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CHAPTER 1

INTRODUCTION

Cities remain a fascinating phenomenon. Why do 25 thousand people in Manhat-

tan live on one square kilometre while the worldwide density could be 47 people

per square kilometre? Why would you rent in Amsterdam while with a two and a

half hour drive the rent price drops by a factor of 200? The improvements in inform-

ation, communication and transport technologies eased the sprawl of people and

economic activities during the last decades. Global supply chains emerged result-

ing in a relocating of separate production tasks across the world. The separate parts

of the Volvo S40, for instance, are made in dozens of places (see Figure 1.1 below).

Still, people and their activities cluster more and more together in the largest cities,

as can be seen from the density spikes in Figure 1.2. Baldwin & Evenett (2012) talk

about cities as 21st century ’factories’. What explains the facilitating role of cities in

current production processes of millions of spatially separable tasks?

Figure 1.1. Global production chain Volvo S40

Source: Baldwin (2010)
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Figure 1.2. Global population density

Source: Hill (2011)

Cities by definition bundle people and their economic activity. They exist be-

cause of proximity and scale benefits. The improvements in information, commu-

nication and transport technologies altered the bundling and unbundling of eco-

nomic activity. Falling transport costs in combination with global technological

trends such as computerisation made physical distance less relevant for some parts

of production. This enabled the unbundling of production processes across work-

ers, across firms and across locations. Some decades ago, a car was manufactured

in one location. Today, the production of a car is a worldwide process. Some parts

are best manufactured in China, others in Japan or Sweden. The changing spatial

division of economic activity suggests altering location and city advantages. The

geographically breaking-up of the production chain suggests that the worldwide

division of labour takes place at a different level: the ’task’ level instead of the

industry level. Thus, at the level of ’repair’, ’sewing’ or ’design’ instead of ’auto-

mobile industry’. New approaches to define these contents of work appear. The

changing demand for tasks may vary within occupations as for instance computers

substitute some tasks and complement other tasks of an occupation. This changing

task demand indicates that a focus on occupations and industries does not capture

the whole story anymore.

These observations indicate the relevance of a task approach in analysing the

role of cities as ’factories of the 21st century’. This thesis describes the interac-

tions between tasks, jobs and cities to create a better understanding of what kind

of production cities continue to facilitate in the modern economy. The next pages

introduce the theme, the outline of the main argument and the subjects of the thesis.
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1.1 Bundling and unbundling of economic activity

Popular stories about the production of the Barbie doll, telecommunication chips

and x-rays visualise current global production chains.1 Although all continents

participate in these chains, activity within these continents is spatially bundled.

What drives the bundling and unbundling of economic activity?

Ages ago communities had to produce everything they consumed on their own.

The extreme transport costs forced a geographical bundling of production and con-

sumption. Spatial clustering of people generated possibilities to divide labour.

Within a small town the butcher also needed to be the baker, while in a city these

were two distinctive occupations. The spatial clustering of people induced scale

benefits and enlarged the consumption possibilities. A larger local labour market

meant a wider variety of consumption goods. A baker who devotes all his time to

baking produces a wider variety of bread products than a baker who also has to cut

the meat.

The development of cheaper ways to ship commodities gradually made trade

more convenient. Production and consumption could be separated and communit-

ies no longer had to produce everything they wanted to consume. Together with

the transport revolution, the emergence of mass-production and industrialisation

resulted in a first wave of globalisation. Factories did not need to locate near their

consumers and became footloose. Firms could now choose their location with re-

spect to specific location and scale advantages. Cities, in their turn, started to pro-

duce products for which they had a comparative advantage to exploit specific loca-

tion and scale advantages. Cities could focus, for instance, on the manufacturing of

cars while importing computers. This resulted in a spatial division of labour across

the world.

Cities exploit scale and location advantages. Not just aggregated activity is ag-

glomerated but industries cluster in space as well. The spatial clustering of indus-

tries, such as the former auto-mobile industry in Detroit, seemed to generate ag-

glomeration advantages.2 These clusters attract firms in search of high productivity

rates and ambitious workers in search of the best jobs. Many examples of cluster-

ing, such as the concentration of the film-industry in Hollywood, are or were pretty

successful. Such successful examples induced many governments to strive for their

own ’Hollywood’. A simple recipe on how to succeed as a city fails to appear so far.

1 See Tempest (1996), Burrows (1995) and Pollak (2003).
2 A broad and extensive literature discusses several agglomeration economies, for overviews see

Glaeser & Gottlieb (2009) and Rosenthal & Strange (2004).
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Successful cities vary substantially in their economic structure. Furthermore, spe-

cialisation increases lock-in risks and the sensitivity to a shock in the local industry.

After the decline of the US auto-mobile industry for instance, the unemployment

rate in Detroit surged.

The improving information, communication and transport technologies of the

last decades initiated a new wave of unbundling. This ’second unbundling’ is char-

acterised by the fragmentation within the production process itself. Here, we focus

on the bundling and unbundling of tasks in jobs (occupations) and in cities. First,

these technological changes affect the bundling and unbundling of task packages

of jobs. The necessity of performing several tasks by one worker disappeared by

the easier and better coordination and communication possibilities altering the di-

vision of tasks across jobs. Additionally, computerisation has different effects on

different tasks. Most tasks of a taxi driver are not replaced by a computer while

many of the tasks of an office clerk are.

Second, economic activity is bundled and unbundled across space. Recent tech-

nological changes induced a fear for the relocation of ’our jobs’ in rich countries to

low wage countries such as China. Indeed, this relocation (offshoring) has been an

influential economic force in the last 20 years (Feenstra, 2010). The estimates of how

many jobs can potentially be offshored differ, but that more jobs become offshor-

able seems to be without discussion. Economic activity however still bundles in

rich cities as well. Each part of the production process, each task, is produced at the

most efficient place. For many tasks, this most efficient place continues to be a city

in a rich country. The co-location of similar (or different) tasks, suppliers and con-

sumers results in agglomeration advantages for the production of certain tasks. The

economic focus of cities shifted from sectoral specialisation to functional specialisa-

tion. Location advantages vary across tasks and jobs. The design of computers and

cars benefits, for instance, more from human interactions than the production of

spare parts of computers and cars does. The co-location of suppliers is beneficial

for the production of spare parts however.

It became possible to build global supply chains such as the one of the Barbie

doll. Each part of the doll can be made by the most efficient worker, the most

efficient firm and at the most efficient location. These trends affect the work content

of jobs and of cities. The comparative advantages of workers and cities in rich

countries shift. This has consequences for policies aiming to stimulate comparative

advantages, e.g. educational policies, industrial policies and regional redistribution

policies.
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1.2 Main argument

The search for the source of bundling of economic activity and people has a long

and extensive history (Marshall, 1920; Jacobs, 1969; Jaffe et al., 1993). The rise of

information, communication and transport technologies altered the division of la-

bour substantially and with that the role of cities in the world economy. The chan-

ging impact of distance resulted in a vast stream of new studies about distance, cit-

ies and labour markets. According to Frances Cairncross (1997) and Thomas Fried-

man (2005) the ICT-revolution would eventually result in ’the death of distance’

and a ’flat world’. The correlation between population density and productivity

did however not weaken the last decades. The world does not seem to be a level

playing field (Leamer, 2007). Bundling and unbundling of economic activity takes

place across workers, firms and cities. This study applies a task approach to take

into account the variations of tasks across workers and cities.3 It is essential to

draw the distinction to studies about the skill structure of cities, such as the work

of Glaeser & Ressenger (2010). A city’s task structure defines the work activities

in the city that produce output. The skill structure of a city reflects the stock of

capabilities the workers in the city apply to perform work activities. Since the as-

signment of skills to tasks changed over time, the analyses of cities’ task structures

differ from the ones of the skill structure (Autor, 2013). Considering the labour

demand consequences this distinction between tasks and skills is relevant.

This study investigates what it is that cities facilitate within the current produc-

tion process and focuses on what happens and does not happen within city jobs.

By doing so, it relates to the field of urban economics. Therefore, the study does

not take into account the relative spatial position of cities or rural areas. Our contri-

bution lies in the task approach towards defining the role of cities. Specifically, this

study analyses the interactions between tasks, jobs and cities. Figure 1.3 displays

an overview of the considered interactions in this study.

The interactions between tasks, occupations and cities result in several research

questions. A first focus is the connection between tasks and cities. How does the

second unbundling affect city labour markets and what is the relation between task-

structures and city development? Duranton & Puga (2005) and Baldwin (2010) ar-

gue that cities continue to benefit from similar agglomeration economies as before.

The level at which these benefits take place changes. Where firms used to benefit

from, for instance, the spatial clustering of similar industries, they currently be-

3 See Acemoglu & Autor (2011) for an overview of this approach.
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Figure 1.3. This thesis
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nefit from the clustering of similar tasks or jobs. Agglomeration economies vary

across tasks and jobs. Innovation seems to benefit heavily from clustering while

bookkeepers do not perform their tasks more efficiently in close vicinity of many

other bookkeepers. Autor & Dorn (forthcoming) show that the initial task struc-

ture of cities explains employment trends within cities. Cities with a large initial

share of routine tasks polarised in terms of employment and wages. The distinc-

tion between non-routine and routine tasks does not explain spatial bundling and

unbundling across cities however. Some routine tasks, such as cleaning, largely be-

nefit from performance in close vicinity of certain other tasks. Agglomeration bene-

fits likely vary across routine and non-routine tasks. The complementarity between

agglomeration and modern technologies lies within the interconnection in the per-

formance of tasks. Some tasks can be performed at isolated distance while other

tasks require proximity to other tasks. This discussion results in the first question

of this thesis:

1. Does the connectivity between tasks explain employment development across cities?

Tasks are not only interconnected within cities but also within jobs. The second con-

sidered connection is the one between cities and the task packages of jobs. Becker

& Murphy (1992) argue that workers are more productive when their jobs contain
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fewer tasks. The more time a worker devotes to the performance of a certain task,

the more task-specific skills he develops and the more efficient he becomes in the

performance of that task. If the job of the worker contains many tasks, he has to

divide his time across the tasks and has less time to ’learn by doing’. This makes

the division of tasks across workers efficient. A doctor who has to perform many

different kind of surgeries has to have many different surgical skills. When a doctor

only removes appendices he will be better skilled for and more efficient in perform-

ing this task than when he also has to remove gallbladders. The division of labour

is however bounded by coordination costs: the coordination of bundling the tasks

of several people. When a patient has issues with both his appendix and his gall-

bladder and has two separate surgeons, they have to communicate intensively to

decide upon the best strategy. Communication and coordination costs are lower

when the patient has one surgeon who has surgeon skills for both the appendix

and the gallbladder.

The thick labour markets of cities likely increase specialisation possibilities. The

idea is quite simple: in a larger market the total number of tasks can be divided

across more workers.4 Hence, the number of tasks performed by each worker de-

creases with the size of the market. Duranton & Jayet (2011) extend this idea by

showing that scarce tasks are performed more often in large markets. The large de-

mand and supply in these markets make it possible to produce a wider variety of

products. The assumed more extensive division of labour in cities provides work-

ers the possibility to specialise in a subset of tasks and develop specific skills for

this subset. This results in the following question:

2. Do workers in large cities specialise in a smaller subset of tasks and develop more

specialised skills than workers located outside these cities?

Not only the number of tasks workers perform determines their efficiency, also the

characteristics of these tasks do matter. People are most productive when they per-

form tasks that match their skills well. The assignment of heterogeneous workers to

heterogeneous job tasks is a complex process however. This assignment faces fric-

tions caused by imperfect information and an extensive amount of heterogeneous

workers and jobs. Developments in information and communication technologies

altered the assignment of skills to tasks.5

4 This idea was already suggested by for instance Adam Smith (1776) and James Baumgardner (1988a).
Empirical evidence is however scarce.

5 See the work of Acemoglu & Autor (2011) and Autor (2013).
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The thick labour market of large cities results in more choices for both job-

seeking employees and for employee-seeking employers. The extensive choice

leads to several labour market advantages. The chance to find a decent job or a

decent new employee increases when there are more in the market. In case of a

shock or a change in preferences, workers and employers can switch between jobs

easier when located in a thick labour market. This reduces risk-aversion. Because

it is easier to switch, turn-overs are higher in thick markets. ’Job-hopping’ is associ-

ated with beneficial knowledge spillovers, but a high turnover also leads to a loss of

firm-specific knowledge. A large market furthermore makes it possible to be more

choosy who to pick. This fastidiousness takes place at both sides of the assignment

and therefore results in better matches between heterogeneous workers and het-

erogeneous jobs. Several studies theoretically argue that large local markets should

provide better assignments of workers to jobs (Helsley & Strange, 1990; Kim, 1990,

1991). Empirically, this literature is however rather unexploited 6 which results in

a third question:

3. Does the thick labour market in large cities result in better matches of heterogeneous

workers to heterogeneous job tasks?

