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A Distributed Reconfigurable Control Law for Escorting and Patrolling

Missions using Teams of Unicycles

Ying Lan1 Zhiyun Lin1 Ming Cao2 Gangfeng Yan1

Abstract— Recent years have seen rapidly growing interest
in the development of networks of vehicles for which adaptive
cooperation and autonomous execution become a necessity. In
the paper, we develop a distributed reconfigurable control law to
distribute unicycle-type vehicles evenly on a circle surrounding
a moving target for the escorting and patrolling missions.
The even distribution of the vehicles provides the best overall
coverage of the target in its surroundings. It is shown that as the
target moves, the group formation moves and rotates around
the target to keep the target around the formation centroid.
When some vehicles in the group are lost due to faults, the
remaining vehicles recognize the loss and adaptively reconfigure
themselves to a new evenly distributed formation.
Keywords: Cooperative control; unicycles; escorting; patrolling

I. INTRODUCTION

Over the last few years, cooperation in multi-robot systems

has received increasing attention. A network of relative

simple and inexpensive agents, equipped with sensing and

control devices, are invoked to fulfill complex tasks in a

robust, fault-tolerant, and distributed manner. In distributed

multi-agent systems, there is usually no centralized controller

and each agent has to act based on its local sensing infor-

mation. Up till now, the available literature has addressed a

wide range of topics, e.g., consensus [18], formation control

[19], coordinated path following [1], and cooperative target

tracking [5], [9]. In this direction, the cooperative escorting

and patrolling mission, which arises from security services,

is also a fairly important research problem. Recently, [2]

and [17] explicitly address the escorting and patrolling task,

for which a group of vehicles are asked to surround and

maintain close to a target whose motion is unknown a

priori but can be measured in real time, and meanwhile

collisions between each other are avoided. The problem is

closely related to the problem of circular formation control

and target-enclosing, but it has its own distinct features

since the target object being escorted and patrolled works

collaboratively with the autonomous vehicles rather than

competing with them as in the target-enclosing problem. The

target may feed back certain measured information to the

vehicles via communication though it does not participate in

coordinating its motion with others.
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One can distinguish several control design approaches

for the escorting/patrolling problem and related problems.

By far, most approaches rely on simple models (single

integrators) [6], [8], [9], centralized schemes [2], [17], or

the knowledge of global information in the presence of

a common reference frame [7], [11]. On one hand, the

approaches developed for single-integrator model ( [6], [8],

[9]) have had limited success when applied to teams of

unicycles due to nonlinearity and nonholonomic constraints

which give rise to more challenges in control synthesis. On

the other hand, the unicycle model is a common and prac-

tical model for mobile robots and unmanned aerial vehicles

(UAVs). To overcome the difficulties appeared in unicycle-

type vehicles, it is often assumed in some literature that

absolute orientations and absolute positions with respect to a

common reference frame are available (e.g., [7], [11]) so that

the model can be transformed into a simple one via a global

coordinate transformation. But from the practical point of

view, it is more desirable not using global information as it

is difficult or costly to acquire. Without allowing to utilize

global information, the escorting and patrolling problem

using teams of unicycle-type vehicles becomes even more

challenging. Within the context of local control, several

different control strategies have been explored. Some work

makes use of the acceleration information of the target

object [3], some work can only deal with three agents for

the task [13], [14] and the problem for more than three

vehicles remains an open problem, and some work obtains

only experimental results without rigorous analysis [2], [17].

Moreover, some of these control approaches rely heavily on

the total number of vehicles in coordination, which makes

the group behavior not reconfigurable autonomously when

the number of functioning vehicles changes.

To date, for the escorting and patrolling problem using

teams of unicycles, none of the various control approaches

have produced a satisfying reconfigurable control law based

on only local sensing information with provable stability

properties. Developing such a reconfigurable control law

based on only local sensing information and proving stability

are the primary goal of this paper. In a related problem, a

hybrid control approach is proposed in [15] to enclose and

rotate around a stationary target object with an evenly spaced

distribution. The approach results in a reconfigurable control

law for which when some vehicles become malfunctioning,

the remaining vehicles autonomously reconfigure themselves

to a new evenly spaced distribution. The paper aims at

continuing this idea and developing control approaches for

the escorting and patrolling mission, in which the target
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object is moving. However, when a target object has a

