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S A M E N VAT T I N G

Dit proefschrift richt zich op het bestuderen van de hydrodynamica van vissen die zwemmen
door hun lichaam gestaag te golven. Hiertoe wenden wij een computer model (de zogeheten
Multiparticle Collision Dynamics methode) en een meta-analyse van gepubliceerde data
over de kinematica van zwemmende vissen aan.

In het computermodel worden het water en zijn dynamica gesimuleerd door middel
van miljoenen deeltjes, die rondbewegen en met elkaar botsen. Uit dit gedrag op de
microschaal ontstaat op de macroschaal gedrag dat hydrodynamisch klopt. Door niet-
bewegende vormen te bestuderen in een kanaal waardoorheen water vloeit ontdekken we
dat het toevoegen van lange, staartachtige platen aan de stroomafwaartse zijde van een
cylinder de waterweerstand verhoogt bij lage Reynoldsgetallen, maar verlaagt bij hogere
Reynoldsgetallen. Dit suggereert dat het alleen voor relatief grote organismen nuttig is om
een staart te hebben. Hiernaast bestuderen we de hydrodynamica van vormen die kunnen
veranderen van positie, hoek en vorm, namelijk een slaande insectenvleugel (ter validatie
van de methode) en een golvende vis. De resultaten komen in beide gevallen overeen met
data uit experimenten. We tonen aan dat de veelgebruikte techniek om in simulaties van
het zemmen van vissen ze te beperken zodat ze niet kunnen accelereren de resultaten kan
beinvloeden. We vinden geen effect van het beperken van acceleratie in de lengterichting.
Wanneer echter de acceleratie in de zijdelingse richting voorkomen wordt dan neemt de
zwemsnelheid toe, en worden de kracht- en stroompatronen versterkt, zodat zij lijken op
die van een vrij-zwemmende vis met een hogere staartslagfrequentie. Ons derde onderzoek
betreft oneindig grote scholen van vissen, in verscheidene ruimtelijke configuraties in het
computermodel. We bestuderen de configuratie met een ruitvormig rooster die in theorie
optimaal is, en een rechthoekige roosterstructuur. Verder simuleren we een oneindig lange
stoet (de ’rij’) en een oneindig brede ’falanx’ om zo de effecten van het hebben van buren in
de lengte- dan wel breedterichting te scheiden.

Onze resultaten zijn in enkele opzichten naar verwachting: we bevestigen theoretische
voorspellingen dat het hebben van zijdelingse buren de efficiëntie positief beinvloedt, en dat
in een dicht opeengepakte ruitstructuur de individuen een gebied met lage stroomsnelheid
voor zich vinden. Onverwacht is echter dat deze dichte ruitstructuur in ons model niet
optimaal efficiënt is. Interessant genoeg tonen wij ook aan dat in de meeste gevallen het
voordelig is qua zwemsnelheid en efficiëntie om direct in het onverstoorde kielzog van een
voorganger te zwemmen.

We breiden de inzichten die wij uit onze simulatieonderzoeken hebben opgedaan verder
uit door middel van een meta-analyse van de wetenschappelijke literatuur over gestaag
zwemmende echte vissen. De grootte van de dataverzameling leidt tot enkele significante
bevindingen die ongeacht de vissoort geldig zijn. Met name belangrijk is dat we aantonen dat
de achterwaartse snelheid V van de voortstuwende lichaamsgolf verreweg de belangrijkste
factor is voor het bepalen van de uiteindelijke zwemsnelheid U. Hiernaast ontdekken we
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Samenvatting

onder andere nog dat de zogeheten ’slip ratio’ (U/V) afhangt van het Reynoldsgetal, wat
ook in ons computermodel het geval is.

Samenvattend leidt dit proefschrift tot een beter begrip van de hydrodynamica van gestaag
zwemmen door het golven van het lichaam, zowel van enkele zwemmers als van groepen.
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S U M M A RY

This thesis investigates the hydrodynamics of fish that swim by steady undulation of their
body. This is done by means of a computer model (specifically the Multiparticle Collision
Dynamics method) and of a meta-analysis of published experimental data.

In the computer model, the water and its dynamics are simulated by means of millions
of particles that move and collide. From this behaviour at the micro-scale, correct hydro-
dynamics emerge at the macro-scale. From studying static shapes in flow in a channel we
find that when attaching long tail-like plates, drag increases at low Reynolds numbers but
decreases at higher ones, suggesting that tails are only useful for larger organisms. Further,
we examine the hydrodynamics of single shapes that change their position, orientation and
form: a flapping insect wing (for validation purposes) and an undulating fish. The results
of both cases agree with experimental data. We show that the commonly used practice in
simulations of fish swimming to constrain the fish from accelerating can influence results. We
find no effect of constraint of acceleration in the longitudinal direction. On the other hand,
constraint in the lateral direction increases the swimming speed and exaggerates patterns
of force and flow, so that they resemble those of unconstrained fish with higher tailbeat
frequencies. Our third study concerns infinite schools of fish in several different spatial
configurations in the model. We investigate the diamond-shaped lattice that is theoretically
optimal and a rectangular lattice. Further, to separate out the effects of longitudinal and
lateral neighbours we simulate an infinitely long progression, or ’line’ and an infinitely
wide ’phalanx’. Our results confirm theoretical predictions that having lateral neighbours
is beneficial for efficiency, and that a closely-spaced diamond lattice causes individuals to
encounter a low-velocity area ahead of them. Unexpectedly however, the prediction that this
pattern of the closely-packed diamond lattice increases efficiency is not borne out by our
results. Remarkably we also show that in most cases swimming directly behind a fish in its
undisturbed wake is beneficial as regards speed and efficiency.

We extend the insights gained from our simulations by means of a meta-analysis of the
scientific literature on steady swimming of real fish. The size of our data set leads to several
significant insights that apply across species. Most importantly, we show that the strongest
predictor of swimming speed U is the speed V of the rearwards-traveling body wave. Further
insights include the fact that the slip ratio U/V is a function of the Reynolds number (which
is also the case in our model).

In conclusion, this thesis increases the understanding of steady, undulatory swimming,
both alone and in groups.
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S T R E S Z C Z E N I E

Głównym tematem niniejszej pracy doktorskiej jest badanie hydrodynamiki ryb pływają-
cych przy pomocy ruchów falistych ciała. W pracy zastosowano model komputerowy (a
ściśle metodę Dynamiki Zderzeń Wielocząsteczkowych, Multiparticle Collision Dynamics
method) oraz meta-analizę danych eksperymentalnych z publikacji naukowych. W modelu
komputerowym woda i jej dynamika są symulowane przy pomocy milionów cząstek, które
poruszają się i zderzają ze sobą. Z zachowania cząstek w mikroskali wyłania się poprawna
hydrodynamika w makroskali. Symulacje nieruchomych obiektów w strumieniu wody w
tunelu pokazały, że przyłączenie długich, podobnych do ogona płyt zwiększa opór przy
małych liczbach Reynoldsa, ale zmniejsza go przy większych liczbach Reynoldsa, co sugeruje,
że ogon jest przydatny tylko większym organizmom. Dodatkowo badaliśmy pojedyncze
obiekty, które zmieniają swoją pozycję, orientację i formę, a ściśle – machające skrzydło
owadzie (w celach walidacji metody) i płynącą rybę. Wyniki dla obu przypadków są zgodne
z danymi eksperymentalnymi. Pokazaliśmy także, że częsta w symulacjach komputerowych
praktyka ograniczania ruchu ryby, tak by nie przyśpieszała, może wpływać na wyniki.
Uniemożliwienie przyśpieszenia (zwalniania) ryby w przód nie wpływa znacząco na wyniki,
jednak ograniczenie ruchu ryby w bok powoduje, że prędkość ryby do przodu wzrasta, a
wzorce sił i przepływu są wyolbrzymione, co przypomina wyniki uzyskane w przypadku
swobodnie płynącej ryby, poruszającej się z wyższą częstotliwością uderzeń ogona. Nasz
ostatni model bada nieskończone ławice ryb w różnych konfiguracjach. Badaliśmy teorety-
cznie optymalną siatkę w kształcie rombu oraz siatkę w kształcie prostokąta. Dodatkowo
aby oddzielić wpływ sąsiedztwa innych ryb z boku od wpływu sąsiedztwa innych ryb z
przodu/tyłu, przeprowadziliśmy symulacje nieskończonej „kolumny” i nieskończonego
„szeregu” ryb. Z jednej strony nasze wyniki są zgodne z teoretycznymi przewidywaniami,
gdyż pokazują, że posiadanie sąsiadów z boku jest korzystne dla wydajności oraz że ciasny
szyk siatki w kształcie rombu powoduje, że osobniki napotykają przed sobą obszar o niskiej
prędkości wody. Z drugiej jednak strony zaskakujące jest to, że wyniki nie potwierdzają
przewidywania, że ciasny szyk siatki w kształcie rombu zwiększa wydajność. Pokazal-
iśmy również, co ciekawe, że w większości przypadków płynięcie bezpośrednio za inną
rybą w powstałych za nią niezakłóconych wirach jest korzystne, jeśli chodzi o prędkość
i wydajność. Aby uzupełnić badania, przeprowadziliśmy meta-analizę opublikowanych
danych eksperymentalnych na temat jednostajnego poruszania się rzeczywistych ryb. Dzięki
zebraniu dużej ilości danych mogliśmy uzyskać kilka znaczących wyników, które znajdują
zastosowanie w przypadku różnych gatunków ryb. Przede wszystkim pokazaliśmy, że
najlepszym czynnikiem pozwalającym przewidzieć prędkość pływania ryby (U) jest pręd-
kość fali rozchodzącej się w kierunku tyłu na powierzchni jej ciała (V). Pokazaliśmy także,
że współczynnik poślizgu (U/V) zależy od liczby Reynoldsa, co jest zgodne z wynikami
naszego modelu. Podsumowując, niniejsza praca doktorska zwiększa wiedzę na temat
poruszania się ryb płynących w sposób jednostajny przy pomocy ruchów falistych ciała,
zarówno samotnie, jak i w ławicach.
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1
I N T R O D U C T I O N

The swimming of fish has fascinated humans for ages. The underwater environment, a
dense, viscous liquid, is almost entirely alien to ours. Fish propel themselves through it,
almost weightless due to their buoyancy. The seemingly effortless ease with which they do so
has inspired scientists and engineers, who have spent much time attempting to understand
the mechanics of fish propulsion (Gray, 1933; Lighthill, 1960, 1971; Triantafyllou et al.,
1993; Barrett and Triantafyllou, 1995). Vertebrate life originated in the ocean, with the first
undulatory swimmers such as jawless fish similar to lampreys. Given the long evolutionary
history of undulatory swimming, it is reasonable to expect it to be an optimal mode of
propulsion. However, which aspect of swimming is optimised, be it speed, manoeuvrability,
efficiency, stealth to predators or cost of “construction,” remains to be determined.

The majority of species of fish spend some stage of their development in a group of some
kind, ranging from drifting clouds of larvae to travelling schools of millions of adults. Living
in groups is theorised to have all sorts of advantages, including protection from predators,
increased access to mates and greater foraging efficiency (Krause and Ruxton, 2002). A
further supposed benefit (and the focus of this thesis) is increased hydrodynamical efficiency.

1.1 empirical study of fish swimming

Here is presented a brief overview of the history of the empirical study of fish swimming -
(for a more thorough overview, see Videler (1993) and Drucker and Summers (2007)).

The earliest scientific discussion of fish swimming comes from Aristotle, who noted the
morphological variety across species in number of fins, and argued that many-finned fish
(i.e.. possessing paired pectoral and pelvic fins) should propel themselves by flapping their
fins, while those with fewer fins should do so through undulating their body. As was the case
for many other subjects, Aristotle’s ideas on fish swimming remained unquestioned through
the middle ages, until Giovanni Borelli in 1680 published On the Movement of Animals, a
groundbreaking work on biomechanics. He noted that, since the majority of the muscles of
fish are found aligned with the spine in the body rather than attached to the fins, it is much
more likely that it is the undulating body that does the work when fish swim. There matters
rested until the invention of the ciné camera.

The modern study of the swimming of fish through the use of films was spearheaded
by the work of Gray (1933). Especially important were his attempts to calculate the forces
of swimming such as forwards thrust and rearwards drag from the movements of the fish.
These calculations and experiments underlie much of the theory of fish hydrodynamics
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of the twentieth century (Lighthill, 1960; Wu, 1961). The most well-known outcome of his
work is ‘Gray’s paradox,’ which states that (according to his calculations) dolphins can not
produce enough thrust to reach the high speeds at which they swim. This led to the idea
that something about undulatory swimming made it extremely efficient, greatly increasing
the research on it (Fish, 2006). The paradox was only solved recently, by using the modern
Digital Particle Image Velocimetry technique to map the flow around the tail of the dolphin,
demonstrating that the force it generates is well in excess of that predicted by Gray (Wei
et al., 2008).

The Digital Particle Image Velocimetry technique came into use in 1993, and has greatly
improved our understanding of biohydrodynamics. It involves seeding the water with
neutrally buoyant particles, and shining a flat sheet of laser light through the area where
the flow is of interest. Subsequently, digitised high-speed video of the movement of the
particles is analysed, resulting in a two-dimensional vector flow field that is a cross-section
of the three-dimensional flow. The technique has been applied over a wide range of scales,
from tiny (for example copepods (van Duren et al., 2003)) to large (for example eels (Tytell,
2007)). From these flow fields, inferences can be made about the power and efficiency of
swimming (Müller et al., 1997; Tytell and Lauder, 2004). It should be noted however that, as
pointed out by Dabiri (2005), for accurate estimations of the forces of swimming and thus
the efficiency, the pressure field should also be measured, which is currently not possible.

In this thesis we study fish kinematics only in terms of the undulatory wave that passes
rearwards through their body. Of this wave the characteristic length, frequency and ampli-
tude (measured at the tail tip) are most frequently reported. Especially the tailbeat frequency
is seen as important, and has been shown to be a major factor in what causes the swimming
speed of fish (Bainbridge, 1958; Webb et al., 1984). Rarer are reports of how the amplitude of
undulation varies along the body. Using Fourier analysis of digitised films of fish, Videler
and Hess showed that the undulation can be described by a multiplication of a sine function
that varies with time, and an “envelope” function that varies with the position along the
body (Videler and Hess, 1984). This envelope function differs greatly among species. For
example, for saithe it is quadratic, with the point on the body of lowest lateral movement
behind the head, at approximately 25% of the body length. In contrast, for eels the envelope
function is exponential, with a minimum at the head (Gillis, 1998; Tytell and Lauder, 2004)
(Fig. 1.1).

Figure 1.1.: Amplitude envelope functions of saithe and eel.

8



1.2 theoretical study of fish swimming

An important number when discussing hydrodynamical systems is the Reynolds number,
which describes the relative importance of inertial and viscous forces, with higher Re indi-
cating higher inertia. It is given by Re = UL/ν, where U is the speed, L is the characteristic
size (usually length when discussing fish) and ν is the kinematic viscosity of the fluid.

The most recent thorough overview of how the kinematics of fish swimming are interre-
lated, as well as their effect on swimming speed, is in John Videler’s Fish Swimming (Videler,
1993). Since then, much experimental work has been done, but an integration of these results
is lacking. We attempt to do so in the final chapter of this thesis.

1.2 theoretical study of fish swimming

The swimming of fishes has been studied in models in many different ways, from single fish
to groups, from detailed kinematics of individual fish to groups of travelling point particles.
However, there is very little work that combines group dynamics with a somewhat realistic
embodiment or ’situatedness’ of the individuals, for example as regards their mass, size,
shape or hydro/aerodynamics. This is unfortunate, because such embodiment strongly
affects the mechanics of a system (Pfeifer and Scheier, 1999). For example, realistic flocking
behaviour of starlings in a model was only achieved once the individuals were made to
follow simple rules of aerodynamics (Hildenbrandt et al., 2010). In this thesis, rather than
attempting to add hydrodynamics to already-existing models of flocking, we start with the
modelling of hydrodynamics.

Modelling the hydrodynamics of swimming fish greatly improved in the last half century
or so, most notably by Sir James Lighthill’s Elongated Body Theory (Lighthill, 1960, 1971).
This influential theory formed the basis for many experiments as well as calculations based
on those experiments, for example to estimate the efficiency. The theory does not take
viscosity into account however, and its predictions are largely qualitative.

Since the middle of the 1990s, computational power has advanced sufficiently to allow
computer simulations of hydrodynamics on a scale that is sufficient to model fish swimming
in detail as regards their complex shape and undulation. The first work of interest was
that by Liu et al., who studied the swimming of a tadpole and fish in a computational
fluid dynamics model (Liu et al., 1996, 1997). Their work shows the power of simulations
to not only allow the study the flow and forces on the swimmers, but also to test several
unrealistic situations, for example to make a fish undulate like a tadpole and vice versa.
Liu et al. indicated that the swimming mode of the tadpole was uniquely suited to its shape
and developmental history: its efficiency and flow field were unaffected by the addition
of leg-like stumps, whereas a regular fish suffered greatly reduced efficiency and speed
when leg-like stumps were added to it, or when it was made to undulate like the tadpole.
Further interesting computational work on the hydrodynamics of swimming is that of Kern
& Koumoutsakos who investigated the differences between 2- and 3-dimensional simulations
of swimming fish (Kern and Koumoutsakos, 2006). Their results show that simulations
in 2 dimensions, while differing in several aspects from the 3-dimensional ones, greatly
resemble the experimental results of real fish. Also of great importance is the recent work
by Borazjani and Sotiropoulos, whose simulations of swimming lampreys and mackerels
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clearly demonstrate the importance of both kinematics and body shape to the efficiency of
swimming fish (Borazjani and Sotiropoulos, 2008, 2009, 2010).

1.3 empirical study of flow exploitation

The previous sections addressed the study of single fish in uniform flows. Here we discuss
the available empirical evidence that indicates whether and how fish in schools might exploit
the wakes of others. There are several indications that they do so. In short, first, fish can
sense flows in great detail, second, fish can exploit flows to reduce swimming effort, and
third, schools of fish as a whole are more efficient than single fish.

Just as we can feel the strength and direction of a breeze, fish can sense the flows of
water. They can do so with great sensitivity and precision, due to a specialised system of
sensors, much of which is concentrated (in most fish) in a thin groove along the length of
the body, commonly called the lateral line. Through the lateral line fish can sense not only
the direction of flows, but also (within a certain distance) their precise point of origin in
space (Engelmann et al., 2000). This sensitivity is applied to several purposes. For instance,
catfish can track their prey by following their wake (Pohlmann et al., 2001). The lateral line
also plays an important part in schooling, as was elegantly shown in a series of experiments
by Partridge and Pitcher (1980), who found that blindfolded fish with an intact lateral line
could still school, and that fish with intact vision but disabled lateral lines took up different
positions relative to their neighbours than entirely intact fish. The lateral line also plays a
role in the exploitation of wakes. Rainbow trout whose lateral line was disabled spent much
less time in the wake of a cylinder than intact ones did, and were much less likely to display
the characteristic wake-exploiting gait reported by Liao et al. (2003b); Liao (2006).

This brings us to the point that fish have clearly been shown to exploit wakes, specifically
those of cylinders. The downstream wake of a cylinder in flow at medium to high Reynolds
number consists of a series of vortices that are shed alternatingly from the sides of the
cylinder, with an area of low velocity zig-zagging between them. This is known as a von
Kármán vortex street. Rainbow trout in a flow tank exploited the vortex wake of a cylinder
by adopting an unique gait, slaloming between the vortices and moving from side to side
much more than they did when swimming outside of the wake. From measurements of
the muscle activity of the fish it became clear that this gait in the wake greatly reduced the
effort the fish expended to stay in place (Liao et al., 2003b,a). Interestingly, later experiments
showed that this reduction in effort may arise passively. When tethered behind the cylinder,
a dead (but still flexible) fish would undulate and move upstream due to the buffeting of
the vortex wake (Beal et al., 2006).

Fish also exploit the wakes of others when travelling in schools, as shown by experimental
evidence dating back to as far as the 1960s (Belyayev and Zuyev, 1969). Fish were shown to
decrease their oxygen consumption when swimming in schools, and fish at the rear of the
school appeared to have lower tailbeat frequency, which may indicate that they spend less
effort (Herskin and Steffensen, 1998). Further, it was demonstrated that fish preferred specific
distances to one another, indicating that some positions are better than others (Svendsen
et al., 2003). None of these experiments has shown exactly how the fish are improving their
efficiency, however. For example, no experimental evidence has supported the rigid spatial
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structure which is theoretically optimal (Partridge and Pitcher, 1979; Abrahams and Colgan,
1985). The theory of wake exploitation is further outlined below.