Lastly, we consider the connection between city structures and the value of commu-

nication job tasks. The relatively smooth communication and coordination between

people in cities seems to be a driving force behind current successful cities (Gaspar

& Glaeser, 1998). Together people produce more knowledge and ideas than when

working isolated, since people learn from each other by watching, observing and

especially interacting.7 Benefiting from watching, observing and especially inter-

acting requires certain communication, social and emphatic skills. A very smart

person cannot by definition interact easily with other persons. Clarification, pa-

tience and trust are examples of important communication skills. Since the main

advantage of cities lies in their ability to combine economic activity and the know-

ledge of people, communication and coordination skills are key. Bacolod et al.

(2009) show that the returns to certain skills, such as social skills, increase with

city size.

As noted before, different types of (successful) city economies co-exist. This sug-

gests variation in location advantages for the bundling of economic activity. Typ-

ically, city economies either focus on a certain activity or they perform a very wide

6 Within a first empirical paper, Petrongolo & Pissarides (2006) find positive scale effects in both post-
employment wage and reservations wages.

7 Jaffe et al. (1993) show for example that distance bounds patent citations.
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range of activities. In the literature this distinction is referred to as specialised and

diversified cities (Duranton & Puga, 2000). These cities provide different agglom-

eration advantages for firms. Within specialised cities firms benefit from the co-

location of similar, competing firms. This co-location lowers production costs and

the focus of firms in these cities lies on producing their products as cheap as pos-

sible. Within diversified cities, firms benefit from the co-location of a wide variety

of firms. The production costs are higher in these cities due to smaller sharing be-

nefits of specific facilities and a specialised labour market. However, by watching,

observing and interacting in a diversified environment firms benefit from a broad

spectrum of knowledge and idea spillovers. This environment is especially favour-

able to young firms and products which are still in development. More mature

firms and products flourish in specialised cities with low production costs (Dur-

anton & Puga, 2001).

When we relate the co-existence of specialised and diversified cities to the im-

portance of communication and coordination in today’s cities, two hypotheses come

up. First, knowledge and idea spillovers foster location advantages in both city

types which suggests that communication is relevant in both types. Second, the

communication in diversified environments is more important as firms are still in

development. Furthermore, the communication across fields makes communica-

tion more complex than the communication between similar firms in specialised

cities. This results in the following question:

4. Are communication tasks equally valuable in specialised and diversified cities?

1.3 Outline of the thesis

This thesis discusses the interactions between tasks, occupations and cities to prov-

ide insight in the facilitating role of cities in current production. The four relations

displayed in Figure 1.3 and discussed in the previously introduced questions form

a guideline for this study. This section presents the outline of the thesis.

Chapter 2 investigates the impact of cities’ initial task structure on recent em-

ployment trends across US cities. In previous studies, these employment trends

are mostly explained by differences in industrial structure or skill structure. The

worldwide shift in the allocation of tasks indicate the relevance of a task approach.

The chapter studies to what extent tasks benefit from the geographical presence
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of other tasks. Empirically, this so-called task connectivity is measured by the co-

agglomeration of 41 job tasks from the Occupational Information Network (ONET)

dataset. The connectivity between the performed tasks defines the economic struc-

ture of the 168 largest US cities. Our analyses show that cities with a one stand-

ard deviation higher ’connectivity’ in 1990, experienced an additional employment

growth of 30 to 45 percent of a standard deviation between 1990 and 2009. The

interdependence of tasks seems to be an important determinant of recent employ-

ment trends across US cities. This result is observed within manufacturing, within

services and across all skill groups.

Chapter 3 underlines the relevance of a task approach in analysing local labour

markets by showing that task packages of jobs vary across space. This chapter is an

empirical investigation of the theory of James Baumgardner (1988a) on the division

of labour across space. It defines an extension of the model to frame the hypothesis

that the division of labour is more extensive in cities than in towns. The model

assumes that a more extensive division of labour results in additional development

of skills as workers devote their time to a smaller subset of important job tasks. The

chapter applies this idea empirically using the German labour force survey BIBB.

Jobs in large German cities indeed contain different task packages compared to the

the same jobs in small cities. Workers in large cities perform a smaller subset of

tasks than their counterparts in towns. This focus allows them to develop more

specific skills for their core tasks. As expected, jobs demand more cognitive skills

when they are performed in a large city.

Not only the contents of jobs vary across space, also the skills of the workers

do. Chapter 4 therefore investigates the connection between cities and the match-

ing of worker skills to job tasks. The thick labour markets of large cities are expec-

ted to result in tighter matches between heterogeneous workers and heterogeneous

jobs. The empirical evidence for this hypothesis is scarce. Chapter 4 compares the

quality of assignment of heterogeneous workers to heterogeneous tasks between

thick and thin Dutch labour markets. The framework of this chapter suggests that

tighter labour matches drive spatial sorting of ’better’ workers and ’better’ jobs

into thicker labour markets. These ’better’ workers and jobs are more sensitive to

bad matches as they have more to lose relatively to other workers and jobs. Em-

pirically, these hypotheses are tested employing the Dutch LISS panel. As expec-

ted, the suitability of the skills of workers for their job is better in cities than in the

Dutch countryside. When we control for the self-selection into jobs, the spatial vari-

ation remains. Workers with relatively many cognitive skills are over-represented
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in Dutch cities. The same holds for jobs with relatively many cognitive tasks. Ad-

ditional analyses indicate that workers mainly sort into cities for job opportunities

in the Netherlands. Workers in cities improve the suitability of their skills for their

job faster than workers in the countryside. However, this does not explain the spa-

tial differences in the matching quality. Lastly, chapter 4 presents positive wage

returns of the better matching quality in cities. Thick labour markets in the Neth-

erlands result in more productive matches between heterogeneous workers and

heterogeneous tasks.

A task approach is a useful method to understand the underlying mechanisms

of why some cities have fared well and others have not. However, different types

of cities have fared well the last decades. Diversified and specialised city structures

successfully co-exist (Duranton & Puga, 2000). The variation in city structures likely

results in variation in the value of certain tasks in these cities. Therefore, Chapter

5 studies the relation between city structure and task value. Cities prosper because

of the importance of proximity and human interactions in certain parts of produc-

tion processes. Communication jobs tasks which stimulate human interactions are

a clear example of an important task in cities. Chapter 5 analyses the value of com-

munication tasks in both diversified and specialised cities. The chapter employs

wage, employment and task information from the 168 largest US cities. It shows

that performance of communication job tasks has positive wage returns in all US

cities. As expected, these returns are higher in diversified cities where complex

knowledge spillovers are relatively more important. The size of the wage returns

decreases with the specialisation level of the city. We conclude that the importance

of complex interactions in production decreases with the specialisation level of the

city as well.

Lastly, chapter 6 combines the results of this thesis into concluding remarks.

It summarises chapters 2 to 5 and discusses the interplay between tasks, jobs and

cities. Since this thesis answers only a limited number of questions and since this

research also raises new questions, the thesis ends with an agenda for further re-

search.





CHAPTER 2

CITIES, TASKS AND SKILLS*

2.1 Introduction

The division of labour has changed over the past two decades. Technological change

and especially rapid progress in information and communication technologies (ICT)

has enabled a break-up of the production process, which has had implications for

the organisation of work and the structure of employment (Bresnahan et al., 2002;

Autor et al., 2003). ICT has changed the way individual tasks can be carried out

and created new possibilities for communication between workers. Not only is this

observed within and between firms, but also across space. In many cases, phys-

ical distance becomes less important for production because communication at dis-

tance can be as effective as communication in person (Bloom et al., 2009). At the

same time cities flourish because of the increasing importance of human interac-

tions in modern production processes (Glaeser & Maré, 2001). These trends have

been accompanied by new approaches to relax the implicit equivalence between

workers’ skills and the tasks that have to be carried out at work. The core feature of

these approaches is that workers apply their skills to tasks in exchange for wages.

This distinction between skills and tasks becomes important when the assignment

of skills to tasks is evolving with time, because the set of tasks demanded in the

economy is altered by technological change that changes the need for proximity.

Recent evidence on offshoring suggests that certain tasks have been more vulner-

able to offshoring than others (Grossman & Rossi-Hansberg, 2008) and that a task-

based approach to study these developments is worthwhile pursuing (Baldwin &

Nicoud, 2010; Acemoglu & Autor, 2011).

This chapter uses such an approach to document and interpret recent employ-

ment trends in the 168 largest US metropolitan areas in the period 1990-2009. These

* This chapter is based on joint work with Bas ter Weel.
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cities cover about 75 percent of total US employment in 2009. Employment trends

across cities are often explained by differences in industrial structure (Ellison &

Glaeser, 1997). Duranton & Puga (2001) and Desmet & Rossi-Hansberg (2009) ar-

gue that new industries cluster in expensive locations to benefit from knowledge

spillovers, while more mature industries relocate to less expensive places because

production processes have become more standardised. The main benefit of a task-

based approach is that it allows us to analyse how employment growth across cities

is caused by interactions among job tasks and agglomeration forces. Understand-

ing this mechanism is potentially important in explaining why some cities have

fared well while others have been in decline.

We first present a simple framework in which we show how the decision to

trade tasks alters the division of labour. Occupations are defined as bundles of

tasks. The main focus of the framework is to understand how tasks are connec-

ted with each other. Connectivity explains to what extent tasks are benefiting

from the presence of other tasks and to what extent tasks are clustering. Empir-

ically, our measure of task connectivity measures the importance of proximity or

co-agglomeration for 41 job tasks defined in the Occupational Information Network

(ONET) database. This survey classifies all occupations in terms of the importance

of job tasks.

We analyse employment growth in the period 1990-2009. We construct a data-

base of the 168 largest US cities in which we pair representative data on job task

requirements from the ONET database with samples of employed workers from

the Current Population Survey and Census to form a consistent panel of industry,

occupations and spatial task input.

Our main results can be summarised as follows. Our measure of task connectiv-

ity explains a significant part of the changes in employment in US cities over the

last two decades. We find that a one standard deviation increase in task connectiv-

ity increases employment by 30 to 45 percent of a standard deviation. Cities with

a larger share of connected tasks have grown faster relative to other cities, condi-

tional on initial employment and location characteristics. Other measures of the

task composition of cities, such as the spatial concentration of tasks, do not explain

growth patterns. The result is robust to the inclusion of differences in the structure

of employment or industries (Glaeser et al., 1992; Ellison & Glaeser, 1997; Glaeser &

Kerr, 2009), the rise in the importance of social skills (Bacolod et al., 2009), the rou-

tinisation and computerisation of some parts of employment (Autor et al., 2003). In

addition, the connectivity between tasks is important in both manufacturing and
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service sectors and for all skill groups.

This chapter is related to a relatively new and growing body of empirical re-

search documenting and interpreting changes in the structure of employment and

wages using a task-based approach in which worker skills are allocated to job tasks.

Contributions to this way of analysing trends have been made by Autor et al. (2003),

Autor et al. (2006), Borghans & Ter Weel (2006), Goos & Manning (2007), Goos et

al. (2009), Firpo et al. (2009) and Criscualo & Garicano (2010). They show across a

variety of data sources that certain types of occupations seem to be disappearing

in terms of employment shares and/or seem to be paying lower wages over time,

while others grow and obtain wage growth. Duranton & Puga (2005) focus on a

related issue by distinguishing sectoral and functional specialisation of employ-

ment. Acemoglu & Autor (2011) review these international trends and argue that

a task-based approach is helpful when the assignment of worker skills to job tasks

is evolving with time, either because shifts in market prices command reallocation

of skills to tasks or because the set of tasks demanded in the economy is changed

by technological developments, trade, or offshoring. We add to these approaches

a spatial dimension because reallocation of skills to tasks changes the division of

tasks across space too.1 This helps to understand the employment developments

across different types of cities.

By addressing the spatial dimension of employment our work is related to the

recent contributions of Glaeser & Maré (2001), Bacolod et al. (2009), Bacolod et

al. (2010), Autor & Dorn (forthcoming) and Florida et al. (2012). They document

trends in regional employment and show that the structure of employment reveals

path dependence. In addition, some tasks seem to be associated with employment

growth, while others predict declines. Especially human capital seems to be im-

portant for growth. We use human capital too and find that it is an important

determinant of employment growth across cities. We add to this that the structure

of employment in terms of task combinations seems to be even more important.

Our arguments and findings are related to the empirical work on the division of

labour across space. Duranton & Jayet (2011) show, based on occupations, that the

distribution of workers across occupations in dense urban areas is different relative

to more rural areas. We show that the connectivity of tasks is positively correlated

to employment growth.