varying velocity profile, even though the velocity of the target

object is available to all the escorting and patrolling vehicles,

it is still difficult to eliminate the translation. One of the

objectives and one of the main contributions of the present

work are to derive a control law that can nearly eliminate

the translation and can be designed in a way that greatly

decreases the amount of measurements necessary for the

control. In the paper, a control scheme is developed where

each vehicle utilizes the local information of distance and

bearing angle about the target and its two neighbors called

pre-neighbor and next-neighbor, which can be measured by

onboard sensors, and utilizes the information of linear speed

and bearing angle measured by the target object, which is

available to the vehicles via communication from the target

object. With the proposed control scheme, we show that

a group of vehicles are able to follow and rotate around

the smoothly moving target to keep the target around their

centroid if initially the vehicles are ready for escorting and

patrolling. From theoretic point of view, if some other control

laws can be designed to steer the vehicles near the target with

appropriate postures, a switching control law can always be

derived based on our results to solve the problem globally.

Also, we show that with our proposed control law, collisions

among the group of cooperating vehicles and between the

vehicles and the target object are assured not to occur. In

addition, the control law presented in the paper is distributed

and scalable. When some vehicles in the group become

malfunctioning due to faults, the remaining vehicles can

recognize and adaptively reconfigure themselves into a new

formation to accomplish the task.

II. PROBLEM FORMULATION

The mission of escorting and patrolling a target is the task

to maintain a formation around a given target. As the target

moves, the formation moves (or furthermore, rotates around

the target) to keep the target at its centroid, maintains the

desired distances from the formation vehicles to the target,

and distributes the formation vehicles around the target

evenly in angle [2], [17]. The equal-angle spacing gives the

team the best chance to track the target in the presence of

occlusions and minimizes the intruding possibilities of an

external agent.

In the following, we formulate the escorting and patrolling

problem for networks of unicycle-type vehicles, which can

also be applied to unmanned air vehicle (UAV) systems.

Consider a group of n unicycles labeled 1 through n. For

any unicycle i (i = 1, . . . , n), its posture is described by

qi = (xi, yi, θi)
T ∈ R

2 × [−π, π), where (xi, yi) denotes its

representing point defined in an inertia coordinate frame W ,

and the angle θi is its orientation with respect to the x-axis.

Each unicycle has the following dynamics

q̇i =





ẋi
ẏi
θ̇i



 =





vi cos θi
vi sin θi
ωi



 (1)

where the linear velocity vi and angular velocity ωi are the

control inputs which are subject to physical constraints, i.e.,

0 < vi ≤ vmax and |ωi| ≤ ωmax. The target is labeled 0,

whose position is denoted by (x0, y0), whose orientation is

denoted by θ0, and whose forward speed is denoted by v0.

It is assumed that it can move freely in the plane, its linear

speed v0 and angular speed ω0 are smooth, and v0 is upper-

bounded, i.e., |v0| ≤ v0max
(where v0max

< vmax).

For each vehicle i (including the target 0), we construct a

moving frame, the Frenet-Serret frame, that is fixed on the

vehicle with its origin at the representing point and x-axis

coincident with the orientation of the vehicle. Denote dij the

distance from vehicle i to vehicle j and αij the bearing angle

of vehicle j in vehicle i’s Frenet-Serret frame (see Fig. 1).

i

j

x

y

dij

αij

αji

Fig. 1. The distance dij as well as the bearing angles αij and αji.

With respect to the target object, the dynamics of unicycle

i (i = 1, . . . , n), which is not collocated with the target

object, can be written as
{

ḋi0 = −vi cosαi0 − v0 cosα0i,
α̇i0 = −ωi + ηi(vi),

(2)

where ηi : R → R is defined as

ηi(ς) =
1

di0
(ς sinαi0 + v0 sinα0i) . (3)

Note that when sinαi0 6= 0, the inverse function exists and

has the following form: η−1
i (̺) = ̺di0−v0 sinα0i

sinαi0
.

Next, in order to formulate the evolution of the group

formation, we evaluate the angle between the line through the

target and vehicle i and the line through the target and vehicle

j. More formally, we let ψij be the angle formed by rotating

the ray (originating at the target and pointing towards vehicle

i) counterclockwise until meeting vehicle j. The angle ψij is

called the separation angle from vehicle i to j, which belongs

to [0, 2π) by our definition (see Fig. 2). Moreover, a vehicle,

that is first met by rotating counterclockwise the ray origi-

nating at the target and pointing towards vehicle i, is called a

next-neighbor of vehicle i. In a mathematical way, the next-

neighbor set Ni is defined as Ni := {j |ψij = mink 6=i ψik } .
Similarly, we define the pre-neighbor set Pi of vehicle i
as Pi := {j |ψij = maxk 6=i ψik } . A member in the pre-

neighbor set Pi is called a pre-neighbor of vehicle i. From

the definitions, we can see that if there is a next-neighbor

for vehicle i then there must be a pre-neighbor, and vice

versa. Next, let ψ−
i := ψij |j∈Ni

and ψ+
i := ψji|j∈Pi

.
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target

i

jk

l

ψij

ψjk

ψkl

ψli

Fig. 2. The separation angles.