1.4 theory of flow exploitation

Regarding the hydrodynamical efficiency of schooling, Weihs has made several predictions,
however this theory of hydrodynamics ignores viscosity and the shape of the body of the
fish (Weihs, 1973). His first prediction was that for optimal efficiency groups of fish should
adopt regular, fixed positions relative to one another, in horizontal, two-dimensional layers.
Within these layers, individuals should swim in staggered rows, resulting in diamond-like
lattices (Fig. 1.2). The lateral distance between neighbours should be approximately two
times the width of their wake, and the longitudinal distance between rows (measured from
tail to nose) should be at least 0.7 fish lengths. The second prediction was that lateral
neighbours increase an individual’s efficiency, and the third that in the diamond lattice
structure, lateral neighbours should beat their tails in antiphase to one another (Weihs, 1973,
1975).

Figure 1.2.: Diamond-shaped spatial structure as predicted to be optimal by Weihs. Lateral
neighbours A and C are undulating in antiphase, and trailing fish B is profiting
from the area of low velocity between their wakes.

Only very recently have computers become powerful enough to model the hydrodynamics
of multiple, undulating fish. To date only a few theoretical studies have investigated
hydrodynamical interactions between swimming fish. The two most relevant ones to this
thesis were first, a single fish swimming between the wakes of two predecessors (Deng and
Shao, 2006) and second, an infinitely wide phalanx of side-by-side fish (Dong and Lu, 2007).
Unfortunately, both studies were unbiological as regards either their parametrisation (Deng
and Shao, 2006) or the constant, fixed speed of the individuals (Dong and Lu, 2007), making
the value of their results unclear. That said, an increase in efficiency was found in both
studies: in the case of three fish the third, trailing fish was more efficient and needed to beat
its tail less widely, and the fish in an infinite phalanx saved power if they were swimming in
phase (Dong and Lu, 2007). Of course, neither a phalanx nor a group of three fish are a test
of the predictions of a diamond structure. This thesis aims to be the first true test.
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1.5 computer simulations of hydrodynamics

Hydrodynamics is described by the Navier-Stokes equations. However, no general solution
to these equations exists, and therefore all methods simulating hydrodynamics involve
discretisation of time and space in some way. Computer models of hydrodynamics can
be roughly divided into two categories based on their methods of discretisation, namely
numerical and particle-based simulations. Below they are both briefly described, followed
by a description of the method used for our simulations (Multiparticle Collision Dynamics),
as well as the reasons why we chose this particular method.

The numerical models solve the Navier-Stokes equations by discretising them onto a
spatial grid. It is necessary for such methods to adapt the grid to the shape of whatever
object or organism is being simulated (Fig. 1.3). If the object is moving or deforming (as in
the case of an undulating fish) the grid needs to be re-adapted frequently, which is a process
that is both complex and computationally demanding.

Figure 1.3.: Example of a grid around an airfoil shape, to be used in a numerical simulation
of hydrodynamics around it. Note that the grid would need to be entirely
recalculated if the airfoil changed shape or position.

The particle-based methods on the other hand discretise hydrodynamics into parti-
cles that move and collide. These particles represent small quantities of fluid. This
coarse-graining leads to the common term of ’meso-scale’ modelling, with its scale ly-
ing does between the micro-scale of molecules and the macro-scale of hydrodynami-
cal phenomena such as vortices. From the interactions between particles at the meso-
scale, hydrodynamics according to the Navier-Stokes equations emerge at the macro-
scale. The particles may be restricted to a grid, such as in the commonly-used Lat-
tice Boltzmann method (Sui et al., 2007), or move freely as in several other methods
(Monaghan, 1992; Kajtar and Monaghan, 2008; Malevanets and Kapral, 1998). In case they
move freely, the interactions among particles may be smoothed over longer ranges, such as in
in the Smoothed Particle Hydrodynamics method (Monaghan, 1992; Kajtar and Monaghan,
2008), or be more local, as in the Multiparticle Collision Dynamics method (Malevanets and
Kapral, 1998).

For our simulations of swimming fish we chose to use the Multiparticle Collision Dynamics
method. It is a relatively new method, being introduced in the late 1990s. It has been shown
to produce hydrodynamics consistent with the Navier-Stokes equations, and numerical
expressions for several of its properties such as viscosity and transport coefficients have been
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found (Malevanets and Kapral, 1999; Kikuchi et al., 2003; Padding and Louis, 2006). We thus
regard the method as reliable and well-understood.

We chose to use the Multiparticle Collision Dynamics method because it has several
advantages. Most importantly, the representation of space is continuous, meaning that there
is no grid. Therefore smooth, organic shapes (such as of a fish) can be represented in the
model. Further, the interaction of the fluid with the fish can be modelled relatively simply
through collisions between the fluid particles and the body, in contrast with numerical
simulations where special border conditions are required for example at the sharp trailing
edges of a fish tail. Another advantage is that the method is computationally very efficient.
This efficiency is further increased because the short range of interactions between particles
makes the method ideally suited for parallellisation. Therefore we could use the graphics
processor of modern graphics cards for much of the fluid-dynamical calculations, which
increased the simulation speed by a factor of 10.

1.6 work presented in this thesis

The aim of this thesis is to increase the understanding the swimming of fish, both singly
and in groups. We do so through computer modelling and a meta-analysis of experimental
literature.

Our modelling work is presented in chapters 2-4. They proceed in logical order from least
to most complex, each representing a step in the implementation process and its careful
testing. In chapter 2, we validate our implementation of the Multiparticle Collision Dynamics
model for the classic cases of flow past a static square and circular cylinder. Further, we
study more complex, biological shapes, including a fish and tadpole (both with and without
leg-like growths) and several cylinder shapes with trailing thin plates. We show that the
trailing plates increase drag at low Reynolds numbers but decrease drag at higher ones by
increasing the suppressing vortex shedding. In chapter 3, we extend the model with moving
shapes that change their orientation, position and shape. We validate the model as regards
changing orientation and position by comparing the forces of a flapping cross-section of an
insect wing in our model against those of both an empirical and a numerically-simulated
one. We subsequently simulate undulating fish, measuring their speed, efficiency and
forces of thrust and drag for several Reynolds numbers. Our results show that the common
practise in simulations to constrain the fish to not accelerate laterally skews the results
to resemble those of free fish with a higher tail beat frequency. Finally, in chapter 4, we
simulate infinitely-large schools of undulating fish (similar to those of chapter 3) in several
different spatial configurations. The spatial configurations we study are the diamond-shaped
lattice that Weihs predicted to be optimal (Weihs, 1973) and a rectangular lattice. Further, in
order to investigate the effects of longitudinal and lateral neighbours separately we simulate
an infinitely long progression, or ’line’ and an infinitely wide ’phalanx’. Our results show
that swimming directly behind a fish in its undisturbed wake is beneficial as regards speed
and efficiency in most cases. Besides, we confirm Weihs’ predictions that having lateral
neighbours is beneficial for efficiency, and that a closely-spaced diamond lattice causes
individuals to encounter a low-velocity area ahead of them. However, his prediction that
this would increase efficiency is not borne out by our results.
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We expand on the insights gained from our simulation studies by means of a meta-analysis
of the scientific literature on steady swimming. The size of our data set results in several new
significant insights. Most importantly, we show that the strongest predictor of swimming
speed is the speed of the body wave. Further insights include the fact that the slip ratio U/V
is a function of the Reynolds number (which is also the case in our model).
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2
F L O W A R O U N D S TAT I C F I S H L I K E S H A P E S1

Abstract

Empirical measurements of hydrodynamics of swimming fish are very difficult.
Therefore, modelling studies may be of great benefit. Here, we investigate the

suitability for such a study of a recently developed mesoscale method, namely

Multi-Particle Collision Dynamics. As a first step, we confine ourselves to

investigations at intermediate Reynolds numbers of objects that are stiff. Due

to the lack of empirical data on the hydrodynamics of stiff fish-like shapes we

use a previously published numerical simulation of the shapes of a fish and a

tadpole for comparison. Because the shape of a tadpole resembles that of a circle

with an attached splitter plate, we exploit the knowledge on hydrodynamic

consequences of such an attachment to test the model further and study the

effects of splitter plates for objects of several shapes at several Reynolds

numbers. Further, we measure the angles of separation of flow around a

circular cylinder and make small adjustments to the boundary condition and

the method to drive the flow. Our results correspond with empirical data and

with results from other models.

2.1 introduction

Mesoscale models of fluid dynamics have been used to study many phenomena in fields
such as physics and biochemistry. Examples include flow around cylinders (Breuer et al.,
2000), molecular diffusion (Falck et al., 2004), polymers in flow (Ripoll et al., 2004) and the
formation of micelles (Sakai et al., 2000). They have also been applied to study biological
systems, mainly at the cellular level, for example red blood cells in flow (Noguchi and
Gompper, 2005). In the present paper we test whether a mesoscale model of hydrodynamics,
namely Multi-Particle Collision Dynamics (Malevanets and Kapral, 1998, 2000), is suitable
to study stiff fish-like shapes in flow. This is part of a long-term project to investigate the
hydrodynamics of actively swimming fish, both alone and in a group. We prefer a mesoscale
model over the numerical methods derived from the Navier-Stokes equations of flow used
for similar problems (Eldredge, 2007; Kelly and Murray, 2000) because it allows us to study
the hydrodynamics of any shape without needing to adapt a coordinate grid to it (Liu et al.,
1996) or add additional assumptions, such as to impose vorticity (Eldredge, 2007) or to use a

1 PUBLISHED AS: D. A. P. REID, H. HILDENBRANDT, J. T. PADDING, C. K. HEMELRIJK – “FLOW AROUND
FISHLIKE SHAPES STUDIED USING MULTIPARTICLE COLLISION DYNAMICS,” PHYSICAL REVIEW E, VOL.
79, NO. 4, 046313, 2009.
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flow around static fishlike shapes

special boundary condition for edges such as a tail fin (Kelly and Murray, 2000). Further,
since it is an off-grid method, it is one of the most suitable mesoscale methods to extend
with objects that deform, such as an undulating fish.

The Multi-Particle Collision Dynamics model was introduced by Malevanets and Kapral
(1998) and has since been used to investigate a variety of micro-scale hydrodynamic sys-
tems (Noguchi and Gompper, 2005; Padding and Louis, 2006; Ripoll et al., 2004; Watari
et al., 2007). The model consists of a fluid of particles which move and collide, whereby
the collisions conserve both mass and momentum. At the macro scale the system exhibits
behaviour that is consistent with the Navier-Stokes laws of hydrodynamics. Expressions
for the viscosity and several transport coefficients have been derived (Kikuchi et al., 2003),
showing that the model is correct as regards both short- and long-range hydrodynamics.

Although fish swim at high Reynolds numbers of 103 up to 105 (Videler, 1993), in the
present study we confine ourselves to intermediate Reynolds numbers (ie. Re 10− 110)
which are relevant for fish larvae (Müller et al., 2000). We use these lower Reynolds numbers
for two reasons. First, it reduces computational effort, which scales quadratically with the
Reynolds number. Second, the comparability to earlier studies at the same Re number of
hydrodynamics of a circle and square (Lamura et al., 2001; Lamura and Gompper, 2002).

In this paper we confine ourselves to the study of stiff shapes, with the aim to later
extend the model to deformable ones. Because empirical data on hydrodynamic traits of
stiff fish are lacking we use other data, namely previously published results of a numerical
simulation of a fish and a tadpole (Liu et al., 1996, 1997). Apart from this comparison we
note that the shape of a tadpole resembles that of a circle with an attached splitter plate.
This resemblance we exploit because much is known about the hydrodynamic effects of
splitter plates (Kwon and Choi, 1996). Therefore we examine flow around, and drag of a
circle with and without a splitter plate attached to it. We do so for a series of different Re
numbers and object shapes. We further verify our implementation for a circular cylinder
with a new measurement, namely of the separation angle of flow. Our results confirm the
suitability of the model for the study of the hydrodynamics of fish-like shapes.

2.2 methods

2.2.1 System overview

We investigate the hydrodynamics of objects held in place in a channel. Although the model
has been shown to perform well in three dimensions (Allahyarov and Gompper, 2002), we
use two-dimensional simulations to reduce computational effort. A schematic overview of
the system is shown in Fig. 2.1. The channel has width W and length L. We set these to be
the same as those used by Lamura and Gompper (2002), against whose work we compare
our results. The width and length are both functions of the cross-section D of the object, with
W = 8 ∗D and L = 50 ∗D. This results in a blockage ratio B = D/W of 0.125 (Lamura et al.,
2001). The channel has solid walls at the top and bottom, and is periodic in the x-direction.
All objects are represented as polygons so that they may have any shape. We use a relatively
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wide system so that the wake of the object will die out before it encounters the object again.
Flow goes from left to right. We calculate the Reynolds number as

Re =
ρvxD

µ
, (2.1)

where ρ is the fluid density, vx is the flow speed along the channel centre far away from the
object and µ is the dynamic viscosity which consists of two components (Eq. 2.4, see below).

Figure 2.1.: The simulation setup. W is the width of the channel , L is its length (not to scale),
D is the object diameter, measured along the width-axis.

2.2.2 Multi-Particle Collision Dynamics

The system consists of a two-dimensional homogeneous space containing N identical par-
ticles of mass m. The positions xi and velocities vi of the particles are two-dimensional
vectors of continuous variables. Every time step ∆t the particles first move and then collide.
Moving leads to new positions xi according to equation 2.2:

xi(t+∆t) = xi(t) + vi(t)∆t. (2.2)

To simulate collisions, a square lattice with mesh size a0 is used to partition the system. In
each lattice cell, all particles simultaneously collide with each other, changing their velocities
according to

vi = v +ω · (vi − v). (2.3)

Here v is the mean velocity of the particles in the grid cell and ω is a stochastic rotation
matrix that rotates the velocities by either +α or -α (where α is a fixed system parameter),
with equal probability. It is the same for all particles within a cell. The rotation procedure
can thus be viewed as a coarse-graining of particle collisions over space and time. We set α
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to π
2 for three reasons. Firstly because it is the value used in the studies to which we compare

our results (Lamura et al., 2001; Lamura and Gompper, 2002). Secondly because Allahyarov
and Gompper (2002) showed that the kinematic viscosity is lowest for this value of α, thus
maximising the Reynolds number. Thirdly because rotation by π

2 is computationally very
fast.

An overview of parameter settings is shown in Table 2.1. From these parameters we derive
the mean free path, which is the mean distance travelled by a particle before it collides. This
path length is given by the expression l = ∆t

√
kBT/m, where kB is the Boltzmann constant,

and T is the temperature of the system. If the system temperature and thus the mean free
path is low, and l < a0, the same particles will often collide with each other on consecutive
time steps, which breaks Galilean invariance. To solve this problem we follow the solution
proposed by Ihle and Kroll (2001) and displace the lattice every time step by a vector with x-
and y-components which are randomly selected from the interval [0,a0].

Parameter name Symbol Value used
Temperature kBT 1.0
Lattice cell size a0 1.0
Collision rotation angle α π

2

Particle mass m 1.0
Particles per cell (average) ρ 10

Time step length ∆t 1.0

Table 2.1.: Parameter values used

An important advantage of this method is that its simplified dynamics has allowed the
analytic calculation of several transport properties (Kikuchi et al., 2003). The most important
one for this study is the viscosity µ, which consists of 2 components:

µ = µkin + µcoll, (2.4)

where µkin is the kinetic component of the fluid viscosity while µcoll is the collisional com-
ponent. The simplified equations for the components of the viscosity, omitting parameters
that are set to 1 in our simulations, are as follows:

µkin =
ρ

2

[
ρ

(ρ− 1+ e−ρ)
− 1

]
(2.5)

µcoll =
1

12
(ρ− 1+ e−ρ), (2.6)

where ρ is the average number of particles per collision cell. Since we use a density ρ = 10,
the viscosity in our simulation units is 1.306.

2.2.3 Boundary Conditions

At the macroscopic scale of organisms, there should be no slip at the interface between a
fluid and a solid. This means that the fluid’s tangent velocity to any surface at the interface

18



2.2 methods

should be zero - the so-called no-slip condition. We use two complementary methods from
previous implementations of the model to ensure minimum slip, i.e. the virtual particle rule
of Lamura and Gompper (2002), and the random-reflect boundary condition (Inoue et al.,
2001; Padding and Louis, 2006), both of which are outlined below.

Lamura and Gompper (2002) enforce no-slip boundary conditions in the collisional part
of the model by including virtual "solid" particles in cells which partially overlap the solid.
These virtual particles are included in the collisions among particles. The velocities of
the virtual particles are drawn from a Maxwell-Boltzmann distribution of mean zero and
temperature kBT . The mean of zero reduces slip while the temperature kBT causes the
virtual particles to act as thermostats.

In the random-reflect boundary condition particles that hit the solid get a new randomly
chosen velocity. The new velocity is relative to the surface and consists of a tangential
component vt and normal component vn, drawn from the following distributions (Inoue
et al., 2001; Padding and Louis, 2006):

P(vt) ∝ e−βv
2
t (2.7)

P(vn) ∝ vne−βv
2
n (2.8)

Here, β = m
2kBT

. Since the new velocities are Maxwell-Boltzmann distributed with
temperature kBT and a mean velocity tangential to the surface of 0, this method reduces
slip and has the additional advantage that it makes solids act as thermostats. We prefer
this method over the bounceback reflection used by Lamura and Gompper (2002) in which
particles reverse their velocity when they hit a solid. At small scales, a surface is not smooth
and thus random reflection is a better approximation.

When particles move, they may collide with a solid. Because the particles keep moving
after a collision, a series of collisions can occur within one time step ∆t if there are multiple
objects or if the shape of the object is complex. We therefore use the following iterative
procedure.

For each particle, the time δt it has spent moving during this time step is set to 0. Then, as
long as δt is smaller than the length of a time step ∆t (Table 2.1), the particle keeps moving.
Its projected movement is calculated from its velocity vector vi as follows: vi ∗ (∆t− δt). If
this line intersects a solid, a collision occurs at the collision point xcoll and δt is increased
by the amount of time it took to move there. The particle is assigned a new random velocity
following Eqs. 2.7 and 2.8. If δt is smaller than ∆t, it keeps moving, starting from xcoll and
checking for collisions in the same manner.

2.2.4 Flow

The expected flow profile in an empty channel is known as Hagen-Poiseuille flow. This flow
is characterised by a parabolic flow profile in a cross-section of the channel, with the speed
in the x-direction on each point of the y-axis given by

vx(y) =
4vmax(W − y)y

W2
, (2.9)

where vmax is the maximum speed, in the centre of the channel of width W.
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To create flow we apply a constant force mg in the x-direction to all fluid particles (Allah-
yarov and Gompper, 2002). In an experiment this force would correspond to a pressure drop
per unit length given by ∂P/∂x = −ρmg. We use a galilean-invariant thermostat (Padding
and Louis, 2006) to keep the system temperature constant. Due to the no-slip condition the
channel walls exert a shear force, which increases with the flow speed and the viscosity µ.
The system is stable when the gravitational force on the fluid is exactly balanced by this
shear force. In this steady state the flow is laminar Hagen-Poiseuille flow, with the speed in
the centre of the channel vmax given by

vmax =
ρW2g

8µ
. (2.10)

This method to create flow is different than that used by Lamura and Gompper (2002),
who imposed the Hagen-Poiseuille distribution (Equation 2.9) directly on particles in a
‘driving’ section of their simulation. However, this causes a significant disruption of the
flow: in the simulation area directly adjacent to the driving section large vortices are formed
along the channel walls, and the density of the fluid increases. Furthermore, the overall
flow velocity in the channel does not become uniform, with significantly reduced flow
speeds further away from the driving section due to channel friction. We therefore use
gravity-driven flow.

If the system starts at rest, the time required to reach this steady state depends on the
system size. This was approximately 50,000 time steps for the larger system sizes we
examined. However, since we can estimate the final vmax using Equation 2.10, we can
initialise the system with Hagen-Poiseuille flow of the appropriate speed using a Maxwell-
Boltzmann distribution of temperature kBT , with an average speed in the y direction of zero,
and an average speed in the x direction according to Equation 2.9. This means that for the
empty channel the system does not need time to stabilise.

