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Discrete Dislocation Plasticity Analysis of Cracks
and Fracture

Erik Van der Giessen

Dept. of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen,
The Netherlands

1 Introduction

Fracture in plastically deforming crystals involves several length scales, as illus-
trated in Fig. 1 for cleavage-like crack growth. The relevant length scales range
from that of the macroscale object to the atomic scale, including the various mi-
crostructural length scales in between that are associated with, for example, parti-
cles, grains, and defect structures.

At the large length scale of the macroscopic world, Fig. 1a, plastic deforma-
tion is conveniently described by a phenomenological continuum theory. The
stress field near the tip of a mathematically sharp crack tip then is singular at
the tip, Fig. 1b. At the scale where the polycrystalline nature is revealed, Fig. lc,
plastic deformation is a physical process that is inherently inhomogeneous and
anisotropic. This is caused by the fact that each grain is anisotropic with a finite
number of slip systems on which glide can take place. When zooming in fur-
ther, one will see that plastic deformation within each grain involves the collective
motion of many dislocations, Fig. 1d. Finally, the finest scale shown in Fig. le
governs where atomic bonds are broken upon crack propagation.

The challenge in understanding fracture lies in the fact that all scales are con-
nected and all may contribute to the total fracture energy. It is worth emphasizing
that although the atomistics of the separation of surfaces may only contribute a
small fraction of the total energy release rate, it can still be controlling. This is
because dissipative mechanisms can only operate if fracture is delayed sufficiently
to allow them to come into play. Indeed, as pointed out by Rice and Wang [28],
the surface energy can play a valve-like role. Surface energies are typically of the
order of 1 J/m?, while fracture energies for ductile crystalline metals are often an
order of magnitude higher. The difference between the fracture energy and the
surface energy is the plastic dissipation in the vicinity of the crack tip. Many de-
tails are left out in the above discussion, but it emphasizes that fracture, i.e. the
creation of new surface, is highly localized at the atomic scale, but is driven by
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the macroscopic applied load communicated to the atomic scale via stress fields
on smaller and smaller length scales. It is the precise communication down these
scales which determines whether or not crack growth occurs and how much energy
is dissipated.

Much is known about the near crack-tip fields at the continuum scale. At the
polycrystalline scale, and if the average response is isotropic, the smooth HRR
plastic fields developed by Hutchinson [18] and by Rice and Rosengren [26] are
dominant, while the fields change to a completely different nature, characterized
by piece-wise uniform sectors [27, 29, 30], when the crack tip is contained in a
single crystal. At the latter scale of observation, i.e. in between Fig. 1c and d, the
theories predict near-tip stresses that are a few times the yield strength. This is
far below the atomic bond strength, thus raising the ‘paradox’ that crack growth
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Figure 1. The various relevant scales that may determine the response of a crack
in a macroscopic component. (a) The component scale. (b) The plastic zone gov-
erned by macroscopic continuum plastic flow. (c) The grain scale in a polycrys-
talline metal. (d) The scale of discrete slip planes and of individual dislocations.
(e) The atomic scale.
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could not occur in plastically deforming materials. Experience proves us wrong.
This chapter intends to present insight in resolving this, principally by describing
plastic deformation by the generation and motion of discrete dislocations, i.e. the
size scale of Fig. 1d. An introduction to discrete dislocation plasticity may be
found in [5]; a short summary is included in the first two sections.

2 FElastic Models of Dislocations
2.1 General Idea

A dislocation is a line defect in an atomic lattice ([17, 16]). It is a line on an
atomic plane that separates those regions of the plane that are intact from regions
where the lattice has undergone slip. The relative shift of atomic planes is in
the direction denoted by the Burgers vector b and is essentially uniform in the
region enclosed by the dislocation. The dislocated material can be constructed
in a thought experiment from a perfect crystal by a cut-displace by b-and-reweld
procedure. Because of conservation of mass, a dislocation is a closed loop.

The geometry of a dislocation is governed by a number of variables:

e the slip plane, denoted with its unit normal vector m;

e the dislocation line as a parameterized line on this plane and with a local

tangent vector t;

e the Burgers vector b.

There are a few special parts of a generic loop, namely

edge: b-t=0; (D
screw: b-t =4b, 2)

b being the length of b: b = |b|. Edge and screw dislocations are the central notions
in two-dimensional studies, see Fig. 2. As the crack problems studied later on in
this chapter are concerned with mode I, plane strain conditions, attention will be
focused on edge dislocations.