That is, ψ−
i and ψ+

i are the separation angle from vehicle

i to its next-neighbor and the separation angel from its pre-

neighbor to vehicle i, respectively. With these notations, one

obtains that for any vehicle i = 1, . . . , n, if there is only

one next-neighbor, say Ni = {j}, then the evolution of the

separation angle ψ−
i is governed by

ψ̇−
i = ηj(vj) − ηi(vi). (4)

If there are more than one next-neighbors, then the dynamics

of ψ−
i can be derived as ψ̇−

i = minj∈Ni
(ηj(vj) − ηi(vi)).

Now we are ready to give the formal problem statement

for the escorting and patrolling problem studied in the paper.

The Cooperative Escorting and Patrolling Problem: De-

vise vi and ωi for each vehicle i = 1, . . . , n such that

(i) the error evolution (di0(t) − R,αi0(t) + π/2) for i =
1, . . . , n is uniformly bounded, where R is the desired

radius of the enclosing circle and −π/2 indicates the

desired rotation direction;

(ii) limt→∞ ψ−
i (t) = · · · = limt→∞ ψ−

n (t) ≥ 0.

Instead of making di0(t) and αi0(t) converge to R and −π/2
exactly, condition (i) ensures that di0(t) and αi0(t) are kept

remaining close to the desired values R and −π/2 if the

bound is small, which represents a relaxed and practical

objective for the escorting and patrolling mission. To solve

the problem, we assume that

1) each vehicle i can measure the distance to the target

object di0 and the bearing angle αi0;

2) each vehicle i can obtain the separation angles ψ−
i and

ψ+
i if it has a next-neighbor and a pre-neighbor;

3) the target object communicates its linear speed v0 and

measured bearing angle α0i to each agent i.

Remark 2.1: For the escorting and patrolling mission, the

target object and the patrolling vehicles are collaborative

rather than competitive. Hence, α0i and v0 can be available

by vehicle i for the control purpose via communication

or other collaboration manners. The reason to have these

information is to overcome the difficulties caused by time-

varying speed and possible rotations of the target object as

each vehicle is hard or incapable of measuring the orientation

and the moving speed of the target by onboard sensors.

But compared to some work (e.g., [3], [7], [11]) requiring

to know all information of the target object including both

forward and angular speed and acceleration, or global infor-

mation such as absolute position and absolute orientation

of the target object, the assumption is mild and greatly

decreases the amount of required information.

III. MAIN RESULTS

In this section, we synthesize control laws for the cooper-

ative escorting and patrolling problem described in the paper.

That is, a group of vehicles follow the target, at the same

time maintain a formation and rotate around the target to

keep the target at its centroid approximately. In addition, we

expect that no collision happens between formation vehicles

in the cooperative escorting and patrolling process, which is

a key issue in motion coordination for multi-agent systems.

A. Our control law

In this subsection, we propose a distributed reconfigurable

control law. First, we introduce a set of states di0 and αi0,

which corresponds to the situation that the vehicles locate

near the enclosing circle and their orientations are close to

the tangent direction of the enclosing circle.

Define a set

S =

{

(d, α)

∣

∣

∣

∣

−a ≤ α+ π/2 ≤ a
b(α+ π/2) − a ≤ d−R ≤ b(α+ π/2) + a

}

where a and b are constant values satisfying 0 < a < π/2
and b > 0. In geometry 1/b is the slop of the line shown in

Fig. 3. Describe the boundary of S by

µ1 = {(d, α) ∈ S : α+ π/2 = a},
µ2 = {(d, α) ∈ S : d−R = b(α+ π/2) + a},
µ3 = {(d, α) ∈ S : α+ π/2 = −a},
µ4 = {(d, α) ∈ S : d−R = b(α+ π/2) − a}.

d−R

α+ π/2

S

1/b

−a

−a

a

a

Fig. 3. Set S.