For a clear wake structure to develop behind a static object in the channel, the simulation
must be run until it stabilises. In that case the flow profile far away from the object is still
parabolic, but due to the drag of the object it is slower than estimated by Equation 2.10. Tests
showed that at the Reynolds numbers we examined the speed is lower by about 60% if an
object is present, therefore we initialise the system with Hagen-Poiseuille flow of vmax 60%
slower than expected for the empty channel. Such an initialisation of the flow field reduces
the time required to reach the steady state by approximately 50% compared to starting the
simulation from a resting fluid.

2.2.5 Measurements

The recirculation length in the regime of steady recirculation (Lamura et al., 2001) is measured
as the length of the area of recirculation in the wake of the object. It is defined as the distance
from the rear end of the cylinder to the end of the wake. We define the end of the wake as
the rearmost point on the central axis where the average flow in the x-direction is zero. We
express the recirculation length in terms of the object diameter D.

The drag coefficient CD (Lamura et al., 2001) is defined as

CD =
2Fx

ρmv2D
, (2.11)
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where Fx is the force on the object in the direction of flow (in ma0δt−2) caused by the change
of momenta of the colliding particles, ρm is the density of the fluid (in ma−20 ) which equals
the density of particles ρ due to our choice of parameters (Table 2.1), v (in a0δt−1) is the
flow speed in the centre of the channel far away from the object and D is the cross-channel
width of the object measured in a0.

The angle of separation is the angle between the central x-axis and the separation point. A
separation point is defined as a point close to the surface where the flow velocity tangential
to the surface is zero (of course everywhere on the surface the average tangential velocity
is zero because of the boundary conditions). An object in low-Reynolds flow always has
separation points at angles 0 and 180, but at sufficiently high Reynolds numbers two new
separation points occur towards the rear of the object. To measure the separation angle
of these two new separation points, we draw a line from the centre of the object to the
separation point, and measure the angle φ between that line and the central x-axis (Fig. 2.2).
As can be seen from Fig. 2.2, the precise angle of separation is difficult to determine because
the flow is stochastic. We therefore estimate a minimum and maximum separation angle at
each side of the object by hand, and use the average of these four values.

Figure 2.2.: The separation angle φi. The four lines are estimates of the minimum and
maximum separation angle on each side of the object.

All programs were implemented in C++ and simulations were run on single Intel Core2

Duo PCs. Data analysis and visualisation were done with MATLAB ® (The MathWorks,
n.d.). The tadpole form was traced from a figure of a cross-section of a bullfrog tadpole (Rana
catesbeiana) by Liu et al. (1996). The fish shape was traced from a figure of a cross-section of
a mullet (Chelon labrosus) by Müller et al. (1997). Simulation time for the largest simulation,
that of a fish shape at Reynolds number 110, took approximately 10 days.

2.3 results

When we compare the flow field of the tadpole in our model to that in the numerical model
by Liu et al. (1996), it appears to be qualitatively similar as regards the area of low flow
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speed around the tail (Fig. 2.3a,b). In further agreement with their results, the addition of
leg-like extrusions to it changes neither the flow field nor the drag coefficient (Fig. 2.3c). This
confirms the conclusion of Liu and coworkers that the location of leg growth in tadpoles is
neutral in terms of drag (Liu et al., 1996).

Figure 2.3.: Flow fields around a tadpole shape. (A) from Liu et al. (1996), (B) in our model,
(C) in our model with added leg-like protrusions. Colour indicates flow speed,
with high speed red and low speed blue. Our simulations are at Reynolds
numbers of approximately 105, based on the cross-channel size of the object.

In contrast, when we add such extrusions to a fish shape, the drag coefficient increases by
25%, from 0.97 to 1.22. The drag coefficient is also higher for an S-shaped fish than for a
straight one with an increase of 95%, from 0.97 to 1.9, (Table 2.2).

The shape of a tadpole and its drag coefficient resemble those of a circular cylinder with an
attached splitter plate (Table 2.2). As regards its drag coefficient (Fig. 2.4a) and recirculation
length (Fig. 2.4b), our results of the circular cylinder without attachment resemble the results
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Shapes without and with splitter
Shape Re(Width) Re(Length) CD CD with splitter
Square 80 80 1.8 1.45

Circle 115 115 1.22 1.05

Flat Plate 70 1.75 2.0 1.7
Fishlike shapes without and with legs

Shape Re(Width) Re(Length) CD CD with legs
Tadpole 110 528 1.01 1.01

Straight fish 110 724 0.97 1.22

Undulated fish 110 724 1.9 N.A.

Table 2.2.: Drag coefficients for various shapes, with and without attached splitter or leg-like
protrusions. Reynolds numbers are shown both based on width as is common in
physics (width) and on length as is common in biology. All Reynolds numbers
discussed in this paper are width-based. All simulations are two-dimensional.

of the model by Lamura and Gompper (2002) as well as empirical data (Coutanceau and
Bouard, 1977; Tritton, 1959). Furthermore, the angles of separation of flow (Fig. 2.5) fall
within the range of empirical data from Wu et al. (2004).

We test in our model the hydrodynamics of attached splitter plates by measuring the drag
of a circular cylinder over a range of Reynolds numbers, both with and without an attached
splitter plate. Due to the splitter plate, the drag coefficient of the cylinder becomes higher
at low Reynolds numbers due to additional friction drag (Fig. 2.6). At higher Reynolds
numbers (Fig. 2.6) however, the splitter plate stabilises the wake and delays the onset of
vortex shedding (Fig. 2.7), which lowers the drag. We find that at these Reynolds numbers
splitter plates also reduce the drag of a square cylinder and flat plate (Table 2.2).

2.4 discussion

The results of our simulations show that at intermediate Reynolds numbers the Multi-Particle
Collision Dynamics model is suitable to investigate the hydrodynamics of fish-like shapes.
Our quantitative measurements agree with data of empirical and model studies. Thus, the
model is robust against adjustments of the boundary conditions and the method to drive
the flow. Further, flow around shapes of fish and tadpoles qualitatively resembles that of
numerical investigations (Liu et al., 1996).

As to the measurements of the recirculation length (Fig. 2.4a), these tend to be too low at
higher Reynolds numbers both in our results and in those of Lamura and Gompper (2002).
This arises probably because the wake sometimes deviates from the central axis along which
it is measured, and this deviation will cause an underestimation. The size of this error is
larger if the wake is longer, and therefore it is larger at high Reynolds numbers. This is due
to the considerable stochasticity of flow. Another consequence of this stochasticity is that to
maximally reveal patterns of flow, drag et cetera, data had to be averaged over an interval of
many time steps (to the order of hundreds). This interval was still much shorter than the
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flow around static fishlike shapes

Figure 2.4.: Results of simulations for basic shapes. (a): The recirculation length for the
circular cylinder as a function of the Reynolds number. Data from Lamura and
Gompper (2002) (◦), this study(�), Coutanceau and Bouard (1977) (*). Note that
steady recirculation only occurs at Reynolds numbers below 45. (b): The drag
coefficient for the square cylinder as a function of the Reynolds number. Data
from Lamura and Gompper (2002) (◦), this study(�) (c): The drag coefficient for
the circular cylinder as a function of the Reynolds number. Data from Tritton
(1959) (∗), Lamura and Gompper (2002) (◦) and this study(�).

24



2.4 discussion

Figure 2.5.: The separation angle for the circular cylinder as a function of the Reynolds
number. Data from an overview of experimental data by Wu et al. (2004)(gray
area) and mean values ± standard error of this study(�).

Figure 2.6.: The drag coefficient of the circular cylinder as a function of the Reynolds number.
Plotted values are for the cylinder with (•) and without (◦) trailing splitter plate.
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flow around static fishlike shapes

Figure 2.7.: Streamlines for flat plate, circle and square with and without splitter plate
attached. The Reynolds number is approximately 80. Note that the flat plate and
splitter plates are thicker than the mesh cell size a0. The cross-channel diameter
of the objects is the same in all cases.
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cycle of the phenomena we studied. Note that this averaging is common practice in studies
of Multi-Particle Collision Dynamics.

It is likely that the width-to-length ratio and blockage ratio of the channel have an effect
on flow and drag. We did not study this however, because our future work will concern flow
that is not confined between walls.

In future we intend to study the hydrodynamics of the locomotion of fish. Fish swim at
Reynolds numbers between 103 and 105 as measured by biologists, which is much higher
than those used in this study. However, the following factors will help us to work in
the model in the correct range of Reynolds numbers. First, the Re numbers measured by
biologists are based on the length of the fish, those by physicists on its thickness. This
reduces the Re number to about one fifth. Second, we may study these undulating fish
at somewhat lower Re numbers because real fish swim in in 3D, whereas our model is a
representation in 2D. Two dimensions restrict the degrees of freedom of movement and
hence, all phenomena – such as recirculation, vortex shedding and turbulence – occur at half
(or less) the Reynolds number of that in 3D (Table 2.3). Thus, wakes of fish in our model
may develop sooner too.

Flow phenomenon Re. 2D Re. 3D
Recirculation 10 25

Vortex shedding 45 280

Turbulence 1.2 ∗ 105 4.7 ∗ 105

Table 2.3.: Critical Reynolds numbers for the onset of flow phenomena for circular cylin-
der (2D) (Wu et al., 2004; Paranthoën et al., 1999; Hoerner, 1965) and sphere
(3D) (Taneda, 1956; Hoerner, 1965).

We conclude from our results that the Multi-Particle Collision Dynamics method is suitable
for the study of flow around stiff fish-like shapes. We will therefore proceed to investigate
its suitability for the study of fish that move.
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3
F L U I D D Y N A M I C S O F M O V I N G F I S H1

Abstract

The fluid dynamics of animal locomotion, such as that of an undulating fish,
are of great interest to both biologists and engineers. However, experimentally

studying these fluid dynamics is difficult and time-consuming. Model studies

can be of great help because of their simpler and more detailed analysis. Their

insights may guide empirical work. Particularly the recently-introduced Mul-
tiparticle Collision Dynamics method may be suitable for the study of moving

organisms because it is computationally fast, simple to implement, and has a

continuous representation of space. As regards the study of hydrodynamics of

moving organisms, the method has only been applied at low Reynolds numbers

(below 120) for soft, permeable bodies, and static fish-like shapes. In the present

paper we use it to study the hydrodynamics of an undulating fish at Reynolds

numbers 1100–1500, after confirming its performance for a moving insect wing

at Reynolds number 75. We measure 1) drag, thrust and lift forces, 2) swimming

efficiency and spatial structure of the wake and 3) distribution of forces along

the fish body. We confirm the resemblance between the simulated undulating

fish and empirical data. In contrast to theoretical predictions, our model

shows that for steadily undulating fish, thrust is produced by the rear 2/3ds

of the body and that the slip ratio U/V (with U the forwards swimming speed

and V the rearwards speed of the body wave) correlates negatively (instead

of positively) with the actual Froude efficiency of swimming. Besides, we show

that the common model practice of constraining individuals from accelerating

sideways causes them to resemble unconstrained fish with a higher tailbeat

frequency.

3.1 introduction

The swimming of fish is a topic of broad interest (Videler, 1993), not only to biologists (Abra-
hams and Colgan, 1985; Herskin and Steffensen, 1998; Svendsen et al., 2003; Walker et al.,
2005; Tytell and Lauder, 2008) but also to engineers (Barrett et al., 1999; Bandyopadhyay,
2002). In this context, undulatory swimming is important because it seems to be an efficient
mode of locomotion, whether fish swim alone (Barrett et al., 1999) or in groups (Weihs,
1973). However, it is still unknown what influences the efficiency of an undulating fish. It

1 UNDER REVIEW AT PHYSICAL REVIEW E AS: D. A .P. REID, H. HILDENBRANDT, J. T. PADDING, C. K.
HEMELRIJK – “FLUID DYNAMICS OF MOVING FISH IN A TWO-DIMENSIONAL MULTIPARTICLE COLLISION
DYNAMICS MODEL”
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fluid dynamics of moving fish

has been difficult, both empirically and theoretically, to accurately determine this (Schultz
and Webb, 2002). For example, a number of theoretical predictions has not yet been tested,
such as 1) that thrust is produced by the kinematics of only the tailtip, 2) that the swimming
efficiency is indicated by the slip ratio U/V between the forwards swimming speed U and the
rearwards speed of the body wave V . Also untested is the simplifying assumption of many
computational models that fish despite being constrained in their acceleration still swim
naturally (Lighthill, 1960; Liu et al., 1996; Wolfgang et al., 1999; Sui et al., 2007; Borazjani
and Sotiropoulos, 2008, 2009). To test these questions empirically is difficult. Therefore, in
the present paper we use a computer model (the so-called Multiparticle Collision Dynamics
method) to do so, because of its accuracy in all aspects of hydrodynamics (Malevanets and
Kapral, 1998) and its suitability to model biological hydrodynamics (Reid et al., 2009).

Models are needed because of the empirical difficulties of studying the kinematics and
hydrodynamics of swimming fish. Empirical measurements of the hydrodynamics are hardly
possible yet, and all empirical studies of swimming fish are labour-intensive: they involve
filming the fish, and frame-by-frame analysis of swimming kinematics (Gray, 1933) and
flows (using particle-seeded water) (Stamhuis and Videler, 1995; Müller et al., 1997, 2000;
Tytell and Lauder, 2004; Tytell, 2004). Further, the calculation of Froude efficiency is based
on the forces of thrust and drag, which for a steadily swimming fish cancel each other out.
To determine these forces accurately, according to Dabiri (2005) not only the velocity field
but also the pressure field around the fish should be measured. This is however not possible
so far empirically, but can easily be done in models.

Both mathematical and computational models have been used to study the hydrodynamics
of swimming fish. The mathematical models greatly simplify both the fish and the fluid:
the fish are represented by rods, flat plates or airfoils and the fluid is represented without
viscosity (Taylor, 1952; Lighthill, 1960; Wu, 1961; Cheng et al., 1991; Carling et al., 1998;
McMillen and Holmes, 2006). Due to these simplifications, even the most influential
mathematical theory (the Elongated Body Theory (Lighthill, 1971)) is inaccurate, specifically
as regards its use of the slip ratio U/V to indicate swimming efficiency (Cheng and Blickhan,
1994; Barrett et al., 1999; Liao et al., 2003b; Borazjani and Sotiropoulos, 2008, 2009).

Recent increases in computational power have made it possible to use computer models
that take into account both viscosity and the detailed shape of fish. These computational
models can be divided in two classes, namely numerical methods and particle-based ones.

Earlier numerical methods simulate hydrodynamics of swimming by approximating the
Navier-Stokes equations on a spatial grid. In these models, however, the calculations of the
interactions between the fluid and the organism are complex (Gilmanov and Sotiropoulos,
2005; Borazjani et al., 2008; Borazjani and Sotiropoulos, 2008, 2009), whether the grid is
continually adapted to the shape of the fish as in the older models (Liu et al., 1996; Barrett
et al., 1999; Schultz and Webb, 2002; Mittal, 2004) or is kept fixed, as in newer models, e.g.
the Immersed Boundary method (Peskin, 2002).

The particle-based methods simulate hydrodynamics through particles that move and
collide. From these interactions at the micro-scale, hydrodynamics according to the Navier-
Stokes equations emerge at the macro-scale. The particles may be restricted to a grid, such
as in the commonly-used Lattice Boltzmann method (Sui et al., 2007), or move freely as in
several other methods (Monaghan, 1992; Kajtar and Monaghan, 2008; Malevanets and Kapral,
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1998). In case they move freely, the interactions among particles may be smoothed over
longer ranges, such as in in the Smoothed Particle Hydrodynamics method (Monaghan, 1992;
Kajtar and Monaghan, 2008), or be more local, as in the Multiparticle Collision Dynamics
method (Malevanets and Kapral, 1998). Multiparticle Collision Dynamics has been shown
to produce hydrodynamics consistent with the Navier-Stokes equations (Malevanets and
Kapral, 1999; Kikuchi et al., 2003; Padding and Louis, 2006). It has been used to model
biological motion at a microscopic scale (i.e. at Reynolds numbers below 10−2). Examples
include groups of swimming sperm cells (Yang et al., 2008), star polymers under shear
flow (Ripoll et al., 2006) and tumbling red blood cells (Noguchi and Gompper, 2005), and
our recent study of stiff fish-like shapes (Reid et al., 2009).

All worthwhile theoretical models make predictions and simplifying assumptions. Here
we investigate the correctness of two predictions and one common simplification in the
Multiparticle Collision Dynamics method. The first two originate from the Elongated Body
Theory (Lighthill, 1960, 1971, 1975). They are, first, the prediction that thrust of swimming
fish is produced only by the kinematics of the tail-tip and second, that the slip ratio U/V
indicates swimming efficiency (Lighthill, 1971). Further, the assumption – used in many
computational models – that fish that are constrained from accelerating still show natural
swimming behaviour (Liu et al., 1996; Wolfgang et al., 1999; Sui et al., 2007; Borazjani and
Sotiropoulos, 2008, 2009). To gain more insight in the effects of constraints, we study fish
that are constrained from accelerating forwards, sideways or in both directions.

We choose the Multiparticle Collision Dynamics method because it has several advantages.
Firstly, it models viscosity. Secondly, it is computationally cheap because it is not continually
adapting a grid (Liu et al., 1996; Barrett et al., 1999; Schultz and Webb, 2002; Mittal, 2004;
Gilmanov and Sotiropoulos, 2005; Borazjani and Sotiropoulos, 2008, 2009). Thirdly, due to
its lack of a grid it is suitable to study complex, moving shapes. Fourthly, it is well suited to
parallellisation because there are no long-range interactions among the particles (Monaghan,
1992; Kajtar and Monaghan, 2008)). This means it can be efficiently executed on a modern
graphics card.

Computational efficiency is also the reason that we choose to simulate in two dimensions.
Besides the obvious gains due to eliminating one dimension of space, the computational
efficiency of two-dimensional simulations is also increased because all flow phenomena
occur at lower Reynolds numbers than in three-dimensional simulations (Reid et al., 2009).
Nevertheless, results of two-dimensional models of swimming fish resemble those of real
fish remarkably (Triantafyllou et al., 1993; Pedley and Hill, 1999; Schultz and Webb, 2002;
Sui et al., 2007).

We validate our model against empirical and theoretical data of thrust and drag of a
flapping model of an insect wing (Wang et al., 2004) and against empirical data of mullets
as regards equilibrium swimming speed and the structure and energy of the wake (Müller
et al., 1997).

We study undulating fish over a range of tailbeat frequencies, when they are constrained
in their acceleration, forwards, sideways or both. We measure their forwards and sideways
forces, their slip ratio U/V , their Froude efficiency and the distribution of forces along the
body.
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3.2 methods

3.2.1 Multiparticle Collision Dynamics

The model consists of two rectangular environments filled with fluid, one in which an insect
wing flaps and another in which a fish undulates. The environment is two-dimensional,
homogeneous, contains N identical particles of mass m and has height H and width W for
the insect wing and width W and length Lbox for the fish (Fig. 3.1). The positions xi and
velocities vi of the particles are given by two-dimensional vectors of continuous variables.
Every time step ∆t the particles first move and then collide with each other. Moving leads
to new positions xi according to the motion equation xi(t+∆t) = xi(t) + vi(t)∆t.

Figure 3.1.: Overview of the system for A) the flapping insect wing and B) the swimming
fish. The wing moves along the open arrow, over the distance A0. The height H
and width W of the box (insect wing) and the width W and length Lbox of the
box (fish) are not to scale.

To efficiently simulate collisions between particles, both time and space are coarse-grained
by using a square lattice: During the collision step, space is partitioned temporarily into cells
of size a0. All particles that are in a particular cell during the collision step are considered
to have collided with each other at some moment in the preceding movement step, during
which the particles moved in continuous space. To simulate collision, in each lattice cell
all particles change their velocities according to vi = v +Ω · (vi − v). Here v is the mean
velocity of the particles in the grid cell and Ω is a stochastic rotation matrix that rotates the
velocities by either +α or -α (where α is a fixed system parameter), with equal probability.
The rotation direction at a specific moment in time is the same for all particles within a
cell but it may differ between time steps. To ensure Galilean invariance we use the method
of Ihle and Kroll (2001) and displace the lattice every time step by a vector with x- and
y-components which are randomly selected from the uniform interval [0,a0).

