write, create, delete, move, as defined below.

The user-adapted versions of read and ls are given by

read(u, p, x) =

( L(u, p, x) = null ∨ ¬ pr(u, x(L(u, p, x)).data) ? ⊥
: x(L(u, p, x)).data) ,

ls(u, p, x) =

( L(u, p, x) = null ∨ ¬ pr(u, x(L(u, p, x)).data) ? ⊥
: ls(x(L(u, p, x)).dir) ) .

The user-adapted version of delete becomes:

delete(u, p, x) =

( p = ε ∨ ¬ pw(u, x(pp).data) ∨ ls(u, p, x) �= ∅ ? x

: x with [ (pp).dir(last(p)) := null ] )

where pp = L(parent(p), x).

For the sake of brevity, we omit the definitions of write, create, and move at this

level. Using the invariants J0, . . . , J3, we then prove the refinement theorems for

the user-adapted functions of this level, analogous to those of section 3. All details

are given in the PVS proof script of [7].

5.3 Implementation of permissions

We now turn to the concrete stores of section 4. For the permission system, we

extend the lookup function L of section 4 to verify the execution permissions along

the path:

L : [User × Path × StoreI → Fid] ,

L(u, p, x) = ( p = ε ? rootId

: x(L(u,parent(p), x)) = ⊥
∨ ¬ px(u, x(L(u,parent(p), x)).data)

∨ x(L(u,parent(p), x)).dir(last(p)) = ⊥ ? null

: x(L(u,parent(p), x)).dir(last(p)) ) .

The functions read and ls of section 4 are modified for the user-adapted version as:

read(u, p, x) =

( x(L(u, p, x)) = ⊥ ∨ ¬ pr(u, x(L(u, p, x)).data) ? ⊥
: x(L(u, p, x)).data) .

ls(u, p, x) =

( x(L(u, p, x)) = ⊥ ∨ ¬ pr(u, x(L(u, p, x)).data) ? ⊥
: ls(x(L(u, p, x)).dir) .

The function write is modified analogously:

write(p,m, x) =

( x(L(u, p, x)) = ⊥ ∨ ¬ pw(u, x(L(u, p, x))) ? x

: x with [(L(u, p, x)).data := m(x(L(u, p, x)).data)] ) .
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Function create needs permissions for lookup, writing, and executing in the parent

directory:

create(u, p, d, x) =

( x(pp) = ⊥ ∨ L(u, p, x) �= null

∨ ¬ px(u, x(pp).data) ∨ ¬ pw(u, x(pp).data) ? x

: x with [ (pp ).dir(last(p)) := ln , (ln) := node(d) ] )

where pp = L(u,parent(p), x) and ln = new(x).

Function delete of section 4 becomes:

delete(u, p, x) =

( p = ε ∨ ls(u, p, x) �= ∅
∨ x(pp) = ⊥ ∨ ¬ pw(u, x(pp).data) ? x

: x with [ (pp).dir(last(p)) := ⊥ ] )

where pp = L(parent(p), x).

Here the condition x(pp) �= ⊥ is needed to read x(pp).data, because ls(u, p, x) = ∅
only implies x(pp) �= ⊥ under assumption of the invariant K0(x).

We adapt function move of section 4 as:

move(u, p, q, x) =

( q = ε ∨ p � q ∨ L(u, p, x) = null ∨ x(qq) = ⊥
∨ ¬ pw(u, x(pp).data) ∨ ¬ pw(u, x(qq).data) ? x

: x with [(qq).dir(last(q)) := L(u, p, x) ,

(pp).dir(last(p)) := ⊥ ] )

where qq = L(u,parent(q), x) and pp = L(u,parent(p), x)

We finally prove with PVS, that the refinement function from the implemented store

to the total store also respects (i.e., commutes with) the user-adapted versions of

read, write, ls, create, delete, and move. The details of the proof can be found at

[7].

6 Conclusion

In this work, we constructed and proved the specifications of a hierarchical file

system. We used functional refinements to model a file system, starting from an

abstract version and working towards a concrete specification. We divided our

work into four parts (i) Abstract model (ii) First refinement using total functions

(iii) Final refinement using partial functions. Finally, (iv), at all three levels, we

incorporated a permission mechanism like that of the UNIX file system.

Initially, we tried to model file systems directly at the implementation level of

Section 4. In order to evade or at least postpone the details of partial functions, we

invented the more abstract level of Section 3. The real breakthrough came when we

saw that we had to begin by specifying a hierarchical file system from a user’s point

of view, as a partial function from (absolute) paths to data. The requirements for

the other two levels then emerged naturally as proof obligations for the refinement

functions. Having the three levels was also very helpful in the development of the
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permission system.

A total of 204 lemmas were proved with proof assistant PVS [6] during this work.

It included 10 lemmas for the abstract model, 87 lemmas for the model with total

functions, 79 lemmas for the model with partial functions, and 28 lemmas shared for

all models. This may be an indication of the efficiency of PVS as compared to the

work done in [17] using Athena where they constructed 283 lemmas and theorems

for only reading and writing into files in only one directory. Details of the PVS

proof can be found in the proof script for this work at [7].

As for directions for future research, the model needs an extension with hard

links. At the abstract level, the appropriate way to do this may be by means of

a modifiable equivalence relation on valid paths, as a second component of the

store. Function write should then modify all members of the equivalence class of

the path. A next extension could be to incorporate the difference between files and

directories. After this, several problem areas ask for attention: the details of reading

and writing, concurrent access, disk lay-out, distribution, and fault tolerance.
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