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Structure Preserving Moment Matching for
Port-Hamiltonian Systems: Arnoldi and Lanczos

Rostyslav V. Polyuga and Arjan van der Schaft, Fellow, IEEE

Abstract—Structure preserving model reduction of single-input single-
output port-Hamiltonian systems is considered by employing the rational
Krylov methods. The rational Arnoldi method is shown to preserve (for
the reduced order model) not only a specific number of the moments at an
arbitrary point in the complex plane but also the port-Hamiltonian struc-
ture. Furthermore, it is shown how the rational Lanczos method applied
to a subclass of port-Hamiltonian systems, characterized by an algebraic
condition, preserves the port-Hamiltonian structure. In fact, for the same
subclass of port-Hamiltonian systems the rational Arnoldi method and the
rational Lanczos method turn out to be equivalent in the sense of producing
reduced order port-Hamiltonian models with the same transfer function.

Index Terms—Model order reduction, port-Hamiltonian systems, ra-
tional Krylov methods, structure preservation.

I. INTRODUCTION

The port-Hamiltonian approach to modeling and control of complex
physical systems has arisen as a systematic and unifying framework
during the last twenty years, see [2], [7], [13]–[15]. The port-Hamil-
tonian modeling employs the physical properties of the considered
system including the energy dissipation, stability and passivity prop-
erties as well as the presence of conservation laws. Another important
issue the port-Hamiltonian approach deals with is the interconnection
of the physical system with other physical systems creating the
so-called physical network. In real applications the dimensions of such
interconnected port-Hamiltonian state-space systems rapidly grow
both for lumped- and (spatially discretized) distributed-parameter
models, motivating questions of structure preserving model reduction.

The so-called moment matching methods, which are of interest in
this technical note, are an important class of model reduction methods
in which a specific number of moments of the full order system at cer-
tain points in the complex plane are preserved by the reduced order
system. There is a vast literature on this topic discussing different ap-
proaches, drawbacks and advantages, and numerical issues along with
the use of the Arnoldi and Lanczos procedures. For an overview of
these methods as well as the general model reduction theory we refer
to [1], [12].

The goal of this work is to show that the rational Arnoldi and Lanczos
methods apart from equalizing a certain amount of moments at an ar-
bitrary point in the complex plane also preserve the port-Hamiltonian
structure, and, as a consequence, passivity. A similar discussion is pre-
sented in [18] (see also [8]), where the authors make use of the ra-
tional Arnoldi method which results in a reduced order port-Hamil-
tonian model which is slightly different from the one obtained in this

Manuscript received December 27, 2009; revised June 24, 2010; accepted
December 11, 2010. Date of publication May 02, 2011; date of current version
June 08, 2011. Recommended by Associate Editor K. Morris.

R. V. Polyuga is with the ABM AMRO N.V. Bank, Amsterdam
HQ2015, The Netherlands (e-mail: rostyslav.polyuga@nl.abnamro.com;
rostyslav.polyuga@gmail.com).

A. van der Schaft is with the Johann Bernoulli Institute for Mathematics
and Computer Science, University of Groningen, P.O.Box 407, 9700 AK,
Groningen, The Netherlands (e-mail: a.j.van.der.schaft@rug.nl).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2011.2128650

technical note. Preservation of the port-Hamiltonian structure was also
studied in [6], [9], [10], [16] and the references therein.

In Section II we briefly discuss the rational Arnoldi and Lanczos
methods as well-known moment matching methods. Basic theory on
port-Hamiltonian systems is presented in Section III.

In Section IV we demonstrate how to preserve the port-Hamil-
tonian structure using the rational Arnoldi method. In Section V we
exploit the rational Lanczos method for structure preserving model
reduction of a subclass of port-Hamiltonian systems, characterized
by an algebraic condition. We will prove that the reduced order
port-Hamiltonian models for the given subclass are equivalent to
the reduced order models obtained by the rational Arnoldi method,
matching �� moments at an arbitrary point in the complex plane.
Finally, in Section VI we present a numerical example illustrating
that, even though we applied the rational Arnoldi method, which in
general preserves only � moments, �� moments are preserved since
the considered port-Hamiltonian model belongs to the subclass of
port-Hamiltonian systems described above.