An advantage of the MultiParticle Collision Dynamics method is that several transport
properties, such as the shear viscosity and the viscous friction have been analytically
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calculated for it (Kikuchi et al., 2003). The most important one for this study is the dynamic
viscosity µ, which consists of 2 components:

µ = µkin + µcoll, (3.1)

where µkin is the kinetic component of the viscosity (momentum transported through
motion of the particles) and µcoll is the collisional component (momentum transported
through interactions between the particles). The equations for the components of the
viscosity for the 2D model are (Kikuchi et al., 2003) :

µkin =
ρkBT∆t

a20

[
ρ

(ρ− 1+ e−ρ)(1− cos 2α)
−
1

2

]
(3.2)

µcoll =
m(1− cosα)
12a0∆t

(ρ− 1+ e−ρ), (3.3)

where ρ is the average number of particles per cell, kBT is the system temperature and ∆t
is the size of the simulation time step (Table 3.1).

Temperature kBT 1.0
Lattice cell size a0 1.0
Collision rotation angle α π

2

Particle mass m 1.0
Particles per cell (average) ρ 8

Time step length ∆t 1.0
Boundary width B 30

Boundary displacement steepness n 3

Dynamic viscosity µ 1.15
Insect wing motion

Amplitude A0 165.0
Chord length c 58.0
Frequency f 4 · 10

−4

Amplitude of rotation β π
4

Fish undulation
Length L 900.0
Number of edges NE 1024

Wave number kL 1.8
Tailbeat frequency f 4.8–6.3 · 10

−4

Table 3.1.: Parameter values used. All values are in simulation units.

3.2.2 System Boundaries

The studies we use for comparison assume that the flapping cross-section of a plexiglass
model of an insect wing (Wang et al., 2004) and the undulating fish (Müller et al., 1997)
are moving in a homogeneous, infinite field. We adapt our boundary conditions in order
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to mimic this. To fulfil the criterion of infinite field size, the ordinary periodic boundary
conditions suffice. in order to ensure homogeneity of the flow and eliminate irregularities
such as vortices, we added a scrambling boundary zone inside the simulation borders (zone
B in fig. 3.2). The scrambling eliminates local inhomogeneities of both density and velocity
by changing both the position and speed of particles: Each particle in the boundary zone
has a chance pdisplace to randomly move to a new position and have its speed overwritten
with a new random one drawn from a Maxwell-Boltzmann distribution with mean 0 and
temperature kBT . The probability of displacement smoothly increases from 0 at the inner
boundary of the zone to 1 at the outer boundary, following

pdisplace =

(
1−

Dist

B

)n
, (3.4)

where Dist is the distance to the nearest outer boundary and n determines the steepness
of the increase of pdisplace (Fig. 3.2). Displacement is parallel to the nearest system edge:
if the particle is close to a vertical border its y-coordinate is randomised, if it is close to a
horizontal border its x-coordinate is changed. The zones of vertical and horizontal shuffling
connect diagonally in the corners of the simulation. The new coordinate is uniformly
distributed over an interval R which lies between these diagonals (Fig. 3.2).

Figure 3.2.: Scrambling boundary condition. Within the boundary zone of thickness B (not
to scale), a particle p’s probability to be randomly displaced depends on its
distance Dist to the outer system edge. Displacement is parallel to the nearest
system edge. Dotted lines indicate the boundaries between horizontal and
vertical shuffling zones. The new position is along the interval R which lies
between these boundaries at distance Dist from the outer system edge.
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3.2.3 Boundary conditions and box size

Our boundary conditions appear to eliminate the vorticity of the flow of both the insect
wing (Fig. 3.3A) and the fish (Fig. 3.3B).

Figure 3.3.: Elimination of vorticity by the boundary zone for A) Wake of the flapping insect
wing. B) Wake of the swimming fish (Fig. 3.2). The arrow shows overall flow
direction. Black lines are truncated streamlines. Localised flow phenomena are
eliminated by the boundary zone (BZ) as fluid travels through it from one part
of the simulation (1) to another (2).

However, if the simulation box is too small interactions between the moving organism and
the boundary zone may influence our results. To determine the optimal box size, we tested
different box sizes for both insect wing and fish. For the insect wing we measured drag and
lift and found that the box height must be above 8 chord lengths c to avoid influencing the
drag (Fig. 3.4A) but does not influence the lift, and that there were no constraints on width
as regards either drag or lift. To be sure to avoid unwanted effects of the edges of the box,
we used relatively large boxes of ten by ten chord lengths.

For the undulating fish, we tested the effect of box size on the equilibrium swimming
speed. The box length appeared not to affect the speed (Fig. 3.4B), thus we conclude that
the boundary conditions correctly eliminate momentum and vorticity. For box width, it
appeared that for widths below 1 fish length L the swimming speed of the fish increased,
due to the channelling effect (Weihs, 1973) (data available on request). In order to avoid this
and leave space for the wake to develop we use a box length of four body lengths and a box
width of one body length.

3.2.4 Particle-Object Collisions

The fluid and organism interact during both the collision and the streaming step. These
interactions exchange momentum between the fluid and organism, and ensure that there
is no slip at the interface. This is done by two methods, ie. the fake particle rule during
the collision step (Lamura et al., 2001), and the random-reflect rule during the streaming
step (Inoue et al., 2001; Padding and Louis, 2006). The fake particle rule is applied to cells
which are partially filled by the organism and partially by the fluid. Here we represent the
organism by including fake particles in such a number that the number of particles in the
cell equals the mean density ρ (Fig. 3.5A) The velocities of these fake particles are drawn
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Figure 3.4.: Effects of size of simulation box on A) drag coefficient of the cross section of
an insect wing (box size in chord length c of the wing) and B) equilibrium
swimming speed (in simulation units) of the undulating fish (box size in fish
body length L.

from a Maxwell-Boltzmann distribution with temperature kBT and a mean velocity which is
equal to the local velocity of the organism. Note that the change in momentum due to the
rotation of the fake particles is important to include in the hydrodynamical forces on the
organism. In case of the fish, omission of this force greatly reduces forward motion (see Fig.
S1).

In the random-reflect boundary condition, particles that hit the organism get a new
randomly chosen velocity. The new velocity, relative to the surface, consists of a tangential
component vt and normal component vn, drawn from the following distributions (Inoue
et al., 2001; Padding and Louis, 2006):

P(vt) ∝ e−βv
2
t (3.5)

P(vn) ∝ vne−βv
2
n , (3.6)

with β = m
2kBT

. Both methods also have the benefit that they make the organism act as a
weak thermostat because they introduce random velocities of the average system temperature
kBT .

The organisms in our models are represented as polygons. This means that their outline
is composed of a finite series of lines, so-called edges, which meet at points called vertices.
Every time step ∆t the vertices move according to the specified motion of the object, which
represent the flapping of the wing or the undulation of the fish (Eqs. 3.8, 3.10). We use Euler
integration, meaning that during a time step the displacement of the vertices is equal to
their velocity. The local velocity of any point on the object’s surface can be calculated by
interpolating the velocities of the two adjacent vertices.

Because the same particle may collide with an object multiple times within one time step
∆t, we use the following iterative procedure to determine its trajectory. For each particle,
the time δt it has spent moving during the current time step is set to 0. Then, as long as
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Figure 3.5.: A) “Fake particle” boundary condition. Fake particles (indicated in gray) are
included in cells which partially overlap the object (indicated in light gray),
and where the number of particles is below the mean fluid density. Mean fluid
density ρ is 8 (Table 3.1). B) Schematic overview of the intersection between
the path of a moving particle r and a moving edge E. The precise intersection
point depends on the movement speed of both the particle (dr) and of the edge
(dp and dq for the endpoints of the edge). The area through which the edge E
moves during the time step ∆t is indicated in gray.

δt is smaller than the length of a time step ∆t (Table 3.1), the particle keeps moving. Its
movement path is calculated from its velocity vector vi as follows: vi · (∆t− δt). If this line
intersects one of the edges of an object, a collision occurs at the collision point xcoll and δt
is increased by the amount of time it took to move there. The movement path of a particle
can be parametrically expressed as a line segment r(t) = r0+ tdr with tε[0, 1], where r0 is its
initial position and dr is its velocity. The motion of the edges of the object is defined by the
motion of the vertices at their endpoints. The movement path of the two vertices connected
by an edge can also be expressed as two line segments: let p(t) and q(t) be the position
of the vertices over time, as follows : p(t) = p0 + tdp and q(t) = q0 + tdq. We then also
define the edge itself as a line segment, pointing from p(t) to q(t). Its starting position is
p(t) and its direction u(t) is u(t) = q(t) − p(t), or more explicitly

u(t) = (q0 − p0) + t (dq − dp) . (3.7)

Any point on the edge can be expressed as E(s, t) = p(t) + su(t) = sq(t) + (1− s)p(t).
The movements of particle and edge intersect (Fig. 3.5B) if at any time t ′ the equality

E(s, t ′) = r(t ′) holds. This gives two equations (one for each component x and y) with two
unknowns (s and t ′). Solving this leads to a quadratic equation, the roots of which can be
found using the quadratic formula. More details can be found in the appendix.

After the collision, the particle gets a new random velocity following Eqs. 3.5 and 3.6, with
the local speed of the object surface added to the result. If δt is smaller than ∆t, it keeps
moving, starting from the point of collision xcoll and may collide several additional times in
the same manner.

The force which the fluid exerts on the object during a time step ∆t is the opposite of
the sum of the change in momenta of all particles that collide with it during that time step,
divided by the time step ∆t. Note that particles may collide with the body both during the
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streaming step (as described above), and during the rotation step (through the fake particle
rule).

3.2.5 Insect Wing

Figure 3.6.: Schematic overview of a hovering fruit fly. A) Side view: a series of snapshots of
the moving cross-section of the wing as moves back and forth over distance A0.
The leading edge of the wing is represented by a dot. Movement and rotation
of the wing are in phase. The elliptical path of motion is a visual aid: in the
simulations the wing does not displace vertically. B) Top view of the insect:
the dashed line shows which cross-section (of chord length c) of the wing we
simulate. C) Forces on the moving wing. The forces act on the centre of gravity.

Our simulations of the cross-section of an insect wing (Fig. 3.6A,B), based on those by
Wang et al. (2004), concern a two-dimensional representation of a transverse cross-section of
a horizontally beating upscaled model of a wing of a fruit fly (Drosophila melanogaster) as it
hovers in place. We represent the cross-section of the wing by an ellipse with a thickness
ratio of 0.125 (Fig. 3.6C). We make the wing (with chord length c) move, without it being
influenced by the flow around it, as follows. It moves back and forth through the horizontal
plane over a distance A0 while it rotates around its centre of mass (Figs. 3.1A, 3.6A). The
position x(t) of the centre of the wing cross-section and the angle αw(t) between the wing
and the y-axis change over time with frequency f according to

x(t) =
A0
2

cos(2πft) (3.8)

αw(t) = αw,0 +β sin(2πft+φ). (3.9)

Here A0 is the amplitude of the path of the wing, αw,0 is the initial angle, β is the
amplitude of the angle and φ is the phase difference between the functions of position and
angle. This phase difference determines the angle of the wing when it reverses its movement.
If there is no phase difference the wing is vertical when its movement reverses, and the
wing stroke is symmetrical. If rotation is advanced, the wing is already rotating back from
the vertical position before it reaches the extremes of its movement path. If rotation is
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delayed, the wing has not finished rotating through the vertical as it reaches the extreme of
its stroke (Dickinson et al., 1999; Wang et al., 2004). Like in the study of Wang et al. (2004)
we compare the effects on drag and lift of symmetrical (φ = 0), advanced (φ = π

4 ) and
delayed (φ = −π

4 ) rotation. We measure the force which the fluid exerts on the moving wing,
and decompose it into lift and drag components. The insect is hovering, therefore its lift
compensates for the gravity. The drag is horizontal and counteracts the wing’s motion.

3.2.6 Fish

Figure 3.7.: Schematic overview of the deviation from the central axis of the spine of an
undulating mullet.

We study the mullet (Chelon labrosus) because it swims at a steady speed by undulating its
body without using its pectoral fins (Videler, 1993). We simulate an undulating horizontal
cross-section of a mullet, traced from the body contours presented by Müller et al. (1997).
Because the shape of the fish is more curved at the head than at the tail, we made the
polygonal edges at the head of the fish shorter than those of the rear. Note that the
undulation of our simulated fish is not influenced by the flow around it. We formulate
the characteristics of the propulsive wave along the body of the fish in terms of the lateral
movement of its central, longitudinal axis, or spine (Videler and Hess, 1984). To do so, we
consider the spine of the straight fish to have an y-value of 0 (Fig. 3.7). We scale the fish in
terms of fractions of its body length L, so that x = 0 at the front of the fish and x = 1 at its
rear. For each point x along the spine of the fish, its lateral deviation from the central axis
over time is given by

y(x, t) = θ(x) sin(kLx−ωt). (3.10)

Here θ(x) is the amplitude envelope function, which varies nonlinearly along the fish
body, kL = 2π

λ is the wave number, which indicates the number of complete sine waves on
the body for a wavelength λ , and ω = 2πf is the angular velocity for the tailbeat frequency f.
For undulating mullets the amplitude of the wave is smallest behind the head and increases
quadratically towards the tail:

θ(x) = θ0 + θ1x+ θ2x
2, (3.11)

Steady swimming by undulating the body is characterised by two parameters, the Reynolds
number Re and the Strouhal number St, which are defined as (Reynolds, 1883; Videler, 1993;
Vogel, 1996):

Re =
ρUL

µ
, (3.12)
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St =
Af

V
, (3.13)

Where ρ and µ are respectively the density and dynamic viscosity of the fluid, and
the remaining parameters describe the fish: L is its length, U its swimming speed, f the
frequency of its tailbeat and A is two times the maximum lateral excursion of its tail tip over
the tailbeat cycle, which is used as an approximation of the width of its wake.

To give an individual infinite space in which to swim, we move the simulation box along
with it. We do so as follows: Whenever the centre of gravity of the fish has moved one cell
a0 away from its original position within the centre of the box, we move the box centre
towards that of the fish by one simulation unit a0. We shift only when it has moved at
least one simulation unit, because smaller shifts may cause floating point rounding errors
to accumulate. The shift may be horizontal, vertical or both. Subsequently, we apply the
periodic boundary condition, thus any particles which left the simulation box through one
side are reintroduced at the other side of the simulation, with their velocity overwritten with
a random one drawn from a Maxwell-Boltzmann distribution with mean 0 and temperature
kBT .

To study the effects of constraint on the acceleration of the fish along its two axes of
movement (forwards and sideways), we test the four possible combinations of constraint
: 1) free acceleration along all directions (“unconstrained”) 2) No sideways acceleration
(“sideways constrained”) 3) Neither forwards nor sideways acceleration (“all constrained”)
and 4) No acceleration forwards (“forwards constrained”). If acceleration is unconstrained
in at least one direction, we apply along this direction the appropriate component of the net
hydrodynamical force to the centre of gravity of the fish. So for instance if a fish is sideways
constrained, this implies that the centre of gravity does not accelerate sideways (Fig. 3.8).
We consider the fish to have a density equal to that of the fluid, and a mass equal to its
surface area times the density ρ. To displace the fish, we use Euler integration and change
the position of its centre of gravity by its speed vector.

Figure 3.8.: Sideways speed (in simulation units) over time of the centre of gravity of the
fish and its tailtip, for fish that either are or are not constrained from sideways
acceleration.
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To keep the tracking of the forwards and sideways direction of the fish as simple as
possible, we choose not to apply the torque to rotate the fish. Preliminary tests showed no
effect of this omission on the measured variables.

3.2.7 Parametrisation and Experimental Setup

In the Multiparticle Collision Dynamics model, objects should not move faster than ap-
proximately 20% of the speed of sound in the fluid, because higher speeds cause signif-
icant compressibility effects such as shockwaves. This means that their Mach number
Ma = U/Usound should not exceed 1/5 (Lamura et al., 2001; Lamura and Gompper, 2002).
For our parameter settings (Table 3.1), the speed of sound Usound =

√
2kBT/m =

√
2

(see (Lamura et al., 2001)). Thus, the maximum velocity of the organisms in our model per
simulation time step is 15 ·

√
2 = 0.28a0/∆t. We conservatively choose a somewhat lower

maximum velocity for our default parametrisation, 0.2a0/∆t. This restriction of the velocity
limits our choices for the parametrisation of the moving organisms.

We parametrise our simulation of the flapping cross section of the wing after the ex-
periments with an upscaled model of a Drosophila wing by Wang et al. (2004). We tune
the Reynolds number (75) to theirs, via the wing chord length c and wing beat amplitude
A0 and the relation A0/c = 2.8 between them. In our simulation the Reynolds number
of the insect wing is Re = Umaxcρ/µ = 1.29c, where the wing’s maximum speed Umax
is set to 0.2 as previously explained. Thus for a Reynolds number of 75, the chord length
c = 75/1.29 = 58a0 and the wing beat amplitude A0 = 2.8 · c = 163a0. The experimental
insect wing has a chord length of 0.067 m (Sane and Dickinson, 2002), thus our simulation
length scale is a0 = 0.067/58 = 0.012 m.

To determine the size of the simulation time step ∆t in seconds, we calculate the ratio
between the frequency of the wing beat in our simulation fsim and that of the real wing
freal = 0.25Hz. Because the maximum of the speed function δ

δtx(t) is Umax = A0cπfsim,
we find that for the maximum speed of 0.2 that we chose due to Mach number constraints
fsim = 0.2

163π = 3.9 · 10−4∆t−1. Thus, the simulation time step for the insect wing simulations
∆t is 1.6 · 10−3 s (Table 3.2).

Our fish simulations are parametrised to resemble the experimental results of Müller et al.
(1997) as regards undulation envelope, and size (Table 3.2). Our model of a fish is 900a0
long, which was the maximum that was computationally feasible on our hardware. Thus
our simulation unit of distance a0 = 0.126

900 = 1.4 · 10−4m.
We use the ratio between the swimming speed of the simulated and of the real fish

to calculate the length of the simulation time step. The swimming speed is likely to be
dependent on the tailbeat frequency (Videler, 1993), which we vary in our simulations.
Here we present the time step calculations for the tailbeat frequency of the real mullet; the
calculation is the same for other swimming speeds. The swimming speed of the model Usim
is intended to be 0.2a0/∆t = 1.4 · 10−4m/∆t, and the real fish swims at 0.176m/s. Therefore
∆t = 0.2 · 1.4 · 10−4s/0.176 = 1.5 · 10−4s (Table 3.2).

We start the simulations without directional flow, by initialising all particles with ran-
dom velocities drawn from a Maxwell-Boltzmann distribution of mean 0 and temperature
kBT (Table 3.1). Thus, all directional flow in the simulation is caused by the movement of
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Insect wing model
Parameter name Value
Amplitude 0.187 m
Chord length 0.067 m
Time step 0.0016 s

Frequency 0.25 s−1

Fish
Parameter name Value
Length 0.126 m
Time step 0.00015 s

Tailbeat frequency 3.2–4.2 s−1

Tailbeat amplitude 0.0126 m
Undulation amplitude coefficient θ0 0.02

Undulation amplitude coefficient θ1 0.08

Undulation amplitude coefficient θ2 0.16

Table 3.2.: Parametrisation for the cross section of the insect wing model (Wang et al., 2004)
and the fish in SI units.

the organisms. Following the experiments of Wang et al. (2004) we simulate 4 full wing
beats of the insect wing. For the fish we follow the experiments of Müller et al. (1997) of a
fish swimming at steady speed by letting the simulation run until the swimming speed and
surrounding flow of the fish reach equilibrium.

3.2.8 Computational Measurements

For the flapping insect wing, we measure the forces of drag (horizontal) and lift (vertical).
Like Wang et al. (2004), we nondimensionalize these forces by dividing them by the maximal
force measured for a steadily moving wing.

For the undulating fish we use the same measurements as the experiments by Müller et al.
(1997). They estimate the thrust force FT indirectly, from the circulation Γ of the vortices
in the wake. They use this indirect method because the thrust and drag operate along the
same axis in opposite directions, and cancel each other out at a constant swimming speed.
The circulation Γ of the vortices in the wake is calculated as Γ =

∮
c v · dl, where c is a closed

curve around a vortex, v is the fluid velocity and dl is a tangential unit vector along the
curve c. From Stokes’ theorem, the curve integral can be rewritten as Γ = vdy ′ =

s
ωdA,

with ω being the vorticity and A the surface area of the vortex. In our method, we therefore
sum the vorticity over the area of the vortex.

