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Speed Observation and Position Feedback
Stabilization of Partially Linearizable

Mechanical Systems
Aneesh Venkatraman, Romeo Ortega, Fellow, IEEE, Ioannis Sarras, Member, IEEE, and

Arjan van der Schaft, Fellow, IEEE

Abstract—The problems of speed observation and position
feedback stabilization of mechanical systems are addressed in this
paper. Our interest is centered on systems that can be rendered
linear in the velocities via a (partial) change of coordinates. It is
shown that the class is fully characterized by the solvability of a
set of partial differential equations (PDEs) and strictly contains
the class studied in the existing literature on linearization for
speed observation or control. A reduced order globally expo-
nentially stable observer, constructed using the immersion and
invariance methodology, is proposed. The design requires the
solution of another set of PDEs, which are shown to be solvable
in several practical examples. It is also proven that the full order
observer with dynamic scaling recently proposed by Karagiannis
and Astolfi obviates the need to solve the latter PDEs. Finally, it
is shown that the observer can be used in conjunction with an
asymptotically stabilizing full state--feedback interconnection
and damping assignment passivity--based controller preserving
asymptotic stability.

Index Terms—Output feedback and observers, underactuated
mechanical systems.

I. INTRODUCTION

T HE problems of velocity reconstruction and position
feedback stabilization (either for regulation or tracking)

of mechanical systems are of great practical interest and have
been extensively studied in the literature. Since the publication
of the first result in the fundamental paper [1] in 1990, many
interesting partial solutions have been reported—the reader is
referred to the recent books [2]–[4] for an exhaustive list of
references.
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In this paper these problems are studied for degree of
freedom mechanical systems modeled in Hamiltonian form as

(1)

where are the generalized positions and momenta,
respectively, is the control input, and

is a full rank matrix. The Hamiltonian function
is the total energy of the system and given as

(2)

where is the mass matrix and
is the potential energy function, with being the set of

positive definite matrices. It is assumed that the mechan-
ical system does not have any friction effects. In [5] it is shown
that it is possible to include friction forces of the form ,
with . In this case, the proposed observer incor-
porates a term that requires the knowledge of . Since in many
applications friction forces are negligible and, in any case, they
are usually highly uncertain, we have decided to present here
the observer for frictionless systems.

The problem is formulated as follows. We assume that only
is measurable and that the input signal is such that the

system (1) is forward complete, that is, trajectories exist for all
. Our first objective is to design an asymptotically conver-

gent observer for . The second objective is to prove that the ob-
server can be used in conjunction with the interconnection and
damping assignment passivity-based controller IDA-PBC [6],
[7] preserving asymptotic stability by assuming the existence
of a full state feedback (IDAPBC) that asymptotically stabilizes
a desired equilibrium point .

Attention is centered on mechanical systems that can be ren-
dered linear in the unmeasurable states via a change of coordi-
nates of the form , with
full rank. The class of systems that satisfy this property, which is
fully determined by the inertia matrix , will be called in the se-
quel “Partially Linearizable via Coordinate Changes” (PLvCC).
As illustrated in [8]–[12], achieving linearity in simplifies the
observation as well as the control problem. Unfortunately, the
class of mechanical systems considered in the literature is only
a small subset of all PLvCC systems—this imposes quite re-
strictive assumptions on and renders their results of limited
practical interest. In contrast to this situation, a complete char-
acterization of PLvCC systems, in terms of solvability of a set

0018-9286/$26.00 © 2010 IEEE
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of PDEs, is given in this paper. It is furthermore shown that the
class contains many examples of practical interest.

For PLvCC systems a globally (exponentially) convergent re-
duced order immersion and invariance (I&I) observer [2] is pro-
posed in the paper. The design imposes an integrability condi-
tion, which is tantamount to the solution of a second set of PDEs.
A systematic procedure to solve these PDEs is also given here
and its application illustrated with several practical examples.
Furthermore, it is shown that the integrability condition can be
obviated using the full order I&I observer with dynamic scaling
recently proposed in [8]. However, the prize paid for this relax-
ation is a significant increase in complexity and the, potentially
harmful, injection of high gain. A final contribution of our work
is the proof that the proposed observer solves the position feed-
back stabilization problem mentioned above.

The remaining part of the paper is organized as follows.
In Section II the characterization of PLvCC systems is given.
Section III presents the observer design for this class under
the aforementioned integrability assumption. Some subsets
of the class of PLvCC systems, and their relation with the
systems studied in the linearization literature, are identified
in Section IV. Section V presents a constructive procedure
to solve the PDEs associated to the integrability assumption.
Section VI shows that the proposed observer can be used with
IDA-PBC. Some simulation results are given in Section VII.
The paper is wrapped-up with some concluding remarks and
future work in Section VIII. To enhance readability, some of the
(more technical) proofs of the claims are given in Appendices.

Notation: For any matrix , denotes the
-th column, the -th row and the -th element. That

is, with , the Euclidean basis vectors,
, and .

II. CHARACTERIZATION OF THE CLASS OF PLvCC SYSTEMS

In this section, we identify the class of mechanical
systems for which a change of coordinates of the form

, with full rank—uniformly in -ren-
ders the system linear in . As shown below, this property
is uniquely defined by the mass matrix . The following
assumption, which defines a set of PDEs in the unknown , is
needed.