II. MOMENT MATCHING FOR LINEAR SYSTEMS AT AN

ARBITRARY POINT IN THE COMPLEX PLANE

Consider a linear, single-input, single-output, continuous-time
system � described by equations of the form

�� � �� � ���

� � ��
(1)

with the state-space vector ��	� � �, input ��	� � , output ��	� �
, and constant matrices � � ���, � � �, � � ���.
Definition 1: [1] The 0-moment of the system (1) at 
� � is

the complex number ���
�� � ��
�� � �����. The �-moment of
the system (1) at 
� � is the complex number ���
�� � ��
�� �
���������.

A. Rational Arnoldi Method

The idea of the rational Arnoldi method is to construct a reduced
order model by applying a so-called Galerkin projection �

�
� , � �

���, to the full order linear system (1). The maps � , � � �� 	 	 	 � �,
satisfy the following properties:

�
��  �
� � � ��� 
���� �� ������� �� �

��� �����������

�

�� ���� ��� � � ������	

�� ����� � � �� �� 	 	 	 � � (2)

where ������	

�� ���� � ���� ��� ����� � 
���

��� �� � 
���
����

is a so called shifted input Krylov subspace, and ����� �� �

��
... ��

... 	 	 	
... ������ � ��� is the partial reachability matrix of the

system (1).
Theorem 1: [4], [5] Let � be a matrix satisfying (2). Then the �th

order system ��

��� � ���� �����

�� � ����

where �� �  �
� �� , �� �  �

� �, �� � �� , defines a reduced order
system with the moments ����
��, � � �� 	 	 	 � �� �, at 
� � equal to
the first � moments ���
��, � � �� 	 	 	 � ���, of the full order system �.

Proof: The idea of the proof is based on the moment matching
around 
� � � employing the properties of the corresponding input
Krylov subspace, with the consequent shift to an arbitrary point 
�

0018-9286/$26.00 © 2011 IEEE
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using the shifted input Krylov subspace. Details of the proof can be
also found in [11].

In a similar way we can construct the projection maps �� �
��� ,

� � �� � � � � �, based on the shifted output Krylov subspace
�������	
�
 ����� � ���� �	
 ����� � ����

�� � �� � ����
�� �� �,

satisfying the following properties:

�����
� �� � ��� 	�	� ��� �	
���� 	� ��

��� 	���	�	���
�

��� ���� �	
 �� � �������	
�
 ������ � � �� �� � � � � �	 (3)

Using such a projection map �� for model reduction establishes an
analogous result to that in Theorem 1.

B. Rational Lanczos Method

In order to apply the rational Lanczos method one has to construct
a reduced order model by applying a so-called Petrov-Galerkin pro-
jection 
��

�
� , 
� , �� � ���, to a full order linear system (1).

The maps 
� , �� satisfy property (ii) of (2), (3). But in this case 
� ,
�� are no longer assumed to be orthonormal but instead biorthogonal:
��

� 
� � �� .
Theorem 2: [4], [5] Let 
�� �

� be a Petrov-Galerkin projection.
Define the reduced order system ��

��� � ��������

�� � ����

where �� � ��
� �
� , �� � ��

� �, �� � �
� . Then the moments �������,
� � �� � � � � �� � �, at �� � equal to the first �� moments ������,
� � �� � � � � �� � �, of the full order system �.

Proof: The proof is similar to the proof of Theorem 1 apart from
the fact that in this case both the (shifted) input and output Krylov
subspaces are used.

Thus the rational Lanczos method preserves twice as many moments
of the full order model at an arbitrary point �� � as the rational
Arnoldi method.

III. LINEAR PORT-HAMILTONIAN SYSTEMS

In the linear case, and in the absence of algebraic constraints and a
feed-through term, port-Hamiltonian systems take the following form
([14]):

�� � �� ������ ��

� � ����
(4)

with ���� � ������� the total energy (Hamiltonian), � � ��

the energy matrix and � � �� � the dissipation matrix. The ma-
trices � � ��� and � specify the interconnection structure. Since � is
skew-symmetric and � is positive semi-definite it immediately follows
that ��������������� � � � � ������ � �. Thus if � �
(and the Hamiltonian is non-negative) any port-Hamiltonian system is
passive (see also [14], [17]). Extended theory on port-Hamiltonian sys-
tems is presented in [2], [14] and the references therein. In the sequel
we will assume that � � �.