Let nj , j = 1, . . . , 4, be a normal vector of µj pointing

outside of S. Without loss of generality, select n1 = [0, 1]T

and n2 = [1, −b]T . we construct a distributed control law:






vi = η−1
i

[

−(c1 + γi · (ψ
+
i − ψ−

i ))
]

ωi = 1
b
(vi cosαi0 + v0 cosα0i) + ηi(vi)

−c2vi[di0 −R− (1 + b)(αi0 + π/2)]
(5)

where ηi(·) is the function defined in (3), b is the parameter

used in defining the set S, c1, c2 > 0 are constants of suitable

values, and γi is a coefficient depending on the sign of (ψ+
i −

ψ−
i ), i.e., γi = c3 (a positive constant) if (ψ+

i − ψ−
i ) > 0
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and γi = 0 otherwise. It is worth pointing out that at this

stage, the pre-neighbor and next-neighbor of each vehicle

are those as defined in Section II, but their states must be

in S. Otherwise, they are treated as malfunctioning vehicles.

When a vehicle i has neither pre-neighbor nor next-neighbor,

we let γi = 0 so that it accomplishes the task by itself only.

Remark 3.1: Note that for states in S, sinαi0 6= 0, so the

inverse function η−1
i (·) exists and for each i = 1, . . . , n,

vi = η−1
i [−(c1 + γi · (ψ

+
i − ψ−

i ))]

= −
(c1+γi·(ψ

+

i
−ψ−

i
)di0+v0 sinα0i

sinαi0

with di0, v0, αi0 and α0i are smooth functions. Denote βi =
ψ+
i − ψ−

i . Clearly, βi ∈ [−2π, 2π] and by definition γi ·

βi =

{

c3βi, βi > 0,
0, βi ≤ 0.

In addition, limβi→0− γi · βi =

limβi→0+ γi · βi = 0. It means that γi · βi is continuous

in the neighborhood of βi = 0 and continuous for states

in S. Moreover, γi · βi is Lipschitz with respect to βi and

the Lipschitz constant is c3. Therefore, the solution of the

resulting closed-loop system locally exists and is unique for

any initial state in S.

B. Ensuring circling motion

In this subsection, we show that our proposed control

law (5) can make the formation vehicles follow and rotate

around the moving target approximately. In other words,

if the vehicles are initially with states in S, under control

law (5), the states can be maintained in S for smooth motion

of the target. Denote ξi = [di0, αi0]
T

. Substituting the control

law ωi in (5), we obtain the following closed-loop system:

ξ̇i = f(ξi)

:=

[

−vi cosαi0 − v0 cosα0i
1
b
ḋi0 + c2vi[di0 −R− (1 + b)(αi0 + π/2)]

]

.

Let vmin be the minimum speed of vi in the control law (5)

when the state ξi lies in S. It can be seen later that with

suitable choices of parameters in the control law, vmin is

positive. Next, we present our main result.

Theorem 3.1: If vmin sin a ≥ v0max
, then ξi(0) ∈ S

implies ξi(t) ∈ S under the control law (5).

Proof: We prove the theorem using Nagumo’s Theorem [4].

Recall that from Remark 3.1, vi is continuous and locally

Lipschitz for states in S. Thus, f(ξi) is continuous and

locally Lipschitz.

On the boundary µ1, we check

nT1 f(ξi) = −
1

b
(vi sin a+ v0 cosα0i)+c2vi[di0−R−(1+b)a].

Note that 1
b
(vi sin a+ v0 cosα0i) ≥ 1

b
(vi sin a− v0max

) ≥
0 due to the condition vmin sin a ≥ v0max

in the theorem.

Also, on the boundary µ1,

c2vi[di0 −R− (1 + b)a] ≤ c2vi(a− a) = 0.

So it follows that nT1 f(ξi) ≤ 0.

On the boundary µ2, we check

nT2 f(ξi) = −bc2vi[di0 −R− (1 + b)(αi0 + π/2)]
= −bc2vi[a− (αi0 + π/2)].

Since on µ2, (αi0 + π/2) ≤ a, it follows nT2 f(ξi) ≤ 0.

Similarly, we can show that nT3 f(ξi) ≤ 0 on the boundary

µ3 and nT4 f(ξi) ≤ 0 on the boundary µ4. Thus, the set S
is positively invariant for the closed-loop system. In other

words, if ξi(0) ∈ S then ξi(t) ∈ S for all time. �

Remark 3.2: In Theorem 3.1, it is shown that the set S is

positively invariant. That means, the error evolution (di0(t)−
R,αi0(t) + π/2) for i = 1, . . . , n is uniformly bounded,

which addresses the condition (i) of our formulated problem.