Assumption 1: There exists a full rank matrix
such that, for

(3)

where the matrices are defined as

(4)

with being the standard Lie bracket.1 In this case, the
mechanical system (1) is said to be PLvCC—for short, we say
that ����� .2

1A standard Lie Bracket of two vector fields� , � is defined as �� �� � ��
��� ����� � ��� ����� .

2More precisely, ������ is a subset of all mappings � . To avoid
cluttering, and with some abuse of notation, in the sequel we will denote � �

������.

Proposition 1: The dynamics of (1) expressed in the coordi-
nates , where , is linear in if and only if

�����. In which case, the dynamics becomes

(5)

Proof: The equation for follows trivially from the defini-
tion of . Now, can be expressed as

(6)

where the parameterized mapping

(7)

has been defined. It will now be shown that each element of the
vector is a quadratic form in , that is

(8)

that becomes zero for all if and only if Assumption 1 is satis-
fied. For, we compute

(9)

Replacing (9) in (7) we obtain

(10)

where we use Lemma 2 from Appendix A to get the first term
in the second equation of (10) and the definition of given in
(4) for the latter. Hence, the proof follows.

Remark 1: When Assumption 1 does not hold, the trans-
formed dynamics in the coordinates is given by

(11)
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with the new energy function being

and the element of the skew-symmetric matrix
being given by

(12)

The proof, requiring some cumbersome calculations, is given in
Appendix B. See also (62) in Appendix A and [13].

III. IMMERSION AND INVARIANCE OBSERVERS

FOR PLvCC SYSTEMS

A. Problem Formulation and Proposed Approach

In this note the observer design framework proposed in [14],
which follows the I&I principles first articulated in [15]—see
[2] for a tutorial account of this method and its applications—is
adopted. In the context of observer design the objective of I&I
is to generate an attractive invariant manifold, defined in the ex-
tended state-space of the plant and the observer. This manifold
is defined by an invertible function in such a way that the un-
measurable part of the state can be reconstructed by inversion
of this function.

Definition 1: The dynamical system

(13)

with , is called a reduced order I&I observer for the
system (1) if there exists a full rank matrix
and a vector function , such that the manifold

(14)
is invariant and attractive,3 with respect to the system (1), (13).
The asymptotic estimate of , denoted by , is then given by

Remark 2: The manifold in (14) is a particular case of
the one considered in [14], where it is defined as

, with -notice that is
a linear function of in (14). It is clear that, by considering a
more general manifold expression it is possible-in principle-to
handle a larger class of systems. However, for the purpose of our
work, which is to explicitly define (in terms of PDEs) a class of
inertia matrices for which the construction works, this is done
without loss of generality-see Remark 8 for some additional re-
lationships between both observers.

B. A Globally Exponentially Convergent Reduced Order I&I
Observer for PLvCC Systems

To present the proposed observer the following assumption is
needed.

Assumption 2: There exists a mapping satis-
fying the matrix inequality

(15)

3We recall that the set � is invariant if ������ ����� ����� � � �
������ ����� ����� � � for all � � �. It is said to be globally attractive
if, for all ������ ����� �����, the distance of the state vector to the mani-
fold, that is, �������� �� ����� � �, asymptotically goes to zero where
������� �� � �	
��	
���� 
� � 
 � �� for any set �.

uniformly in , for some and some constant matrix
, where

(16)

Proposition 2: Consider the mechanical system (1). Assume
����� with a matrix whose inverse is uniformly

bounded and that there exists a mapping satisfying Assump-
tion 2. Then, the dynamical system

(17)

is a globally exponentially convergent reduced order I&I ob-
server-with the estimation error verifying

for some , where is the Euclidean norm.
Proof: By following the I&I procedure [2], we prove that

the manifold , defined in (14), is attractive and invariant by
showing that the off-the-manifold coordinate

(18)

verifies: (i) for all , and (ii)
asymptotically (actually, exponentially) converges to zero. Note
that if and only if .

To obtain the dynamics of , we differentiate (18) to get

where (5) and (17) are used for the second identity while the
third one is obtained invoking (16) and (18).

The manifold is clearly positively invariant. To establish
global exponential attractivity of , consider the Lyapunov
function

(19)

Condition (15) ensures that

(20)

with denoting the maximum eigenvalue of , which
proves, after some basic bounding, the global exponential
convergence to zero of . Exponential convergence of is
concluded invoking uniform boundedness of .

Remark 3: Assumption 2 may be rephrased as follows. As-
sume there exists a mapping such that (15)
holds with

(21)

and

(22)
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The latter (integrability) condition ensures, from Poincaré’s
Lemma, that there exists a such that

(23)

That is, the problem reduces to the solution of the PDE (22),
subject to the inequality constraint (15),(21). In order to avoid
the hard problem of solving constrained PDEs, in Section V a
step-by-step procedure to compute , that involves the solution
of simpler unconstrained PDEs, is proposed.