Finally, the importance of cities in gluing tasks together is also used in the ap-

proaches developed in Jensen & Kletzer (2005) and Akcomak et al. (2011). They

1 Rosenthal & Strange (2004) and Glaeser & Ressenger (2010) extensively review the literature in urban
economics.
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develop and apply measures of task connectivity similar to the ones we use here.

Charlot & Duranton (2004) and Bacolod et al. (2009) emphasise the importance

of communication and social skills in city employment. Our measure includes

this mechanism but also emphasises the combination of tasks associated with em-

ployment changes. The research by Duranton & Puga (2001), Duranton & Puga

(2005) and Desmet & Rossi-Hansberg (2009) points to the complementary relation-

ship between cities and technological change in explaining changes in employment

structure. We implicitly use this argument to explain why some tasks can be placed

at distance.

This chapter proceeds as follows. In the next section the theoretical background

is presented which results in a measure of task connectivity and predictions for city

size. Section 2.3 documents the most salient details of the data sources and presents

the empirical strategy. In Section 2.4 the main estimation results are shown. Sec-

tion 2.5 discusses other measures of task-composition and Section 2.6 applies the

analyses to several sub-samples. Section 2.7 concludes.

2.2 Theoretical background

Before documenting the impact of a cities’ initial task structure on employment

growth, this section lays the background for our indicator on the task structure

of cities. Within the light of the recent rapid development of ICT, this framework

suggests what tasks will be carried out in close vicinity and what types of tasks will

be performed at distance. This has repercussions for employment growth in and

outside cities.2

2.2.1 Basic setting

Firms decide upon the division of tasks across workers and across space. Produc-

tion in large cities is more expensive, but also comes with a set of well-known pos-

itive agglomeration forces. Firms are assumed to be small relative to the market

and take wages (w) as given. The market price (p) of the output in this economy is

also given.

Human capital is multidimensional. Workers produce output by performing

tasks. The performance of different tasks requires a different set of skills. Changes

in technology and labour supply determine what tasks are performed by what

2 The focus of this chapter lies on the impact on city employment. Although interesting, rural areas are
outside the scope of this paper.
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types of workers. The connectivity between different tasks determines what tasks

are performed in what location. Given the state of technology, firms take the con-

nectivity between different tasks (tc) as given.

Workers are able to perform many different tasks. The production function of

the firm describes the time needed to carry out these tasks. Connectivity determines

the time requirements d to carry out the tasks.

To illustrate the mechanism of location choices we have in mind, we assume,

for convenience, that all occupations consist of two tasks, task a (ta) and task b (tb).

The firm maximises profits per unit of production:

maxtc p − w(tc)
(
da(tc) + db(tc)

)
. (2.1)

For an individual worker the total time needed to produce one unit of output

equals:

d(tc) = da(tc) + db(tc). (2.2)

The time needed to produce one unit of output depends on task connectivity where

we assume that more connected tasks can be carried out faster because they more

naturally combine into one occupation.

Assume that tb can be placed at distance and that ta needs to be performed

inside the firm. When tb is performed outside the firm it takes Δb instead of db to

perform tb. The performance of ta also changes because the firm has to coordinate

with another firm or plant in a different location or even a different country. At the

same time, the outside firm or plant is more efficient in performing tb, which makes

production more efficient. It now takes Δa to carry out this task, with Δa �= da. Total

time to produce one unit of output now equals:

Δ = Δa + Δb. (2.3)

The decision to place tb at distance depends on the costs per unit of output. There

are two inputs in these costs: the difference in wage costs
(
w(da + db) vs. w(Δa +

Δb)
)

and the cost advantage of producing at a different location, which we label c.

The break-even point at which w(da + db) = w
(
(Δa + Δb) + c(Δa + Δb)

)
equals:

x = w
( da + db

Δa + Δb
− 1

)
. (2.4)
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If x < 0, tb will be performed at distance because the actual costs of producing in a

different location are below the break-even costs. The term in brackets in equation

(2.4) represents the time gain of dividing tasks across locations. It depends on (i)

the character of the tasks to be carried out and on (ii) the connectivity with other

tasks. μt(tc) = −( (∂dt(tc)/∂tc)
dt(tc)

) is the time for task t saved by a marginal increase in

tc. ta is a more connected task relative to tb if the time saved to perform this task is

larger, i.e. μa(tc) > μb(tc).

Differences in connectivity across tasks have employment effects. Specifically,

places with with a larger share of highly connected tasks will face employment

growth and places with a larger share of only loosely connected tasks will face

declines in employment. Many of the tasks historically performed by production

and administrative workers have become automated or have been offshored. This

does not make these tasks obsolete because they are now performed much more

efficiently in other places (or by computers). Since these tasks are necessary to

produce output, the more efficient performance is beneficial for the more connected

tasks in the cities at home (Grossman & Rossi-Hansberg, 2008).

2.2.2 What is connectivity?

Whether or not tasks will be placed at distance depends on three facets of the divi-

sion of labour. First, it depends on the time lost with the coordination of this task

relative to the gains of the division of tasks across locations. This balance has been

changing over the last decades as a result of technological change. Improved com-

munication technologies reduce the time lost communicating when placing tasks at

distance (Duranton & Jayet, 2011). In addition, technological change affects the or-

ganisation of work. The division of production time might change, which changes

the decision on the division of tasks across workers and locations (Borghans &

Ter Weel, 2006; Garicano & Rossi-Hansberg, 2006). Finally, worker skills could

complement or substitute for computer technology. Some tasks could be taken

over by computer technology, which also changes the performance of other tasks

(Borghans & Ter Weel, 2004). Lower coordination costs induce a further division of

tasks across locations where it is most cost effective to carry out the work.

Second, it depends on the nature of the tasks. Some tasks are non-tradable

and cannot be done at distance at reasonable costs, e.g. cleaning the offices in the

headquarters. The difference between (da + db) and (Δa + Δb) is infinite in such

cases. Hence, in all cities we observe the presence of a certain number of basic tasks

that have to be carried out in close vicinity. This is a similar argument as the one
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noted in Autor et al. (1998), who find that computerisation has a detrimental effect

on low-skilled workers, but not at the very low end because some low-end service

occupations are unaffected by this type of technological change.

Third, tasks are connected in cities because of the existence of agglomeration

forces. Coordination costs in terms of sharing inputs and transmitting information

and knowledge are lower when tasks are performed closely together (Duranton &

Puga, 2004). Tasks for which input sharing and information and knowledge trans-

mission are important complement other tasks and connect in space. This seems

especially true for tasks that demand higher levels of skill (Glaeser & Ressenger,

2010), tasks that require more coordination and face-to-face interactions (Gaspar &

Glaeser, 1998; Blum & Goldfarb, 2006) and knowledge tasks (Von Hippel, 1994).

Bacolod et al. (2009) and Florida et al. (2012) show that urban wage premiums tend

to be higher for analytical and social tasks and lower for physical and technical

tasks. Charlot & Duranton (2004) argue that larger and more educated cities require

workers to communicate more. They find support for this hypothesis in a sample

of French firms and show that workers who communicate more earn higher wages.

Agglomeration disadvantages such as congestion costs limit the size of the city and

cause smaller cities to have lower rent costs.

2.3 Data

We combine the information from several data sources to construct a database on

the division of tasks in the 168 largest US cities in the period 1990-2009. The tasks

in the database are broadly defined and could be performed in all occupations and

industries. The construction of the database from the several sources is visualised

in Figure 2.1.

The main indicators for the cities’ division of labour are collected from the Cur-

rent Population Survey (CPS). For about 140,000 individuals we obtain information

about occupation, industry and city of residence (defined as Metropolitan Statist-

ical Area (MSA)) in each year between 1990 and 2009. We distinguish 326 three-

digit occupations and 142 three-digit industries. Cities are defined as MSAs, as the

classification of MSAs is based on the nature of their economic activity. In 2009

MSAs were responsible for more than 85 percent of the employment, income, and

production of products and services in the United States (Bureau of Economic Ana-

lysis, 2009). The MSA definitions, in terms of borders, change over time. This

complicates analyses of employment developments of cities. To be able to ana-
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lyse a consistent sample of cities and a sound match between several data sources,

MSAs are defined as combined counties following the 1990 definition. The borders

of counties are consistent over time. A sample of 168 MSAs is obtained.

Figure 2.1. Database construction

Information about job tasks is collected from the ONET Database. ONET prov-

ides information about the importance of abilities, interest, knowledge, skills, work

activities, work context and work values within occupations. The work activities

represent the job tasks of the worker. ONET distinguishes 41 broadly defined work

activities. All tasks could be performed within all 326 occupations and are there-

fore not industry-related. Examples are thinking creatively, scheduling work and

activities and processing information. For each occupation the importance of the

41 tasks is provided by ONET on a scale from 1 (not important at all) to 5 (ex-

tremely important). The importance of the tasks by occupation are matched to the

occupations observed in the CPS. Aggregating the task information at the city level

generates the division of tasks by city over time (1990-2009). Table A.1 in Appendix

A.3 lists all tasks and presents information on type, employment shares and con-

nectivity.

ONET categories the work activities into four groups: information input, men-
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tal processes, work output and interacting with others. The second column of Table

2.1 presents an example of a task within each group, columns (1) to (4) show the

average importance of the four task-groups within four broad occupational groups.

The average task importance varies between 2.24 (work output for clerical and sale

occupations) and 3.58 (information input for production and operator occupations).

Information input tasks define where and how the information and data are gained

that are needed to perform the job. These tasks obtain high importance levels in all

occupational groups. Mental processes tasks indicate what processing, planning,

problem-solving, decision-making and innovating activities are performed in the

occupation. These tasks are especially important within professional, managerial

and technical occupations. The standard errors of the importance of these tasks

are very low within the broad occupational groups. The work output tasks refer

to ’what physical activities are performed, what equipment and vehicles are op-

erated/controlled and what complex/technical activities are accomplished as job

outputs’. The production and operators occupations obtain the highest importance

of these tasks. Lastly, the importance of interacting with others is the most import-

ant within professional, managerial and technical occupations.

The last two rows of Table 2.1 present the employment shares of the occupations

in respectively 1990 and 2009, while the last two columns present these for the task-

groups. Professional, managerial and technical occupations obtain both the highest

employment share in 1990 and the highest employment growth between 1990 and

2009. Also service occupations grow in terms of employment share while the shares

of clerical, sales, production and operators occupations decline. These findings are

consistent with the findings of Acemoglu & Autor (2011). Information input is

the largest task-group in terms of employment while interacting with others and

mental processes experience the largest growth. Remarkably, the changes between

occupational groups are larger than the changes between task-groups.

The division of tasks across US cities is constructed from the matching of task

information to occupations. We have to assume that the task structure of jobs does

not differ by city characteristics. This is a strong assumption but a necessary one

because we only observe the task content of occupations once. Bacolod et al. (2009)

and Autor et al. (2003) face the same problems. For example, a car mechanic in

Detroit conducts the same tasks relative to a car mechanic in New York. The extent

of the market might however affect the task package of workers and generate spe-

cialisation possibilities (Baumgardner, 1988a). If this is the case, these differences

are caused by the extent of the city suggesting that all the tasks are still performed
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within the city. This would not affect our measurement of connectivity of tasks

within the city. In addition, the ONET data is based on data collected in 1998 (re-

leased in 2001). This means that we only have of a cross-section of task data at

our disposal, which implies that the time variation in the division of tasks is based

on the employment development of individual occupations. To deal with this is-

sue, the task structure of cities in the initial year (1990) is used to document and

interpret employment changes. This is similar to the approach taken in Autor et

al. (2003), who use the Dictionary of Occupational Titles of 1977 to explain employ-

ment changes from 1963 onwards. We discuss the consequences of this approach

in Section 2.6, where we examine the robustness of our approach and estimates in

more detail.

Next, employment figures for cities over the period 1990 to 2009 are collected

from the Local Area Unemployment Statistics from the Bureau of Labor Statistics

(BLS). Lastly, a city’s share of high-skilled inhabitants is gathered from the Census

Decennial Database. High-skilled workers are defined as those workers with at

least a bachelor’s degree.

Data Appendix A discusses the data sources and provides insight in the con-

struction of the classification of cities, industries, occupations and tasks. Data Ap-

pendix A.3 also includes a list of all variables, their aggregation level and their

sources.