IV. REDUCTION OF PORT-HAMILTONIAN SYSTEMS

BY THE RATIONAL ARNOLDI METHOD

A. Energy Coordinates, Transforming � to the Identity Matrix

Consider a port-Hamiltonian system (4) with � � �� � ��� �
���, � � �, � � ��� � ���, � � �. Then there exists a co-

ordinate transformation �, � � ��� , such that in the new coordinates
�� � ���� � � . By defining the transformed system matrices

�� � ������� � �� � ������� � �� � ���� (5)

we obtain the transformed port-Hamiltonian system with energy
����� � �������

� and input-state-output representation

��� � ��� ������ � ���

� � ��� �� 	
(6)

Theorem 3: Consider a full order port-Hamiltonian system (6) and
construct 
� satisfying (2) using the Arnoldi procedure. Then the �th
order reduced system

���� � � ��� � ������� �����

�� � ��� ���
(7)

is a port-Hamiltonian system with the interconnection matrices ��� �

 �
� ��
� , ��� � 
 �

� �� , energy matrix ��� � � , dissipation matrix
��� � 
 �

� ��
� and output matrix ��� � ��� 
� . Furthermore, the
first � moments at �� � of the reduced order port-Hamiltonian
system (7) and the full order port-Hamiltonian system (6) are equal:
���������� � ��������� � ������, � � �� � � � � � � �.

Proof: Clearly ��� is skew-symmetric and ��� is symmetric and
positive semi-definite. Moreover ��� � ���� ��� . Therefore the reduced
order model (7) is port-Hamiltonian. The equality of the first � mo-
ments at �� � , ���������� � ��������� follows directly from The-
orem 1. The equality ��������� � ������ is due to the fact that the
moments are invariant under state-space coordinate transformations.

Remark 1: We do not need to compute coordinate transformation
� explicitly. Instead, we compute matrices ���, ��� , needed in (5),
using the Cholesky factorization of the positive definite symmetric
banded matrix � � ���: � � ��� � ������. The algorithm
from [3, p. 156], computes the factorization of � using ���� � ���
flops and � square roots, which is about ���� � ��� �� flops, where
� is the lower (upper) bandwidth of �.

A very conservative (and straightforward) flop count for the matrix
product ����� � ����� (for upper triangular ��� with the upper
bandwidth �, lower triangular ��� with the lower bandwidth � and
banded � � � with the lower (upper) bandwidth � ) reveals that

�� � � ��
�

�
���� �� (8)

flops are needed. Combining this count with the previous estimation
gives a numerical cost of forming system (6) of

���� � ��� �� � �� � � ��
�

�
���� �� (9)

flops.
It is explained in [1, p. 350], that the number of operations needed

to compute an �-dimensional reduced system (7) is of order ������
for sparse systems. This flop count, together with the flop count from
(9), gives the overall numerical complexity of computing the reduced
order model (7).

We would like to underline that the estimation in (8) is very conser-
vative. Furthermore, in practical applications the matrix � �� is very
sparse while � is small, and � is such that � is close to zero (� � �
for diagonal �). Thus in practice numerical cost of computing system
matrices in (6) does not dramatically increase the numerical cost of the
model reduction procedure.

Using the projection map�� satisfying (3) instead of
� in Theorem
3 we obtain a different, but analogous �th order reduced port-Hamil-
tonian system preserving the first � moments at �� � :

���� � � ��� � ������� �����

�� � ��� ���
(10)

with the port-Hamiltonian matrices ��� , ��� , ��� ,��� given as in Theorem
3 after substituting �� for 
� .
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In general, the reduced order models (7) and (10) obtained by
applying the projection maps �� , �� , constructed using the rational
Arnoldi method, are not equivalent.