Due to the stochasticity of the method, spatial averaging is needed to obtain a smooth
flow field. We employ a Gaussian convolution with a kernel of 50 a0.

To measure the stability of the wake of the fish, we study an area of 1.5 body lengths
behind the swimming fish. We measure the distances in the direction of swimming between
subsequent vortices that rotate in the same direction (dx in Fig. 3.9), and the distances
perpendicular to the swimming direction between subsequent counter-rotating vortices (dy
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in Fig. 3.9). We establish the centre of a vortex by drawing in a screenshot two perpendic-
ular lines through its area of maximal vorticity (the darkest for clockwise or lightest for
counterclockwise vortices, respectively), and assuming that the centre lies at the intersection
point of the two lines. The average distance we calculate over 10 snapshots taken at random
intervals. We also measure the forces on the fish directly.

Figure 3.9.: Wake of the swimming fish in our model, with truncated streamlines. Distance
between vortices in the swimming direction and perpendicular to it are indicated
as dx and dy, respectively. Vorticity is shown by the colour, with blue indicating
clockwise and red indicating counterclockwise vorticity.

In our simulations we determine thrust and sideways power as follows. The total for-
ward force F at any moment t is calculated by a summation over the skin edges of the
fish (Fig. 3.10):

F(t) =
∑
i

Fi · ef =
∑
i

(
Fin · ef + Fit · ef

)
, (3.14)

where Fin = (Fi · n)n is the force vector perpendicular to the skin at edge i, Fit = Fi − Fin
is the force vector tangential to the skin and ef is a forwards-pointing unit vector. The
summations of the first and second element in the last expression thus represent the pressure
and viscous contributions, respectively, to the forward force, though it should be noted that
if the tangential speed varies strongly around the body the viscous forces may have a small
normal component.

To separate the thrust and drag out of this total body force following the method of
Borazjani and Sotiropoulos (2008), we decompose the force, depending on whether or not
the force is positive (thrust) or negative (drag):

T(t) =
∑
i

[
Fin · efH(Fin · ef) + Fit · efH(Fit · ef)

]
(3.15)

D(t) = −
∑
i

[
Fin · efH(−Fin · ef) + Fit · efH(−Fit · ef)

]
, (3.16)

where H is the Heaviside step function. Thus, for each edge, for both the perpendicular
(pressure) and tangential (viscous) force on it, we add the forward component of the force to
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Figure 3.10.: Decomposition of the force Fi on the skin of the fish into pressure (Fn) and
viscous (Ft) components (see Methods). The surface normal is indicated as n
and the unit vectors pointing forwards and sideways are labelled ef and es.

the thrust if it is positive, and to the drag if it is negative. The sum of thrust and drag is the
total force F(t):

F(t) = T(t) −D(t). (3.17)

We calculate per time step ∆t the sideways power Ps which the fish exerts:

Ps(t) =
∑
i

Fi · esViund, (3.18)

where es is a unit vector in the sideways direction, and Viund is the sideways velocity of
edge i.

From these forces, we determine the swimming efficiency. Following Tytell and Lauder
(2004) and Borazjani and Sotiropoulos (2008), we use a modified version of the Froude
efficiency:

η =
T̄ Ū

T̄ Ū+ P̄s
, (3.19)

where T̄ is the mean thrust over a tailbeat cycle, Ū is the mean forwards speed of the fish
and P̄s is the mean sideways power it exerts over a tailbeat cycle. Thus, the Froude efficiency
η expresses the percentage of the total power which is converted into forwards speed.

To measure the distribution of the forces along the body of the fish, we calculate them for
each edge of the polygon that represents the body, and compute the average and standard
deviation per segment of the body. Each segment comprises an equal number of edges, and
thus is shorter near the head.

All programs were implemented in a combination of C++ and OpenGL shading language,
and simulations were run on a single Intel Core2 Quad PC. Single simulations of a 20

tialbeats of a swimming fish took approximately 12 hours on a single PC. Data analysis and
visualisation were done with MATLAB ® (The MathWorks, n.d.) except for the vorticity
plots which were made in our simulations.
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3.3 results

3.3.1 Comparison to empirical data

We verify the correctness of our model on the basis of empirical data of a model of an insect
wing (Wang et al., 2004) and of a swimming mullet (Müller et al., 1997).

For our insect wing, the time series of its drag and lift coefficient resemble experimental
results of Wang et al. (2004) in all cases: with advanced rotation (Fig. 3.11A), with no phase
difference between translation and rotation (Fig. 3.11B) and with delayed rotation (Fig. 3.11C).
Of particular interest is the resemblance regarding two peaks of the drag and lift. One peak
occurs close to the moment at which the wing has reversed its direction (Fig. 3.11B, indicated
with ’w’ at 3.1s) while the other happens just after the middle of the wing beat (Fig. 3.11B,
indicated with ’r’ at 3.3s), as the wing is beginning to slow from its maximum velocity and
reverses its rotation. The first peak is most likely due to the wing re-encountering its own
wake (a phenomenon known as ’wake capture’ (Dickinson et al., 1999)), while the second
peak is probably caused by a combination of rotation and deceleration of the wing (Wang
et al., 2004). We confirm that the wing produces more lift with advanced rotation and much
less lift with delayed rotation when compared to a wing with no phase difference (Table 3.3),
similar to experimental data (Dickinson et al., 1999; Sun and Tang, 2002).

Average drag and lift coefficients
CL CD

Expt Sim Expt Sim
Sym 0.435 0.477 0.69 0.71

Adv 0.519 0.656 0.56 0.61

Delay 0.09 0.02 0.529 0.557

Table 3.3.: Drag and lift coefficients of the flapping insect wing averaged over time for
symmetrical rotation (φ = 0), advanced rotation (φ = π

4 ) and delayed rotation
(φ = −π4 ). Experimental results were time-averaged from figures 2–4 of Wang
et al. (2004).

Our fish, for the same tailbeat frequency as the real fish, reaches a similar cruising speed
(Table 3.4). Also similarly to real fish, our modelled fish produces a wake with a reverse
von Kármán vortex street of alternating, counter-rotating vortices, at a fixed distance and
angle from each other, with a jet zig-zagging between them (Fig. 3.9, movie online). The
wake resembles that of a mullet (Fig. 5 in (Müller et al., 1997)) as regards the stability of
its structure, the size of the vortex rings, their angle with the direction of swimming and
their circulation, and the the variability of the distances between the vortices (dx and dy in
Fig. 3.9), both in the swimming direction and perpendicular to it (Table 3.4).

From the correspondence of our results to empirical data (Wang et al., 2004; Müller et al.,
1997) we conclude that our simulations are sufficiently accurate to further investigate the
swimming of fish.
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Figure 3.11.: Drag and lift coefficients of a flapping insect wing over time, at A0/c = 2.8.
Light gray areas indicate that the wing moves to the right. Real wing data
taken from Wang et al. (2004). A) φ = −π4 (delayed rotation) B) φ = 0. Force
peaks associated with wake capture and rotational forces are labelled ’w’ and
’r’, respectively. C) φ = π

4 (advanced rotation).
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Measure Simulation value Experimental value
Swimming speed

Equilibrium forwards swimming speed U 1.55 Ls−1 1.4 Ls−1

Wake structure and energy
Ring radius R 104.5 a0 = 1.45cm 1.9 cm
Ring angle φ 52◦ ± 9 40◦ ± 10
Circulation Γ 9.6 · 10−4m2s−1 7.6 · 10−4m2s−1
Standard deviation of vortex spacing dx, dy 5%, 5% 6%, 6%

Table 3.4.: Results for the equilibrium swimming speed and wake structure and energy of
the swimming fish (Fig. 3.17). Experimental results are from Müller et al. (1997).
Experimental vortex spacing estimated from their figures. Error ranges are the
standard deviations.)

3.3.2 Model results

We study the contributions to thrust and drag of forces perpendicular and tangential to
the skin. We investigate where on the body thrust and drag are produced, and what the
effect is of tailbeat frequency and acceleration constraints on a number of measures such
as swimming speed, thrust, drag, exerted sideways power, slip ratio, Froude efficiency and
Strouhal number.

Figure 3.12.: Force in the swimming direction of the freely swimming fish, decomposed into
pressure and viscous component. Positive values indicate thrust, negative drag.

Thrust appears to be caused mainly by forces perpendicular to the skin (pressure), and
drag is caused by tangential forces (viscosity) (Fig. 3.12). The thrust appears to be produced
not only by the tail (segment 8, Fig. 3.13), but by the complete rear 2/3ds of the body
(segments 5-8, Figs. 3.13, 3.14). The only area that never produces thrust is the head of the
fish, which is responsible for the majority of the drag (segments 1–4, Fig. 3.13) . The part of
the body that produces the least drag is just behind the head of the fish (segment 5, Fig. 3.13).
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Figure 3.13.: Force in the swimming direction as distributed over several segments of the
skin of the fish. Positive values indicate thrust, negative drag. Error bars
indicate one standard deviation.

The locations and strengths of the forces on the skin (Figs. 3.14, 3.13) do not differ across the
6 tailbeat frequencies, 3 acceleration constraints and the unconstrained fish (data available
on request). This similarity is a consequence of the small size of both the time step ∆t and
of the segments: differences between different settings can only be detected by averaging
over both space and time.

As to the tailbeat frequency in our model, it positively affects forwards swimming
speed (Fig. 3.15A), average lateral power (Fig. 3.15B), thrust (Fig. 3.15C) and the slip ratio
(Fig. 3.15D), and it decreases the Froude efficiency (Eq. 3.19, Fig. 3.15E). This arises as follows:
with increasing tailbeat frequency, the forwards speed increases because of the increased
thrust. The Froude efficiency decreases because the sideways power increases more strongly
than the forwards speed and thrust do. We explain the higher slip ratio (i.e. the higher
swimming speed U relative to the rearwards speed of the body wave V) as resulting from
the increased inertia relative to viscosity (i.e. the increased Reynolds number): when its
tailbeat reverses, viscous drag slows the fish down less at higher tailbeat frequency. Thus we
expect the variability of the swimming speed to decrease with the tailbeat frequency. We
confirm this by the significant negative correlation between the tailbeat frequency and the
coefficient of variation of the swimming speed (N = 8, Spearman’s Rho = −0.88, p = 0.007).

The increased tailbeat frequency influences the wake by increasing the radius of the
vortex rings and their angle φ with the swimming direction, implying that the wake widens
(Figs. 3.16A, B). The circulation in the wake increases significantly for the unconstrained
fish (Fig. 3.16C). For each of the sideways-constrained fish (twice N = 6, Spearman’s Rho
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Figure 3.14.: Drag and thrust forces on the skin of the fish over time, for tailbeat frequency
of 3.8Hz, unconstrained acceleration. Black indicates drag, gray thrust. Force
areas are composed of lines perpendicular to the skin, with the length of the
line indicating the relative size of the force on that segment of the skin.
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Figure 3.15.: Results of swimming fish that are either constrained or free in their forwards
and sideways acceleration, for several tailbeat frequencies. A) Equilibrium
forwards swimming speed B) Average lateral power exerted (in simulation
units) by the fish C) Average forwards thrust component (in simulation units)
D) Slip ratio U/V . E) Froude efficiency of the swimming fish (Eq. 3.19)
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Figure 3.16.: Results of swimming fish that are either constrained or free in their forwards
and sideways acceleration, for several tailbeat frequencies. A) Radius of the
vortex rings in the wake of the fish B) Angle φ of the vortex rings with the
forwards swimming direction (Fig. 3.17) C) Circulation Γ in the vortex rings of
the wake D) Equilibrium Strouhal number of the swimming fish as a function
of the Reynolds number.
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Figure 3.17.: Schematic overview of the wake structure of a mullet, after (Müller et al., 1997).

= 0.77 NS), and for the forwards-only constrained fish (Spearman’s Rho = 0.83 NS), however,
tailbeat frequency does not significantly influence circulation strength. The Strouhal number
is lower for higher tailbeat frequencies (Fig. 3.16D). This implies that the vortices are closer
to each other along the swimming direction.

Concerning the effects of constraint of sideways acceleration: Compared to no constraint,
it significantly increases the swimming speed (Fig. 3.15A), sideways power (Fig. 3.15B),
thrust (Fig. 3.15C) and the slip ratio U/V (Fig. 3.15B), and decreases the Froude efficiency
(Fig. 3.15D). For the wake, sideways constraint increases the size, angle and circulation of
the vortex rings (Figs. 3.16A-C) and decreases the Strouhal number (Fig. 3.16D). Note that
these results are all similar to those of an increased tailbeat frequency. This arises because
the sideways constraint increases the sideways velocity of the tail of the fish throughout its
tailbeat (Fig. 3.8), because the fish does not accelerate in the direction opposite to where its
tail pushes the water.

The effect of forwards constraint is hardly visible (Figs. 3.15, 3.16), except for reducing the
circulation if the fish is sideways free and increasing it if the fish is sideways constrained
(Fig. 3.16C). Since circulation is derived from the values of vorticity and vortex ring radius
which are highly stochastic in our model, the importance of these differences is doubtful.

3.4 discussion

The resemblance between the fluid dynamics in our model and empirical data of the physical
model of a wing of a hovering insect (Wang et al., 2004) and of the undulating fish (Müller
et al., 1997) shows the suitability of the Multiparticle Collision Dynamics model for such
studies.

Our results disagree with the two theoretical predictions (first, thrust exclusively produced
by tailtip and second, slip ratio as an estimator of efficiency) and further show problems
with the use of constrained acceleration as a representation of natural swimming. As regards
the first point, we show that the rear 2/3ds of the body produces thrust at some point during
the swimming cycle. Thus, empirical studies of the swimming of fish should investigate
flow along the entire body rather than only focusing on the tail-tip and the wake (Müller
et al., 1997; Tytell and Lauder, 2004), as illustrated experimentally by Müller et al. (2001) and
Anderson et al. (2001).
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As regards the second point, the slip ratio appears not to be an estimator of efficiency. The
inverse relationship between it and Froude efficiency in our model is intriguing, because
it is opposite of that predicted theoretically (Lighthill, 1960, 1971). So far the relationship
between slip ratio and efficiency has only been studied empirically for fish swimming behind
pillars, where they appeared to be more efficient (in terms of lower muscle activity) and
have a lower slip ratio (Liao et al., 2003b). However, this situation, where the flow was
unsteady and undulation was largely passive, cannot really be compared to a fish that swims
actively in uniform flow, and therefore more empirical data are needed to test our results.
This should be done by measuring of a fish both kinematics and energy expenditure (for
example by using respirometers as proposed by Liao (2007)). In the meantime, our results
warn against the common practise of using the slip ratio as an estimator of the efficiency of
swimming fish (Gillis, 1998; Müller et al., 2002).

Besides, our finding that the slip ratio U/V increases with the tailbeat frequency and
Reynolds number is supported by our recent meta-analysis of empirical data (van Weerden
et al., 2011).

Further, our results suggest that fish that are constrained not to accelerate sideways pro-
duce forces that qualitatively resemble those of unconstrained fish that have a higher tailbeat
frequency. Simulation studies that constrain their fish sideways (Sui et al., 2007; Borazjani
and Sotiropoulos, 2008) are thus likely to overestimate all the forces and accompanying
kinematic and hydrodynamic patterns associated with a particular tailbeat frequency. The
general relevance of this needs to be tested in 3D models.

Three of our results are supported by those of other studies, both theoretical and empirical.
First, Borazjani and Sotiropoulos (2009) also found a reduction of Froude efficiency with an
increase in Reynolds number in their simulations of a swimming eel. Second, the decrease of
the Strouhal number with increasing Reynolds number in our model fits both computational
results of a swimming mackerel by Borazjani and Sotiropoulos (2008) and experimental data
of swimming Pacific salmon of Lauder and Tytell (2006). Third, the increase in swimming
speed with higher tailbeat frequency is consistent with empirical data of real fish (Videler,
1993; Gillis, 1998). As regards the consequences of tailbeat frequency for wake structure, our
model serves as prediction.

Both in our study of an insect wing and of an undulating fish we compare a 2D model to
a 3D experiment, yet we still find similar results. We suppose that in each case there are
different reasons for the robustness against a reduction in dimension. For the insect wing, it
may indicate that 3D effects, such as spanwise flow along the wing (which can be caused
by the leading-edge vortex (Birch and Dickinson, 2001; Lentink et al., 2009; Stamhuis et al.,
2002)) are not of great importance at low Reynolds numbers. Indeed, the artificial elimination
of spanwise flow in a flapping model of a drosophila wing at a low Reynolds number (75)
did not greatly influence the leading-edge vortex (Birch and Dickinson, 2001). However,
this robustness may not hold for higher Reynolds numbers, above 1400, because here a
strong spanwise flow was found on the same wing (Birch et al., 2004). In the case of the fish,
the similarity of our results in a model in two dimensions to those of experiments in 3D
may be a consequence of an increase in the effective Reynolds number due to the reduction
in dimension. In two dimensions there is one fewer degree of freedom of movement and
hence all phenomena – such as recirculation, vortex shedding and turbulence – occur at
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less than half the Reynolds number than they do in 3D (Reid et al., 2009). This may cause
the similarity in Strouhal number of our results for a relatively low Reynolds number
(1.2 · 103) to experimental data of a mullet by Müller et al. (1997) at a much higher Reynolds
number (30 · 103), and the resemblance of our mullet at Reynolds number 1150 to the three-
dimensional carangiform model by Borazjani and Sotiropoulos (2008) at a Reynolds number
over 4000. The Froude efficiency in our model appears to be approximately 10% higher
than in their 3D model. This may also be a consequence of the two-dimensionality: in
2D there is one fewer direction to waste power in. Further, we cannot exclude that details
of results of our model such as the precise distribution of thrust along the body may be
influenced by its two-dimensionality. For example, in reality the distribution of the force
may be affected by the narrow caudal peduncle of a real fish, but this cannot be represented
in a two-dimensional model where the fluid cannot flow over the top or bottom of the
fish. However, despite such potential differences between 2D and 3D situations (Kern and
Koumoutsakos, 2006), we expect our results to apply qualitatively in three dimensions.

Our model has several weak points. Firstly, mainly due to its high stochasticity, it is
necessary to average over either large areas or long intervals to eliminate noise. For example
spatial averaging is needed to obtain clear images of the vorticity around the undulating
fish (Fig. 3.9). Second, the undulation of the fish was fixed and was not affected by the fluid
forces. In future we intend to extend our model with a fish whose undulation is based on
internal mechanics as well as being influenced by the surrounding fluid.

In sum, our results indicate the importance of several theoretical and empirical follow-
up studies. For low Reynolds simulations it may be possible to model organisms in a
simpler manner, by linearising the Navier-Stokes equations (Roper and Brenner, 2009).
However, it remains to be tested whether this is also possible for unsteady motion such as
the organisms in this study perform. Theoretically it would be of great interest to investigate
in our model the swimming efficiency over a wider range of Reynolds numbers, body
shapes and swimming styles. It may also be of interest to test whether the extraordinary
investment of fish larvae in an increase of their length and hence Reynolds number (Müller
and Videler, 1996) comes at the cost of efficiency, or rather increases it. Empirically, the
hypotheses concerning the effects of tailbeat frequency on various aspects of the kinematics
and hydrodynamics of swimming are greatly in need of further study.
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3.6 supplement

Supplementary material for this chapter.
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Figure 3.18 shows the decomposition of the force in the swimming direction into that
caused by the transfer of momentum of the fake particles and that caused by particles
colliding with the skin of the fish.

Figure 3.19 shows the forwards speed over time of the undulating fish for several tailbeat
frequencies.

Video “Vorticity mullet freeFreeL freq3.8.avi” (Online at http://www.rug.nl/biol/

hemelrijk) shows a video of the swimming fish.