2.3.1 Descriptive statistics

The database we use for the empirical analysis contains information on the division

of labour and other characteristics of the 168 largest US cities. Table 2.2 presents the

summary statistics of the core variables used in the empirical analysis. Table A.3 in

Appendix A.3 presents the correlation coefficients. Cities vary in terms of charac-

teristics such as size, skill level and economic structure. Figure 2.2 shows the de-

velopment of the division of the four task categories over time. The importance of

tasks is measured as its share in the city’s total task importance of all 41 tasks for all

workers. We have set 1990 to zero. Relative to 1990 the employment share of mental

processes tasks and interacting with others tasks has risen. This is consistent with

the observations of Borghans et al. (2006), Borghans et al. (2008) and Bacolod et al.

(2009) that interpersonal skills gain importance. The employment shares of inform-

ation input tasks and especially work output tasks decreased during the period.

The shock in 2001 results from a change in definition of Metropolitan Areas.

Over time employment in this sample of cities grows. Urbanisation seems to go
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Table 2.2. Summary statistics

Mean SD Min Max

Employment 1990-2009 0.00 1.00 -1.85 3.60
Employment 0.00 1.00 -1.74 2.89
Connectivity 0.00 1.00 -1.87 2.77
Industrial specialisation 0.00 1.00 -2.09 2.90
Labour suitability 0.00 1.00 -2.29 1.75
Social skills 0.00 1.00 -4.17 3.14
Computer use 0.00 1.00 -2.50 3.24
Share high skilled 0.00 1.00 -1.78 4.02
Rent 0.00 1.00 -0.99 4.92
January temperature 0.00 1.00 -1.65 2.72
July temperature 0.00 1.00 -1.79 1.34
North-east 0.12 0.33 0.00 1.00
Midwest 0.25 0.43 0.00 1.00
South 0.41 0.49 0.00 1.00
West 0.23 0.42 0.00 1.00
Note: n=168 cities. All variables are measured in 1990. Vari-
ables are measured as described in Table A.2 in Appendix A.3.

along with increased city size: in 1990 about 65 percent of the US population lived

in one of the 168 largest cities; in 2009 this share has risen to almost 75 percent. In

addition, the relatively larger cities in our sample of 168 are growing faster than

the relatively smaller cities. The rank size of cities is fairly stable with Los Angeles,

New York and Chicago being the top 3 (more than 4,000,000 employees in 2009).

At the bottom the same cities turn up in both 1990 and 2009. Table 2.3 lists the

five largest and five smallest cities in our list of 168 cities in 1990 and 2009. The

next columns list the five fastest growing cities and the five slowest growing or

shrinking cities in the period 1990-2009 both in absolute numbers of employees

and in percentages. Phoenix, Atlanta, Houston, Washington and Las Vegas are the

fastest growers, adding over 500,000 employees between 1990 and 2009. On the

other hand, Detroit is shrinking in both absolute and percentage terms relatively

fast.

The skill level of the largest US cities varies too. Boulder-Longmont, Wash-

ington and San-Francisco form the top 3 of high-skilled cities over the whole time

period. In these cities more than 40 percent of the workforce is high skilled, which

holds for only 10 to 12 percent of the workforce in the lowest educated cities. The

average share of high-skilled workers in cities increases from 20 to 24 percent in

the sample period. Computer use (in terms of average importance in occupations)
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Figure 2.2. Division of employment of six broad task groups over timea
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Information input (14%) Mental processes (26%)
Work output (19%) Interacting with others (41%)

a The development is normalised to the employment share in 1990. The actual employment share in
1990 is in brackets. Changing city definitions cause the shock in 2001.

varies across US cities as well. In 1990 computer use was valued the most in the oc-

cupations in Huntsville, San Jose and Washington (all with an average importance

above 2 on a scale from 0 to 4). As we only have cross-section information on the

importance of computer use, the change of computer use over time is only based on

the change in the division of labour across occupations. The average importance of

computer use increases slightly from 1.82 to 1.85 which indicates that occupations

for which computer use is relatively important in 1990 increase slightly in terms of

employment share.

Finally, Figure 2.3 shows the division of tasks across city sizes. We define three

size classes. Small cities employ less than 250,000 workers, medium-sized cities

have a working population in between 250,000 and 1 million, and large cities em-

ploy over 1 million workers. Relative to small cities, in larger cities mental pro-

cesses and interaction with others tasks seem to be more important, while work

output and information input tasks are less important.
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Figure 2.3. Division of tasks across city sizes (1990) a
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a The employment share of tasks is normalised to zero at the employment share in small cities. Small
sized cities have less than 250,000 employees, medium cities between 250,000 and 1,000,000 employees
and large cities more than 1,000,000 employees.

Table 2.3. The largest, smallest, fastest growing and shrinking MSAs

Size (number of workers) Growth

1990 2009 Employment Percentage
(number of workers)

Largest MSAs Fastest growers

Los Angeles Los Angeles Phoenix-Mesa Las Vegas
(4,259,705) (4,328,589) (814,075) (11.42)
New York New York Atlanta McAllen-Edinburg-Mission
(3,745,220) (4,256,376) (792,870) (107.07)

Chicago Chicago Houston Provo-Orem
(3,645,767) (4,000,905) (630,134) (85.66)

Boston Boston, Washington Fayetteville-Springdale-Rogers
(2,910,471) (3,101,796) (606,593) (85.38)

Philadelphia Philadelphia Las Vegas Austin-San Marcos
(2,355,639) (2,454,509) (524,178) (81.99)

Smallest MSAs Slowest growers

Pueblo Florence Detroit Hickory-Morgantown
(48,728) (60,580) (-178,313) (-12.19 )
Florence Monroe New Orleans Benton Harbor
(58,064) (66,048) (-50,632) (-10.52 )

Waterloo-Cedar Falls Jackson San Jose Binghamton
(58,862) (66,162) (-37,472) (-9.37)

Fort Walton Beach Pueblo Dayton-Springfield Detroit
(62,143) (67,660) (-28,604) (-9.15)
Monroe Benton Harbor Newark New Orleans
(62,704) (67,730) (-21,371) (-9.08)

2.3.2 Measuring connectivity

To bring the theoretical approach to the data, we need to measure the extent to

which tasks are connected to each other. To do so, we follow Akcomak et al. (2011)
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and construct a measure of task connectivity based on correlations between ob-

served patterns of task combinations across different cities. It measures the prob-

ability of the presence of a task if another task is also present in that city. To empir-

ically measure connectivity between tasks we proxy employment shares by inform-

ation about the importance of job tasks within the occupations. The occupation of

a worker provides information about the importance of 41 tasks scaled from 1 (not

important at all) to 5 (extremely important). The total time devoted to worker tasks

in city l is measured by the sum of all task scores of all workers in city l. The em-

ployment share of a task in a city is equal to the share of task scores of that task

in the total task score of the city (Ẽl). Task connectivity for task t is constructed as

follows:

tct =
t′=41

∑
t′=1

c
(
Ẽt,l | Ẽt′ ,l

)
f or t′ �= t. (2.5)

The measure is a task specific indicator. It is based on a task-city matrix of the

employment shares of tasks within cities. In equation (2.5) the term c
(
Ẽt,l | Ẽt′ ,l

)
represents the correlation between the estimated employment shares of task t and

task t′ in cities. We use this correlation as a measure of the extent to which task t

and task t′ are connected with each other in cities. Or, in terms of the agglomeration

literature, the extent to which they co-agglomerate (Ellison et al., 2010). The higher

the value of this measure, the more task t and task t′ are found to be performed

together in space. The sum of the connectivity with all other tasks generates the

spatial connectivity of task t. The higher tct, the more task t is connected in space

to other tasks and the more expensive it becomes to place this task at distance.

The connectivity measure provides the highest levels of task connectivity for

tasks such as provide consultation and advice to others and interpreting the mean-

ing of information for others. These tasks are relatively strongly correlated with

other tasks in space and face the lowest probability to be placed at distance. By

contrast, tasks such as handling and moving objects and repairing and maintaining

mechanical equipment have the lowest level of task connectivity. These tasks could

be done relatively easy at distance from other tasks.

Table 2.4 shows the task connectivity measure for a sample with five cities and

eight tasks. Although the differences between employment shares in these tasks

are rather small, there is a spatial pattern in task connectivity. Spatially, the tasks

getting information, processing information, scheduling work and activities and

developing and building teams co-agglomerate. The same holds for handling and
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moving objects together with controlling machines and processes. The higher the

employment share of the first four tasks, the lower the share of the second group of

tasks. Cities either obtain a relatively high share of information input tasks and in-

teracting with others tasks or a relatively high share of work output tasks. The work

output tasks obtain a negative connectivity as they are loosely connected to the

performance of the other tasks. Especially the task developing and building teams

depends on the co-location of several other tasks. Data Appendix A.3 presents a

list of the employment shares of all 41 tasks and their levels of task connectivity. At

the level of single tasks most tasks of the group interacting with others obtain high

connectivity levels, which is consistent with the analysis of Bacolod et al. (2009).

The task connectivity of city employment is defined as follows:

Cl =
t=41

∑
t=1

tct ∗ Ẽt,l . (2.6)

The task connectivity level of the city reflects the average connectivity of the (es-

timated) employment of tasks. The last column in the example of Table 2.4 presents

the connectivity of the task employment of the five cities for eight tasks. The per-

formed tasks in Boston are the most connected while in Los Angeles and Detroit

the tasks are relatively loosely connected.
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2.4 Results

Because our database contains only 168 observations we first display simple graph-

ical analyses of the task connectivity of cities and several bi-variate patterns in the

data. We continue by adding regression analyses for our task connectivity measure

in Section 2.4.2. Next, in Section 2.4.3 we add several co-variates to the analysis.

The sensitivity of these results is tested in Section 2.5 which discusses various other

measures of the task structure of cities and Section 2.6 which shows the results for

different samples.

2.4.1 Graphical analyses

Figure 2.4 plots the (standardised) measures of task connectivity for all 41 tasks

against changes in employment shares of these tasks in the period 1990-2009. Task

connectivity is defined at the task level indicating the spatial correlation between

the performance of tasks (see equation (2.5)). Each dot represents a task. The figure

displays a positive correlation between task connectivity and subsequent employ-

ment change, which suggests that more connected tasks have gained in terms of

employment shares over the last two decades. The correlation coefficient equals

0.75 and is significant at the one percent level. The different markers in Figure 2.4

represent the four different types of tasks as defined by ONET. Task connectivity

is relatively high among the different interacting with others tasks and mental pro-

cesses tasks. Among most work output tasks the connectivity is low, exceptions

are interacting with computers and documenting/recording information. Inform-

ation input tasks are more scattered. Table A.1 in Appendix A.3 presents the task

connectivity for all 41 tasks.

Figure 2.5 provides information about the characteristics of cities and consists of

five panels. The horizontal axis measures the standardised task connectivity in 1990

for the 168 cities in our sample and the vertical axis the standardised log of employ-

ment in 1990. Here, task connectivity is measured at the city level. It reflects the

spatial correlation between the performed tasks within city employment as defined

in equation (2.6). The dots in all five panels are cities, the markers define several

city characteristics. Panel A presents a scatter plot of the correlation between task

connectivity and city size. The correlation coefficient (standard error) between the

two variables equals 0.88 (0.00). Florence, Visalia-Tulare-Porterville, Johnstown,

Fort Wayne and Pueblo are the cities with the lowest task connectivity. Boston,

New York, Chicago, Washington and Los Angeles obtain the highest connectivity
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Figure 2.4. Task connectivity and change in employment share a
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a Dots represent the 41 tasks. The correlation is 0.75 (0.00) and significant at the 1 percent level. The task
connectivity measure is calculated following equation (2.6). The values are standardised with a mean of
zero and a standard deviation of one. The correlations differ by task group. For the information input
tasks the correlation is 0.66 (0.23), for mental process tasks 0.11 (0.77), for work output tasks 0.83 (0.01)
and for interacting with others tasks -0.02 (0.95).

in their task employment. In the four remaining panels we split the sample of 168

cities according to different characteristics.

Panel B splits the sample into different regions. We have defined four regions:

the North-east, the Midwest, the South and the West. The figure does not return a

clear pattern; cities with relatively high shares of connected tasks are not spatially

concentrated in the United States.

Differences in the industrial structure of cities partly explain the development of

cities (Glaeser et al., 1992; Henderson et al., 1995). A useful measure to account for

such differences is the relative specialisation index (RSI). The level of specialisation

measures the over-representation of an industry within a city relative to other cities.