C. Full Order I&I Observer with Dynamic Scaling

In the recent interesting paper [8], a full order I&I observer for
a class of nonlinear systems has been proposed that obviates the
integrability condition imposed on in Assumption 2. PLvCC
mechanical systems written in the form (5) belong to this class.
For the sake of comparison with our work, we present here the
observer that results from the application of the techniques in
[8] to the present problem.4

Proposition 3: Consider the mechanical system (1). Assume
����� for some matrix . Fix a matrix

satisfying

(24)

for some . Define the full order I&I observer with dynamic
scaling

where , is the induced 2-norm

where the vector functions are defined as

...
...

(i) All signals are bounded.

4Strict positivity, as in (15), is imposed below to simplify the presentation.
The interested reader is referred to [8] for another, weaker, alternative.

Fig. 1 Sets of inertia matrices with non-decreasing cardinality.

(ii) The system , with

has a uniformly globally stable equilibrium at zero.
(iii) The estimation errors and

converge to zero exponentially fast.
Remark 4: Three important features should be considered

when comparing the observer given above and the reduced order
observer of Proposition 2. First, the complexity of the former is
clearly higher than the latter-not just in the dimension of the ob-
server, but also in the number of calculations that are required.
Second, although there always exist matrices satisfying (24),
it is not always possible to obtain explicit expression for the in-
tegrals that define the function , making the choice of a
non-trivial task. These two points are illustrated in the example
of Section VII. Third, similar to all designs based on dynamic
scaling, the observer given above relies on the injection of high
gain into the loop-through the function -that may be undesir-
able in some applications. As explained in [8], the leakage factor

introduced in the dynamics of , is aimed at (partially)
alleviating this drawback. In essence, the dynamic scaling de-
sign of [8] is a classical trade-off between performance (achiev-
able when the PDE can be solved) and robustness (to dominate
via high gain the terms induced by the approximation of the
PDE.)

IV. HOW LARGE IS THE SET �����?

A natural question that arises at this point is: Under what
conditions on is Assumption 1 satisfied? Providing a com-
plete answer is tantamount to characterizing all solutions of the
PDEs (3), (4), which is clearly a daunting task. It turns out, how-
ever, that this set contains some interesting subsets that have a
clear physical (and, sometimes, geometric) interpretation-some
of which have been studied in the literature, that is briefly re-
viewed in this section.

A. Four Subsets of the Set �����

To get a better understanding of Assumption 1, four sets of
non-decreasing cardinality (displayed in Fig. 1), are shown to be
subsets of �����. Three of them are well-known, but the fourth
(and far more interesting) one does not seem to have been re-
ported in the literature. Before presenting these sets we intro-
duce the following important definitions that will be used re-
peatedly in the sequel.

Definition 2: The (full rank) matrix is said
to be a factor of if

(25)
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up
Definition 3:
(i) (Constant inertia)

��

.
(ii) (Zero Christoffel symbols)

���

where are the Christoffel symbols of the
first kind defined as

(26)

(iii) (Zero Riemann symbols)

���

with the Riemann symbols given by

(27)

(iv) (Skew-symmetry condition)

�

(28)

Proposition 4: The sets of inertia matrices of Definition 3
satisfy

�� ��� ��	 �

where the inclusion ��� ��� is strict for every , and
the inclusion ��� � is strict for every .

Proof:
• �� ��� The fact that �� ���

follows trivially from the definition of the Christoffel sym-
bols (26). The proof for ��� �� can
be worked out by equating all the Christoffel symbols de-
fined in (26) to zero which yields a set of simple PDE’s. By
performing some straightforward computations, we get to
conclude that has to be constant.

• ��� ���) The proof that ��� ���

follows from the identity �� ��� and the definition of
the Riemann symbols (27). To show that the inclusion is
strict, we first recall a well known characterization of the
set ���, which may be found in [9], [11], [16]

(29)

Consider now the physical example of the inverted pen-
dulum on cart depicted in Fig. 3 which has the inertia
matrix

(30)

The lower triangular Cholesky factor5 of is given by

(31)

and it can be easily verified that . Hence, from
(29), the matrix (30) has zero Riemann symbols. We next
compute the Christoffel symbols for and obtain that

, while the rest of the symbols are identi-
cally zero. Thus, the inclusion ��� ��� is strict.

• ��� � If the columns of commute, that is, if
, it is clear that the skew-symmetry condition

(28) is satisfied. Hence, by using the equivalence (29),) the
claim ��� � follows in a straight for-
ward manner.
We now proceed to prove that, for , the converse
implication is not true, which shows that the inclusion is
strict. First, we prove that for the sets are the same.
For the equivalence is, of course, trivial. For
this can be easily shown as follows. The skew-symmetry
condition (28) yields two equations of the form

(32)

for , respectively which have a solution if and
only if or . The proof follows by noting
that since, is full rank, for (32) to hold true.
For we construct now an inertia matrix � such
that ���. Towards this end, set and consider

(33)

Computing the Riemann symbols and recalling
that, because of the symmetries of the tensor, only

need to be cal-
culated, one can verify that for
all and for , and hence conclude that

���.
We now compute a factor of verifying (25), given by

(34)

5It can be shown that, since� is positive definite, this factorization always
exists, is uniquely defined and has positive diagonal entries see, e.g., Corollary
7.2.9 of [17] and [18].
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Computing the Lie brackets with the vectors one obtains

(35)

Hence, each of the matrices ,
and

are skew symmetric as desired. This completes the proof.
• � ����� It will be shown that if �, Assump-

tion 1 is satisfied with . Indeed, replacing in
(4), the second right term vanishes and we get

(36)

Now, the skew-symmetry condition (28) and (36) ensure
that the condition (3) is satisfied. Hence the proof follows.