Theorem 4: The reduced order port-Hamiltonian model (7) obtained
using the projection map �� based on the shifted input Krylov subspace
��������
�	 �
��� and the reduced order port-Hamiltonian model (10) obtained

using the projection map �� based on the shifted output Krylov sub-
space��������

�	 ����� are equivalent in the sense of sharing the same transfer
function if the condition

���� ���������� ���	
��� ���� ���	

���	


 ���� ��� �����
��� ���	

��� ����� ���	
���	 (11)

for � 
 	 � 
 is satisfied.
Proof: Theorem is proven in [9] (see Theorem 6.6).

A different yet structure preserving approach to model reduction
of port-Hamiltonian systems is considered in [18], where the reduced
order moment matching port-Hamiltonian model is defined as �� 

� �
� ����� , �� 
 � �

� ��, together with a reduced order energy matrix
�� which is not the identity matrix: �� 
 �� �

� ���	
��. In general, the

projection matrix �� used in [18] is different from �� used in Theorem
3. In fact, it is shown in [9] (see Theorem 6.7) that the transfer function
of the reduced order port-Hamiltonian model from [18] is equal to the
transfer function of (7).

Remark 2: One possible choice to test the condition (11) is to verify
that the columns of one of the reachability matrices from (11), attached
to the other matrix, do not increase its rank

����������� ���	
��� ���� ���	

���	�

�����
��� ���	

��� ����� ���	
���	


 ����������� ���	
��� ���� ���	

���	� (12)

The question about the (computationally) efficient test for the condition
(11) is currently under investigation.

B. Co-Energy Coordinates

There are various ways to obtain a reduced order port-Hamiltonian
model in so-called co-energy coordinates ([9])

�� 
 ��	 �
	������

� 
 �� �
(13)

either scaling the energy matrix�, or taking it to the left side of the dif-
ferential equation in (13). The reduced order port-Hamiltonian models
in that case turn out to be equivalent to those in (7) and (10), in the
sense of sharing the same transfer function. For the details and proofs
see [9].

V. REDUCTION OF PORT-HAMILTONIAN SYSTEMS

BY THE RATIONAL LANCZOS METHOD

In this section we show how the rational Lanczos algorithm preserves
not only �� moments at �� � but also the port-Hamiltonian structure
for a subclass of port-Hamiltonian systems.

Theorem 5: Consider a full order port-Hamiltonian system (4) and
construct �� satisfying property (ii) of (2) such that � �

� ��� 
 �� .
Then the �th order reduced system

��� 
 � �	 � �
	�������

�� 
 ����
(14)

is a port-Hamiltonian system reduced by the rational Lanczos method
with the interconnection matrices �	� 
 � �

� �	��� , ��� 
 � �
� ��,

energy matrix ��� 
 � , dissipation matrix �
� 
 � �
� �
���, output

matrix ��� 
 ����� , and the projection map �� 
 ��� , if condition
(11) holds true. Furthermore the first �� moments at �� � of the

Fig. 1. n-dimensional mass-spring-damper system.

reduced order port-Hamiltonian system (14) and the full order port-
Hamiltonian system (4) are equal: ������	 
 �����	, � 
 �� � � � � ����.

Proof: Theorem is proven in [9] (see Theorem 6.8).
This scheme of model reduction using the rational Lanczos method

works as well in co-energy coordinates resulting in the reduced order
port-Hamiltonian model which is equivalent to (14).

The next result establishes a relation between the reduced order port-
Hamiltonian models obtained by both the rational Arnoldi and the ra-
tional Lanczos methods.

Theorem 6: The reduced order port-Hamiltonian model (7) in en-
ergy coordinates obtained by the rational Arnoldi method and the re-
duced order port-Hamiltonian model (14) in energy coordinates ob-
tained by the rational Lanczos method share the same transfer function
if condition (11) is satisfied.

Proof: The proof is similar to the proof of Theorem 6.6 in [9],
hence omitted.

Corollary 1: A natural conclusion of Theorem 6 is that for a subclass
of port-Hamiltonian systems, characterized by the condition (11), the
rational Arnoldi method matches twice as many moments of the orig-
inal system at �� � as it does for a general linear system.