We define the RSI index using the employment shares E for industry j and city l:

RSIl = max
(
log(Ej,l)− log(Ej)

)
. (2.7)

RSIl measures industry j’s employment share in the city (Ej,l) relative to the share

of the industry in national employment (Ej). A high specialisation level indicates

that the city economy is relatively focussed towards a certain industry, such as the

focus of Detroit on the car industry. The correlation between task connectivity and

RSIl equals -0.59 (0.00). In Panel C we again present the correlation between task

connectivity and employment, but characterise cities by different categories of rel-

ative specialisation. We have split the sample into three categories using the stand-
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ardised RSI: not specialised cities (a negative deviation from the mean), medium

specialised cities (a small positive deviation from the mean) and highly special-

ised cities (more than one standard deviation above the mean). The picture sug-

gests that the highly specialised cities are the ones with the lowest level of task

connectivity. This seems plausible, since specialisation means a strong division of

labour with less tasks being carried out at home and more tasks being outsourced

to other places. For the two measures of lower levels of specialisation there is no

clear pattern in the data in relation to task connectivity.

The structure of human capital in cities explains another major part of the devel-

opment of cities (Glaeser & Maré, 2001; Glaeser & Ressenger, 2010; Moretti, 2004;

Berry & Glaeser, 2005; Venables, 2011). Glaeser & Ressenger (2010) document that

mainly cities with a relatively high-skilled population benefit from agglomeration

economies. Connected tasks turn out to be more likely to be performed by relat-

ively high-skilled workers. The importance of connected tasks for performing a job

ranges (on a standardised scale) from 0.018 for high-school graduates to 0.125 for

workers with at least a bachelor degree. In Panel D of Figure 2.5 we have split the

sample of cities according to skill level. There are four categories defined based on

the deviations from the mean: very low-skilled cities (less than 14.6 percent of the

employees is skilled), low-skilled cities (between 14.6 and 20.2 percent is skilled),

high-skilled cities (between 20.2 and 25.8 percent is skilled) and very high-skilled

cities (more than 25.8 percent is skilled). The picture shows that cities with a more

highly skilled workforce obtain a higher level of task connectivity. The correlation

between the share of high-skilled workers and task connectivity equals 0.48 (0.00).

Finally, Panel E addresses the importance of social skills. Recent work by Char-

lot & Duranton (2004), Bacolod et al. (2009) and Florida et al. (2012) suggests that

people skills are important in explaining the success of cities. The existence and

wealth of dense areas indicates that interaction is valuable. Social or people skills

ease interaction and are therefore more valued in larger cities (Bacolod et al., 2009).

In terms of our analysis this could imply that our measure of connectivity picks

up social skills. We define social (or people) skills by the share of the ONET social

skills in city employment. The task connectivity of city employment slightly cor-

relates with the share of social skills (0.17 (0.03)). Panel E of Figure 2.5 shows no

very clear-cut pattern when discriminating between the importance of social skills

across cities to explain the correlation between task connectivity and employment

in 1990. It seems that task connectivity is not only picking up the effect of social

skills on employment.
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Cities with a highly connected task structure tend to be larger, less specialised,

more skilled and perform more social skills than cities with a low task connectiv-

ity. In the next subsection we distinguish between different city characteristics and

their impact on growth.

2.4.2 Regression results

We estimate a number of specifications in which we explain changes in employ-

ment across our sample of cities (ΔE90−09,l) by our connectivity measure in the ini-

tial year (C90,l), location characteristics (Ll) and a set of covariates in the initial year

(X90,l). The equation we estimate is:

ΔE90−09,l = α0 + α1E90,l + α2C90,l + α3Ll + α4X90,l + εl , (2.8)

where l is an index for cities, α0 is a constant term, E90,l is the initial employment

and εl an error term with the usual assumptions. The summary statistics of the

variables are shown in Table 2.2.

Table 2.5 presents the results of estimating a number of straightforward regres-

sion models. We estimate the determinants of the employment growth of cities

between 1990 and 2009. We find that a one standard deviation increase in task con-

nectivity increases employment by 30 to 45 percent of a standard deviation. We

include initial employment (in logs) in all models. This always returns negative

and significant coefficients, which suggests a tendency towards convergence in city

size in our sample. In the estimates presented in column (1) of Table 2.5 we show

the effect of task connectivity on employment growth. The coefficient is positive

and significant. The interpretation of the coefficient is that a one standard devi-

ation increase in connectivity increases the growth of the employment by about 43

percent of a standard deviation or about 144,000 employees.

The second column of Table 2.5 includes common controls for location charac-

teristics. Three main trends determined the growth of cities the last decades. First,

cities with a high level of human capital grew faster than relatively low-skilled

cities (Glaeser & Ressenger, 2010; Eeckhout et al., 2010). Second, workers were

attracted to the warmer, drier places in the US. The rise of the ’Sunbelt’ is asso-

ciated with capital accumulation (Caselli & Coleman, 2001), improvements in the

political institutions and local policies (Besley et al., 2010) and consumption amen-

ities (Mueser & Graves, 1995; Rappaport, 2007). And lastly, public transport routes

became less important for city development (Glaeser & Shapiro, 2003). As a coun-
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terforce, density in cities often results in congestion and higher costs of living and

especially housing (Moretti, 2013). To capture these main trends we add the city’s

share of high-skilled workers, housing prices, January and July temperature and

regional dummies to the regressions in column (2). Consistent with the results ob-

tained by Glaeser & Ressenger (2010) and Eeckhout et al. (2010), cities with a one

standard deviation higher share of high-skilled workers grow about 18 percent of a

standard deviation faster. The cost of housing decreases the growth of cities: a one

standard deviation higher housing price results in about 45 percent of a standard

deviation lower employment growth. The coefficient of July temperature is signi-

ficant and positive while January temperature does not affect employment growth.

Given temperature, the western part of the US experienced the highest growth.

Adding our measure of task connectivity to an estimation with only the location

variables increases the adjusted R-square from 0.418 to 0.432. The task connectivity

of the employment in the city seems to have an additional and sizeable impact on

employment growth.

2.4.3 Other city-structure indicators

Next, we add various other city-structure indicators to the analyses. Columns (3)

to (8) in Table 2.5 present the results and the relations between these indicators and

task connectivity and employment growth. We also visualise these relationships in

Figures 2.6 and 2.7.

First, our results might be driven by differences in industrial structure of the

city (e.g., Glaeser et al. (1992), Henderson et al. (1995)). Besides the previously

used relative specialisation index we define the local industrial structure by the

labour pool suitability as in Glaeser & Kerr (2009). The labour pool suitability index

measures the quality of the city’s employment in terms of it’s industrial structure.

The Glaeser-Kerr index for city l is defined as follows:

GKl = −∑
j

Ej

(
∑
o
|Ej,o − (∑

j
Ej,lEj,o)|

)
. (2.9)

The index measures the occupational-relatedness of industries in the city or ’la-

bour pool suitability’. The availability of employment by occupation is measured

by the industry structure of the city (∑j Ej,lEj,o). This measure is compared with

the national employment share of the occupation in the industry. Hence, Ej,o −
(∑j Ej,lEj,o) defines the absolute difference between the national employment share



36 Chapter 2

Table 2.5. Regression results

Employment growth 1990-2009
(1) (2) (3) (4) (5) (6) (7) (8)

Employment -0.464*** -0.286** -0.339** -0.284* -0.264* -0.257* -0.297** -0.332**
[0.147] [0.143] [0.146] [0.149] [0.144] [0.143] [0.145] [0.150]

Connectivity 0.425*** 0.375** 0.318** 0.387** 0.344** 0.384** 0.400** 0.440**
[0.143] [0.158] [0.146] [0.193] [0.156] [0.156] [0.172] [0.213]

Industrial specialisation -0.194** -0.219***
[0.076] [0.076]

Labour suitability -0.014 -0.037
[0.148] [0.155]

Social skills 0.046 -0.017
[0.065] [0.070]

Routine tasks -0.077 -0.121
[0.069] [0.079]

Computer use -0.042 -0.116
[0.082] [0.088]

High skilled 0.179* 0.162 0.177* 0.184* 0.163 0.200* 0.185*
[0.103] [0.099] [0.104] [0.101] [0.103] [0.107] [0.102]

Rent -0.450*** -0.465*** -0.451*** -0.449*** -0.464*** -0.452*** -0.500***
[0.087] [0.086] [0.088] [0.087] [0.090] [0.087] [0.089]

January temperature -0.117 -0.191 -0.117 -0.121 -0.108 -0.119 -0.190
[0.146] [0.145] [0.147] [0.147] [0.147] [0.147] [0.147]

July temperature 0.391*** 0.440*** 0.391*** 0.389*** 0.369*** 0.392*** 0.413***
[0.128] [0.131] [0.129] [0.127] [0.127] [0.129] [0.130]

North-east -0.295 -0.293 -0.296 -0.270 -0.284 -0.290 -0.278
[0.230] [0.239] [0.231] [0.237] [0.233] [0.229] [0.241]

Midwest -0.535** -0.546*** -0.537** -0.533** -0.565*** -0.532** -0.592***
[0.208] [0.207] [0.208] [0.208] [0.208] [0.207] [0.206]

West 1.439*** 1.518*** 1.441*** 1.433*** 1.402*** 1.441*** 1.481***
[0.252] [0.249] [0.253] [0.247] [0.253] [0.252] [0.249]

Constant -0.000 -0.193 -0.209 -0.192 -0.174 -0.179 -0.194 -0.201
[0.076] [0.130] [0.127] [0.130] [0.129] [0.130] [0.130] [0.126]

Observations 168 168 168 168 168 168 168 168
Adjusted R-squared 0.039 0.432 0.451 0.428 0.430 0.433 0.429 0.449
Note: variables defined as in Table A.2 in Appendix A.3, Table 2.2 displays summary statistics of these variables. All variables are standardised
with a mean of zero and a standard deviation of one. There are three regional dummies, region ’South’ is the reference group. Robust standard
errors are in parentheses. *** significant at the 1% level, ** significant at the 5% level, * significant at the 10% level.
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of an occupation in an industry and the local availability of employment given

the industrial structure. Aggregated at the city-industry level this measure shows

the suitability of the overall city employment for that certain industry. This is cal-

culated for all industries and weighted by the importance of the industry in city

employment (∑ Ej).

Panels A and B in Figure 2.6 show that the connectivity of the employment in the

city correlates strongly with the industrial specialisation level (-0.59, significant at

the 1 percent level) and with the labour pool stability measure of labour suitability

(0.89, significant at the 1 percent level). It could be the case that our measure picks

up the impact of spatial variation in industrial structure on employment growth.

The correlation between the indicators for industrial structure do not correlate with

employment growth (see Panels A and B in Figure 2.7). Column (3) adds the city’s

industrial specialisation level to our baseline regression, while column (4) includes

the labour pool suitability of the industrial structure. The coefficient for industrial

specialisation is negative and statistically significant while the labour suitability

does not have a significant impact. Both indexes do not affect the significance or

size of the connectivity coefficient. The decrease of the adjusted R-square indicates

that these indexes do not add explanatory value concerning employment growth.

When we exclude task connectivity from the regressions the coefficient of labour

suitability becomes significant, while the RSI coefficient remains significant in ex-

plaining employment growth in this period.

Column (5) in Table 2.5 adds the importance of social skills. Bacolod et al. (2009)

show that the presence of social skills positively influences employment. In terms

of our analysis this could imply that our measure of connectivity indirectly meas-

ures social skills. Indeed, there is a positive and significant correlation between the

relative importance of social skills and the connectivity of the performed tasks (see

Panel C in Figure 2.6, 0.17 (0.03)). Panel C in Figure 2.7 shows a positive correlation

(0.20 (0.01)) between employment growth and social skills. When we control for

size and local characteristics, the coefficient of social skills becomes insignificant.

This suggests that task connectivity is not picking up the effect of social skills on

employment growth.

Finally, we address the importance of routine and non-routine job tasks and

the use of computers. Tasks that are connected seem to require more interactions.

Communication technologies make these interactions easier and less costly (e.g.,

Gaspar & Glaeser (1998), Blum & Goldfarb (2006)). Autor et al. (2003) have care-

fully introduced the notion of routine and non-routine job tasks. Their analysis
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focuses on changes in the importance of job tasks to explain changes in wages and

employment in the United States. The definitions of routine and non-routine tasks

used in the analysis are based on the complementarity and substitutability of job

tasks and computer technology. Routine tasks are substituted and likely to lose

in terms of employment and wages, while non-routine tasks are complemented

by computers. The latter set of tasks gains in terms of labour-market prospects.

Autor & Dorn (forthcoming) add a spatial dimension and show that cities with em-

ployment specialisation in routine-intensive occupations in the 1960s experience

employment and wage polarization after 1980. A possible concern with our results

could be that non-routine tasks and tasks that require more computer use are more

connected relative to routine tasks. We define the importance of routiness and the

importance of computer use in cities. The routiness variable is defined as the ratio

of the importance of routine tasks relative to the importance of non-routine tasks

in city employment. Routine and non-routine tasks are defined as in Autor et al.

