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Steady-state distributions for human decisions
in two-alternative choice tasks

Andrew Stewart, Ming Cao and Naomi Ehrich Leonard

Abstract— In human-in-the-loop systems, humans are often
faced with making repeated choices among finite alternatives in
response to observations of the evolving system performance.
In order to design humans into such systems, it is important
to develop a systematic description of human decision making
in this context. We examine a commonly used, drift-diffusion,
decision-making model that has been fit to human neural and
behavioral data in sequential, two-alternative, forced-choice
tasks. We show how this model and type of task together can be
regarded as a Markov process, and we derive the steady-state
probability distribution for choice sequences. Using the analytic
expression for this distribution, we prove matching behavior
for tasks that exhibit a matching point and we compute the
sensitivity of steady-state choices to a model parameter that
measures the decision maker’s “exploratory” tendency.

I. INTRODUCTION

It is not uncommon in human-in-the-loop systems that
humans will be confronted repeatedly with decision-making
problems in which, having observed the performance of the
system, they must choose between two or more alternatives
in order to maintain or improve performance. For example,
in [1], the authors study human supervisory control of
multiple unmanned aerial vehicles where choices must be
made between attending to targets and ensuring safe return
of vehicles. Human flight control operators face many such
choices, for example, in bad weather when it must be decided
whether or not to ground each of many vehicles [2]. The
authors of [3] explore a setting in which a human must
repeatedly choose one of two different robotic oxygen extrac-
tion systems operating on Mars with the goal of maximizing
long-term oxygen extraction; the investigation focuses on the
well-known difficulty that humans have with making long-
term optimal decisions when short-term performance is high.

A systematic description of human decision making can
be of critical value in designing such human-in-the-loop
systems. In this paper we focus on human decision mak-
ing in tasks where each choice is to be made between
two alternatives. Two-alternative forced-choice (TAFC) tasks
have been used extensively in the psychology literature to
investigate human decision-making behavior in decision-
making problems that require sequential binary choices of
this sort [4]. A number of studies have focused explicitly on
the case in which a performance measure, referred to as a
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reward, is provided to the human subject after every choice,
and the reward is a function not only of the immediate choice
but also of the subject’s recent history of choices [4], [5],
[6]. The human subject can then base the next decision on
the current (and past) rewards received. The dependence of
performance on past decisions is highly relevant for real-
world human-in-the-loop decision-making problems.

The successful fitting of both behavioral and neural data
taken from TAFC task experiments provides strong justifi-
cation for the widespread use of the Drift Diffusion Model
(DDM) to describe human decision making in TAFC tasks
[4], [6]. Further, the DDM can be derived from the dynamics
of a variable that represents the evidence in neuronal popu-
lations in favor of one alternative over the other [7]. It can
also be interpreted as a continuum limit of the Sequential
Probability Ratio Test [7].

Motivated by the challenges in designing human-in-the-
loop systems, we leverage the TAFC task research and in
particular use the DDM to derive formal expressions for
behavior and performance sensitivity for decision making in
this context. We do this by proving that the model is Markov
under two important simplifying assumptions, the stronger of
which is used and justified in [4].

We describe the TAFC task in Section II and the DDM
for decision making in Section III. We prove that the model
is Markov in Section IV and derive the steady-state choice
distribution in Section V. In Section VI we prove results on
the steady-state decision-making dynamics. We make final
remarks in Section VII.

II. TWO-ALTERNATIVE FORCED-CHOICE TASK

Montague and co-authors [4], [6] introduced the two-
alternative forced-choice (TAFC) task in which the decision
maker is required to make a choice between two alternatives
(denoted A and B), sequentially in time, and a reward
(performance measure) is received after each choice is made.
The decision maker’s goal is to maximize total accumulated
reward (optimize performance over the long run). Figures
1 and 2 show example reward schedules that are used in
behavioral studies; the reward rA for choosing A (resp. rB
for B) is plotted as a dashed line (resp. solid) as a function
of y, which is the fraction of times A is chosen in the past
N decision trials.

Figure 1 is called the matching shoulders reward structure
[6] and represents the case in which there are diminishing
returns for choosing A for too long and likewise for choosing
B for too long. The point at which the curves intersect is
called the matching point, and there is extensive empirical
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evidence that human decision makers converge in aggregate
to choice sequences y that correspond to the matching point.
This is despite the fact that the expected value of the reward
at the matching point is not necessarily optimal as seen
in Figure 1. Figure 2 is called the converging gaussians
reward structure and has been used recently in empirical
studies of decision dynamics in social TAFC tasks [8]. The
converging gaussians reward structure also has a matching
point and experiments show that decision makers converge
to the matching point [8].