Although a dislocation is a lattice defect, it has proved very useful to describe it
in the framework of continuum theory in which the atomic positions are averaged
out. This reduces the total number of degrees of freedom enormously: from all
atom positions to a mathematical, functional form of the geometric variables m, t
and b. In a continuum framework the definition of the Burgers vector becomes

u
b— j[c e 3)

where C is a closed circuit around the dislocation, traversed by local coordinate
¢ and u is the displacement field away from the perfect crystal. The real key to



188 E. Van der Giessen

(a) (b)

Figure 2. Definitions of (a) screw and (b) edge dislocation configurations dis-
cussed in the text.

dislocations in a continuum description is that it involves a displacement disconti-
nuity inside the dislocation loop. It is the expansion of dislocation loops that cre-
ates what we observe on a larger scale as permanent, that is, plastic deformation.
Apart from the dislocation motion, the distortion of the lattice is entirely elastic.
Thus, the picture of plasticity emerges of dislocation loops sweeping through an
otherwise elastic continuum.

The current continuum theory of discrete dislocations employs linear elasticity.
Clearly, it will break down inside the core region, where the strains will be too
large for the linear approximation to hold. Away from the core by about 5 to
6b, comparison with atomistics has shown that the linear elastic solution is very
accurate. Hence, discrete dislocation plasticity holds the view that the fields in a
dislocated body can be described by linear elasticity, excluding the core regions.
The use of linear elasticity has the enormous advantage that many solutions for the
governing equations are known and that one can use superposition. The latter will
be exploited in full power in Sec. 3.

For completeness, we recall that the governing equations for linear elasticity
are

equilibrium : Gijﬁj =0 (4)
elasticity  : 6;; = Liju€u &)

1
strains  : &= _(ui;j+uj;) (6)

2

with £;jy the elastic moduli. Since the crystals we shall consider here are cubic,
we should be using the cubic elastic moduli expressed in terms of the usual Cjy,
C1> and Cy4. However, for simplicity, we will assume isotropic elasticity, with the
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moduli expressed either in terms of Young’s modulus E and Poisson’s ratio v,

E 1 v
Lijy = I (8581 + 8ud k) + 1 _2V5ij5k1 @)
or as 5
Lijig = p (8381 + 8y8j) + (k— 3#)5ij5k1 . (8)

in terms of the shear modulus = E /2(1 +Vv) and the bulk (or compression) mod-
ulus k = E/3(1 —2v).

2.2 Edge Dislocations

An edge dislocation poses a plane strain problem. If the dislocation line is
arranged with its line direction perpendicular to the x;—x; plane of consideration,
i.e. t = e3, the Burgers vector lies in the x;—x, plane, Fig. 2b. Specifically, we shall
assume again that the x;—x3 plane is the slip plane and that b points in the positive
x1 direction, see Fig. 2b. This problem is then conveniently solved by application
of the Airy stress function approach in a manner that is similar to that leading to
the asymptotic singular field near a sharp crack tip. Leaving the details to [16], the
solution reads

ub x2(3x12+x22)

__ 9

O = T or(1—v) (ri24x2)2 ®)
ub  x(x1% —x?)

_ 10

0% 271:(1 *V) (x12+x22)2 (10)
2 2

o=, M xEi-w) (1

- 271:(1 *V) (x12+x22)2

for the in-plane stress components, while 633 = V(G11 + 622). As for a screw dis-
location, the stress field is singular at the dislocation and decays with the distance
ras 1/r. The displacement field is given by

b 1 xix X1
= —(1— t 12
uy 2x(1 ) {2)612—&-)622 (1—v)arc an<x2>] (12)
b 1 sz 1 X]2+.X22
= — (1—=2v)1 13
12 2n(1—v) |:2x12+xz2 4( )In b2 (13)

The u; field, i.e. parallel to the slip plane, is shown in Fig. 3.

Note that the solution for the edge dislocation field assumes the body to be in-
finitely large — no boundary conditions have been incorporated. Since the solution
is singular, as the solution for a screw dislocation, it is to be expected that a correc-
tion due to boundary conditions has no significant effect close to the dislocation,
but it will do so at larger distances.
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1
Figure 3. Displacement field u; (x;,x2), normalized by b/2n(1 —v), of an edge
dislocation with b = be; at (x1,x2) = (0,0).