Finally, we exploit the conditions for the existence of

control parameters such that the control law meets the

physical constraints.

Theorem 3.2: If the following conditions hold:

c1[R− (1 + b)a] ≥

(

1 +
1

sin a

)

v0max
, (6)

c1[R+ (1 + b)a] < vmax cos a− v0max
, (7)

1

b2
+

1

[R− (1 + b)a]2
<

ω2
max

(vmax + v0max
)2
, (8)

then the control law (5) exists satisfying the physical con-

straints.

Proof: From Theorem 3.1, we know that in order to make

ξi(t) ∈ S for all t, it should hold that vmin sin a ≥ v0max
.

That is, the following should hold: vi sin a ≥ v0max
for all

states in S. Note that when ξi ∈ S,

vi = η−1
i

[

−(c1 + γi · (ψ
+
i − ψ−

i ))
]

= −
(c1+γi·(ψ

+

i
−ψ−

i
)]di0+v0 sinα0i

sinαi0

≥ c1di0 − v0max
≥ c1[R− (1 + b)a] − v0max

.

This leads to the following condition c1[R − (1 + b)a] −
v0max

≥ v0max

sin a , which is equivalent to (6).

Moreover, we have to assure that |vi| ≤ vmax and |ωi| ≤
ωmax. When ξi ∈ S, it can be checked that

vi ≤
(c1 + 2πc3)[R+ (1 + b)a] + v0max

cos a
.

Hence, the following should hold:

(c1 + 2πc3)[R+ (1 + b)a] + v0max

cos a
≤ vmax.

Notice that c3 > 0 can be arbitrarily small, so the condition

(7) ensures the existence of c3 such that the above inequality

holds. On the other hand, when ξi ∈ S, it is obtained that

|ωi| ≤ (vmax+v0max
)

√

1

b2
+

1

[R− (1 + b)a]2
+2ac2vmax.

Thus, (8) ensures c2 > 0 such that |ωi| ≤ ωmax. �

C. Ensuring equal spacing

In this subsection, we show that our proposed control

law (5) also ensures that the formation vehicles are dis-

tributed evenly around the target and no collision occurs

between them (condition (ii) of our formulated problem). In

other words, if all vehicles initially have their states in S and

if the separation angle of any two vehicles is more than ψmin
(a constant depending on the size of the vehicle), then the

group of vehicles encloses the target with equal separation
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angular between each other. In addition, the separation angle

can never become less than ψmin as the system evolves under

the control law (5). Thus, no collision would occur and the

neighbor relationship does not change at all.

Since the labels of vehicles do not affect the control

strategy, for notation simplicity, we renumber the vehicles in

a counterclockwise order around the target. Thus, for vehicle

i, its next-neighbor is vehicle i + 1 and its pre-neighbor is

i− 1. In the paper, we use circular indices. That is, we use

the same notation i+1 for all i = 1, . . . , n, but when i = n,

the index i+ 1 means 1.

Theorem 3.3: Suppose that ξi(0) ∈ S and ψ−
i (0) ≥ ψmin

for all i = 1, . . . , n. Then the control law (5) ensures

ψ−
i (t) ≥ ψmin for all i.

Proof: For notation simplicity, we drop the superscript −
of ψ−

i in the proof. Considering control law (5), we get that

ψ̇i = ηi+1(vi+1) − ηi(vi)
= ηi+1η

−1
i+1[−(c1 + γi+1 · (ψi − ψi+1))]

−ηiη
−1
i [−(c1 + γi · (ψi−1 − ψi))]

= −γi+1 · (ψi − ψi+1) + γi · (ψi−1 − ψi).

Writing in the vector form, we have ψ̇ = A1ψ where ψ =
[ψ1, . . . , ψn]

T and A1 is the resulting system matrix. Since

γi is either 0 or a positive coefficient c3, it is clear that the

matrix A1 is a generator matrix [16] (i.e., the off-diagonal

entries are nonnegative and all row sums equal to 0). Since

A1 is a generator matrix, we know that exp(A1t) is a row

stochastic matrix [16], which means that each ψi(t) lies in

the convex combination of ψ1(0), . . . , ψn(0). Hence, ψi(t) ≥
min (ψi(0)) ≥ ψmin. �

Next, we show that the vehicles are evenly spaced around

the target equal in angle.