Note that for an important point �� 
 � condition (11) specializes to

���� �������
������ ����	


 ���� ��� ����
������ ��� �	� (15)

VI. NUMERICAL EXAMPLE

Consider an n-dimensional mass-spring-damper system as shown in
Fig. 1 with masses �� and spring constants ��, for � 
 �� � � � � ��. A
damper with a damping constant �� � � is attached only to the first
mass ��. �� and �� are the momentum and displacement of the mass
��, respectively. The input � is the external force acting on the first
mass ��, while the output � is the velocity of the mass ��. State vari-
ables are defined in the following way: for � 
 �� � � � � ��, ����� 
 ��
and ��� 
 ��.

A minimal realization of this system for order  
 � (corresponding
to three masses with one damper and three springs) is

	 


� � � � � �

�� � � � � �

� � � � � �

� � �� � � �

� � � � � �

� � � � �� �

�

� 


�

�

�

�

�

�

�

� 


�
�

�

�

�

�

�

�

�
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Fig. 2. Evolution of the relative� and� norms.

Fig. 3. Amplitude Bode plots for � � ��.

� �

�� � ��� � � �

� �

�
� � � �

��� � �� � �� � ��� �

� � � �

�
� �

� � ��� � �� � �� �

� � � � � �

�

with � � ����� � �� � � � � �.
We considered a 100-dimensional mass-spring-damper system with

	� � �, �� � �, and �� � �. We applied the rational Arnoldi method
as shown in Theorem 3 with the approximation point 
� � �. The
reduced order systems are constructed for the orders from � � � to � �
�� with increments of 2. Evolution of the relative �� and �� norms
is shown in Fig. 2. The�� relative norm decays as the dimension � of
the reduced order systems increases, whereas the�� relative norm is
almost constant. This effect can be explained by the lack of damping in
the system (the�� relative norm is known to have weakly decreasing
behavior for poorly damped systems). Reduced order systems inherit
the port-Hamiltonian structure, are asymptotically stable and passive.

The magnitude Bode plots of the full, reduced order with � � ��,
and error systems are shown in Fig. 3. The figure exhibits that the ap-
proximation is very accurate for small frequencies and the error is accu-
mulated for high frequencies. This is to be expected since the moments
are matched at 
� � �. The magnitude plot of the reduced order system

captures the first peaks and zeros of that of the full order system. The
model reduction scheme preserves at least the first � moments of the
full order transfer function at zero.

In fact, for the mass-spring-damper system considered here con-
dition (15), which is a special case of the condition (11) at 
� � �,
is satisfied. Therefore even though the reduced order port-Hamil-
tonian model is obtained using the rational Arnoldi method from
Theorem 3, it is equivalent to that of the rational Lanczos method, as
explained in Theorem 6. Moreover, due to Corollary 1 the reduced
order port-Hamiltonian model preserves �� moments at zero, which
can be readily checked for the particular case when �, for instance, is
equal to 2: � ����� 	 	 	 ������ � � � � �
� �
�� ����
� ��
� ������ 	 	 	 ������� �.

VII. CONCLUSION

In this technical note we used the rational Krylov methods to produce
reduced order models which are port-Hamiltonian. We showed how the
rational Arnoldi method can be employed for this purpose in energy
and co-energy coordinates using the projection maps constructed both
on the shifted input and output Krylov subspaces.

The rational Lanczos method can be applied in a structure preserving
way only to a subclass of port-Hamiltonian systems, characterized by
an algebraic condition. For this subclass of systems all the reduced
order models in this technical note share the same transfer function.
Consequently, the rational Lanczos method is proven to produce a re-
duced order port-Hamiltonian model which is equivalent to that of the
rational Arnoldi method. Therefore the rational Arnoldi method ap-
plied to a port-Hamiltonian system from the subclass preserves twice
as many moments at an arbitrary point in the complex plane as it does
for a general linear system.

Both considered methods preserve the port-Hamiltonian structure,
implying, among others, the passivity property, and, therefore, stability.