(2003). Task importance by occupation from the DOT is matched to the CPS data in

the same way the task data from ONET is matched. The importance of routine and

non-routine tasks in US cities is defined as their average importance measured via

occupation distributions. Computer use is defined as the ONET task ’using com-

puters and computer systems (including hardware and software) to program, write

software, set up functions, enter data, or process information.’ This way of using

computers does not reflect all types of uses, but forms a relatively good approxima-

tion for the analysis of clustering tasks together or placing some of them at distance

(for a discussion of computer measures in analyses such as ours, see Katz (2000)).

Indeed, Figure 2.6 shows that the share of connected tasks correlates with both the

share of routine tasks (0.31 (0.00)) and the importance of computer use (0.61 (0.00)).

Columns (6) and (7) of Table 2.5 present the results of a regression model in which

we explain changes in employment between 1990 and 2009 by the importance of

respectively routiness and computer use. The insignificant coefficients of both in-

dicators suggest that this measure of routineness does not add explanatory power

to our estimates. The effect of task connectivity remains significant.

Lastly, column (8) includes all covariates in one regression. Both the significance

and the point estimate of the connectivity coefficient remain similar, the size of the

point estimate even increases a bit.
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2.5 Alternative measures of task composition

The estimates documented in Table 2.5 suggest that task connectivity is correlated

with employment growth across our sample of cities. We now analyse whether the

connectivity between tasks is the appropriate measure for the task-composition of

cities. Section 2.5.1 defines two alternative measures of task connectivity. Section

2.5.2 shows estimates with the employment shares of the task groups and defines

three other indicators that could capture task connectivity: the labour suitability of

tasks and the specialisation and diversity level of the task structure.

2.5.1 Measures of task connectivity

Table 2.6 presents the results. Column (1) displays the baseline results with our

measure of task connectivity, which is copied from Table 2.5, column (2). Second,

we construct the spatial connectivity between required job skills. ONET defines

skills as ’Developed capacities that facilitate learning or the more rapid acquisi-

tion of knowledge’. Examples are speaking, writing, programming and repair-

ing. 46 separate skills are distinguished. We measure the connectivity between

these 46 skills in the same way as our task connectivity measure. The connectivity

between skills refers to the importance of human capital in cities (Glaeser & Res-

senger, 2010). Column (2) presents the results of an analysis with this indicator of

skill connectivity instead of our common indicator. The coefficient of connectiv-

ity between worker skills is insignificant. The connectivity between worker skills

does not explain employment growth of cities. If we include both the connectivity

between tasks and the connectivity between skills the coefficient of task connectiv-

ity is not affected. This suggests that worker tasks seem to capture the concept of

task connectivity better than required skills.

Ellison & Glaeser (1997) and Ellison et al. (2010) use an indicator to define the

co-agglomeration of industries. Here, we apply their indicator at the task level. The

co-agglomeration index for city l is defined as:

CAl =
t=41

∑
t=1

Ẽt,l

(
∑l=168

l=1 (Ẽt,l − Ēl)(Ẽt′ ,l − Ēl)

1 − ∑l=168
l=1 Ē2

l

)
. (2.10)

Ẽt,l refers to the estimated employment share of task t in city l. Ēl refers to the

average employment share of tasks in city l. The fraction on the right-hand-side

calculates the co-agglomeration of task t. The numerator in the fraction calculates

the over-representation of task t in city l relative to the over-representation of task
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t′. The denominator controls for city size. The left part of the right-hand-side gen-

erates the average co-agglomeration of the city by multiplying task employment by

task co-agglomeration.

In contrast with our connectivity measure, the co-agglomeration index includes

information about the diversity of the city’s employment. Task connectivity and co-

agglomeration strongly correlate (0.63 (0.00)). However, when co-agglomeration is

included in the analysis instead of task connectivity the task composition has no

significant impact on employment growth (see column (3)). Including both meas-

ures does not change the results. The co-agglomeration index is originally used

to measure the co-agglomeration of industries. The insignificant coefficient of this

index suggests that spatial concentration is less important at the task level.

2.5.2 Measures of task composition

We next consider the effect of the four task groups separately to investigate whether

employment growth is driven by one particular set of tasks. First, we define the

city’s task composition by the employment share of the four task groups. Columns

(4) to (7) of Table 2.6 present the estimates in which the employment shares of the

four tasks groups are included instead of the city’s task connectivity. The city’s em-

ployment share of information input obtains a negative coefficient (significant at

the 10 percent level). A one standard deviation larger employment share of one of

these task groups results in about 14 percent of a standard deviation lower employ-

ment growth. The coefficients of the share of work output and mental processes

tasks are insignificant (column (6) and (7)). Lastly, the employment share of inter-

acting with others has a positive impact on employment growth. The coefficient is

smaller than the one of task connectivity and is significant at the 10 percent level

only. Table A.4 in Appendix A.3 shows the estimates of regressions in which cross-

terms between task groups are included. None of the cross-terms between task

groups is statistically significant.

Next, we define the task structure of the city by constructing the relative spe-

cialisation index, the Hirschman-Herfindahl index and the Glaeser-Kerr index at

the task level. Duranton & Puga (2004) indicate three microfoundations for the ef-

ficiency mechanism of cities; increasing the possibilities to share, match and learn.

Spatial concentration of industries enhances possibilities to share facilities and sup-

pliers, match employees to employers and learn from similar workers and firms.

Empirical evidence of these mechanism is substantial (for an overview of the liter-

ature, see Glaeser & Gottlieb (2009)). Here, we test whether these mechanisms also
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exist at the task level using indirect measures for the benefits of sharing, matching

and learning.

First, the spatial concentration of tasks could ease the possibilities to share fa-

cilities and suppliers for these tasks. Column (8) in Table 2.6 presents the results of

an analysis including the regional specialisation index at the task level. The index

measures the over-representation of a task within the city relative to the importance

of the task in national employment. The coefficient is insignificant. The spatial con-

centration of our 41 tasks does not seem to explain employment growth.

As Jacobs (1969) suggested, learning might be especially beneficial under the

cross-fertilisation with workers with different task packages. The idea is that the

combination of workers with different experiences and skills results into radical

new ideas. To apply this idea at the task level, we also consider the impact of a

diverse task composition. The inverse Hirschman-Herfindahl index measures the

diversity of tasks in the city employment:

HHIl =
1

∑t Ẽ2
t,l

, (2.11)

where Ẽt,l represents the estimated employment share of task t in city l. The lower

the index, the more dominant a certain task is in city employment. A high value

indicates a diverse composition of employment in tasks. The inverse Hirschman-

Herfindahl index is included in the analysis in column (9). The coefficient shows

an insignificant effect of the index.

Lastly, the matching possibilities of workers with similar task packages is meas-

ured using the labour suitability measure of Glaeser and Kerr. Instead of measuring

the occupational suitability of industries, the index (defined in equation (2.9)) now

measures the task suitability of occupations. Hence, the index values the quality

of the task packages of workers given the occupational structure of the city. The

index for the suitability of the labour pool for tasks is included in column (10). The

coefficient is insignificant.

The three alternative indicators for task connectivity do not seem to explain

employment growth. Including the measures together with our measure of task

connectivity does not change the results: the coefficient of task connectivity remains

positive and significant. We conclude that the spatial connectivity between tasks

correlates more strongly with city growth than the level of specialisation, diversity

and labour suitability of tasks.
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2.6 Alternative samples of occupations, workers and

cities

We continue by testing whether our findings are robust across different samples of

occupations, workers and cities. First, our estimates result from spatial variation

in employment shares; they are not based on variation in the importance of tasks

within occupations. We test the impact of this static measure of task importance

and construct a sample which only considers the most important tasks within oc-

cupations. The analysis focuses on the main tasks within occupations, assuming

that the main job tasks do not vary across space. Another possible concern is that

the division of labour has changed because of the introduction of ICT. This techno-

logy has created new communication possibilities, which could have changed task

connectivity. Section 2.6.2 presents estimates of our connectivity measure using

two separate samples of computer intensive and computer extensive occupations.

Third, in Section 2.6.3 we address the issue of the possible differences in tasks per-

formance between cities that are relatively manufacturing and services intensive.

Fourth, in Section 2.6.4 we deal with the question whether our results are driven by

the importance of interactions between high-skilled workers. Finally, we deal with

possible biases in our results caused by a few successful metropolitan areas such as

New York City and Los Angeles. These cities belong to the largest, most connec-

ted and fastest growing cities in our sample. In Section 2.6.5 we present estimates

in which we exclude these cities from the sample. Table 2.7 shows the regression

results of these tests.

2.6.1 Spatial variation within occupations

Our analysis exploits spatial variation in occupational composition to measure vari-

ation in task input. The reason is that we only observe national task inputs. This

approach suffers from the problem that it assumes that tasks carried out within

occupations are static. Baumgardner (1988a) and Duranton & Jayet (2011) suggest

that this is unlikely to be true. A car mechanic in New York might carry out a dif-

ferent task package than a car mechanic in Detroit. Bacolod et al. (2009) also point

at this caveat in their analysis.

To deal with this issue, we conduct an additional analysis using only the ’core’

tasks of an occupation. Task connectivity is calculated across the most important

tasks. The assumption is that the task composition of occupations varies over space

but that the ’core’ tasks do not vary. For example, the task packages of a car mech-
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anic vary between cities but the task ’repairing’ will be an important task in all car

mechanic jobs. The distribution of tasks across US cities is now defined by the tasks

within occupations with an importance above the mean of all 41 tasks in that same

occupation. Column (1) of Table 2.7 shows the results of a regression analysis with

task connectivity defined for the most important tasks only (instead of all 41 tasks).

The coefficient of task connectivity in explaining changes in employment growth

drops, but the coefficient remains significant at the 10 percent level.

2.6.2 Computer intensity

Job tasks that need to be performed in close vicinity are likely to require more face-

to-face interactions. These interactions are affected by computers. The use of com-

puters either complements or substitutes face-to-face interactions (Ioannides et al.,

2008). Acemoglu & Autor (2011) indicate a crucial distinction between the employ-

ment development of computer intensive and computer extensive occupations. In

Section 2.4.3 we have shown that the importance of computer use and routine tasks

is unlikely to explain the impact of task connectivity on employment growth. Here,

we extend this analysis and focus on the role of computer intensive occupations.

Column (2) shows estimates for the correlation between the connectivity of a city’s

computer intensive occupations and employment growth. For computer intensive

occupations the importance of computer use is at least one standard deviation lar-

ger than the average importance. The task connectivity between tasks of computer

intensive occupations has a positive and significant impact on employment growth.

Column (3) presents the estimates for all other occupations. The coefficient is posit-

ive and insignificant. Especially the connectivity between tasks performed in com-

puter intensive occupations seems to relate to employment growth. This is in line

with the literature on the employment effects of computerisation (see Acemoglu &

Autor (2011)).

2.6.3 Idea-producing versus product-producing cities

The changing economy and especially the de-industrialisation of the US economy

was beneficial to cities, such as New York, but detrimental to others, such as De-

troit. Glaeser & Ponzetto (2010) show that improvements in transport and commu-

nication technologies increased the returns to ideas. Idea-producing cities, such as

New York and Boston, are favoured by this trend while product-producing places,

such as Detroit, are hurt. Here, we test whether task connectivity is beneficial for
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idea-producing cities, product-producing places or both.

Column (4) of Table 2.7 shows estimates for a sample of manufacturing sectors

only. The correlation between task connectivity and employment growth is some-

what smaller for these sectors but still substantial and statically significant. Next,

column (5) presents the estimates for a sample of only service sectors. For service

sectors, the impact of task connectivity is stronger than for manufacturing sectors.

Hence, changes in the employment of both product-producing and idea-producing

cities seem to be partly explained by our measure of task connectivity.

2.6.4 Worker skills

We continue by addressing the importance of the complementary between skills

and cities. High-skilled workers tend to sort into larger cities and this sorting ex-

plains spatial wage and employment differences (Combes et al., 2008; Glaeser et al.,

2012). The relation between skills and cities seems to be complementary (Glaeser

& Ressenger, 2010; Elvery, 2010). Urban density particularly stimulates human

capital spillovers (see Rosenthal & Strange (2008)) and human capital accumulates

more quickly in urban areas (see Glaeser & Maré (2001)). Large cities are however

characterised by relatively fat tails and their inhabitants are more likely to be high

and low-skilled workers, while medium-skilled workers seem to sort into smaller

cities (Eeckhout et al., 2010). New York and Detroit house both the best workers

of the country, with degrees from the best universities, and the lowest-skilled of

the nation. A possible concern with our results is that they might be driven by the

strong connectivity between the tasks of high-skilled workers.