3 Boundary Value Problems

Even for straight two-dimensional dislocations, as discussed in the previous sec-
tion, known closed-form solutions do not incorporate any boundaries of the crystal.
The solutions are, strictly speaking, for dislocations in infinite space. Interactions
with the boundaries of course do exist, and their are commonly [16] referred to
as image effects. Rather clever image constructions have been developed but they
remain limited to particular configurations.

Several years ago, Van der Giessen and Needleman [33] proposed a versatile
approach based on superposition. The idea is to make use of the known solutions
in infinite space and to superpose an ‘image’ solution to correct for the boundary
conditions. To this end, the displacement, strain and stress fields are decomposed
as

u=n+u, e=€+€& 0©6=6+6. (14)

The () fields are the superposition of the singular fields of the individual disloca-
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Figure 4. Decomposition of the problem for the dislocated body into the problem
of interacting dislocations in an infinite solid (* fields) and the complementary
problem for the body without dislocations (" fields).

tions, as discussed above, in infinite space. Identifying the fields for dislocation /
by a superscript (1), the (7) stress field, for example, is obtained as

=Y o
1

The (°) fields will in general not meet the boundary conditions in terms of tractions
on part Sy of the boundary nor the prescribed displacements on part S,. Instead
they will give rise to displacements i on S, and tractions T = & -n on S r (with
normal n). The actual boundary conditions, #° on S, and T° on S r, are imposed
through the (") fields, in such a way that the sum of the () and the (") fields in (14)
gives the solution that satisfies all boundary conditions. Since the (7) fields satisfy
the governing equations (4)—(6), the (%) fields also have to satisfy the elasticity
equations, i.e.

equilibrium: divé =0
elasticity: 6=L:&

1
strains: =, [gradit + (grad@t)”|

supplemented with the boundary conditions

T:TOfTonSf ﬁ:uofﬁonSu
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It is important to note that the solution of the (*) problem does not involve any
dislocations. Therefore, the (*) fields (often called ‘image’ fields) are smooth and
the boundary value problem for them can conveniently be solved using a finite
element method.

A crucial concept for the evolution of dislocations, to be discussed in the next
section, is the Peach—Koehler force. It is defined as the configurational force as-
sociated to motion of the dislocations: the work of these forces as the dislocations
move is the change in potential energy I, i.e.

_ 1) . 5D
S = leyfwf ds\Ddi.

It is seen that f () has the dimension of force per unit (dislocation line) length
and that it generally changes along the loop. The Peach—Koehle force can be
made more explicit, in this superposition approach, by calculating the potential
energy [33]. The final result is that the component of the Peach—Koehler force
in the glide plane and in the direction t") x m) normal to the dislocation can be
expressed as

FO =m0 <6+ZG(1)> AUN (15)
JZ

4 Dislocation Dynamics

So far, we have discussed the state of the material in the presence of dislocations,
but they have to move in order to produce plastic deformation. In this section,
we give a brief summary of various physical phenomena that govern the motion
of dislocations, focusing on those aspects that are connected to dislocation glide
of straight edge dislocations. Climb, i.e. motion perpendicular to the plane, also
occurs under certain circumstances but will not be treated, nor will cross slip (dis-
location motion out of the original glide plane).

The driving force for glide is the Peach—Koehler force component given by
(15). During glide, however, the dislocation may be subjected to various sources
of resistance against motion. Denoting their collective force by fr(els)ist and ignoring
inertia of dislocations, the motion of dislocation / is be governed by the force
balance

I
FO=ra. (16)

The two main contributions to the resistance of edge dislocations are:

o Peierls—Nabarro stress. As a dislocation moves, existing atomic bonds have
to be broken and new ones formed. Because of the periodic nature of the
lattice, the energy landscape that the dislocation moves across is periodic.
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This acts as a friction stress, referred to as the Peierls—Nabarro stress, against
the initiation of dislocation motion, corresponding to a resistance force of
b7 in the direction opposing the dislocation velocity v(). The value of T
depends sensitively on the crystal structure. At 0 K, the values for FCC
and BCC crystals typically are 10~%u and 1073y, respectively, while for
intermetallics its value can be as large as 0.1u.

e Drag. As a dislocation glides, it experiences drag originating from: (i)
phonon drag; (ii) electron drag; (iii) impurity effects. Of these, phonon drag
is dominating in many materials and gives a net, viscous force By Tt is
possible to make estimates of each of the contributions to phonon drag, but
in practice B is measured experimentally or from molecular dynamics sim-
ulations. Values of B show quite some scatter; a typical value for aluminum
is on the order of B = 10~*Pas. When drag is the only source of resistance,
the balance (16) states

f(U — gD

so that the velocity, for a given Peach-Koehler force, can be calculated from
v = ¢/ (17)

A linear relationship between velocity and driving force has been con-
firmed experimentally. Data for various materials over various temperatures
and stress levels suggest a relation of the type

v oc (fD)yme=E/ksT
but for relatively low stress levels, the exponent m is close to unity.