Let x(t) = (x1(t), x2(t), . . . , xN (t)) denote the past N
choices ordered sequentially in time with x1(t) ∈ {A,B}
the most recent decision at time t, x2(t) ∈ {A,B} the most
recent decision at time t− 1, etc. We have that

xk(t+1) = xk−1(t), k = 2, . . . , N, t = 0, 1, 2, . . . (1)

Let y(t) denote the proportion of choice A in the last N
trials at time t; i.e.

y(t) =
1
N

N∑
k=1

δkA(t) (2)

where
δkA(t) =

{
1 if xk(t) = A
0 if xk(t) = B.

Note that y can only take values from a finite set Y of N+1
discrete values:

y ∈ Y =
{
i

N
, i = 0, 1, . . . , N

}
.

The reward at time t is given by

r(t) =
{
rA(y(t)) if x1(t) = A
rB(y(t)) if x1(t) = B .

(3)

We define the difference in the reward as

∆r(y(t)) := rB(y(t))− rA(y(t)). (4)

The dynamics of the human decision-making process
in the TAFC task can be modeled as an N -dimensional,
discrete-time dynamical system where x(t) is the state of
the system and y(t) is the output of the system.

III. DRIFT DIFFUSION MODEL

The Drift Diffusion Model (DDM) for decision making
derives from a one-dimensional drift diffusion process de-
scribed by a stochastic differential equation [8], [9], [10]:

dz = αdt+ σdW, z(0) = 0. (5)

Here z represents the accumulated evidence in favor of a
candidate choice of interest, α is the drift rate representing
the signal intensity of the stimulus acting on z and σdW
is a Wiener process with standard deviation σ, which is the
diffusion rate representing the effect of white noise.

Now consider the TAFC task with choices A and B. The
drift rate α, as described in [6], [11], is determined by a
subject’s anticipated rewards wA and wB for a decision of
A or B. Take z to be the accumulated evidence for choice
A relative to choice B. Then on each trial a choice is made

Fig. 1. The matching shoulders reward structure [4]. The dotted line depicts
rA, the reward for choice A. The solid line depicts rB , the reward for choice
B. The dashed line is the average value of the reward. Each is plotted against
y, the fraction of choice A made in the last N trials.

when z(t) first crosses one of the predetermined thresholds
±ν. If +ν is crossed then choice A is made, and if −ν
is crossed then choice B is made. For such drift diffusion
processes, as pointed out in [8], it can be computed using
tools developed in [7] that the probability of choosing A in
the next time step is

pA(t+ 1) =
1

1 + e−µ(wA(t)−wB(t))
(6)

where µ(wA − wB) is identified with 2(α/σ)2(ν/α). The
right side of equation (6) is a sigmoidal function of wA−wB
where µ is the slope. Larger µ implies more certainty in the
decision making, sometimes interpreted as less of a tendency
to explore.

Studies of the role of dopamine neurons in coding for re-
ward prediction error [12] have motivated the use of temporal
difference learning theory [13] to describe the update of wA
and wB . Let Z ∈ {A,B} be the choice made at time t, then

wZ(t+ 1) = (1− λ)ωZ(t) + λr(t) (7)
wZ̄(t+ 1) = wZ̄(t) t = 0, 1, 2, . . . (8)

where ·̄ denotes the “not” operator. Here, λ ∈ [0, 1] acts as
a learning rate, controlling how the anticipated reward of
choice Z at t+ 1 is affected by its value at t.

IV. MARKOV MODEL OF DECISION MAKING

Consider the DDM decision maker faced with the two-
alternative, forced-choice task. As the DDM makes se-
quential decisions and receives corresponding rewards, the
proportion of choice A evolves in time according to the
dynamics of the coupled decision maker and task system
described in Sections II and III. In this section we find
conditions under which the decision making can be modeled
as a Markov process. We derive the probability transition
function for y(t) and build a one-step transition matrix which
is used in Section V to compute the steady-state distribution
for the process.
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The full state of the DDM in the two-alternative, forced-
choice task is the N -element decision history x(t), coupled
with the expected rewards wA(t) and wB(t). To reduce the
order of the system we make the following assumptions:

Assumption 1: Pr{xk(t) = A|x(t)} = y(t)

Assumption 2: wB(t)− wA(t) = ∆r(y(t)).