Remark 5: The case ��� has been extensively studied
in analytical mechanics and has a deep geometric significance-
stemming from Theorem 2.36 in [19]. The property has been
exploited, in the context of linearization, in the control literature
in [9], [11]. If ��� the system is said to be Euclidean
[9], where the qualifier stems from the fact that the system is
diffeomorphic to a “linear double integrator”-see Proposition 6
below.

Remark 6: An explanation regarding the construction of the
example used in the proof � ��� is in order
and is given in Appendix C.

B. Physical Interpretation of the Sets ���, ���, � and
Implications for the Observer Design

For which classes of physical systems the mass matrix be-
longs to the sets of Proposition 4? How to select the matrix

of Assumption 2 to complete the observer design in those
cases? Answers to these questions are provided in this subsec-
tion. Clearly, to choose the matrix it is necessary to know the
matrix that verifies Assumption 1. As shown in the proof of
Proposition 1, Assumption 1 holds if and only if the mapping

, defined in (7), identically vanishes. This test will, there-
fore, be used to answer the questions. An additional motivation
to analyze is that it allows to establish some connections of
our work with the existing literature.

To streamline the presentation in the sequel, it is convenient to
recall the Lagrangian model of the mechanical system (1) being
given as

(37)

where is the vector of Coriolis and centrifugal forces,
with the -th element of defined by

For future reference, we recall the well-known property

(38)

We next relate the key mapping , defined in (7), with the
matrices and . For this, we define the vector function

as . Hence, from
(7) we get

(39)

where, to obtain the second identity, we have used the well-
known fact (see, e.g., [20]) that

(40)

1) The Set ���:
Proposition 5: The following statements are equivalent.
(i) ���.

(ii) Assumption 1 holds for any constant .
(iii) The Coriolis and centrifugal forces equal zero.

Moreover, if ���, and we take , the trans-
formed dynamics (5) become

(41)

Proof: The equivalence between (i) and (iii) follows re-
calling that, for all vectors

...

where the elements of the symmetric matrix
are precisely the Christoffel symbols . Now, from

(7), it is clear that (ii) is true if and only if

which is equivalent to �	. The proof is completed by
recalling from Proposition 4 that ��� �	.

The proof of (41) follows by noting that, gives
and is obtained by replacing in (6).

From the definition of in (21) we see that when ,
Assumption 2 is satisfied with any constant matrix such that

is a Hurwitz matrix. Further, the construction of from
(23) is trivial and the observer error dynamics is linear, namely

. For instance, selecting the observer takes
the simple form

The reason why this basic construction works can be easily ex-
plained recalling (41) of Proposition 5.

Remark 7: In [10] an observer was designed for Lagrangian
systems to estimate , under the following sufficient condition
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for linearizability. Define a change of coordinates of the form
, with full rank. Then

(42)

where (37) was used to get the last equation. It is clear that the
dynamics becomes linear in if

(43)

(Of course, this conclusion also follows from (39) setting
.) Condition (43) is imposed in [10], which besides

being obviously stronger than Assumption 1, does not seem to
admit any geometric or system theoretic interpretation.

2) The Set ���:
Proposition 6: The following statements are equivalent:
(i) ���.

(ii) There exists a matrix which is a factor of and a
mapping such that

(44)

Moreover, if ���, Assumption 1 holds with ,
that is, , and the dynamics expressed in the coordinates

takes the form

(45)

where , with a right inverse
of , that is, for all .

Proof: See Appendix D.
Although the construction of an observer for (45) is

trivial—as in the case ���—we underscore that to
get the representation (45) it is necessary to solve the PDE
(44). This requirement severely restricts the practical appli-
cability of the approach. Indeed, in contrast with the PDEs
that are encountered in the paper, the PDE (44) has no free
parameters and its explicit solution may be even impossible.
This is, for instance, the case of the classical cart-pole system.
In Section IV-A this system was shown to be Euclidean but, as
indicated in [9], (44) leads to an elliptic integral of the second
kind that does not admit a closed form.

On the other hand, regarding the reduced order I&I observer,
from (16) we see that when one gets . In
Section V we propose to take to be the lower triangular
Cholesky factor of , and present a procedure to design
in order to satisfy Assumption 2.

3) The Set �:
Proposition 7: For any matrix , factor of , the fol-

lowing statements are equivalent:
(i) �.

(ii) Assumption 1 holds with , that is, .
Further, if �, the transformed dynamics takes the form

Fig. 2. Robotic leg, where we denote � �� ��� �� ��.

Proof: The evaluation of the matrices , defined in (4),
for is given in (36). Now, from (10) we conclude that

if and only if these matrices are skew symmetric, which
is precisely the condition for �.

The last claim is established by noting that, gives
and is obtained by replacing in (6).