4.1 Annihilation

Attraction of opposite-signed dislocations can lead to annihilation. This is
easily seen for straight edge or screw dislocations of opposite sign coming close
together: the defect is eliminated by coalescence of the dislocations once they are
sufficiently close together. The critical annihilation distance is typically taken to
be 6b.

4.2 Frank-Read sources

One possible mechanism for the generation of new dislocations is through the
so-called Frank—Read mechanism illustrated in Fig. 5a. The source of this mecha-
nism is a dislocation segment that is being pinned between two hard points. This
segment bows out under the influence of a Peach-Koehler force, where the self-
interaction helps to create a closed loop surrounding the initial pinned segment that
finally closes onto itself. Ultimately, a smooth new dislocation loop has emerged
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as well as a copy of the initial segment. This copy can operate as a source again,
etc., so as to generate more dislocations.

initialpinnedsegment

generatedloop

(a)
source T
—b \ | b
1 1 (b)
QL nuc EL nuc

Figure 5. (a) Frank—Read mechanism of generating a new loop from an initial
pinned segment. (b) Two-dimensional simplification (from [33]) as a mechanism
for nucleation of edge dislocations.

Figure 5 shows a two-dimensional version of this mechanism, which one can
imagine as a cross-section of a three-dimensional source and subsequent projec-
tion onto the plane of observation normal to the slip plane. The pinned segment
now appears as a point, and the Frank-Read mechanism has been translated into
two dimensions by [33] as follows. When the shear stress on the source is suffi-
ciently high for a sufficiently long time, an edge dipole is generated. The strength
of the source Ty, is, in principle, determined by the three-dimensional dislocation
configuration (initial segment length, Burgers vector, etc.); in the two-dimensional
model it becomes a parameter. The same holds for the nucleation time #y,c. The
polarity of the dipole is determined by the direction of the shear stress. The width
of the dipole, Ly, is the two-dimensional cross-section of the loop at the moment
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that the initial pinned segment has been re-formed and the source is ready to op-
erate again. The value of L,,., again, can be determined from three-dimensional
simulations. However, a different and practical criterion has been proposed by
[33] based on the observation that the dislocations in a dipole feel strong attrac-
tive forces that are inversely proportional to their distance. If this interactive force
is larger than Ty,b, the dislocations will move towards each other and annihilate
so that effectively no dislocation has been generated. Hence, there is a minimum
distance which is given by [33]

ub

Ly = .
21— V) Thue

5 Methodology for Crack Problems

The analysis of cracks and fracture within the framework of discrete dislocation
plasticity employs the generic mode I problem sketched in Fig. 6. The calculations
are carried out for small-scale yielding, with plasticity being confined to a window
around the initial crack tip. Single-crystal studies (Secs. 6, 7) are performed by
defining a set of two or three slip systems inside this window at an angle of ¢<°‘>
with respect to the crack plane. Two slip systems are necessary to allow for any
mode of plastic deformation, while three slip systems mimic the excess of available
slip systems in a real three-dimensional FCC crystal. The process window is filled
with a number of grains for the study of polycrystals in Sec. 8

Because of the assumed symmetry, there is a mirror dislocation for each dislo-
cation in the region analyzed numerically. This mirror dislocation does not need
to be accounted for explicitly when superimposing the fields of all dislocations,
for example as in the sum in (15). Rather, its presence is accounted for through
the symmetry boundary conditions. What does need to be accounted for in the
dislocation analysis is that when a dislocation crosses the closed crack plane, it
leaves the region analyzed; but, due to symmetry, a mirror dislocation enters into
the system along the mirror slip plane.