Assumption 1 implies that the yN A’s and (1 − yN)
B’s in x(t) are uniformly distributed in the finite history.
Assumption 2 sets the difference in anticipated rewards at
time t equal to the difference in rewards evaluated at y(t);
according to Montague and Berns [4] this assumption is
true “on average”. Together these assumptions reduce the
dimension of the state space to one.

Proposition 1: Suppose Assumptions 1 and 2 hold. Then,
the DDM (6) for the TAFC task (1)-(3) is a Markov Process
with state y(t) and transition probabilities given by

Pr{y(t+ 1) = y(t)− 1
N
} =

eµ∆ry(t)
1 + eµ∆r

(9)

Pr{y(t+ 1) = y(t)} =
eµ∆r + (1− eµ∆r)y(t)

1 + eµ∆r
(10)

Pr{y(t+ 1) = y(t) +
1
N
} =

1− y(t)
1 + eµ∆r

(11)

where ∆r = ∆r(y(t)) is given by (4).

Proof of Proposition 1:
Since for a given choice x1(t+ 1) at time t+ 1, y(t+ 1)

can only change from its current value of y(t) to y(t) +
1
N , y(t) − 1

N or stay at y(t), we need only compute the
probability of each of these three events for all y(t) ∈ Y .
Each of these events depends upon the current value of y(t)
as well as x1(t+1) and xN (t) since y(t+1) will only differ
from y(t) if x1(t+ 1) also differs from xN (t).

The event that y(t+1) = y(t)− 1
N requires x1(t+1) = B

and xN (t) = A. Treating these as independent events and
using Equation (6) with Assumption 1 yields

Pr{y(t+ 1) = y(t)− 1
N
} =

Pr{x1(t+ 1) = B} ∗ Pr{xN (t) = A}

=
eµ(wB(t)−wA(t))y(t)
1 + eµ(wB(t)−wA(t))

.

Substituting in the identity of Assumption (2), we get Equa-
tion (9).

Similarly, the probability that y(t + 1) takes the value
y(t) + 1

N is given by

Pr{y(t+ 1) = y(t) +
1
N
} =

Pr{x1(t+ 1) = A} ∗ Pr{xN (t) = B}

=
1− y(t)

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption (2), we get Equa-
tion (11).

The event that y(t+1) = y(t) requires either x1(t+1) = A
and xN (t) = A or x1(t + 1) = B and xN (t) = B. The

probability of the union of these events is

Pr{y(t+ 1) = y(t)} =
Pr{x1(t+ 1) = A} ∗ Pr{xN (t) = A}
+ Pr{x1(t+ 1) = B} ∗ Pr{xN (t) = B}

=
y(t) + (1− y(t))eµ(wB(t)−wA(t))

1 + eµ(wB(t)−wA(t))
.

Substituting in the identity of Assumption (2), we get Equa-
tion (10). Since the probabilities depend on y(t) only, the
state at time t, the process is Markov. �

Equations (9)-(11) are used to build the (N + 1)× (N +
1) one-step transition matrix P which has entries Pij =
Pr{y(t+ 1) = j

N |y(t) = i
N }, i, j ∈ {0, 1, . . . , N + 1}.

V. STEADY-STATE CHOICE DISTRIBUTION

Since the Markov process modeled in Section IV is
irreducible and aperiodic, it has a unique limiting distribution
π = (π0, π1, . . . , πN ) describing the fraction of time the
chain will spend in each of the enumerated states in the
long run (as t → ∞) [14]. This steady-state distribution is
the solution to the following equations:

πP = π (12)
N∑
i=0

πi = 1. (13)

Proposition 2: For the transition probabilities given by (9)
- (11) the unique steady-state distribution is

πi =
αi(1 + eµ∆r( iN ))e−µβi∑N
j=0 αje

−µβj (1 + eµ∆r( jN ))
(14)

where αi = N !
(N−i)!i! and βi =

∑i
j=1 ∆r( jN ).

Proof of Proposition 2: Solving (12) alone yields a row vector
v whose elements are given by

vi =
N !

(N − i)!i!
(1 + eµ∆r( iN ))e−µ

Pi
j=1 ∆r( jN ).