Important questions concerning general error bounds for the struc-
ture preserving port-Hamiltonian model reduction methods, numerical
efficiency and the physical realization of the obtained port-Hamiltonian
reduced order models, as well as systematic characterization of the sub-
classes of port-Hamiltonian systems, are currently under investigation.
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A Quasi-Newton Interior Point Method for
Low Order H-Infinity Controller Synthesis

Daniel Ankelhed, Anders Helmersson, Member, IEEE, and
Anders Hansson, Senior Member, IEEE

Abstract—This technical note proposes a method for low order H-infinity
synthesis where the constraint on the order of the controller is formulated
as a rational equation. The resulting nonconvex optimization problem is
then solved by applying a quasi-Newton primal-dual interior point method.

The proposed method is evaluated together with a well-known method
from the literature. The results indicate that the proposed method has com-
parable performance and speed.

Index Terms—H-infinity synthesis, interior point methods, linear ma-
trix inequalities (LMIs), quasi-Newton methods, rank constraints, rational
constraints.

I. INTRODUCTION

The development of robust control theory emerged during the 80s
and a contributory factor certainly was the fact that the robustness of
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linear quadratic Gaussian (LQG) controllers can be arbitrarily bad as
reported in [1]. A few years later, in [2], an important step in the de-
velopment towards a robust control theory was taken, where the con-
cept of �� theory was introduced. The �� synthesis, which is an
important tool when solving robust control problems, was a cumber-
some problem to solve until a technique was presented in [3], which
is based on solving two Riccati equations. Using this method, the ro-
bust design tools became much easier to use and gained popularity.
Quite soon thereafter, linear matrix inequalities (LMIs) were found to
be a suitable tool for solving these kinds of problems by using refor-
mulations of the Riccati equations. Also related problems, such as gain
scheduling synthesis, fit into the LMI framework, see, e.g., [4]. In par-
allel to the theory for solving problems using LMIs, numerical methods
for this purpose were being developed and made available.

Typical applications for robust control include systems that have
high requirements for robustness to parameter variations and for dis-
turbance rejection. The controllers that result from these algorithms are
typically of very high order, which complicates implementation. How-
ever, if a constraint on the maximum order of the controller is set, that
is lower than the order of the augmented plant, the problem is no longer
convex and it is then relatively hard to solve. These problems become
very complex, even when the order of the system to be controlled is
low. This motivates the development of efficient algorithms that can
solve these kinds of problems.

When evaluating the proposed method, we iterate through orders
and performance. Even if we can use the method to find a controller
of a given order directly, evaluating the trade-off between controller
order and performance is natural from an engineering perspective. In
this way we can find a controller which gives a good balance between
complexity and performance, even if the computational effort during
the design becomes higher.

This article is based on the work in [5], but the difference is that the
proposed algorithm in this work uses an approximate quasi-Newton
update of the Hessian instead of a regularized, exact Hessian. New nu-
merical results are also included to demonstrate the improved perfor-
mance of the new algorithm.

Denote with � the set of symmetric ���matrices and with ���

the set of real � � � matrices. The notation � � ��� � �� and
� � ��� � �� means that � is a positive (semi) definite matrix
and negative (semi)definite matrix, respectively. Also, denote the sym-
metric vectorization operator by svec and the symmetric Kronecker
product by �� , as defined in [6].

II. PRELIMINARIES

We begin by describing a linear system, �, with state vector, � �
� . The input vector contains the disturbance signal, � � � , and

the control signal, � � � . The output vector contains the measure-
ment, � � � , and the performance measure, 	 � � . In terms of
its system matrices, we can represent the linear system as

� �

��
	

�

�

� 
� 
�

�� ��� ���

�� ��� ���

�

�

�

(1)

where��� is assumed to be zero, i.e., the system is strictly proper from
� to �. If this is not the case, we can find a controller � for the system
where ��� is set to zero, and then construct the controller as  �
��� 	���

����. Hence, there is no loss of generality in making this
assumption. For simplicity, it is also assumed that the whole system is
on minimal form, i.e., it is both observable and controllable. However,
in order to find a controller, it is enough to assume detectability and
stabilizability (non observable and non controllable modes are stable).
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