We analyse whether our findings hold for several groups of workers. Column

(6) in Table 2.7 shows the estimates for a sample of high-skilled workers who ob-

tained at least a bachelor degree. Second, columns (7) and (8) show the estimates

for samples of medium- and low-skilled workers. In all three samples the coeffi-

cient for task connectivity is positive and significant. As expected, task connectiv-

ity of high-skilled workers has a stronger impact on employment growth than task

connectivity of low-skilled workers. An increase of one standard deviation in con-

nectivity rises the employment growth by about 50 percent of a standard deviation

in the sample of high-skilled workers and by 36 percent of a standard deviation in

the sample of low-skilled workers. In line with the work of Eeckhout et al. (2010),

the connectivity between tasks of medium-skilled workers is only moderately cor-

related with employment growth.



Cities, tasks and skills 49

2.6.5 Without the main metropolitan cities

Finally, we test whether some large metropolitan cities dominate our results. The

largest cities in our sample of 168 cities are the cities with the highest shares of

high-skilled people, the strongest connectivity between the performed tasks and

the highest growth given size. Column (8) excludes cities with more than two

standard deviations employment above the mean. These are Detroit, Philadelphia,

Washington, Chicago, New York and Los Angeles. The coefficient of task con-

nectivity hardly decreases and remains statistically significant. The adjusted R-

square increases a bit, which seems to be caused by a stronger impact of location

characteristics, such as rents and July temperature in this sample.

2.7 Conclusion

This chapter is concerned with measuring and interpreting changes in employment

across 168 US cities in the period 1990-2009. Within this period (characterised by

rapid technological change) not only the division of labour between and within oc-

cupation was affected, but also the division across space. Our analysis provides

a task-based approach, which allows us to investigate the underlying relations

between technology and employment shifts.

Our framework relies upon the idea that employment grows when job tasks

need to be performed in close vicinity and human interactions are important. The

importance of vicinity and human interactions for tasks can lead to clustering of

tasks or spreading to other places, which we measure by task connectivity. The

extent to which tasks are spatially connected indicates whether they require face-

to-face contacts or whether they could be done at distance at reasonable costs. To

analyse employment effects of changes in the division of tasks, we develop an em-

pirical measure of task connectivity based on the correlation between several tasks

in cities.

Our estimates suggest that differences in task connectivity contribute to explain-

ing changes in employment structure across US cities. In particular we show that

changes in employment across US cities can for some part be explained by our

measure of task connectivity. Higher task connectivity at the city level implies less

room for placing tasks at distance. When tasks are glued to the location (and to

other tasks) cities are more likely to grow relative to cities with lower levels of task

connectivity. We find that a one standard deviation increase in task connectivity in-

creases employment by 30 to 45 percent of a standard deviation. The coefficient of
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task connectivity is not affected by the inclusion of several other city characterist-

ics. Furthermore, the spatial connectivity between tasks seems to be more effective

than the spatial concentration of certain tasks and the labour suitability of the task

composition. We investigate the robustness of our work by considering the effects

of computerisation of work, the de-industrialisation trend, the sorting of workers

and the impact of outstanding successful cities. We also investigate the limitations

of our cross-section of task data and find that our results seem to be robust.

This chapter adds to the literature in labour economics and urban economics by

offering a measure to explain employment changes across space. This complements

the literature in labour economics focusing on changes in the task composition of

work (for a review, see Acemoglu & Autor (2011)) and to the literature in urban

economics explaining changes in employment in cities (for a review, see Glaeser &

Gottlieb (2009)). Future work should consider deepening of the exact anatomy of

task connectivity for explaining the success and decline of cities.



CHAPTER 3

TOWN AND CITY JOBS:

YOUR JOB IS DIFFERENT IN ANOTHER LOCATION

3.1 Introduction

A doctor in a small rural town is responsible for all kinds of treatments. Whether

you have a heart attack or giving birth, he is the person to go to. In large cities

there are thousands of doctors, with hundreds of different specialities. If you have

a heart attack you definitely go to another doctor then when you are giving birth.

Big cities provide more career opportunities than small towns. In the big city you

have more chances to become a ’true’ expert, work on more complex cases and

learn from your peers. These examples stress the complexity of job contents and

the variation by the extent of the market. Both the demand for a certain activity

and the supply of skills vary with the extent of the market. Life is different in large

cities, workers are different, local industries are different, but to what extent does

the content of jobs vary across city size?

Back in 1988 James Baumgardner (1988a) modelled the idea of Adam Smith that

the division of labour is bound by the extent of the market. Cooperation in a larger

local market results in a more efficient division of labour. Workers segregate into

subsets of different activities. In a town with two doctors, the doctors can divide

the medical activities and specialise in only half the activities. Duranton & Jayet

(2011) translate the model of Baumgardner such that scarce occupations are more

likely to be performed in larger cities which they back-up with empirical evidence

for France. On the level of job activities, the empirical literature tends to focus on

particular industries and case-studies (Baumgardner, 1988b; Garicano & Hubbard,

2009).

The sorting of workers themselves, the ambitious doctor who would rather



52 Chapter 3

work in the capital than in a rural town, is a central issue in urban economics

(Glaeser & Maré, 2001; Eeckhout et al., 2010; Combes et al., 2008; Venables, 2011).

Given this central issue, there is remarkably little empirical work on the skill re-

quirement for jobs across space. Most research uses education, occupation and

industry information or just worker fixed effects to analyse the mechanism behind

the productivity in cities. Only modest attention is paid to the fact that jobs might

differ across cities and the fact that a more efficient division of labour across jobs or

different skill requirements might affect the mechanism. Ignored variation within

occupation and industries between cities hampers adequate analyses on the mech-

anism behind agglomeration economies.

In this chapter we take a step towards unravelling the efficiency of cities by

analysing the variation in job content across cities. Most datasets hinder such an

attempt as they lack spatial variation in job content. We exploit the German survey

of the working population, which includes job activities for individuals across Ger-

man cities. Our main result is that the specialisation level of jobs and the required

level of cognitive skills increase with city size.

To conceptually guide our empirical analyses, we first set out a theoretical back-

ground. The basic setting of our framework relies on the model of Baumgardner

(1988a). The production of a good consists of the performance of a continuum of

tasks. The more time a worker devotes to the performance of a task, the more spe-

cific skills he develops for this task. Workers are more productive when they focus

on a smaller subset of tasks and there are increasing returns to worker input. Local

workers cooperate which results in a more efficient division of labour in larger mar-

kets. Hence, workers in large cities are more specialised than workers in small cities

and develop more specific skills for their job tasks.

Second, we test the predictions of our theoretical set up using the German sur-

vey of the working population on qualification and working conditions (the BIBB

survey). In contrast to most information on job tasks, the dataset includes indi-

vidual task data next to a very broad set of other personal and work characteristics.

For each worker in the dataset we obtain information on job tasks, occupation, in-

dustry, demographic characteristics, education, location and so forth. We construct

two measures for job content. The first measure is the number of subtasks (per-

formed ’sometimes’ or ’rarely’). The number of tasks a worker performs sometimes

or rarely serves as a measure for the time devoted to the core tasks of his job. The

fewer tasks a worker performs sometimes (subtasks), the more time he has to focus

on the main job tasks and the more specialised he is. The second measure specifies
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the importance of skill development in the job. Respondents indicate the import-

ance of several cognitive skills for the performance of their job. The demanded

cognitive skills reflect the importance of task specific knowledge for performing

the job.

As documented by Duranton & Jayet (2011), scarce occupations are observed

more often in large cities than in smaller ones. To control for this unequal spatial

distribution of jobs and their task packages we include job fixed effects. We find that

workers in large cities on average perform 7 percent of a standard deviation fewer

subtasks than workers in small cities. The same job consists of more subtasks when

it is performed in a small city (less than 20,000 inhabitants) compared to a large

city (more than 100,000 inhabitants). Jobs in larger cities also demand 8 percent of

a standard deviation more cognitive skills than the same jobs in small cities. The

higher specialisation level of workers in large cities explains part of the higher re-

quirement of cognitive skills. The sorting of more capable workers into large cities

likely explains further spatial variation in the demand for cognitive skills. Further-

more, these sorting patterns are likely to affect the spatial variation in specialisation

levels of jobs as well. We do not distinguish the causes of these spatial variations.

The results are however robust over several sub-samples, for different measures, at

different spatial units and to the inclusion of several co-variates.

Our model relates to theory about the division of labour and the extent of the

market. This literature is largely based on the framework of Baumgardner (1988a).

The specialisation of workers into certain job tasks increases with market size. Dur-

anton & Jayet (2011) argue that larger markets allow workers to perform more ef-

ficient. Another strand in the literature (Becker & Murphy, 1992) argues that the

extent of the market is irrelevant for the division of labour. They state that the costs

of coordination between workers overrules the costs of transportation of tasks. In

this chapter, we empirically examine whether the extent of the local market, hence

the city size, is relevant for the division of labour.

Empirically, this field is left rather untouched. The empirical work tends to fo-

cus on case-studies. For example, Baumgardner (1988b) and Garicano & Hubbard

(2009) study the division of labour across market sizes for doctors and lawyers.

Other analyses focus solely on variation between jobs and not variation within jobs.

Duranton & Jayet (2011) show that scarce occupations are more often observed in

large French cities, while Bacolod et al. (2009) show that the allocation of cognitive

skills only slightly varies across city sizes. Combes et al. (2012) find that much of

the skill differences, measured by worker fixed effects, across French cities can be
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explained by differences between occupations rather than within occupations. We

add to previous empirical work by analysing spatial variation of cognitive skills

within and between occupations. Our dataset makes it possible to analyse the vari-

ation in job content instead of controlling for worker skills by using fixed effects.

Lastly, our work relates to the empirical work on job contents and especially

the task-based approach in analysing employment pioneered by Autor et al. (2003).

The spatial dimension of this strand can be found in the work of, among others,

Autor & Dorn (forthcoming) and Bacolod et al. (2010). Autor & Handel (forthcom-

ing) demonstrate that measures at the individual level offer substantial additional

explanatory power relative to occupation level data from datasets such as Occupa-

tional Information Network (ONET). Earlier work with the German surveys is done

by, among others, Spitz-Oener (2006), Gathmann & Schnberg (2010) and Dustmann

et al. (2009).

The rest of the chapter is structured as follows. The next section sets out a

simple framework to justify our empirical analyses. Section 3.3 provides insight

in the database construction, the main variables and some descriptive statistics.

The empirical strategy is discussed in Section 3.4. Section 3.5 presents the results

on the spatial variation in job content. In Section 3.6, further sensitivity analyses

are presented. Section 3.7 concludes.

3.2 Spatial variation in job content

This section sets out a framework for the division of labour across cities. The frame-

work draws on the work of Baumgardner (1988a). Workers are more productive

when they focus on fewer tasks and the division of labour is efficient. The extent of

the market increases possibilities for division of labour.

3.2.1 Tasks

As in Adam Smith’s pin factory, a very large number of tasks (activities) are com-

bined to produce one good. The set of tasks to produce a good is presented by

a segment T of length 1 and indexed by t ∈ [0, 1]. The model considers an eco-

nomy with one product. All tasks need to be performed to produce one unit of this

product. The market consists of I workers, indexed i. Each worker i is endowed
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with limited time Ei, which is all spent on performing tasks:

Ei =
∫ ti=δn

ti=δ1

xi,tdt. (3.1)

In this time a worker performs a subset of tasks (ti = δ1 → ti = δn, we label this

subset with δi). He uses time input xi,t for each task t. Hence, a larger subset of

tasks implies that the worker has less input xt per task. Following Baumgardner,

we assume symmetry in the production technology and demand across all tasks on

the segment. As a result of the symmetry, identification and relative positions on

the segment do not affect the model.1

Worker i uses skills Si,t to perform a task t. The worker develops these task

specific skills during the performance of the task. Hence, his task-specific skills

depend on the amount of time he spends on task t:

Si,t = cxi,t, (3.2)

where c is the general human capital each worker is endowed with from the start.

xi,t refers to the time worker i spends on task t. The more time a worker devotes to

the production of one specific task, the more specific skills for producing this task

he develops, see Becker & Murphy (1992). The more a worker specialises in one

task, the more efficient he becomes in producing that specific task. For instance, a

doctor who only performs heart surgeries will learn more about that surgery than

a doctor who also removes appendices. A heart surgery specialist will be more

efficient than a general surgeon in performing a heart surgery. The task-specific

worker skills determine the time it takes to produce the task:

xt =
a

Si,t
=

a
cxi,t

, (3.3)

where a defines the fixed amount of time for the performance of task t. The variable

amount of time needed to produce the task depends on the task-specific worker

skills. The time needed to perform a task is endogenous. The more time a worker

devotes to a certain task, the less time producing an extra unit takes. The produc-

tion of task t by worker i is determined by both the time the worker devotes to the

1 The consequences of this assumption for our empirical strategy are discussed in Section 3.4.
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performance of the task and the amount of time it takes to produce one unit:

qi,t =
xi,t

xt
=

xi,t

a/Si,t
=

cx2
i,t

a
. (3.4)

This indicates that there are increasing returns to worker input for a task. As the

worker has limited time endowment, there are increasing returns to worker input.