To solve (13) we normalize the vector v to get

π =
v∑N
i=0 vi

.

The elements of π are then given by Equation (14). �
Figure 2 shows the converging gaussians reward struc-

ture [8] along with the corresponding steady-state choice
distribution π. Note that the distribution peaks where the
reward curves intersect (the matching point); i.e. the decision
maker spends the highest fraction of time with proportion of
choice A at the matching point. This is in agreement with
experimental results shown in Figure 3 of [8]. We show more
general conditions under which this occurs in Section VI,
where we also derive the sensitivity to µ of the reward earned
by the decision maker.
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Fig. 2. The converging gaussians reward structure [8]: The dotted line
depicts rA, the reward for choice A. The solid line depicts rB , the reward
for choice B. The dashed line is the average value of the reward. The
limiting distribution π is given by Equation (14) and is shown for N = 20
and µ = 8 by the circular points. Each component πi is plotted against
y = i

N
.

VI. ANALYSIS OF STEADY-STATE DISTRIBUTION

In this section we perform two analyses of the steady-state
behavior. First we show conditions for which the decision
maker converges to a value of y that corresponds to a
matching point. To do this we consider reward structures
with a unique matching point (Figures 1 and 2 are two
examples of such reward structures). Second we derive the
sensitivity of the expected value of reward earned by the
decision maker to the parameter µ in the DDM (6).

A. Steady-State Matching

Matching behavior is a well-known phenomenon in human
behavioral experiments [15], [16]: human decision makers
in TAFC tasks converge in aggregate to choice sequences
in the neighborhood of the matching point for a variety
of reward structures that have a matching point. However,
there are relatively few results that prove conditions for this
phenomenon given well-established models like the DDM. In
[4], Montague and Berns use Assumption 2 to show that the
matching point in the matching shoulders reward structure
is an attracting point. In [17], [18] a proof of convergence
to a neighborhood of the matching point is shown for the
Win Stay Lose Switch (WSLS) decision-making model and
a deterministic limit of the DDM. A related analysis for the
WSLS model is performed in [19].

In this section we prove steady-state matching behavior
for the DDM by finding sufficient conditions on the slope µ
of the DDM that guarantee that πi is greatest for y = i/N
at or near the matching point. In Theorem 1 below, we find
a bound µ1 such that if µ > µ1 then πi peaks in a small
neighborhood of the matching point. In Theorem 2 we find
a bound µ2 > µ1 such that if µ > µ2 then πi peaks at the
matching point.

Definition 1: Let a reward structure with a single match-
ing point consist of reward curves rA(y), rB(y) for which

there exists y∗ = i∗

N , i∗ ∈ {1, 2, . . . , N − 1}, that satisfies
∆r(y∗) = 0, ∆r(y) < 0 for y < y∗, and ∆r(y) > 0 for
y > y∗.

Theorem 1: If reward structures satisfy Definition 1 and

µ > µ1 := max
{
−

ln
(
bN2 c!d

N
2 e!

(N−i∗)!i∗!

)
|∆r

(
i∗+1
N )

∣∣ ,−
ln
(
bN2 c!d

N
2 e!

(N−i∗)!i∗!

)
|∆r

(
i∗−1
N )

∣∣
}

(15)

then the steady-state choice distribution is maximum for y ∈
{y∗− 1

N , y
∗, y∗+ 1

N }; where b·c gives the largest integer less
than its argument and d·e gives the smallest integer greater
than its argument.

Proof of Theorem 1: To prove Theorem 1 we examine ρ(i) =
πi/πi∗ , the ratio of time spent at y = i

N , i 6= i∗ to time spent
at y∗ = i∗

N . From (14) we compute

ρ(i) =
(N − i∗)!i∗!(1 + eµ∆r( iN ))e−µ

Pi
j=1 ∆r( jN )

2(N − i∗)!i∗!e−µ
Pi∗
j=1 ∆r( jN )

. (16)

We show that ρ(i) < 1 for all i /∈ {i∗ − 1, i∗, i∗ + 1} in
two steps. In the first case we show that ρ(i) < 1 for all
i > i∗ + 1. In the second case we show that ρ(i) < 1 for
i < i∗ − 1.
Case 1: Let ε = i − i∗ with ε > 0. The ratio ρ(i) then
becomes

ρ(i) =

(N − i∗)!i∗!(1 + eµ∆r( i
∗+ε
N ))e−µ

(
∆r( i

∗+1
N )+...∆r( i

∗+ε
N )
)

2(N − i∗ − ε)!(i∗ + ε)!
.