Figure 3.18.: Force of a swimming unconstrained fish with tailbeat frequency 3.8Hz along its
swimming direction over time (in simulation units). The force is decomposed
into that caused by the inclusion of “fake particles” in the rotation step (black)
and that caused by direct collisions of particles with the skin of the fish (gray).
Positive force indicates thrust, negative drag.
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fluid dynamics of moving fish

Figure 3.19.: Swimming speed over time of the unconstrained fish, for several tailbeat
frequencies..
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4
F L U I D D Y N A M I C S O F I N F I N I T E S C H O O L S1

Abstract

Several studies have shown fish may save energy by travelling in groups. How

these benefits arise has not yet been demonstrated experimentally however,
because empirically studying the hydrodynamics of schooling fish is difficult.
Theoretical predictions suggest that for optimal efficiency, fish should position

themselves in a rigid diamond-shaped structure in two-dimensional layers, with

specific inter-individual distances. However, these theoretical predictions

concern infinitely large schools and ignore effects of several factors such as

of viscosity and of the shape of the fish. For this computer models can be of

great help, because in them forces and flows can be directly calculated, and

the position and movement of the fish can be imposed. Especially particle-based

models of hydrodynamics (where hydrodynamics arise from local interactions

between particles that represent the fluid) are useful here because they greatly

simplify the interactions between multiple fish and the fluid. In the present

paper we study infinitely large schools at a moderately high Reynolds number

(1000-1400) in a particle-based model, i.e. the Multiparticle Collision Dynamics

method. We investigate four different configurations of infinite schools, namely

a diamond-shaped lattice, a rectangular lattice, and (in order to separately

determine the effects of lateral and longitudinal neighbours) an infinitely long

line and an infinitely wide phalanx. We vary the distance among individuals

and we compare of the different school structures and of a single fish the

efficiency, swimming speed, thrust and “wasted” lateral power. In our model,
fish swim more efficiently when in a school than when alone. Unexpectedly,
swimming in an intact wake of a predecessor increases both speed and efficiency.
Having lateral neighbours increases efficiency, but at a cost of swimming speed.
Remarkably, the benefits are lowest for the specific diamond configuration that

was predicted to be optimal.

4.1 introduction

The majority of fish species ‘school’ (that is, they aggregate in groups displaying coordinated,
directed movement) at some point in their life history (Shaw, 1978). The prevalence of
schooling behaviour indicates that it is likely to confer evolutionary benefits. Suggested

1 SUBMITTED TO JOURNAL OF THE ROYAL SOCIETY INTERFACE AS: D. A .P. REID, H. HILDENBRANDT, J.
T. PADDING, C. K. HEMELRIJK – “A TWO-DIMENSIONAL MODEL OF HYDRODYNAMICS OF INFINITELY
LARGE SCHOOLS OF FISH”
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benefits include improved success in foraging, defence against predators and increased
hydrodynamical efficiency (Krause and Ruxton, 2002). In the present paper we focus on
hydrodynamical efficiency. Empirically the hydrodynamics of schooling fish have so far not
been studied, due to the extraordinary effort it would involve to measure it through methods
such as Digital Particle Image Velocimetry (Stamhuis et al., 2002). Thus, computer models
can be of great use because all kinds of spatial configuration and swimming kinematics can
be explored in detail, and be used to theoretically predict how fish in schools might benefit
hydrodynamically.

Regarding the hydrodynamical efficiency of schooling, Weihs has made several predictions
based on an inviscid theory of hydrodynamics (Weihs, 1973). The first prediction is that for
optimal efficiency groups of fish should adopt regular, fixed positions relative to one another,
forming two-dimensional layers of diamond-like lattice structures. The lateral distance
between neighbours should be two times the width of their wake, and the longitudinal
distance between rows (measured from tail to nose) should be at least 0.7 fish lengths (Weihs,
1973, 1975). The second prediction is that lateral neighbours increase an individual’s
efficiency, and the third that in the diamond lattice structure, lateral neighbours should beat
their tails in antiphase to one another. Although his theory raised great interest (having
been cited over 70 times according to the ISI Web of Knowledge), empirical evidence is
lacking (Partridge and Pitcher, 1979; Abrahams and Colgan, 1985). Nevertheless, fish have
been shown to exploit others’ wakes to reduce their swimming effort, e.g. individuals in a
school consumed less oxygen than single ones and those at the rear of the school had lower
tailbeat frequency than those at the front (Belyayev and Zuyev, 1969; Herskin and Steffensen,
1998). Further, schooling individuals preferred positions behind others (Svendsen et al.,
2003). Fish have also been shown to exploit the wake behind a pillar both actively through
adoption of a special gait (Liao et al., 2003b) and passively, in that dead but flexible fish
generated thrust when tethered behind the pillar (Beal et al., 2006).

Weihs’ theory is based on simplified hydrodynamics that ignore viscosity and the shape of
the fish. The increase of computational power enables modern computer methods to model
such features. So far his prediction that the optimal configuration is that of a diamond lattice
have not been tested in a computer model that fully models hydrodynamics. To date only a
few theoretical studies have investigated hydrodynamical interactions between swimming
fish. The spatial arrangements studied were a single fish swimming between the wakes of
two predecessors (Deng and Shao, 2006), two and three fish swimming side by side (Zhang
and Eldredge, 2010) and an infinitely wide phalanx of side-by-side fish (Dong and Lu, 2007).
These studies each found an increase in efficiency for three specific configurations, firstly
two side by side fish swimming in anti-phase (Deng and Shao, 2006), secondly a third fish
swimming between the wakes of two preceding ones at a longitudinal distance larger than
half a body length (Zhang and Eldredge, 2010), and third an infinite phalanx swimming in
phase (Dong and Lu, 2007). However, two of the studies were not parametrised biologically,
making the value of their results unclear (Deng and Shao, 2006; Zhang and Eldredge, 2010).

None of these theoretical studies investigated specifically the prediction of optimal ef-
ficiency of diamond lattice structures (Weihs, 1973). Therefore we do so here. Because
no general solution of the Navier-Stokes equations of hydrodynamics has been found, all
computer models of them must discretise reality in some way. There are two main methods
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of doing so, namely discretising space by means of a grid, and discretising the fluid by
representing it as particles. To represent smooth biological shapes in a grid-based method
requires continual adaptation of the grid, or a complex coupling between the organism
and the grid-based fluid (Gilmanov and Sotiropoulos, 2005; Sui et al., 2007). Therefore we
here use the recently-introduced Multiparticle Collision Dynamics method (Malevanets and
Kapral, 1998, 1999). In it, particles move in real space (i.e. not on a grid) and exchange
momentum in a collision step, resulting in hydrodynamics consistent with the Navier-Stokes
equations Malevanets and Kapral (1999); Kikuchi et al. (2003); Padding and Louis (2006). We
have verified it against experimental data for static shapes (Reid et al., 2009) and confirmed
that simulation of flapping and undulating airfoils at higher Reynolds numbers yielded
results resembling experimental data of insect wings and swimming fish (Reid et al., 2011).
In the present study we apply Multiparticle Collision Dynamics to the investigation of the
hydrodynamical advantages of schooling. We compare the efficiency of several spatial con-
figurations in infinitely large schools of undulating fish and that of a fish swimming alone.
We investigate different spatial configurations: one where an individual’s neighbours-ahead
are at an angle (the diamond lattice structure proposed by Weihs) and one where they
are straight ahead (a rectangular lattice structure). We do so for different lateral distances
between neighbours. In order to determine the effects of neighbours in different directions
(lateral and longitudinal), we compare results to those when there are only neighbours ahead
(an infinitely long line) or to the sides (an infinitely wide phalanx). Although later work of
Weihs (1975) suggests that lateral neighbours should swim in antiphase, it was impossible to
study this on our available hardware because it requires double the computational effort.
Therefore in the present paper we investigate only the case of lateral neighbours swimming
in phase.

We measure swimming speed, efficiency, forwards thrust and lateral power of the fish.

4.2 methods

We here describe a) the hydrodynamical model of the fluid, b) the fluid’s interaction with
the fish, c) the experimental setup, and d) the measurements.

4.2.1 The model

We extend our previous implementation of the Multiparticle Collision Dynamics model with
fishlike shapes (Reid et al., 2009, 2011). Below we briefly describe the method (for more
details see Reid et al. (2011)), followed by its adaptations for schooling.

The model consists of a rectangular area filled with fluid in which the fish undulate. The
environment is two-dimensional, homogeneous, contains N identical particles of mass m
and has width W and length Lbox (Fig. 4.1). The positions xi and velocities vi of the particles
are two-dimensional vectors of continuous variables. Every time step ∆t the particles first
move (the streaming step) and then collide with each other (the collision step). Moving leads
to new positions xi according to the motion equation xi(t+∆t) = xi(t) + vi(t)∆t.

To efficiently simulate collisions between particles, in the collision step both time and
space are coarse-grained by using a square lattice to temporarily partition the simulation
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into cells of size a0. All particles that are in a particular cell during the collision step are
considered to have collided with each other at some moment in the preceding movement
step, during which the particles moved in continuous space. To simulate collision, in each
lattice cell all particles change their velocities according to vi = v +Ω · (vi − v). Here v is
the mean velocity of the particles in the grid cell and Ω is a stochastic rotation matrix that
rotates the velocities by either +α or -α (where α is a fixed system parameter), with equal
probability. The rotation direction at a specific moment in time is the same for all particles
within a cell but it may differ between time steps. To ensure Galilean invariance we use the
method of Ihle and Kroll (2001) and displace the lattice every time step by a vector whose x-
and y-components are randomly selected from the uniform interval [0,a0).

The fish-like shapes in our simulations are represented by polygons and thus composed
of a finite series of lines, so-called edges, which meet at points called vertices. We simulate
the undulation of the fish by the motion of the vertices each time step ∆t according to the
undulation equation (Eq. 4.3). We use Euler integration, therefore during a time step the
displacement of the vertices is equal to their velocity. The local velocity of any point on the
object’s surface is calculated by interpolating the velocities of the two adjacent vertices. To
determine whether the particles collide with the undulating body during streaming we use
a ray–ray intersection algorithm (Appendix A in (Reid et al., 2011)).

The fluid and fish interact during both the collision and the streaming step. These
interactions exchange momentum between the fluid and organism, and ensure that there is
no slip at the interface. For these interactions we choose two methods that have been shown
to ensure minimum slip, i.e. the fake-particle rule during the collision step (Lamura et al.,
2001), and the random-reflect rule during the streaming step (Inoue et al., 2001; Padding and
Louis, 2006). The fake-particle rule is applied to cells which are partially filled by the fish
and partially by the fluid. Because the fish excludes particles the density of particles in these
cells is often lower than average. To prevent this and represent the mass of the fish in these
cells we include sufficiently many fake particles that the number of particles in each cell
at least equals the mean density ρ. The velocities of these fake particles are drawn from a
Maxwell-Boltzmann distribution with temperature kBT and a mean velocity which is equal
to the local velocity of the organism. The random-reflect rule implies that particles that hit
the organism get a new randomly chosen velocity. The new velocity consists of a tangential
component vt and normal component vn relative to the surface, drawn from the following
distributions (Inoue et al., 2001; Padding and Louis, 2006):

P(vt) ∝ e−βv
2
t (4.1)

P(vn) ∝ vne−βv
2
n , (4.2)

with β = m
2kBT

.
The force which the fluid exerts on the fish during a time step ∆t is the opposite of the

sum of the change in momenta of all particles that collide with it during that time step,
divided by the length of the time step ∆t. Note that both during the streaming step (as
described above), and during the rotation step (through the fake particle rule) particles may
collide with the body. The velocity of the fish is affected by the summed hydrodynamical
force on it according to Newtonian mechanics. In the diamond configuration, in order to
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keep the position of the fish in the school constant, i.e. in a rigid lattice structure (Weihs,
1973), we apply to each fish the average of the hydrodynamical force of the school.

To represent the movement of fish through infinite space, we move the simulation box
along with them. We do so as follows: Whenever the centre of gravity of the fish (or school)
has moved one cell a0 away from its original position within the box, we move the box
centre towards that of the fish by one simulation unit a0 (either vertically, horizontally or
both). We shift only by distances of at least one simulation unit, because smaller shifts may
cause floating point rounding errors to accumulate.

Figure 4.1.: System overview for the spatial configurations. A) diamond lattice, B) Rectan-
gular lattice, C) line and D) phalanx. The light gray outline indicates the actual
simulation box and damping areas are indicated in dark gray. Lateral distance
dy and forwards distance dx between neighbours depend on the width W and
length LBox of the simulation box.

Parametrisation, initial condition and simulation setup

We choose to simulate a mullet (Chelon labrosus) for three reasons: first, because it is an
obligate schooler, second, because it swims at a steady cruising speed by undulating its body
without using its pectoral fins (Videler, 1993), and third, because its swimming kinematics
and wake structure have been reported in detail (Müller et al., 1997). We simulate the
undulation of a horizontal cross-section of a mullet, traced from the body contours presented
by them (Müller et al., 1997). We represent the body as a polygon. To ensure that the
curvature at the head is smooth, we use shorter polygonal edges at the head than at the tail.
We describe the characteristics of the propulsive wave along the body of the fish in terms of
the lateral movement of its central, longitudinal axis, or spine.

We consider the spine of the straight fish to have an y-value of 0 (Fig. 4.2). We scale the
fish in terms of fractions of its body length L, so that x = 0 at the front of the fish and x = 1
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Figure 4.2.: Schematic overview of the deviation from the central axis of the spine of an
undulating mullet.

at its rear. For each point x along the spine of the fish, its lateral deviation from the central
axis over time is given by

y(x, t) = θ(x) sin(kLx−ωt). (4.3)

θ(x) = θ0 + θ1x+ θ2x
2, (4.4)

Here kL = 2π
λ is the angular wave number, which is based on the length λ of the propulsive

wave, ω = 2πf is the angular velocity for the tailbeat frequency f, and θ(x) is the amplitude
envelope function. We use a quadratic function fitted to the experimental results of Videler
and Hess (1984), with the amplitude of the wave being smallest behind the head. Note that
the undulation of our simulated fish is not influenced by the flow around it.

Our fish are parametrised following the experimental data of a mullet by Müller et al.
(1997) as regards length and tailbeat frequency (Table 4.1). Our model of a fish is 900a0
long, because this was the maximum that was computationally feasible on our hardware.
We fix the units of space and time to the experimental data (Müller et al., 1997). As regards
space, the simulation unit of distance a0 equals the ratio between the length of the real fish
(0.126m) and of the simulated fish (900a0), thus a0 = 0.126

900 = 1.4 · 10−4m.

Parameter name Value
Length 0.126 m
Time step 0.00015 s

Tailbeat frequency 3.8 s−1

Table 4.1.: Parametrisation of the fish in SI units, after results of Müller et al. (1997).

We use the ratio between the swimming speed of the simulated fish and the real one
to calculate the length of the simulation time step ∆t. We parametrise the simulations so
that the swimming speed of the fish in the model Usim remains below 0.22a0∆t−1 so as to
minimise Mach number effects such as shockwaves (Lamura et al., 2001; Padding and Louis,
2004). The real mullet swims at 0.176m/s. Therefore ∆t = 0.2 · 1.4 · 10−4/0.176s = 1.5 · 10−4s
(Table 4.1).

We simulate infinite schools of individuals in four different spatial configurations: a
diamond lattice, a rectangular lattice, an infinitely long line and an infinitely wide phalanx.
In all cases, the simulation consists of a rectangular area of width W and length LBox
with either one or two (in the case of the diamond lattice) fish in it (Fig. 4.1). We use
periodic boundary conditions to simulate infinity, thus infinitely duplicating the contents
of the box, resulting in a torus topology. To simulate different configurations, we vary the
number and positions of fish in the simulation box as well as the boundary conditions.
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In case of the diamond and rectangular lattice flow travels freely in all directions, i.e.
none of the boundaries is scrambled. In case of the line and phalanx configuration, flow
travels freely only across the boundaries that are perpendicular or parallel to the swimming
direction, respectively, and we place so-called scrambling zones along the other boundaries
(Fig. 4.1C, D). These scrambling zones re-set the velocity of particles to those of random
thermal noise and thus remove flow phenomena such as vortices. We used such scrambling
zones previously in our simulations of single fish (Reid et al., 2011). Note that we actually
simulate only a single fish in the line, phalanx and rectangular lattice, and that therefore
the undulation of all fish in those configurations is necessarily in phase. In the case of the
diamond lattice we simulate two fish, in the maximum simulation size possible on our
hardware. Therefore in the diamond lattice lateral neighbours necessarily swim in phase,
and due to time constraints we do not examine the case of diagonal neighbours swimming
in antiphase in the present paper. We study schools for different longitudinal distances (dx,
measured from the tail of the preceding fish to the nose of the one behind it) between the
fish in the line, and different lateral distances (dy, measured between the centres of gravity
of two neighbouring fish) in all other cases (Fig. 4.1).

For consistency with the literature on schooling, we describe the inter-fish distances
nondimensionally in terms of fish lengths (Weihs, 1973, 1975; Zhang and Eldredge, 2010).
In the phalanx and lattice configurations we keep the longitudinal distance fixed at 1 fish
length L, because this is the average distance reported for roach (Svendsen et al., 2003). As
lateral distances we investigate the one predicted to be optimal for wake exploitation by
Weihs (1973) (ie. twice the width of the wake of a fish, which equals 0.4 fish lengths L for our
tailbeat amplitude) as well as double and quadruple that. For the line we test longitudinal
distances of 1, 2, and 3 fish lengths.

We start the simulations without directional flow, initialising all particles with random
velocities drawn from a Maxwell-Boltzmann distribution of mean 0 and temperature kBT (Ta-
ble 4.2). Thus, all directional flow in the simulation is caused by the movement of the fish.
We run the simulation until the swimming speed and surrounding flow of the fish reach
the steady state. Note that, because undulatory swimming is a periodic phenomenon,
equilibrium is reached on average per tailbeat cycle, not from moment to moment. The
swimming speed reaches steady state within ten tailbeats, and flow reaches a steady state
after approximately forty tailbeats.

The simulations are implemented in a combination of C++ and OpenGL Shading Language.
We use "Single Instruction, Multiple Data" instructions to exploit the inherent data parallelism
caused by spatial sorting of the particles, and OpenMP for shared memory multiprocessing
on a multi-core CPU. Flow field calculations such as convoluting it with a Gaussian kernel
for smoothing and calculating the Jacobian are executed on the graphical card. Because of
the limited floating point precision of the graphical card used (Nvidia 8600GT) the actual
particle dynamics are calculated entirely on the CPU (Intel Core2 Q6600). We expect an
significant performance increase on more recent GPUs that offer the required precision. On
the current hardware available, a single run of the largest system (3̃0 million particles) took
approximately 5 days.
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Fluid
Temperature kBT 1.0
Lattice cell size a0 1.0
Collision rotation angle α π

2

Particle mass m 1.0
Particles per cell (average) ρ 8

Time step length ∆t 1.0
Boundary width B 30 a0
Dynamic viscosity µ 1.15 m/(m∆t)

Fish
Length L 900.0 a0
Number of edges NE 1024

Wave number kL 1.8π
Tailbeat frequency f 5.7 · 10

−4∆t−1

Tailbeat amplitude A 90 a0
Undulation amplitude coefficient 0 θ0 0.02

Undulation amplitude coefficient 1 θ1 0.08

Undulation amplitude coefficient 2 θ2 0.16

Table 4.2.: Parameter values used. All values are in simulation units.

Measurements

Thrust and lateral power are measured as parts of the total body force F as follows. The
total forward force F at any moment t is calculated by a summation of the force over the
skin edges of the fish (Fig. 4.3):

F(t) =
∑
i

Fi · ef =
∑
i

(
Fin · ef + Fit · ef

)
, (4.5)

where Fi is the force on the skin at edge i, Fin = (Fi · n)n is the force vector perpendicular
to the skin on that edge, Fit = Fi − Fin is the force vector tangential to the skin and ef is a
forwards-pointing unit vector. The summations of the perpendicular and tangential elements
in the last expression thus represent the contributions of pressure and viscosity, respectively,
to the forward force. It should however be noted that if the tangential speed varies strongly
around the body the viscous forces may have a small normal component.

Because the forwards thrust (T ) and rearwards drag (D) operate in opposite directions the
total forwards body force F will tend to 0 during steady swimming at equilibrium speed:

F(t) = T(t) −D(t). (4.6)

To estimate thrust and drag nonetheless, we separate them out spatially along the body by
following the method by Borazjani and Sotiropoulos (2008). When summing the force over
the body surface, the force on each edge is counted as thrust (T ) when it is positive or drag
(D) when it is negative:

T(t) =
∑
i

[
Fin · efH(Fin · ef) + Fit · efH(Fit · ef)

]
(4.7)
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Figure 4.3.: Decomposition of the force Fi on the skin of the fish into pressure (Fn) and
viscous (Ft) components (see Methods). The surface normal is indicated as n
and the unit vectors pointing forwards and sideways are labelled ef and es.

D(t) = −
∑
i

[
Fin · efH(−Fin · ef) + Fit · efH(−Fit · ef)

]
, (4.8)

where H is the Heaviside step function. Thus, for each edge, for both the perpendicular
(pressure Fn) and tangential (viscous Ft) force on it, we add the forward component of the
force to the thrust if it is positive, and to the drag if it is negative.