Similar to the systems belonging to ���, we get in this case
and the procedure for construction of in Section V

is applicable.
Remark 8: Some connections between our observer and the

one proposed in [14] may be established at this point. Towards
this end, we refer to the function defined in (39) and evaluate
it for to obtain

It can be shown that the matrix is linear in and
furthermore, invoking (38), we can also prove that it is skew-
symmetric. These properties are used in [14] to, adding to the
observer a “certainty-equivalent” term , generate
an error dynamics of the form ,
where is a matrix that can be shaped
by selecting the function . A constructive solution is given for
some particular cases of systems with , namely: diagonal
inertia matrix (with possible unbounded elements) and inertia
matrix with bounded elements. Some recent calculations show
that this technique can be extended beyond these cases, but the
need to explicitly solve the integrals that define make this an
“existence result”, more than an actual constructive procedure.
Of course, it may be argued that the route taken in the present
paper (that aims at eliminating the term ), although leading
to the explicit identification of some PDEs to be solved, is also
not constructive—given our inability to guarantee their solution
in general.

C. Robotic Leg: ����� But ���

Some of the developments presented above are illustrated
in this subsection on the robotic leg example [21] depicted in
Fig. 2. We have

(46)

with , and the position restricted to the set
. Firstly, the only non-zero Christoffel symbols

are which implies that ���.
Furthermore, the Riemann symbol implies
that ���. We will now prove that ����� provided
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Indeed, some lengthy but straightforward calculations, prove
that the matrix

(47)
which is well-defined and full-rank for all , ensures

for the inertia matrix (46). It should be pointed out that (47)
was obtained by solving the PDEs (3), (4) for the inertia matrix
(46). For the elements of they are of the form

with a similar form for the elements of .
Remark 9: Although not yet proven, some preliminary cal-

culations lead us to conjecture that �. Notice that the
“natural” choice for the factor , namely

does not satisfy the condition .
Remark 10: It is interesting to note that, in spite of the simi-

larities with the robotic leg, the classical ball-and-beam system
is not PLvCC. The mass matrix of the ball-and-beam is

, where is the length of the beam, and
. The PDE’s for are

The first and third PDE’s together imply

(48)

where . Next, using (48) together with
the second PDE yields the ODE

that, clearly, does not admit a solution.

V. A CONSTRUCTIVE PROCEDURE FOR

In this Section we present a simple algorithm to construct a
matrix that satisfies Assumption 2. The starting point of the
procedure is to compute the lower triangular Cholesky factor-
ization, of and select . The idea is then to con-
struct a matrix such that, on one hand, is diagonal with
positive diagonal entries and, on the other hand, is “trivially”
integrated—in the sense of Remark 3. The first condition will
ensure (15) of Assumption 2, while the second one guarantees
(22). As expected, the construction involves the solution of some
PDEs that we show can be easily solved for several examples of
practical interest.

We now present the algorithm for computing when the
mass matrix depends on coordinates where .

A. Procedure for Computing when Depends on
Coordinates

Without loss of generality we assume that the mass matrix
depends on the first coordinates . Next, we pro-
pose the following form for given as

(49)

where is an constant diagonal matrix,
verifies and verifies for
all and .

Given the proposed form for , (ii) of Assumption 2 is triv-
ially satisfied and can be immediately computed as

(50)

We can check from (49) that for , 2, the matrix is
lower triangular and hence is but, for , the

upper left block of the matrix (and subsequently )
is clearly not lower triangular which makes the algorithm more
complicated. The algorithm proceeds along the following steps:

1. Compute .
2. For every , solve to obtain .
3. For every , solve by using the

function obtained in step 1 to get .
4. Proceed in this manner until to complete the

computation of .
5. Solve the inequalities for all

and the partial differential equations for all
to determine the functions , for all

.
6. Solve the partial differential equations ,

, and compute the matrix .

The elements of the matrix can be chosen freely and it
suffices to just ensure that they are positive constants. Finally,
after having computed , we obtain from (50).

Remark 11: Step 5 is the difficult one as it involves solving
inequalities and partial differential equa-

tions with the number of unknowns being . We can see
that for , step 5 can be skipped. For , the number
of equations (inequalities and equalities together) is same as the
number of unknowns and we thus get an exact solution, but for

we have more equations than unknowns. Hence, it could
be possible that we can get more than one solution for the func-
tions for . The steps 2, 3, in the algorithm, which
involve solving a set of algebraic equations and step 6 that in-
volves a simple set of PDE’s are relatively straightforward.

Remark 12: If , then the matrix from our
construction. In that case, we would have to follow only step
5 of the algorithm. Hence (as expected), the larger the value of

, more PDEs need to be solved and the complication of the
algorithm increases.

We now illustrate this procedure for a 2-dof and 3-dof system
where and a 4-dof system where .

1) Inverted Pendulum on a Cart [6]: The inertia matrix of
the well-known inverted pendulum on a cart system depicted in
Fig. 3 is given in (30) and the lower triangular Cholesky factor
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Fig. 3. Cart-pendulum system.

in (31). As shown before thus satisfying Assump-
tion 1. We now proceed to construct by following the above
algorithm and accordingly set it as

where . We next solve the ordinary differential equation,
, which is of the form

to get . Thus, we obtain

(51)

We later show some simulation results for this example in
Section VII.

2) 3-Link Underactuated Planar Manipulator [22]: This is a
3-dof underactuated mechanical system depicted in Fig. 4 with

where
.