(17)

Replacing (N − i)!i! in the denominator of (17) with its

minimal possible value for i ∈ {0, 1, . . . , N} yields the
inequality

ρ(i) ≤

(N − i∗)!i∗!(1 + eµ∆r( i
∗+ε
N ))e−µ

(
∆r( i

∗+1
N )+...∆r( i

∗+ε
N )
)

2bN2 c!d
N
2 e!

≤ γ(1 + e−µ∆r( i
∗+ε
N ))e−µ

(
∆r( i

∗+1
N )+...∆r( i

∗+ε−1
N )

)
where γ = (N−i∗)!i∗!

2bN2 c!d
N
2 e!

.

Now assume ε ≥ 2. Since ∆r( i
∗+ε
N ) > 0 for all ε ≥ 1,

ρ(i) decreases with increasing ε so

ρ(i) ≤ γ(1 + e−µ∆r( i
∗+2
N )e−µ∆r( i

∗+1
N )

<
(N − i∗)!i∗!
bN2 c!d

N
2 e!

e−µ∆r( i
∗+1
N ). (18)

If (15) is satisfied then (18) becomes ρ(i) < 1.
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Case 2: Let ε = i − i∗ with ε < 0. The ratio ρ(i) then
becomes

ρ(i) =

(N − i∗)!i∗!(1 + eµ∆r( i
∗−ε
N ))e−µ

(
−∆r( i

∗−ε+1
N )−...∆r( i∗N )

)
2(N − i∗ + ε)!(i∗ − ε)!

(19)

≤ γ(1 + eµ∆r( i
∗−ε
N ))e−µ

(
−∆r( i

∗−ε+1
N )−...∆r( i∗N )

)
. (20)

Since ∆r( i
∗−ε
N ) < 0 for all ε > 0 this can also be written

ρ(i) ≤ γ(1 + e−µ|∆r(
i∗−ε
N )|)e−µ

(
|∆r( i

∗−ε+1
N )|+...|∆r( i∗N )|

)
.

(21)

Using the same argument as in Case 1, we arrive at the strict
inequality

ρ(i) <
(N − i∗)!i∗!
bN2 c!d

N
2 e!

e−µ|∆r(
i∗−1
N )|. (22)

If (15) is satisfied then (22) becomes ρ(i) < 1. �

Theorem 2: If reward structures satisfy Definition 1 and

µ > µ2 := max
{
−

ln
(

2+i∗−N
N−i∗

)
|∆r

(
i∗+1
N )

∣∣ ,− ln
(

2N+2−3i∗

i∗

)
|∆r

(
i∗−1
N )

∣∣
}
(23)

then the steady-state choice distribution is maximum for
y = y∗.

Proof of Theorem 2: Again we examine ρ(i) = πi/πi∗ .
Case 1: Let ε = i− i∗ with ε > 0.

We assume ε ≥ 1. We have shown that ρ(i) decreases with
increasing ε so

ρ(i) ≤ N − i∗

2(i∗ + 1)
(1 + e−µ∆r( i

∗+1
N )e−µ∆r( i

∗+1
N )

<
N − i∗

2(i∗ + 1)
(1 + e−µ∆r( i

∗+1
N ). (24)

If (23) is satisfied then (24) becomes ρ(i) < 1.
Case 2: Let ε = i− i∗ with ε < 0. We assume ε = −1 and
(21) becomes

ρ(i) ≤ i∗

2(N − i∗ + 1)
(1 + e−µ|∆r(

i∗−1
N )|). (25)

If (23) is satisfied then (25) becomes ρ(i) < 1. �

Example 1: For the matching shoulders reward structure
shown in Figure 1, we have rA(y) = kAy+cA and rB(y) =
kBy + cB where kA = − 1

2 , cA = 3
5 , kB = 1 and cB = 0.

For this example with N = 20, µ1 = 5.11 and µ2 = 10.81.
These values shrink for smaller N and grow for larger N .
Example 2: For the converging gaussians reward structure
shown in Figure 2, we have

rA(y) = e
−
“
y−ȳA√

2σA

”2

+ cA, rA(y) = e
−
“
y−ȳB√

2σB

”2

+ cB

with ȳA = 2
5 , ȳB = 3

5 and σA = σB = 1
5 and cA = cB = 3

10 .
In this example µ1 = 0 for any N . For N = 20, µ2 = 1.11
and µ2 grows almost negligibly with increasing N .