We calculate per time step ∆t the lateral power Pl which the fish exerts:

Pl(t) =
∑
i

Fi · esViside, (4.9)

where es is a unit vector in the lateral direction 4.3, and Viside is the lateral velocity of edge
i.

From these forces, we determine the swimming efficiency. Following Tytell and Lauder
(2004) and Borazjani and Sotiropoulos (2008), we use a modified version of the Froude
efficiency:

η =
T̄ Ūnet

T̄ Ūnet + P̄l
, (4.10)

where T̄ is the mean thrust over a tailbeat cycle, ¯Unet is the mean net forwards speed of the
fish and P̄l is the mean lateral power it exerts over a tailbeat cycle. We use the speed from
the perspective of the fish Unet = Uflow −Ufish. Here, Uflow is the speed of the oncoming
flow ahead of it (averaged over an area) and Ufish is the speed of the fish in the global
frame. Note that, since the fish swims in the negative x-direction, the speeds of flow and
fish are subtracted rather than summed. The Froude efficiency η expresses the percentage of
the total power which is converted into forwards speed.

The relative importance of inertia to viscosity of an organism of length L moving with
speed U through a fluid of density ρ and dynamic viscosity µ is characterised by the
dimensionless Reynolds number Re:

Re =
ρUL

µ
, (4.11)
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For oscillatory motion such as that of a beating fish tail with frequency f and amplitude
A, the amount of oscillatory effort relative to the achieved velocity is characterised by the
Strouhal number St:

St =
f2A

U
(4.12)

For our simulations only U varies (as a consequence of different spatial configurations)
between 0.16 and 0.225a0∆t−1. Hence the Reynolds number lies between 8 · 0.16 · 900/1.15 =
1001 and 1409 and the Strouhal number lies between 5.7 · 10−4 · 180/0.16 = 0.64 and 0.46
(Table 4.2).

4.3 results

Compared to single fish, infinitely large schools in our model are more efficient (Fig. 4.4)
and faster (except for the most dense diamond lattice) (Fig. 4.5). The increase in efficiency is
due to a reduction of both forwards thrust and lateral “wasted” power, while swimming
speed is equally high or higher than that of the single fish (Figs. 4.6, 4.7).

Figure 4.4.: Efficiency η of infinitely-large schools of fish at tailbeat frequency 3.8 Hz. For
comparison, the efficiency of a single swimming fish with the same tailbeat
frequency is indicated in a gray horizontal line. A): Rectangular and diamond-
shaped lattice, with several different distances dy between lateral neighbours. B):
Phalanx and line formation, with different inter-fish distances; lateral distance
dy for the phalanx and forwards distance dx for the line.

Having neighbours in any direction, be it lateral or longitudinal, appears to be hydro-
dynamically beneficial for fish. Effects of flow due to individuals ahead become apparent
by comparing the line configuration to single fish. Exploiting the wake of a preceding
fish increases efficiency (Fig. 4.4B) and swimming speed (Fig. 4.5B), and it decreases thrust
(Fig. 4.6B) and lateral power (Fig. 4.7B). This arises because the jet of their predecessor’s
wakes mostly passes fish laterally (Fig. 4.8). Consequently, fish mostly swim next to the
jet. This lowers their thrust, probably because the flow is not laminar, making propulsion
more difficult, and lowers their lateral power, which may be due to the decreased pressure
in the jet. The effects of lateral neighbours can be inferred from the comparison between the
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phalanx and the single fish. An individual profits from the flow of its lateral neighbours
in efficiency (by reduced thrust and lateral power), but does not profit in swimming speed,
which is reduced (Figs. 4.4B–4.7B). This speed reduction is probably due to an increase in
resistance of the whole school to oncoming flow because of the close proximity of lateral
neighbours.

Figure 4.5.: Forwards swimming speed U of infinitely-large schools of fish at tailbeat fre-
quency 3.8 Hz. For comparison, the swimming speed of a single swimming
fish with the same tailbeat frequency is indicated in a gray horizontal line. A):
Rectangular and diamond-shaped lattice, with several different distances dy
between lateral neighbours. B): Phalanx and line formation, with different inter-
fish distances; lateral distance dy for the phalanx and forwards distance dx for
the line.

In the diamond lattice larger lateral distances result in an increase in the efficiency,
swimming speed, thrust and lateral power (Figs. 4.5–4.7). This increase in efficiency is
associated with the encounter of a more intact wake structure left by the preceding fish.
At smaller lateral distance the neighbours diagonally-ahead disturb the wake structure,
both by beating their tails and by compressing the wake between their bodies (Fig. 4.9A,
B). In the rectangular configuration there is no such disturbance, and each fish encounters
the reverse von Kármán street produced by the preceding fish (Fig. 4.9C). This holds for
all lateral distances. Thus, the results of the rectangular lattice are similar at all different
lateral distances. Whether the diamond or rectangular lattice configuration is most efficient
depends on the lateral distance between neighbours (Fig 4.4A).

In both the rectangular and diamond lattice configurations, the combined hydrodynamical
effects of forwards and lateral neighbours are greater than the sum of the separate effects
observed in the line and phalanx. For instance, regarding speed, at a lateral distance of
0.8L lateral neighbours cause others to slow down to the same degree as neighbours ahead
cause them to speed up (Fig. 4.5). Therefore, one might expect individuals in the rectangular
lattice to travel at the same speed as a single fish. Instead, they appear to be faster than a
single fish. This synergy also holds for efficiency, thrust and lateral power. In the diamond
lattice a similar pattern is apparent.

In the line, the rectangular lattice and the loosely-spaced diamond lattice, fish encounter
the wake of their predecessor on their nose. This wake includes a jet counter to the swimming
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Figure 4.6.: Average thrust T̄ of infinitely-large schools of fish at tailbeat frequency 3.8 Hz.
For comparison, the thrust of a single swimming fish with the same tailbeat
frequency is indicated in a gray horizontal line. A): Rectangular and diamond-
shaped lattice, with several different distances dy between lateral neighbours. B):
Phalanx and line formations, with different inter-fish distances; lateral distance
dy for the phalanx and forwards distance dx for the line.

Figure 4.7.: Lateral power Ps of infinitely-large schools of fish at tailbeat frequency 3.8 Hz.
For comparison, the lateral power of a single swimming fish with the same
tailbeat frequency is indicated in a gray horizontal line. A): Rectangular and
diamond-shaped lattice, with several different distances dy between lateral
neighbours. B): Phalanx and line formations, with different inter-fish distances;
lateral distance dy for the phalanx and forwards distance dx for the line.
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Figure 4.8.: Variability of the structure of the wake in the rectangular lattice, shown over
several consecutive tailbeats. Arrows indicate flow direction, and the thickness
of the arrow that represents the jet indicates local flow speed.

direction. Remarkably, these formations are faster and more efficient than a single fish
because the fish swim besides the jet stream of the wake most of the time. This is remarkable
because the fish in our model do not actively attempt to exploit the flows. Their lateral drift
is an unintentional consequence of the lateral forces of the wake combined with the lateral
undulation: the jet passes by the fish on one side, increasing the fluid’s velocity on that side
compared to the other side of the fish, hence lowering the pressure there. This causes the
fish to drift laterally towards the side with faster flow and lower pressure, and appears to
lower the required lateral effort of swimming. This effect is especially apparent in the line
formation, where the jet can only have an effect in one lateral direction due to the lack of
lateral neighbours. Interestingly, for the line formation there is also a net overall drift due to
the direction of the initial tail beat (left or right, Fig. 4.10).

4.4 discussion

In our model, groups of fish swim faster and more efficiently than single fish, except in
a diamond lattice configuration when too closely-packed. From the comparison between
phalanx, line and the lattice configurations, a positive effect of having both lateral and
longitudinal neighbours on swimming speed and efficiency is apparent that is greater than
the sum of the effects of having neighbours in only one direction. In other words, the lateral
and forwards effects reinforce each other. Note that the distribution of forces on the skin of
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Figure 4.9.: Flow of the infinitely large schools for several configurations. A) Diamond lattice
with small lateral distance, B) diamond lattice with large lateral distance and C)
rectangular lattice with small lateral distance. Lines are truncated streamlines,
with longer lines indicating higher local flow speed. Note the areas ahead of
each fish, indicated with a black rectangle. Videos of these configurations can be
found at http://www.rug.nl/biol/hemelrijk
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Figure 4.10.: Lateral drift (in fish lengths) over time of the line formation for two different
initial conditions of tailbeat phase (left and right). Small inset figures indicate
the direction where the jet of the oncoming wake passes each individual at that
point in time.

swimming fish is identical in infinitely-large schools to those we previously reported for
single fish (see Figs. 13, 14 in Chapter 3).

Our model confirms some of Weihs’s predictions and refutes others. It confirms that
individuals benefit in efficiency from their lateral neighbours and that a low-velocity area
arises between the wakes of lateral neighbours at the lowest lateral distance of 2 times the
width of the wake. However, it contradicts the prediction that this particular configuration of
a diamond lattice is optimally efficient (Fig. 4.4A). This is especially unexpected because the
flow pattern that is supposed to cause this formation to be optimally efficient is present in the
model. Indeed, an area of low-velocity fluid occurs ahead of each fish, and the drag-reducing
outer edges of each wake pass close by the sides of fish that follow (Fig. 4.9A). The difference
in efficiency from Weihs’ prediction may be caused by our inclusion of viscosity and the
interactions of wakes. This causes for instance the wakes to be compressed as they approach
each row of fish and stretched as they pass between the fish. From comparison with the
rectangular lattice it is apparent that close lateral proximity alone cannot account for the
reduction in efficiency of the dense diamond lattice (Fig. 4.4A). We give three explanations
for the lower efficiency of the dense diamond lattice. First, it may be due to the increased
drag of the school as a whole, due to each subsequent row in the diamond lattice obstructing
the flow that passes through the gap between the preceding fish (Fig. 4.9). In contrast, this is
not the case in the rectangular lattice, where flow can pass more freely through subsequent
rows. Second, it may arise because individuals are prevented from exploiting the wake of
their direct predecessor, due to its disruption by their neighbours diagonally-ahead. Third, it
may be caused by lateral neighbours swimming in phase. Weihs suggested that this should
cause a strong lateral component to the wakes which would rotate the following individuals,
and increase their drag. In our model individuals cannot rotate, and thus drag does not
increase in the manner predicted. In fact, drag and thrust are low in the dense diamond
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lattice (Fig 4.6A). To shed more insight on this, a diamond lattice with neighbours swimming
in antiphase should be studied in the model on better hardware.

At higher lateral distance among individuals, results of the diamond lattice resemble
those of the rectangular one (Figs. 4.4A–4.7A). This is because the flow structure is also
similar: individuals in both lattices encounter the reverse von Kármán wake of their direct
predecessor (Fig. 4.9B).

Our results appear consistent with those of previous models of hydrodynamical interac-
tions between swimming fish. The increase of efficiency compared to a single fish of our
phalanx formation fits results of Dong and Lu (2007) and Zhang and Eldredge (2010). Our
finding that the diamond lattice increases efficiency but only when lateral distances are
higher than 0.4L fits with the results of the model of Deng and Shao (2006).

Unlike in the simulations of Deng et al. (2007), our results do not oscillate when the
longitudinal distance between fish changes. This due to two reasons. First, in their results
the oscillations were only strong at Strouhal numbers of 0.6 and higher. In our simulations
the Strouhal number tends to be relatively low (0.5 on average). Second, in our model, in all
settings where fish encounter a wake, the interaction between fish and wake varies strongly
from one tailbeat to the next (Fig. 4.8). For a strong distance-dependent oscillation of the
dynamics, it would be necessary for the relation of wake and fish to be consistent across
tailbeats.

Our model (and that of Weihs) deviates from reality in several ways, e.g. the schools
are represented by lattices that are rigid, infinite and two-dimensional. We expect the
rigidity to cause an overestimation of forces and swimming speed, because in our previous
work we showed that constraints on the acceleration of a fish cause its forces and speed
to resemble those of an unconstrained fish with a higher tailbeat frequency. The infinite
size of our schools implies that our model is only applicable to the inner part of a school.
In our infinite schools flow patterns indicate that fish only interact hydrodynamically with
their direct neighbours, because the nearest neighbour disrupts the influence from those
further away. Further, because we show that fish profit more from having neighbours in both
longitudinal and lateral directions than from having neighbours in either direction alone,
real fish should prefer to be in the inner area or at the rear of the school rather than at the
front and sides. This inhomogeneous distribution of hydrodynamical benefit is also found in
V-formations of flocks of large birds such as geese and pelicans, where the individual at the
tip of the ‘V’ spends more energy than those behind (Weimerskirch et al., 2001; Andersson
and Wallander, 2004). This inhomogeneity may reinforce the manner in which individuals in
real fish schools are continually changing their positions within the school (Huth and Wissel,
1994). As regards the two-dimensionality of our model, so far results of two-dimensional
hydrodynamical models of fish on a qualitative level remarkably resemble results of 3D
models as well as empirical data of real fish (Sui et al., 2007; Reid et al., 2009; Borazjani and
Sotiropoulos, 2008; Reid et al., 2011). However, in a model it was shown that quantitatively
aspects such as the achieved swimming speed of the fish change significantly when the
dimensions are changed Kern and Koumoutsakos (2006). Our 2D simulations can therefore
only serve as a qualitative prediction of flow in real fish schools.

From our model we may derive an explanation of how an individual can benefit from
the wake of another when their undulation frequencies differ, which is apparent in real

72



4.4 discussion

fish schools from the lower tailbeat of trailing individuals (Belyayev and Zuyev, 1969;
Herskin and Steffensen, 1998; Svendsen et al., 2003). The ability to exploit a wake without
synchronisation is indicated in our model both for the line formation by the absence of an
effect on exploitation of longitudinal distance (Figs. 4.4B-4.7B) and in the line and rectangular
formations by the variation of the encountered wake structure from one tailbeat to another
(Fig. 4.8). In both cases fish exploit the wake by swimming just besides the jet of the
predecessor.

Our model simplifies reality, for instance the undulation and position of individuals
relative to their neighbours is fixed, whereas real fish adapt their gait to exploit vortex
wakes (Liao et al., 2003b). Future improvements will involve more natural swimming of
individuals, by making their bodies undulate in response to the flows, as well as making
them sense flows and dynamically adjust their undulation to optimally exploit them, for
example by using the Kármán gait (Liao et al., 2003b). Social responses, such as the
common avoidance, alignment and attraction rules (Hemelrijk and Kunz, 2005; Hemelrijk
and Hildenbrandt, 2008) will be added to create schooling behaviour that is more natural.

Our results are an important step towards understanding the hydrodynamics of schooling
of fish. Unexpectedly, it is beneficial to swim directly behind another fish, as a consequence
of the curving of the wake of the predecessor around the follower. Since these benefits of
efficiency and speed arise even when the fish are not actively trying to exploit the wake, the
benefits of schooling are easier to attain than previously thought, requiring neither precise
spacial positioning nor modification of behaviour, for instance by tuning the frequency of
undulation.
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A M E TA - A N A LY S I S O F F I S H S W I M M I N G1

Abstract

The precise mechanics underlying the swimming of fish are of great general

interest, both to biologists and to engineers. So far, only one general principle

has been reported, namely that swimming speed increases with tail beat fre-
quency. In the present paper, we perform a meta-analysis in order to investigate

whether there may exist more of such general principles. Using data of 26 species,
we examine the relationships between the swimming speed and several kinematic

variables, namely length of the body, frequency and amplitude of the tail beat,
and length and speed of the propulsive body wave, and the interrelation of

these variables with the hydrodynamically important dimensionless Reynolds

number, the Strouhal numbers and the slip ratio U/V (between the forwards

swimming speed U and the rearwards speed V of the body wave). Our data reveal

several general principles: swimming speed is mainly the result of the speed of

the propulsive body wave; it is also significantly (but more weakly) affected by

frequency and amplitude of the tail beat, length of the propulsive body wave,
and length of the body. Body depth appears to correlate strongly with swim-
ming style, i.e. shallow-bodied fish are anguilliform and deep-bodied fish are

carangiform or thunniform. Finally, contrary to common expectation the slip

ratio U/V and the Strouhal number depend on the Reynolds number.

5.1 introduction

Undulatory swimming is supposed to be an efficient mode of aquatic locomotion, because
it is the result of many millions of years of evolution of species that may migrate over
thousands of kilometres (Helfman et al., 1997). The general principles governing undulatory
propulsion are therefore of great interest to both biologists (for better understanding of the
constraints on the evolution of aquatic species) and engineers (for the design of underwater
vehicles). However, despite many experimental data of kinematics only a single general
principle has been reported, namely that a higher frequency of the tail beat results in faster
swimming (Bainbridge, 1958; Webb et al., 1984; Videler, 1993). To search for more principles
is the aim of the present meta-analysis.

The kinematics of steady undulatory swimming are largely formulated in terms of the
wave that travels rearwards through the body of the fish, with speed V = λ · f, wavelength

1 SUBMITTED TO JOURNAL OF EXPERIMENTAL BIOLOGY AS: J. F. VAN WEERDEN, D. A .P. REID, C. K.
HEMELRIJK – “A META-ANALYSIS OF FISH SWIMMING”
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λ and frequency f. The amplitude of this wave varies along the fish body, typically being
lowest at a point close behind the head of the fish, and maximal at the tail tip (Videler
and Hess, 1984). As a result of the wave, water is propelled rearwards and the fish moves
forwards at speed U. Because the transmission of speed from the rearwards body wave to
the water is not perfect, the forwards speed U is usually lower than that of the body wave V .
The ratio U/V (the so-called slip ratio) between the two is often used as an indication of the
efficiency of the swimming fish and is supposed to be approximately constant (Webb et al.,
1984).

After the discovery of the relationship between tail beat frequency and swimming speed,
the kinematics of a number of fish species have been investigated in many studies. However,
so far the results of these studies have not been integrated. Studies have reported on the
relation between swimming speed and variables such as the tail beat amplitude (Bainbridge,
1958; Webb, 1971; Liao, 2002), the length and speed of the body wave (Gray, 1933; Wardle
et al., 1995; Tytell and Lauder, 2004) and the swimming style (i.e. how much of the
body undulates) (Breder, 1926; Müller et al., 2001; Blake, 2004). In order to eliminate the
effects of fish length on kinematic variables, the variables have often been expressed in
fish lengths (‘normalised’). The general effectiveness of this standardisation technique is
debated, however (Packard and Boardman, 1999; Donley and Dickson, 2000). Based on
the Elongated Body Theory, the swimming efficiency is commonly described by the slip
ratio U/V (Lighthill, 1971). Experiments with oscillating foils suggest that fish swim most
efficiently at an almost constant Strouhal number of 0.25-0.35 (Triantafyllou et al., 1991).
These suppositions have so far not been verified empirically however.

In the present study we used online search engines to collect data from the scientific
biological literature. We confined our investigation to steadily cruising fish, and collected
specifically data of the tail beat (its frequency and amplitude), the body wave (its speed and
length) and of the body depth.

We note that the swimming speed is generally incorporated in analyses as a causal variable
of the kinematics of the fish (Webb et al., 1984; Long and Nipper, 1996; Liao, 2002; Müller and
van Leeuwen, 2004). We assume instead that the kinematics cause the forwards speed, and
investigate their relationship with the standard dimensionless measures, i.e. the Reynolds
number Re = UL/ν, (with U the forwards swimming speed, L the length of the fish and ν the
kinematic viscosity), the slip ratio U/V and the Strouhal number St = 2Af/U (with 2A the
distance between the maximum lateral excursions of the tail tip and f the tailbeat frequency).
We analyse these variables both in absolute units and in fish lengths (‘normalised’). Besides,
in our calculations of the Reynolds numbers we take the effect of water temperature on the
viscosity into account.

5.2 methods

In our literature search we used the online search engines ISI web of Knowledge and Google
scholar. We searched for data of kinematics of steady, undulatory swimming. We included
only those papers that reported data on all of the following variables: the frequency and
amplitude of the tailbeat, the length and speed of the body wave, and the length and depth
of the body of the fish (Table 5.1). If morphological data were absent, we took them from
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Fishbase, World Wide Web electronic publication (2011). To determine the Reynolds number we
calculated the correct viscosity for the temperature reported in the paper (Reynolds, 1883).