Theorem 3.4: Suppose ξi(0) ∈ S and ψ−
i (0) ≥ ψmin for

all i. Then the control law (5) ensures limt→∞ ψ−
i (t) =

· · · = limt→∞ ψ−
n (t) ≥ 0.

Sketch of proof: Denote ζi = ψ−
i − ψ−

i−1. On one hand,

we can show that for any j, when ζj(0) < 0 then ζj(t) < 0
all the time. Moreover, it can be proved that for this j, ζj(t)
converges to 0 asymptotically. On the other hand, if for some

j, ζj(0) ≥ 0, then ζj(t) either becomes negative at some time

instant or remains nonnegative all the time. For the first case,

it remains negative after that time instant and then converges

to 0 asymptotically. For the second case, it must converge

to 0 asymptotically since ζ1(t) + · · · + ζn(t) = 0 and all

the negative terms in the left-hand-side remain negative and

asymptotically converge to 0. �

IV. SIMULATION

In this section, we simulate five unicycles for the mis-

sion of escorting and patrolling a moving target using our

proposed control law. It is assumed that the vehicles are

subject to the following physical constraints: |vi| ≤ vmax =
2.6 and |ωi| ≤ ωmax = 5.9.

Suppose the target object moves in the plane with its

maximal speed v0max
= 0.25, and its angular speed ω0 =

0.5 sin(t) is time-varying. Let the desired enclosing circle

have radius R = 3. We consider the set S with the parameters

a = π
4 and b = 1. The initial postures of the five unicycles

are set to satisfy ξi(0) ∈ S and ψ−
i (0) ≥ ψmin = 0.3,

which are (−4,−2, 0.5π), (1,−2,−0.85π), (0, 4.5,−0.2π),
(−2, 3, 0.5), and (−4, 1, 1.4), respectively.

The control parameters of (5) are chosen as follows: c1 =
0.32, c2 = 0.5, and c3 = 0.004. The simulated trajectories of

the five unicycles for the mission of escorting and patrolling

are shown in Fig. 4 and Fig. 5.

−4 −2 0 2 4 6 8

−4

−3

−2

−1

0

1

2

3

4

5

6

Fig. 4. Trajectories of the five unicycles in the plane for t ∈ [0, 25].
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Fig. 5. Trajectories of the five unicycles in the plane for t ∈ [0, 50].
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Fig. 6. The evolution of di0(t) −R(i = 1, . . . , 5).

In the figures, the blank wedges represent the initial

postures and the filled wedges represent the current postures.

Shown in Fig. 4, the five unicycles converge asymptotically

to the neighborhood of the desired enclosing circle and rotate

around the target with equal angular distances between each

other. From Fig. 5, we can see that when a malfunction oc-

curs for a vehicle that stops, the remaining four vehicles can

adaptively reconfigure themselves and enclose the moving

target with a new formation that is evenly spaced again.
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Fig. 7. The evolution of αi0(t) + π/2(i = 1, . . . , 5).
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Fig. 8. The evolution of (di0(t)−R)− (αi0(t) + π/2)(i = 1, . . . , 5).
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Fig. 9. The evolution of ψ−

i
(t)(i = 1, . . . , 5).

Fig. 6 and Fig. 7 show the evolution curves of the states

di0(t) and αi0(t) of all the vehicles. It can be seen that

they converge to the neighborhood of the desired values and

remain there, but are not able to converge to the desired

values exactly. From Fig. 8, it can be seen that all the

vehicles are ensured in S all time. In addition, the evolution

curves of the separation angles between every two neighbor

vehicles are depicted in Fig. 9, from which we can see that

the separation angles are greater than ψmin all the time

and converge to 2π/5 when the five vehicles are all live.

When a vehicle becomes malfunctioning, the remaining four

vehicles re-achieve a new equal spacing formation with their

separation angles converging to π/2.

V. CONCLUSION AND FUTURE WORK

The paper addresses the cooperative escorting and pa-

trolling problem for a moving target with multiple unicycle-

type robots. A distributed reconfigurable control law is

proposed so that a group of vehicles can follow and surround

the moving target in a formation that is evenly spaced,

providing the best overall coverage of the target and its

surrounding. When some vehicles become malfunctioning,

the remaining vehicles can reconfigure and achieve a new

evenly-spaced formation for the task, which shows that the

system is fault tolerant. In the ongoing work, we try to

address several challenges. For example, we are interested

in carrying out global convergence analysis and synthesizing

new control laws using only distance information rather than

relative position information.
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