B. Performance Dependence on Model Parameters

Given π, the fraction of time spent at each proportion of
choice A, we can compute sensitivity of long-run perfor-
mance to the parameters of the DDM and task. Here we
compute this sensitivity to the parameter µ in the DDM. As
mentioned in Section III, larger µ corresponds to increased
certainty in the decision making, which can also be inter-
preted as a reduced tendency to explore.

The average reward can be computed as r̄(y) = yrA(y)+
(1 − y)rB(y). For each value of y, this is the reward that
would be received on average if the decision maker were to
maintain that value of y. So the expected value of the reward
is the sum of each average reward multiplied by the fraction
of time spent at each proportion of choice A and is written

r̃ =
N∑
i=0

πir̄i. (26)

The sensitivity of performance to µ can then be computed
as the derivative of the expected value of the reward with
respect to µ:

d

dµ
r̃ =

N∑
i=0

r̄i
d

dµ
πi

=
N∑
i=0

(
i

N
rA
( i
N

)
+
N − i
N

rB
( i
N

)) d

dµ
πi. (27)

By denoting gi(µ) := (1+eµ∆r( iN )) and M(µ) :=
∑N
j=0 πj ,

the derivative of πi with respect to µ can be written

d

dµ
πi =

αie
−µβi(∆r( iN )eµ∆r( iN ) − βigi(µ))

M(µ)
−

αie
−µβigi(µ)

∑N
j=0 αje

−µβj
(
∆r( jN )eµ∆r( jN ) − βjgj(µ)

M(µ)2
.

(28)

Example 1 continued: Consider again the matching shoulders
reward structure of Figure 1. The derivative of the expected
value of reward with respect to µ, given by (28) is plotted in
Figure 3 along with the expected value of the reward. For this
reward structure there is a critical point (for N = 20 µc =
1.15). For µ < µc increasing µ results in substantially higher
reward. However, as µ increases further, the expected value
of reward decreases. This is an example for which some
exploratory behavior in the decision making is beneficial and
is directly related to the results of Theorems 1 and 2. For
instance, in the case N = 20, for µ > µ1 = 5.11 there
is not a lot of exploratory behavior and the decision maker
converges to the matching point of the reward structures,
which is not the optimal strategy.
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Fig. 3. The derivative of the expected value of reward for the matching
shoulders reward structure shown in Figure 1. The dotted line is d

dµ
r̃ from

Equation (28). The solid line is the expected value of reward, r̃. Both are
plotted against µ for N = 20.

Example 2 continued: Consider again the converging gaus-
sians reward structure of Figure 2. The derivative of the
expected value of reward with respect to µ, given by (28)
is plotted in Figure 4 along with the expected value of the
reward. In this example, d

dµ r̃ is positive for all µ.

Fig. 4. The derivative of the expected value of reward for the converging
gaussians reward structure shown in Figure 2. The dotted line is d

dµ
r̃ from

Equation (28). The solid line is the expected value of reward, r̃. Both are
plotted against µ for N = 20.

The derivative is always positive in this example (for any
N ) because the matching point coincides with the maximum
of the expected value of reward; i.e., when the decision
maker converges to y∗ in the converging gaussians reward
structure, it is also the case that the highest reward on average
is received. Therefore, increasing the parameter µ, or the
certainty in the decision making, results in higher expected
reward for the task. We note, however, that there is not a
great deal of gain in performance once µ increases above a
threshold approximately equal to 5.

VII. FINAL REMARKS

In this paper we prove conditions for which the DDM
for the TAFC task is a Markov process. This allows us to
derive transition probabilities and analytical expressions for

steady-state distributions of choice sequences as a function
of DDM and TAFC task parameters. We use the expressions
to prove results about the long-run decision dynamics. In
particular we prove conditions on DDM parameter µ, which
measures the level of certainty or tendency to explore in
the decision maker, that lead to matching behavior. We also
study performance sensitivity to the parameter µ. We apply
the results to two example reward structures.

In ongoing work, motivated by the investigations in [8], we
are extending our modeling and analysis approach to address
multiple human decision makers, engaged in TAFC tasks,
that exchange information on their choices or performance.
In this case there is a DDM for each decision maker and the
models are coupled by feedback between individuals.
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