The crack is initially sharp and a cohesive surface is laid out in front of it. At
the scale of interest here, the cohesive surface is taken to mimic atomic debond-
ing. Therefore, the constitutive response of the cohesive surface is taken from the
universal binding law Rose ef al. [31] and is specified by the following relation
between the traction normal to the cohesive surface, 7,,, and the separation A,:

Ay Ay
Tn(An) = Omax S, exp <1 - 8n> ) (18)

As the cohesive surface separates, the magnitude of the traction increases, reaches
a maximum and then approaches zero to represent the formation of a traction-free
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Figure 6. Small-scale yielding analysis under mode I conditions with discrete dis-
locations moving inside a process window. Because of symmetry, only half the
problem needs to be analyzed. The cohesive surface ahead of the initial crack is
used to describe crack growth.

crack, see Fig. 7. The strength Gyax and the corresponding separation J, charac-
terize the fracture process, implying a work of separation ¢, = exp(1)Gmaxy. It is
essential to note that the use of a cohesive surface eliminates the need of a fracture
criterion: whether or not crack growth occurs is an outcome of the solution of the
problem.

When studying a stationary crack, we take the value of Gn,x to be very large
so as to avoid significant opening (yet, the purely elastic stress singularity of a
mathematically sharp crack is always removed). Studies of crack growth by a
cleavage mechanism are carried out by taking values Gy = 0.6 GPa and &, = 4b,
giving a work of separation ¢, = 1.63J/m?. This value of the cohesive strength is
about a factor of four smaller than the expected theoretical strength of aluminum
and is used for numerical reasons because: (i) the length scale over which large
gradients occur is inversely proportional to the cohesive strength, so that a finer
mesh is required for higher values of the cohesive strength; and (ii) the number of
dislocations increases with increasing cohesive strength, so that more dislocation
interactions have to be computed and a larger process window is needed.
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Omax

Figure 7. Traction—separation law corresponding to the universal binding law, ac-
cording to (18).

The boundary conditions for the problem sketched in Fig. 6 are: (i) the crack
faces remain traction free, 7; = 0; (ii) the displacements on the remote bound-
ary are specified according to the well-known elastic singular field; and (iii) for
the symmetric mode I loading cases discussed here (18) is satisfied together with
T; = 0 on the crack plane ahead of the initial crack tip. The load level is thus
characterized by the remote stress intensity factor K;. In the absence of dislocation
motion, the critical energy release rate is equal to ¢,, from which we define the

reference intensity factor Ky by
EQ,
Ky = .
0 \/1 —v2

Because of the cohesive law (18), the problem sketched in Fig. 6 is nonlinear,
and is solved in an incremental manner by phrasing the governing equations in
rate form. Assuming that at time ¢ the stress field and the current positions of all
dislocations are known, the incremental (denoted by a superposed dot) (*)—fields
are governed by the virtual work statement

N 1 - ~ 2
/ ('?,'jSE,'j dv + / ky (AS,t+A[) + AS:)) AOA,dS =
14 2 Scoh

U 6966 av - ! R0+ | R0)
At{/vcij&e,,]dv 2/scohT"(A" +4{)) 8A,ds (19)
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as shown by Cleveringa er al. [8]. Here, the instantaneous cohesive stiffness,
ky, = —0T,/dA,, and the instantaneous normal traction are evaluated at the fic-
titious opening AS,HAI) + AS,’). The factor 1/2 in (19) stems from the fact that, by
virtue of symmetry, only half of the work in the cohesive surface contributes to the
work in the region analyzed. The second integral in the left-hand side provides a
contribution to the overall finite-element stiffness matrix that changes every time
step; but computational costs can be reduced by factorizing the matrix except the

part pertaining to the degrees of freedom connected to the cohesive elements.

6 Cracks in Single Crystals

A set of two or three slip systems is defined inside the window at an angle of
0@ with respect to the crack plane. Two orientations are considered, which are
an approximation of the projections of three-dimensional orientations of FCC and
BCC crystals respectively that lead to plane-strain plastic deformations [27]:

e FCC: ¢(12) = +£60° (or, more exactly +54.6°), and ¢() = 0 when consid-
ering three slip systems;

e BCC: ¢(1%) = +30° (or, more exactly £35.3°), and ¢() = 90° when con-

sidering three slip systems;

The calculations to be presented in subsequent sections do not aim at model-
ing a specific material, but properties representative of aluminum are used. The
elastic properties are taken to be isotropic, with Young’s modulus E = 70 GPa and
Poisson ratio v = 0.33. A representative value for the drag coefficient in (17) is
B =10"*Pas[19]. Unless otherwise noted, the strength of the dislocation sources
is randomly chosen from a Gaussian distribution with mean strength T,,c = 50 MPa
and standard deviation 0.2T,,.. The nucleation time for all sources is taken as
fnue = 10 ns. All obstacles are taken to have the same strength Tops = 150 MPa.
Attention is focused on metal crystals with a relatively high density of initial de-
fects, which are modeled by a random distribution of point sources and obstacles
in the process window; there are no initial dislocations on the active slip systems
in the simulations. Also, there is no special nucleation of dislocations from the
crack tip.