We compute the lower triangular Cholesky factorization as

We can easily check that the columns of commute and thus the
system is Euclidean. Following the procedure described above,
we set as

where . We first solve to obtain . We
next solve and get . We
finally solve to get . We
finally obtain

Fig. 4. 3-Link underactuated planar manipulator.

Fig. 5. Planar redundant manipulator with one elastic degree of freedom.

3) Planar Redundant Manipulator With One Elastic Degree
of Freedom [23]: This is an interesting example of a 4-dof un-
deractuated mechanical system whose mass matrix depends on
two coordinates, with being given as (see Fig. 5)

We now compute the lower triangular cholesky factorization,
of as

We can again easily check that the columns of commute
among each other thus satisfying Assumption 1. We let the ma-
trix be given as

(52)

where . From , we get
and from , we get . Thus,

we let where . We now solve
to obtain . We then solve to get
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Finally, from , we get and
hence we can set . We next solve to obtain

Next, from , we get and
hence we can set . We finally get

B. Computation of for a General Non-Cholesky
Factorization of the Inertia Matrix

The constructive procedure to compute given above pro-
ceeds from the Cholesky factorization of the matrix . It
may happen that this particular factorization does not satisfy the
skew-symmetry condition of Proposition 4 but another factor-
ization does—this is so for the mass matrix (33). Moreover, the
inertia matrix may not admit a suitable factorization that satis-
fies the skew-symmetry condition, but we may be able to find a
matrix that verifies the most general Assumption 1.

To compute we can, of course, combine the two conditions
of Assumption 2 to obtain, directly in terms of , the differential
inequality

but it seems difficult to even establish conditions for existence
of solutions to this inequality. Alternatively, we can fix “candi-
date” matrices that already satisfy the integrability condition
(22) and concentrate on the inequality (15). Obviously, the first
natural candidates are constant matrices. Another useful option
is to fix the element of to be of the form

for some free functions —it is easy to see that (22)
will hold for the resulting .

We show now how this construction works for the mass ma-
trix (33) with the (non-Cholesky) factorization (34). We recall
that, as shown in Proposition 4, the columns of this matrix do
not commute, however, it verifies the skew-symmetry condition.
For the sake of illustration, we select the desired operating point
to be .

Proposition 8: Consider the matrix in (34) and the matrix

with . Then , for all in the set

where is an arbitrarily small constant.

Proof: We compute as

The determinant of this matrix equals

from which the claim follows immediately.

VI. ASYMPTOTIC STABILITY OF IDA-PBC
DESIGNS WITH I&I OBSERVERS

In this section the stability properties of the combination of
the IDA-PBC proposed in [7] (see also [6]), with the I&I ob-
server derived in Section III, is studied. In particular, it is shown
that the measurement of momenta, , required in IDA-PBC, can
be replaced by its observed signal, , preserving asymptotic sta-
bility of the desired equilibrium. In [6] a similar property is es-
tablished for an IDA-PBC controller with a different I&I ob-
server for the case of systems with under-actuation degree one
written in Spong’s normal form [24]—see Section 6 of [6]. It
should be mentioned that to transform a mechanical system to
Spong’s normal form it is necessary, in general, to feed-back
the full state, hence the result is not applicable for the problem
at hand.

Even though global exponential convergence of the I&I ob-
server has been established and, furthermore, mechanical sys-
tems are linear in , the proof of this claim, in its global for-
mulation, is non-trivial for the following reasons. First, the con-
trol law of IDA-PBC is quadratic in and will, in general, de-
pend on all the elements of this vector. Second, non-positivity
of the Lyapunov function derivative is obtained in IDA-PBC
via damping injection, more precisely, feeding-back the passive
output, which is a function only of the actuated components of

, that is, the elements in the image of the input matrix . Con-
sequently, when is replaced by their estimates the derivative
of the (state-feedback) Lyapunov function will contain sign in-
definite terms. While classical perturbation arguments allows to
conclude local asymptotic stability, to establish the global ver-
sion some particular properties of cascaded systems must be
invoked.

For the sake of brevity the IDA-PBC methodology is not re-
viewed here, only the key equations needed for the analysis are
given. The reader is referred to [6] and [7] for additional details.
The objective in IDA-PBC is to assign to the closed-loop the
energy function

where , are the desired inertia matrix
and potential energy function, respectively, and is the desired
position, by preserving the mechanical structure of the system.
This is achieved imposing the closed-loop dynamics

(53)
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where is a damping injection matrix and
is a skew-symmetric matrix of the form

...
...

...
. . .

...

(54)
where , , are free
functions.

If then is a stable equilibrium of
the closed loop with Lyapunov function clearly verifying

where, to simplify the notation in the sequel, we have defined
the function

and use the convention of denoting with an (often unspecified)
positive constant—in this case . Stability will
be asymptotic if is a detectable output for the closed-loop
system (53).

The full-state measurement IDA-PBC is given by

(55)

which, as shown in [6], may be written in the form

... (56)

where the vector and the matrices
are functions of . As will be shown below, establishing

boundedness of , , will be critical for our analysis.
Towards this end, we center our attention on the quadratic terms
in of (55) stemming from and , and introduce
the following.6

Assumption 3: The matrices , and are
bounded.