Measure Symbol Units
Fish length L cm and TL
Body depth H % of TL
Swimming speed U cm/s and TL/s
Tailbeat frequency f Hz
Tailbeat amplitude 2A cm and TL
Body wave length λ cm and TL
Body wave speed V = λ · f cm/s and TL /s
Slip (U/V) dimensionless
Strouhal number 2A · f/U dimensionless
Reynolds number U · L/ν dimensionless

Table 5.1.: Measures used for analysis.

The size of a fish has commonly been measured in three ways, namely body (or standard)
length, fork length and total length (Fig. 5.1). Here we use total length (TL). We analysed the
data in both absolute units (cm) and in total fish lengths (TL). Our data contained outliers as
regards swimming speed (> 200 cm/s) and size (6 2 cm). They comprised not only fish but
also axolotls. We studied both the total data set and that with neither outliers nor axolotls.

Figure 5.1.: Different ways to measure fish length: Body Length (BL), Fork Length (FL) and
Total Length (TL). The present study uses Total Length.

Another method (besides normalisation) to reduce the effect of fish length is to divide the
fish into size classes. Individuals of 0-2.5 cm belong to the smallest category and each larger
one doubles the length. Because the categories 2.5-5 and 5-10 comprised insufficient data we
combined them into one group (Table 5.2).

In most of our analyses we use correlations rather than regressions, because many of the
variables are mutually dependent, rather than causal in one direction.

5.3 results

Twenty-three studies were found that included all required kinematic variables (Table 5.3).
They concern 26 species of 24 genera.
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Length class N slope R2 p
2: 3-10 cm 11 1.2 0.16 ns
3: 10-20 cm 18 14.4 0.74 ***
4: 20-40 cm 41 24.1 0.47 ***
5: > 40 cm 18 29.2 0.67 ***

Table 5.2.: The correlation between tailbeat frequency and swimming speed of several length
classes.

The speed of the body wave V appears to be the strongest explanatory variable of the
variance in the swimming speed U (Table 5.4). This holds both when expressed in body
lengths and in absolute units, and both with and without outliers (Fig. 5.2). Each of the
other kinematic variables also appears to significantly influence the swimming speed.

Figure 5.2.: Swimming speed as a function of body wave speed, both in absolute units, for
the data including outliers.

The variance of the swimming speed is explained with similar strength by the tail beat
frequency as it is by the speed of the propulsive wave, but only when the effect of fish length
is reduced, either by normalisation (Table 5.4) or by studying effects per size class (Fig. 5.3).

The unit of measurement appears to influence the relation between the swimming speed
U and the fish length L: in absolute units, larger fish swim faster, whereas in fish lengths
smaller fish swim faster (Table 5.4).

The correlation of the swimming speed U with the speed of the propulsive wave V is
independent of the length L of the fish, which is unexpected because the correlations with
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Species Total nr of
data points

Data with-
out ex-
tremes

Study

Abramis brama 1 1 Bainbridge (1958)V

Ambystoma mexicanum 8 - D’Aout and Aerts (1997)
Ambystoma mexicanum (juv) 3 - D’Aout and Aerts (1999)
Ammodytes marinus 4 4 Videler (1993)V

Anguilla anguilla 1 1 Hess (1983)V

Anguilla anguilla 3 3 Müller et al. (2001)
Anguilla rostrata 1 1 Tytell and Lauder (2004)
Carassius auratus 1 1 Bainbridge (1963)
Chelon labrosus risso 1 1 Müller et al. (2002)
Chelon labrosus risso 1 1 Müller et al. (1997)
Clupea Harengus (larva) 6 - Fuiman and Batty (1997)
Danio rerio (larva) 2 - Müller et al. (2008)
Danio rerio (larva) 9 - Müller and van Leeuwen

(2004)
Esox (hybrid) 1 1 Webb (1988)V

Euthynnus affinis 4 4 Donley and Dickson (2000)
Gadus morhua 4 4 Videler and Hess (1984)
Gadus morhua 2 2 Webb (2002)
Gambusia affinis 6 6 Langerhans (2009)
Hyperoplus lanceolata 5 5 Videler (1993)V

Lepisosteus osseus 7 7 Long and Nipper (1996)
Leuciscus leuciscus 1 1 Bainbridge (1963)
Liza ramada 1 1 Videler (1993)V

Micropterus salmoides 5 5 Jayne and Lauder (1995)
Oncorhynchus mykiss 5 - Jayne and Lauder (1995),

from Webb et al. (1984)
Oncorhynchus mykiss 4 4 Webb et al. (1984)V

Oncorhynchus mykiss (as
Salmo gaidneri)

1 1 Webb (1988)V

Pleuronectes platessa 1 1 Webb (2002)
Pollachius virens 9 9 Videler and Hess (1984)V

Salmo salar 3 2 Videler (1993)V

Sarda chiliensis chiliensis 2 2 Dowis et al. (2003)
Scomber japonicus 8 8 Dickson et al. (2002)
Scomber japonicus 4 4 Donley and Dickson (2000)
Scomber scombrus 9 5 Videler and Hess (1984)V

Strongylura marina 3 3 Liao (2002)
Total number of data points 126 88

Table 5.3.: Collected data of 26 species. Data points may be based on 1 to 10 individuals. V :
data taken from Videler (1993).
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Data Unit V f 2A λ L

All Fish length (+) 0.94*** (+) 0.93*** (+) 0.42*** (+) 0.16*** (-) 0.15***
Without outliers Fish length (+) 0.89*** (+) 0.80*** (+) 0.29*** (+) 0.06* (-) 0.19***
All cm (+) 0.98*** (ns) 0.02 (+) 0.35*** (+) 0.30*** (+) 0.25***
Without outliers cm (+) 0.91*** (ns) 0.00 (+) 0.38*** (+) 0.30*** (+) 0.13***

Table 5.4.: Swimming speed U and its correlation with several variables: direction, explained
variance (R2) and significance. *: p < 0.05, **: p < 0.01, ***: p < 0.001. V is the
speed of the propulsive body wave, f the tail beat frequency, 2A is the tailbeat
amplitude, λ is the length of the propulsive body wave and L is the total length of
the fish.

Figure 5.3.: Swimming speed in absolute units as a function of tailbeat frequency of the data
without outliers, with the data separated into different length classes (Table 5.2)
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Figure 5.4.: Propulsive wave length λ, as a function of fish length, for the data including
outliers.

the swimming speed of both components of V , i.e. tail beat frequency f and propulsive
wavelength λ are significantly influenced by the fish length (tail beat frequency R2 =

0.283,p < 0.05, propulsive wavelength: R2 = 0.809,p < 0.001).

Fish length does not correlate with the length of the body wave (R2 < 0.001, p = 0.98)
(Fig. 5.4)

The data on body depth are bimodally distributed in two classes with depths of 5-8% and
17-30% of the fish length (Fig. 5.5). These classes appear to differ in swimming style: shallow-
bodied individuals are anguilliform and deep-bodied individuals are carangiform and
thunniform (Breder, 1926; Webb, 1984; Fishbase, World Wide Web electronic publication, 2011)).
To obtain an approximately equal sample size in both classes, we limit our comparison of
fish of different body depths to those that swim at 1− 3Ls−1 (Table 5.5). It appears that
despite their similarity in body length and in tailbeat frequency, shallow-bodied fish swim
slower and have shorter propulsive wavelengths and a slightly higher Strouhal number (i.e.
use a higher tail beat frequency to achieve their swimming speed) than deep-bodied ones
(Table 5.5).

The slip ratio and Strouhal number both appear to depend on the Reynolds number in a
non-linear way (Figs. 5.6, 5.7).
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Variable Mean ± StDev t-value p-value
Shallow Deep

Length 21.2± 9.32 29.8± 13.9 −1.908 0.063
Speed in TL 1.56± 0.27 2.0± 0.6 −2.166 0.036*
Speed in cm 33.47± 15.55 56.7± 26.8 −2.713 0.010*
Tailbeat frequency 3.18± 0.77 3.4± 0.9 −0.716 0.478
Prop. wave length in TL 0.76± 0.08 0.9± 0.1 −4.724 0.000*
Prop. wave length in cm 16.06± 7.67 27.6± 14.5 −2.511 0.016*
Prop. wave speed in TL 2.44± 0.44 3.1± 0.9 −2.431 0.020*
Prop. wave speed in cm 51.31± 22.98 86.1± 30.8 −3.419 0.001*
Slip ratio U/V 0.65± 0.08 0.7± 0.1 −0.509 0.613
Strouhal number 0.34± 0.09 0.3± 0.1 2.974 0.005*
Reynolds number 80483± 55325 166595± 142119 −1.947 0.058

Table 5.5.: Comparison between shallow-bodied and deep-bodied fish, showing results
of Student’s t-test. Degrees of freedom were 41 in all cases. There were 11

samples representing shallow-bodied fish and 32 representing deep-bodied ones.
*: p < 0.05.

Figure 5.5.: Average body depths for several species of fish, in terms of % of their total
length. Colour indicates swimming style.
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Figure 5.6.: Slip ratio U/V as a function of Reynolds number, for the data including outliers.

Figure 5.7.: Strouhal number as a function of Reynolds number, for the data including
outliers.
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5.4 discussion

Our analysis shows that swimming speed depends almost entirely on the speed of the
propulsive body wave, and more so than on any of the other variables (including the tail
beat frequency). This finding is independent of the unit of measurement. It confirms the
early results for 6 species of Gray (1933). The two components of speed of the propulsive
wave (ie. tail beat frequency and wave length) are often used separately for the analysis
of swimming speed, but seldom in combination. Our results show however that only the
combination of the two truly determines the swimming speed. An appropriate analogy is
that of walking: the frequency with which one swings one’s legs and the length of one’s
stride together determine the speed of walking.

Our data concern fish that differ greatly in their size, body depth and swimming style.
In spite of this, the relation between the speed of the body wave and swimming speed is
consistent throughout the data (Table 5.4, Fig. 5.2). This suggests that the speed of undulatory
swimming depends almost entirely on the rearwards speed of the body wave, regardless
of differences in other morphological and kinematic factors. This finding can be used by
engineers to test whether robotic vehicles resemble swimming of real fish. Assuming that
evolution has selected for swimming performance, engineers may optimise their models of
undulation by making them fit the relation between swimming speed and propulsive wave
speed.

Results of our large dataset differ in two cases from previous results for single species.
First, the relation of tail beat amplitude and swimming speed has been shown to reach a
plateau for single species (Bainbridge, 1958; Webb, 1975), but this does not happen in our
data. Possible explanations for this difference are that in contrast to the other studies in our
data animals were not swimming at their maximum speed, and that the maximum tail beat
amplitudes differed among species. Second, within a single species the propulsive wave
length, both in absolute units and in fish lengths, has been shown to increase with the total
fish length (Donley and Dickson, 2000). In our analysis however, this association is absent
(Fig. 5.4). Thus we conclude that the propulsive wavelength is characteristic to a particular
species: because fish of different species but similar length have different body wave lengths,
there is no correlation in our cross-species comparison.

Two of our results may be due to experimental constraints. First, when comparing shallow-
and deep-bodied fish, shallow fish are slower than deep ones. This may be due to having
their swimming speed artificially biased by the experimenter, through incidentally setting
the speed of the flow tank too low because of a belief that anguilliform fish are incapable
of fast swimming. Second, large fish may be prevented from swimming at their preferred
cruising speed because the tank is too small, which could explain our finding that larger
fish swim slower in terms of fish length. Our results thus point to the need to report details
of the maximum speed of fish also.

The hypothesis of a single optimal Strouhal number that all fish attempt to attain (Tri-
antafyllou et al., 1993) appears not to be borne out by our data: instead, the Strouhal number
of fish appears to be associated with their Reynolds number.

In contrast to earlier findings (Webb et al., 1984), the slip ratio U/V is not constant, but
varies with the Reynolds number (Fig. 5.6). It appears that at lower Reynolds numbers the
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rearwards motion of the body wave is less effective at propelling an individual forwards.
Our computer simulations of hydrodynamics, based on Multiparticle Collision Dynamics,
suggest the following explanation (Reid et al., 2009, 2011): when their tail beat reverses, fish
may slow down more at lower Reynolds numbers than at higher Reynolds numbers, because
the influence of the viscosity is stronger and inertia is lower. This implies a related effect on
stride length λs (i.e. the distance that a fish travels forwards in a single tailbeat). At lower
Reynolds numbers the stride length (λs = λU/V) is shorter, at higher re numbers it is longer.

Further, above this point between Reynolds number 1200 and 2000, the increase of the
slip ratio U/V with the Reynolds number slows down (Fig. 5.6). This may reflect the lower
influence of viscosity. Due to this lower viscous influence, the swimming efficiency may
be higher (Reid et al., 2011). Thus, this point of saturation may be ecologically significant.
It is supplementary to the one between swimming styles at a Reynolds number of 200 for
developing larvae (Weihs, 1980).

Although the unprecedented size of our data set enables us to clarify the effects of variables
on speed that were previously reported only for single species, such as the propulsive wave
speed and fish length, still further research would be helpful, especially at the extremely low
and high Reynolds numbers where data are still sparse.

Our main conclusion is that more attention should be paid to the speed of the propulsive
body wave in relation to swimming speed.
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D I S C U S S I O N

The preceding chapters describe the most important results of the work done for my doctoral
thesis. Chapters 2, 3 and 4 each describe a more advanced version of the computer model
and its application to a more complex situation, from static shapes in flow (Chapter 2) to
infinite schools of undulating fish (Chapter 4).

The swimming of fish has in the last fifteen years been studied in a variety of computer
simulations of hydrodynamics, often with interesting results (Liu et al., 1996; Wolfgang
et al., 1999; Kern and Koumoutsakos, 2006; Sui et al., 2007; Borazjani and Sotiropoulos,
2008). Our simulation method is a valuable addition to this field for two main reasons:
First, its lack of a spatial grid makes it ideally suited for the study of organisms, especially
those that change their shape and relative position. Second, it is extremely fast, without
sacrificing hydrodynamical accuracy. All simulations in this thesis were carried out on a
single, ordinary desktop PC or laptop, and even the largest simulations took less than a
week. It should be noted however that this speed comes at the cost of stochastic noise. The
influence of this noise decreases as the system under study becomes larger. This means that
the model is most suitable for either high Reynolds numbers, (above 1000) where the noise
is largely cancelled out through the law of averages, or extremely low ones (below 1) where
Brownian motion is relevant.

Our finding in Chapter 2 that the addition of trailing, tail-like plates to cylinders increases
their drag coefficient at low Reynolds numbers, but decreases drag at higher ones, suggests
that tails which are flat orthogonally to the direction of undulation are more useful for
larger organisms, such as the fish that we study in the subsequent chapters. Further, we
argue that the effective Reynolds number of a two-dimensional object is higher than that of
the corresponding three-dimensional one. In two dimensions the degrees of freedom are
reduced and there is no third dimension for energy to dissipate into. This causes all flow
phenomena such as the onset of vortex shedding and turbulence to occur at a much lower
Reynolds numbers in 2D than in 3D (Table 2.3). We use this finding in Chapters 3 and 4 to
explain why our simulations of fish shapes with Reynolds numbers of approximately 1200

are reasonable approximations of real fish swimming at much higher Reynolds numbers (to
the order of 10000).

In Chapter 3 we test the effects of the common practice in computer simulations to con-
strain swimming fish from accelerating. We find that constraining longitudinal acceleration
has no effect, but constraining lateral acceleration increase the force which the fish exerts,
causing its speed speed and patterns of hydrodynamical forces and flow to resemble those
of unconstrained fish with a higher tailbeat frequency. Because constraining the acceleration
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discussion

of individuals had no qualitative effect for single fish in Chapter 3, we expect that our choice
in Chapter 4 to keep the relative positions of individuals in the schools fixed will also not
qualitatively affect the patterns of force and efficiency.

The most notable result of our simulations of groups of fish is that the efficiency of the
vast majority of spatial configurations and spacings was higher than that of a single fish.
This suggests that travelling in groups is likely to save energy for some of its members in
many more cases than was originally thought.

Our simulation results are consistent with three findings from our meta-analysis of data of
real fish (Chapters 3, 5). Firstly, swimming speed increases linearly with tailbeat frequency
as well as with the speed V of the propulsive body wave. Second, the slip ratio U/V at
low to intermediate Reynolds number (1000–10000) is strongly dependent on the Reynolds
number. Third, rather than there being a single optimal Strouhal number at which fish
swim (Triantafyllou et al., 1993), the Strouhal number changes with the Reynolds number.
Our simulations of single fish only experimented with different tailbeat frequencies. For a
more thorough comparison between simulations and data of real fish it would be necessary
to change also parameters such as fish size, tailbeat amplitude and the wavelength of the
undulation. This could be used to further validate the model against experimental data.
Also of interest would be to study a different body shape and swimming style such as those
of an eel against simulations and empirical data (Borazjani and Sotiropoulos (2009); Gillis
(1998); Müller et al. (2001), Chapter 5).

Besides further comparison to empirical data, there is of course much work still to be
done to improve our understanding of the hydrodynamics of swimming fish, especially in
schools. On current hardware it will be possible to study larger groups in our model. This
allows for finite school sizes, with individuals that undulate out of phase and with different
tailbeat frequencies. The individuals could also be made to swim more naturally, by making
their bodies undulate in response to the flows, as well as making them sense flows and
dynamically adjust their undulation to optimally exploit them, for example by using the
Kármán gait (Liao et al., 2003b). Social responses, such as the commonly-used simulation
rules of avoidance, alignment and attraction (Hemelrijk and Kunz, 2005; Hemelrijk and
Hildenbrandt, 2008; Hemelrijk et al., 2010) could also be added to create schooling behaviour
that is more natural. Or course, for this individuals must be able to move and change their
relative positions freely unlike the rigid lattices we studied (Chapter 4). To this end, a control
system could be added to the fish so that they curve their body to make turns and change
their tailbeat frequency to navigate change their velocity, as has been shown to work in
robotic fish (Shao et al., 2008).

The work presented in this thesis has answered several important questions about un-
dulatory swimming and its study in simulations, for example the effects of constraining
individuals’ acceleration, and the hydrodynamical benefits of travelling in groups. Just as
many, if not more, questions remain however. Fortunately, this thesis has also resulted in a
simulation tool that will allow many of those questions to be answered in future projects.
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A
A P P E N D I X A : R AY / M O V I N G L I N E I N T E R S E C T I O N

Let the ray be parametrically expressed in two dimensions as

r(t) = r0 + tdr. (A.1)

The particle is at r0 at the beginning of the current time step, which we identify with t = 0,
and t is continuous time.

Let p(t) and q(t) similarly be the position of the endpoints of the moving line over time,
as follows :

p(t) = p0 + tdp (A.2)

q(t) = q0 + tdq. (A.3)

Any point on the edge can be expressed as E(s, t) = sq(t) + (1− s)p(t), where s is the
coordinate along the edge. The movements of particle and edge intersect if at any time t ′

the equality E(s, t ′) = r(t ′) holds, in other words

s
(
q0 + t ′ dq

)
+ (1− s)

(
p0 + t ′ dp

)
= r0 + t ′ dr. (A.4)

First we solve for t ′, focussing on the x component of Eq. A.4

t ′ = −
s (q0,x − p0,x) + (p0,x − r0,x)

s (dqx − dpx) + (dpx − drx)
. (A.5)

Then we solve for t ′, focussing on the y component, with a result similar to the one above
but with all subscripts x replaced by y. Equating the two expressions for t ′, we arrive at a
quadratic equation in s:

as2 + bs+ c = 0, (A.6)

where the coeffients a, b and c can be expressed using the binary perpendicular dot
product (⊥), which greatly simplifies the coefficients of the quadratic equation and allows
the solution to be calculated efficiently (note that ⊥ is basically the z component of the cross
product of vectors in the x-y plane):
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appendix a : ray / moving line intersection

⊥ (A, B) ≡ AxBy −AyBx (A.7)

a = ⊥ (q0 − p0, dq − dp) (A.8)

b = ⊥ (q0 − p0, dp − dr)+ ⊥ (p0 − r0, dq − dp) (A.9)

c = ⊥ (p0 − r0, dp − dr) (A.10)

Solving the quadratic equation yields two values for s, which, when inserted in Eq. A.5 give
two corresponding values for t ′. If any of the s lie in the interval [0, 1] and the corresponding
t ′ lies in the interval [0,∆t] a collision has occurred. If there are two solutions within this
interval, the one with smallest t ′ occurred first and is picked for further processing.
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