6.1 Stationary Crack-Tip Fields

Figure 8 shows the stress distribution for an FCC crystal with three slip sys-
tems, and with such a high cohesive strength that the crack does not propagate.
All three stress distributions exhibit large fluctuations, which are due to the singu-
larities of the individual dislocations. In fact, the fluctuations shown are damped
because of the way the contours are plotted on the finite element mesh that was
used for the computation (80 by 80 elements in the process window).
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Figure 8. Stress distributions, normalized by the nucleation strength Ty, in an
FCC crystal with three slip systems as indicted in the inset at K; = 0.6MPay/m.
From [34].

It is remarkable, however, that three sectors appear around the crack tip in
which the stresses, on average, look different from one another. This stress distri-
bution is reminiscent of the analytical near-tip stress field obtained by Rice [27]
on the basis of a continuum plasticity theory for non-hardening crystals. When his
analysis for the true FCC crystal geometry is modified to account for the set of slip
systems used, four uniform stress sectors are obtained. The boundaries between
these sectors are predicted to be 60°, 90° and 120°, the first and last of which are
consistent with the fields in Fig. 8. Van der Giessen et al. [34] carried out a quan-
titative comparison by actually averaging the stresses inside the four mentioned
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%

Figure 9. Dislocation distribution in the same crystal and at the same load level as
in Fig. 8. From [34].

sectors, and it was found that these average stresses agreed quite well with Rice’s
continuum solution.

However, the discrete dislocation solution did not appear to agree with another
element of Rice’s [27] solution, namely that slip activity on the 0°-slip planes
would concentrate in a kink band at 90°. The discrete dislocation results showed
no evidence of this, as illustrated by the dislocation distribution shown in Fig. 9.
The explanation for the absence of kink bands is that they would require an abun-
dance of sources. Subsequently, Drugan [30] carried out an analysis similar to
Rice’s [27], but without requiring a kink band. He found several solution families,
including a family of solutions which involve only a slip band at 8 = 60°; consis-
tent with our discrete dislocation simulations. The solution that is closest to the
discrete dislocation results is one where there are three sectors with boundaries at
60° and 105°. This solution is illustrated in Fig. 10. Even though the 105° sec-
tor boundary is not obvious from Fig. 8, averaging of the stress fields over these
sectors showed very good agreement with this continuum prediction. Small differ-
ences in the exact average stress values are attributed to the fact that the continuum
solution assumes no hardening, whereas some degree of hardening may occur in
the discrete dislocation results.

6.2 Crack Propagation under Monotonic Loading

When averaging the discrete dislocation results over sectors to compare with
the continuum plasticity predictions [34], the very near tip region with a radius of
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Figure 10. Opening stress states (G2 normalized by the critical resolved shear
stress T) in the three sectors of Drugan’s [30] continuum solution.

0.5um was excluded. The reason is that the stresses in this region are much higher
than the sector averages, see Fig. 8. In fact, the results of Cleveringa ef al. [8]
suggest that the stresses in this region can become high enough for crack advance
by cleavage (although, for numerical reasons, the cohesive strengths in the calcu-
lations are smaller than representative of actual metal cohesive strengths). This is
illustrated in Fig. 11 for a case with two slip systems (+60°) and with a cohesive
surface characterized by the values Gyax = 0.6 GPa and §,, = 4b. For these param-
eter values, the stationary crack tip blunts because of dislocation activity, Fig. 11a.
The sector-average stresses at this instant are quite low, but the opening stress 627
in a small region ahead of the crack reaches the cohesive strength. The crack then
propagates until the crack tip arrives at a location where the near-tip opening stress
is below the cohesive strength. Then, more dislocations are generated near the cur-
rent tip, until the opening stress again reaches the strength, Fig. 11b, and the crack
jumps forward again. This process of blunting and crack jumping continues as the
load increases, giving rise to a distinct R-curve behavior.