Proposition 9: Consider the system (1). Define the position
feedback controller as with an estimate of gen-
erated by the I&I observer (17). Assume is a detectable
output for the closed-loop system (53) and that Assumptions 1
and 2 are satisfied. Then there exists a neighborhood of the point

such that all trajectories of the closed-loop system
starting in this neighborhood are bounded and satisfy

Furthermore, if Assumption 3 holds and the full state-feedback
controller (56) ensures global asymptotic stability then the
neighborhood is the whole space , thus boundedness and
convergence are global.

6From (54) it is clear that the term � � � is also quadratic in �. It will
be shown below that Assumption 3 allows to establish a suitable bound for this
term as well.

Proof: To carry out the proof the overall system is written
as a cascade interconnection of the observer error subsystem

and the full state-feedback dynamics (53). We first
write where we define

(57)

The overall system can then be written in the cascaded form

(58)

Note that the system with is asymptotically stable. Fur-
thermore, the disturbance term is such that

Invoking well-known results of asymptotic stability of cascaded
systems [25] completes the proof of local asymptotic stability.
To establish the global claim we invoke the fundamental result
of [26], see also [27], and see that the proof will be completed
if we can establish boundedness of the trajectories .
Computing the time derivative of along the trajectories of
(58) we get the bound

(59)

From the expression above it is clear that the key step to prove
boundedness of trajectories is to establish a suitable bound for

. At this point Assumption 3 is imposed. Comparing (55)
with (56) we observe that the matrices will be bounded if
Assumption 3 holds and may be bounded as .
Now, from the IDA-PBC procedure we have that satisfies the
so-called kinetic energy PDE

�
� �

��
������

������
�� �

��
�
�
�
��

�
� �����

��

�
� ���

Comparing in this equation the terms which are quadratic in
and (54) we conclude that, under Assumption 3, will satisfy
the bound above and the matrices are also bounded.

From the previous discussion, and boundedness of , we get
the bound , which replaced in (59) yields

(60)

Now, invoking standard (Young’s inequality) arguments we get

We replace this bound in the second right hand term in (60) to
get
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where we have used the bound of to define
. Now, let us consider the non-negative function

where is given in (19), which as shown in the proof of
Proposition 1 verifies (20). Finally, evaluating the derivative of

we get

(61)

where we have used the bounds to
obtain the last inequality. Since is clearly an integrable func-
tion, invoking the Comparison Lemma [28], we immediately
conclude boundedness of and, consequently, boundedness
of the trajectories and complete the proof.

VII. SIMULATION RESULTS

The theoretical results of the previous sections have been veri-
fied through simulations of the inverted pendulum example. The
dynamical equations for this system are given by (1), (2) with

where denotes the pendulum angle with respect to the upright
vertical, the cart position, and are, respectively, the mass
and length of the pendulum, is the mass of the cart and is
the gravitational acceleration. The equilibrium to be stabilized
is the upward position of the pendulum with the cart
placed in any desired location (arbitrary ).

The detailed expressions of the full-state IDA-PBC, given by
(55), may be found in [13]. The proposed “certainty-equivalent”
controller is obtained replacing by , which is generated by the
I&I observer

with given by (51). The OED takes the form

from which it is clear that the rate of convergence is (essentially)
determined by the constant and .

TABLE I
SIMULATION PARAMETERS FOR THE INVERTED PENDULUM EXAMPLE

Fig. 6. Immersion and invariance observer for the open-loop system �� � ��.

The values of the system and controller parameters, as well as
the initial conditions, are shown in Table I. The initial conditions
of the observer states are chosen so that the initial
estimate , that is, no prior knowledge for the initial
momentum.

Simulation results are shown for the open-loop system, i.e.,
, in Fig. 6. To reveal the role of the observer tuning gains,

the time histories of are depicted for for the values
1 and 10. Fig. 7 shows the behavior of the system in closed
loop with the IDA-PBC controller with full-state feedback and
observer-based feedback. As it can be seen, the trajectories of
the observer-based feedback system show an almost identical
behavior with the trajectories of the full-state feedback system,
concluding the effectiveness of the proposed scheme.

For the sake of comparison, the full-order I&I observer with
dynamic scaling of Section III-C was also designed for this
example. Details of its derivation are given in Appendix E. It
should be underscored that, as indicated in Remark 4 and clearly
illustrated in this example, this observer is more complex than
the reduced order observer given above. Furthermore, as dis-
cussed in Appendix E, the need to obtain an integrable expres-
sion makes the choice the matrix a non-trivial task. Sim-
ulations were carried out also for this observer yielding similar
results with the proposed observer.

VIII. CONCLUSION

A class of mechanical systems for which a globally exponen-
tially stable reduced order observer can be designed has been
identified in this paper. The class consists of all systems that
can be rendered linear in (the unmeasurable) momenta via a
(partial) change of coordinates and is character-
ized by (the solvability of) a set of PDEs. A detailed analysis
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Fig. 7. Full-state (solid line) and observer-based (dashed line) IDA-PBC for
� � � � � and � � � � ��.

of the class is carried out and it is shown to contain many in-
teresting practical examples and be much larger than the one
reported in the literature of observer design and linearization. It
is also proven that, under a very weak assumption, the observer
can be used in conjunction with a globally asymptotically stabi-
lizing full state-feedback IDA-PBC preserving global stability.

Several open questions are currently under investigation:
• The solvability of the PDEs arising in Assumption 1 is a

widely open question. These PDEs are, in general, non-
linear and quite involved. They are shown to be solvable
for the robotic leg system and not-solvable for the classical
ball-and-beam.

• It is possible to show that manipulators with more than one
rotational joint are not Euclidean, that is, their mass matrix
does not belong to ���. However, it is not clear whether
they belong to �, or the larger set �����.

• In Remark 8 the difference between our observer design
and the one used in [14] is discussed. Namely, the incorpo-
ration of the term in the observer, which is absent in
our design. Some preliminary calculations show that, as ex-
pected, adding this term modifies the perturbing term
leading to alternative conditions for it to be zero. The price
to be paid is that, now, the stability analysis cannot be made
systematic as done in Section IV.

• As we had seen, Euclidean systems are mechanical
systems for which there exist coordinates in which the
equations of motion become linear (see equation (45)
and also Remark 5). Equivalently, a mechanical system
is Euclidean if and only if the Riemann symbols of the

inertia matrix are identically zero. Similar to the charac-
terization of Euclidean systems, it would be interesting to
characterize the class of PLvCC systems, that is, derive
necessary and sufficient conditions on the inertia matrix to
verify the skew-symmetry conditions (3), (4).

APPENDIX A
TWO KEY LEMMATA

Lemma 1: Define the matrix

(62)
Then

(63)

Proof: The proof is established simply computing the
-th element of as

Lemma 2: Define the matrices

Then

Proof: We first note that

Replacing (62) of Lemma 1 we obtain

Computing the -th element of the vector completes the proof

where we have used (12) to obtain the third identity.
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APPENDIX B
PROOF OF (11)

We first note that can be written as

where we used the following identity:

and the definition of given by (62) in Lemma 1. Replacing
the expression of in (6) we finally obtain

which corresponds to (11).
APPENDIX C

CONSTRUCTION OF THE EXAMPLE TO PROVE

� ���

First, we observe that (35) is a sufficient condition for skew-
symmetry of . Condition (35) is satisfied by the vectors

where7 and are the rotation matrices

where . However, the resulting matrix
has zero determinant, hence cannot qualify as

a factor of .

7For reasons that will become clear below we find convenient to, temporarily,
use the notation � instead of �.

To complete the example some concepts from Lie group
theory see, e.g., [16], [29], must be invoked. The first ob-
servation is that the matrices are tangent vectors at the
identity point of the Lie group and, furthermore,
form a basis for its associated Lie algebra . We then
extend these vectors to left-invariant vector fields on the group

using a push-forward of the left multiplication map
, where . The push-forward is defined

as , where is taken to be the product matrix
with

which is a parametrization (using the Euler angles) of .
The question is then to find the vectors , whose push-forward
by , that is , will equal . This leads to the
following set of equations:

Solving these equations one obtains the matrix

Some simple computations show that the matrix has full rank
(almost everywhere) and verifies (35) as desired.

The matrix above has a singularity at zero that can
be easily “removed” introducing an homeomorphism

. For instance,
, which has an inverse

map , .
Define the transformed vectors

that, after some simple calculations, yields (34).
APPENDIX D

PROOF OF PROPOSITION 6

We begin by denoting as the -dimensional manifold
defined by the configuration space of the generalized position
coordinates . Then, each , would be a vector field
acting on the manifold . Since, the matrix has a full rank
for all , its columns are linearly independent. We now assume
that:

• the columns of satisfy , and
.

• the vector fields , are complete, that is, the
integral curves of the vector fields exist for all times .

Then, from Theorem 2.36 in [30], we know that there exists a
coordinate chart for given by the coordinates for
some such that, the vector fields in the new coor-
dinates satisfy where denotes the natural basis
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vector of . Further, this coordinate chart would be global and
hence the mapping from to is bijective for all .

We next invoke the fact that the vector fields transform in
a covariant fashion [30] under such coordinate changes which
means

(64)

Subsequently, we perform the following computations

(65)

(66)

(67)

Thus, we can conclude that if the columns of commute,
then is the Jacobian of some vector and is thus in-
tegrable. We now assume that for some vector

. We then easily obtain,
which implies that there exists a set of coordinates
such that in those coordinates, the columns of assume the
form . We once again invoke Theorem 2.36 in
[30] and conclude that the columns of commute among
each other. Hence, the proof follows.

APPENDIX E
CALCULATIONS FOR THE FULL ORDER OBSERVER

OF THE INVERTED PENDULUM EXAMPLE

For the inverted pendulum on the cart example, we have to
choose such that

(68)

Subsequently, one computes

(69)

It is interesting to note that the natural choices or
, with the lower triangular Cholesky factor (31) lead

to elliptic integral expressions for . Thus, keeping as the
Cholesky factor in (31), we choose

(70)

where is non-integrable, yielding

Hence (68) gets satisfied with and with ,
. Next, compute using

(69) and (70) as

(71)

which yields

We then have

from which one obtains that

Subsequently

Hence

and further

Finally
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