It is worth emphasizing that in the calculations by Cleveringa et al. [8] there
is no emission of dislocations from the crack tip. This is in contrast to simula-
tions, e.g. by Hirsch and Roberts [13] and by Nitzsche and Hsia [14], where it is
assumed that dislocations can be emitted only by the crack tip. The same assump-
tion has been made in the analyses of mode III cracks by Zacharopoulos et al.
[15]. This class of calculations aim at initially dislocation-free materials, such as
silicon, where crack-tip emission is the key parameter in the transition from brittle
fracture (no dislocations) to ductile fracture accompanied by dislocation motion,
see also [12]. However, the model considered here is intended to mimic a metal in
which there is an initial distribution of dislocations that act as Frank-Read sources
or as forest dislocation obstacles.
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(b)

(d)

Figure 11. Distribution of dislocations and the opening stress G2, in the im-
mediate neighborhood (2um x 2um) of the crack tip for the FCC crystal with
Pruc = 49/um? and pops = 98/um? at four different stages of loading. The cor-
responding crack opening profiles (displacements magnified by a factor of 10) are
plotted below the x;-axis. From [8].

The main conclusion from the studies of Cleveringa et al. [8] is that disloca-
tions play a dual role in fracture. On the one hand, dislocations are the vehicle for
plastic deformation, and this reduces, on average, the stresses near the crack and
provides a way to dissipate the energy flowing to the crack. On the other hand,
dislocations can arrange themselves in structures, which lead to locally enhanced
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Figure 12. (a) Irreversible cohesive law used for fatigue calculations. (b)
Schematic of the applied stress intensity factor as a function of time. From [10].

stress levels that can trigger crack growth. This stress enhancement is not modeled
by conventional continuum plasticity.

7 Fatigue Crack Growth

Deshpande et al. [10] have extended the computations reported in the previous
section to cyclic loading, specified by a remote stress intensity factor that zig-zags
between Kpax and Ky, Fig. 12b. The only change in the model is that the cohesive
law is extended to be irreversible, as indicated in Fig. 12a, and which models the
effect of complete oxidation of newly formed surface. This is a second source
of irreversibility, next to the discrete dislocation plasticity, which is necessary for
fatigue to occur.
Figure 13 summarizes the salient findings by Deshpande et al. [9, 10]:

1. The maximum stress intensity factor Kp,x needs to be high enough, i.e.
above a critical value K}, in order to provide a minimum of dissipation.
For Kmax > K}« interactions within the now dense dislocation structure act
to retard dislocation motion. Accordingly, a minimum cyclic stress intensity
factor range AK; is needed to induce dislocation motion during unloading
and reloading. Thus, in this regime, AK; below a critical fatigue threshold

value AK}, precludes crack growth.
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Figure 13. The cyclic crack growth rate da/dN versus AK; /Ky and AK$! /K for
the mode I cyclic loading of a single crystal (R = Kpin/Kmax = 0.3). The slopes
of the curves marked correspond to the Paris law exponents for the curves fitted
through the numerical results. From [10].

2. The curves of crack advance per cycle, da/dN, as a function of AK;, Fig. 13,
show two distinct regimes of behavior: a steeply rising log(da/dN) versus
log(AK;/Kyp) curve in the threshold regime followed by a more gradual slope
in the so-called Paris regime. The exponent m in the Paris relation

da

o< (AK;)"
dN(I)

for this case is ~ 4.4. When the same data is expressed in terms of the
effective stress intensity range

AKET — Kimax — Kop for Kiin < Kop
AK; for Kinin > Kop,

where Ko, is the stress intensity at which the crack faces first separate [9],
the Paris exponent is only around 2.8.

A fit da/dN versus AKFT /Ky curve for an interface crack is also plotted in
Fig. 13. The effect of the mode mixity at the interface is to increase the fatigue
threshold of the interface crack but to reduce its resistance to cyclic crack growth
at higher values of applied AK;. This behavior is expected to be dependent on
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the degree of mode mixity and hence affected by the cohesive properties and the
applied loading.

Based on the experimental work of Laird and Smith [20] and Neumann [21],
fatigue crack growth in ductile metals is often presumed to occur by an alter-
nating slip mechanism which is a deformation-controlled phenomenon that does
not require high stresses. On the basis of this, Pippan and co-workers [23, 24]
and Wilkinson er al. [25] developed discrete dislocation models to represent this
deformation-controlled fatigue crack growth mechanism. These models incorpo-
rate the crack growth mechanism as an ingredient of the model rather than have
it emerge as a prediction of the analysis. By contrast, in the framework presented
here [9, 10] fracture is both a deformation and stress-governed phenomenon and
takes place by a mechanism that is possible under both monotonic and cyclic load-
ing conditions. Striations are also predicted by the model, as shown in Fig. 14.

0.000 0.003 0.005 0.008

0.5

Z")
R\ ‘~“='l’a(.“.- 5
\"ﬂVA"_-

\v

1.5

Figure 14. Contours of total slip showing the localized deformation pattern in the
crack tip vicinity. All distances are in um. The crack opening profile (displace-
ments magnified by a factor of 20) is plotted below the xj-axis. From [10].



206 E. Van der Giessen

8 Cracks in Polycrystals

Finally, we look at the crack tips fields in polycrystals, cf. Fig. 1c. For this purpose,
the problem in Fig. 15b is analyzed, where the process window now contains a
number of square grains. A mixture of FCC and BCC grains are considered,
arranged in a checker-board pattern, Fig. 16; results will be presented here mainly
for the case where the crack tip is in an FCC grain, Fig. 16a. All grains have the
same density of sources, ppuc = 20um~2 with average strength T,,c = 46 MPa and
standard deviation 9.2 MPa; pps = 40 um~2 in all grains. The grain size d is taken
to vary between 0.2um and d = 5.0 um.

In a continuum view, and assuming overall isotropic behaviour, the HRR solu-
tion for the opening stress is of the type

1 lerl
G2 o< (r) (20)

where s is the strain hardening exponent in a shear stress T versus shear strain 'y
relation of the form 7y o< t°. The overall stress—strain behaviour of the polycrystals
is extracted from pure shear computations on the grains inside the process window,
as illustrated in Fig. 15a. The results in Fig. 17 show that the response is strongly
dependent on the grain size. The shear stress between Y= 0.15% and 0.25%, 7, as
a measure of yield stress, can be fit to the Hall-Petch type relation

—q
fm—B(jo) : @1

with an exponent ¢ = 0.415 when using Tp = 20 MPa, the flow strength of a single
crystal, and taking the reference grain size dyp = 1um. The Hall-Petch effect in
these computations arises from the fact that grain boundaries act to stop the motion
of dislocations.

The differences in deformation fields in polycrystalline aggregates with differ-
ent grain size are represented in Fig. 18 in terms of the total slip

: (@, (o)
F=Y W9, y%=s5Y%;m®.
o=1

While the total density of sources and obstacles is independent of grain size and the
same as for the single crystal, Fig. 18a, the slip distribution becomes smoother as
the grain size decreases (note that the process window has the same dimensions).
To show two extreme cases, Fig. 19 gives the stress distributions in a single crystal
and in a polycrystal with small grains, d = 0.6 um. In contrast to the single crystal
response (as dicussed previously), the stress distribution inside the polycrystal is
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Figure 15. Sketch of (a) the pure shear problem with doubly-periodic boundary
conditions and (b) the small scale yielding crack problem with imposed mode I
loading. From [3].

seen to more closely resemble the isotropic HRR predictions. Thus, both the stress
and strain fields around the crack tips in our polycrystal analyses indicate that
the grain boundaries successfully block the formation of slip bands and tend to
diffuse plastic deformation which results in more isotropic distributions of stress
and strain.
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Figure 16. Two polycrystalline grain arrangements used in the mode I crack sim-
ulations. The arrangements are illustrated for a 3x 3 array of grains with the crack
plane indicated by the dark line. From [3].
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Figure 17. (a) Applied shear stress T versus shear strain 7y response of the poly-
crystalline and single crystal materials analyzed in this study. (b) Average shear
stress T between Y = 0.15% and 0.25% for both grain arrangements as a function
of grain size d. The Hall-Petch type relation eq. (21) is fit to the data. From [3].

The distribution of the opening stress ahead of the crack tip, Fig. 20, reveals
three distinct regimes. Sufficiently far from the tip, 627 o< 1/4/r according to the
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Figure 18. Distributions of total slip I" around the stationary crack tip of poly-
crystals at an applied K; /Ko = 1.75: (a) pertains to the FCC single crystal and (b)
through (f) are for the d = Sum to d = 0.2 um polycrystals, in descending order.

(All distances are in ym.) From [3].

elastic K-field, while very close to the tip the discreteness of the dislocations gov-
erns the field. In between there is a regime which has been fitted to a power-law

congsistent with the HRR field (20).
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Figure 19. Distributions of normalized stress, G22/Tnuc, around the stationary
crack tip at K;/Ko = 1.75: (a) the FCC single crystal (b) the polycrystal with
d = 0.6 um. The crack-tip profile with displacement magnified by a factor of 50 is
included in both cases. (All distances are in ym.) From [3].
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