The total output of worker i consists of the sum of the output of all the tasks he

performs:

qi =
∫ ti=δn

ti=δ1

qi,tdt. (3.5)

A worker is most productive when he spends all his time on performing one task.

However, to produce one good all tasks on the segment T should be performed.

Hence, if only one worker spends time on producing the good he has to perform

all the tasks. The output of the good is as follows:

Q =
∫ 1

0
qtdt, (3.6)

where qt =
∫ i=I

i=1 qi,tdi. qt refers to the output of task t generated by all workers in

the market.2

3.2.2 Extent of the local labour market

All workers I in the local market cooperate in the production of the good. The divi-

sion of tasks follows from the maximisation of the output Q. Substituting equations

(3.2) to (3.4) into the output function (equation( 3.6)) it follows that:

Q =
∫ 1

0

∫ i=I

i=1

cx2
i,t

a
di, (3.7)

subject to equation (3.1). There are increasing returns to worker task input xi,t.

Worker productivity decreases with the subset of tasks they perform:

∂qi
∂δi

< 0. (3.8)

2 For simplicity the model ignores comparative advantages of workers in certain tasks.



Town and city jobs: Your job is different in another location 57

Full specialisation into one task may however be hindered by the production func-

tion (3.6) which states that all tasks of the segment T need to be performed to pro-

duce one good. The extent of specialisation depends on the size of the market (I).

The segment of tasks T with t ∈ [0, 1] is divided over all workers in the market:

δi =
T
I

. (3.9)

Thus, the subset of tasks of each worker (δi) decreases with the number of work-

ers in the market (I). When workers cooperate, they divide the tasks, benefit from

the increasing returns to individual input and become more productive. The con-

tinuum nature of the task segment induces endless specialisation benefits of in-

creasing market size. Clearly, in reality coordination costs limit the division of tasks

(Becker & Murphy, 1992). Section 3.4 discusses the consequences of coordination

costs.

Figures 3.1 and 3.2 illustrate this mechanism with, for simplicity, a discrete ex-

ample. In both figures 7 tasks need to be performed to produce 1 good (T = 7). Each

worker is endowed with Ei = 7 time units. For simplicity we assume a = 2 and

c = 2. In Figure 3.1 only 1 worker is available to produce the 7 tasks (I=1). Therefore

δi = 7 and xi,t = Ei/δi = 1. With his input of 7 time units he generates an output

of 1 for each task (
cx2

i,t
a = 2∗1

2 ) and 7 in total. Hence, one good is produced. Next,

7 workers operate in the market in Figure 3.2. As they cooperate, they divide the

tasks and benefit from the increasing returns to input: δi = 7/7 and Ei/δi = 7, each

worker performs 1 task 7 times. The output by worker is then 49 ( 2∗49
2 ). Hence, 49

goods are produced with the 7 workers. The workers in the market with 7 workers

each specialise in 1 task, develop specialistic skills for this task and become more

efficient in producing this task. The division of labour between the workers rises

the output by worker from 7 to 49 tasks. Figure 3.3 shows the relation between

number of workers and produced tasks by worker for this example.

3.2.3 Empirical predictions

In summary, the fewer tasks a worker performs, the more efficient he is in the per-

formance of these tasks. The possibilities to divide the tasks over workers increase

with the size of the local population I. Larger cities house more specialised workers

and this creates more possibilities for workers to develop task-specific skills.

The model discusses an economy with one good. Cities produce many (inter-
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Figure 3.1. Market with 1 worker
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Figure 3.2. Market with 7 workers
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Each block represents a time unit, each worker is endowed with 7 time units. For simplicity a = 2 and
c = 2. The different shades of grey indicate the time units of the different workers. The horizontal axis
divides the good into 7 tasks, the vertical axis represents the time units a worker spends on each task.
qi is measured by equation (3.5).

Figure 3.3. Extent of the market and output by worker
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The figure visualises the relation between the number of workers in the market and the output by
worker. For simplicity we assume a = 2, c = 2, endowment Ei = 7 and the good consists of 7 tasks.

mediate) goods and the distributions of industries varies across cities. The benefits

from specialisation vary between goods. To control for the different specialisation

benefits and task packages between goods, we estimate the spatial variation in tasks

subsets (δi) of jobs. The model results into two empirical predictions about the spa-

tial variation in the subset of tasks, or task packages, of jobs:

1. The jobs of workers in large cities contain smaller subsets of tasks compared

to the same jobs in small cities.

2. Workers in large cities have more task-specific skills compared to workers

with the same jobs in small cities.
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3.3 Data, indicators and descriptive statistics

3.3.1 Data

The empirical predictions demand individual task data for workers across cities of

different size. This analysis relies on the survey of the working population in Ger-

many carried out by the German Federal Institute for Vocational Training (BIBB)

and the Federal Institute for Occupational Safety and Health (BAuA).3 The BIBB is

a survey among a representative sample of Germans. The survey aims to measure

qualifications, career history and detailed job characteristics of the German labour

force. In contrast to most task datasets, the BIBB dataset includes individual in-

formation on tasks, occupations and locations. We employ the 2006 wave as this

is the most recent wave. This wave consists of information about 20,000 Germans.

Here, we focus on the definitions and construction of our main variables: tasks and

local markets. For more information about the survey and the dataset we refer to

the work of Rohrbach-Schmidt (n.d.).

Several questions in the BIBB relate to the content of occupations. For the em-

pirical analyses we employ information on job tasks, job characteristics, required

cognitive and specialised skills and task requirements. Examples of all these con-

tent measurements and the number of different tasks appearing in the BIBB are

displayed in Table 3.1. The full list of tasks is displayed in Appendix B. For each

task, the survey examines the frequency of appearance as a measure of the import-

ance in the job. As the scaling varies between the questions, we construct three

possibilities: (a) the task is a core task (appears ’always’ or ’often’), (b) the task is

a subtask (appears ’sometimes’ or ’rarely’) or (c) the task is not performed by the

worker. Most studies on job tasks include similar types of job tasks and measure-

ment. Autor et al. (2003) employ the Dictionary of Occupational Titles (DOT) while

most recent studies, such as Bacolod et al. (2009) and Goos et al. (2009) employ

the successor of the DOT, the Occupational Information Network (ONET) data-

set. Spitz-Oener (2006), Gathmann & Schnberg (2010) and Dustmann et al. (2009)

(among others) employ the BIBB surveys.

The disadvantage of estimations for the whole economy is that job tasks vary

between industries. As the survey includes tasks that could occur in each occupa-

tion and each industry, many (more specific tasks) are missing. Hence, the range of

individual tasks in an occupation could be smaller than in real life.4 For an extens-

3 Hereafter we refer to this dataset as the BIBB dataset.
4 Section 3.4 discusses whether this biases our estimates.
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Table 3.1. Task definitions in the BIBB Survey

Variable Examples # of tasks

Job tasks Manufacturing, organising 16
Job characteristics Having to react to and solving unforeseeable problems 9

Making tough choice on your own responsibility
Cognitive skills Manual / craft skills, technical skills 12
Specialised skills Book-keeping, fiscal 8
Task requirements Have to work under great deadline pressure 12

Working very quickly

Table 3.2. Observations seven city categories

Category Inhabitants Employees in Germany
in data weighted

1 1–1,999 1,030 1,907,418
2 2,000–4,999 1,460 2,651,726
3 5,000–19,999 3,982 6,701,806
4 20,000–49,999 2,761 4,570,964
5 50,000–99,999 1,340 2,199,916
6 100,000–499,999 2,693 3,972,548
7 500,000–... 2,404 3,621,968

ive discussion about the disadvantages of task information we refer to the work of

Autor & Handel (forthcoming), Acemoglu & Autor (2011) and Autor (2013).

The dataset contains information on the size of the city of residence. For the de-

scriptive data we exploit the variation between the seven different categories. Table

3.2 presents the (weighted) number of observations in the dataset for the seven size

categories. In the analyses we consider three city sizes: small (less than 20,000 in-

habitants), medium (between 20,000 and 100,000 inhabitants) and large cities with

more than 100,000 inhabitants.

3.3.2 Measuring job content

A job is defined as a three-digit occupation and two-digit industry combination.

Throughout the paper the term ’job’ refers to an occupation within an industry.

Examples of jobs are a protective service worker within the veterinary sector and

a machinery worker within the manufacture of motor vehicles, trailers and semi-

trailers sector.

The theoretical model results in predictions about two forms of job contents: the

number of job tasks and demand for skills. The number of tasks a worker performs
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defines his specialisation level and indicates the time he has to devote to his core

job tasks. Within the BIBB, the questions about job tasks largely refer to demanded

skills. To avoid measuring the level of demanded skills instead of the level of spe-

cialisation we focus on the number of less relevant tasks a worker performs. The

more irrelevant tasks a worker has to perform, the less time he devotes to his core

tasks. For instance, a scientist who also needs to organise meetings has less time to

focus on his core task, namely doing research. The level of specialisation is meas-

ured by the number of tasks a worker performs sometimes or rarely (subtasks). The

fewer subtasks a worker performs, the more time he has to focus on his core tasks

and the more specialised he is.

Second, we define the job content by the demanded skills. Workers who fo-

cus more on their core tasks have more time and incentive to develop task-specific

knowledge and skills. As explained before, we only observe broad tasks. There-

fore, we measure the importance of cognitive and non-routine tasks which we as-

sume to be applied by workers for the development of task-specific skills. We in-

clude seven cognitive skills: research, adapt to unforeseen problems, mathematical

skills, technical skills, solving new problems, process optimising and do things you

have not learned before. The number of cognitive skills which is crucial for the job

performance proxies the development of task-specific skills. Section 3.6.1 tests the

sensitivity of the results towards the choice of indicators for job content.

3.3.3 Descriptive statistics

Tables 3.3 to 3.5 present the most salient descriptive statistics for our data. On aver-

age, workers perform 15 subtasks and 18 core tasks out of the range of 58 possible

tasks. First, Table 3.3 shows the variation within specialisation levels and deman-

ded job skills across different subgroups of workers. Variables are standardised to

make comparison across occupations easier. Workers above the age of 50 perform

fewer subtasks than younger workers. Work experience enhances specific know-

ledge and with that a more specialised task package. Women have more generalist

jobs than men and native speakers more than non-natives. Furthermore, the num-

ber of subtasks increases with education level. The average job requires 1.8 cognit-

ive skills. The last two columns in Table 3.3 present the standardised values across

different groups of workers. The jobs of younger workers require more cognitive

skills than the ones of older workers. Logically, the demand for cognitive skills in-

creases with education level. Females and non-native speakers indicate that their

job demands fewer cognitive skills than respectively males and native speakers in-
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Table 3.3. Descriptive statistics

Number of subtasks Demanded cognitive skills
Mean SD Mean SD

Age groups

Younger than 35 years 0.02 0.96 0.08 1.01
35-50 years 0.04 1.00 -0.02 1.00
Above 50 years -0.11 1.04 -0.03 1.00

Gender

Male -0.11 0.99 0.13 1.00
Female 0.10 1.00 -0.12 0.99

Educational groups

Unskilled -0.66 1.13 -0.02 0.93
Low skilled -0.20 1.02 0.06 1.00
Medium skilled -0.03 1.02 -0.13 0.96
High skilled 0.13 0.92 0.21 1.03

Origin

Native speaker 0.01 1.00 0.00 1.00
Non-native speaker -0.14 1.02 -0.04 1.00
Note: n = 15,670. Variables are standardised with a mean of zero and a standard deviation of
one. The classifications and the definitions of variables are displayed in Table B.2 in Appendix
B. There are 58 subtasks defined. On average workers perform 15.61 subtasks with a standard
deviation of 5.79. We distinguish seven cognitive skills, on average a worker indicates that
his job demands 1.76 cognitive skills with a standard deviation of 1.09.

dicate.

Table 3.4 presents the variation in specialisation level and demanded skills across

broad occupational groups. Management occupations are the most generalist occu-

pations while elementary occupations are the most specialised ones. The variation

within the group of elementary occupations is however relatively high. Profes-

sional occupations require the most cognitive skills and agricultural and fishery

occupations the fewest cognitive skills. The variation across industries is smaller

than the variation across occupations (Table 3.5). The wholesale trade sector is the

least specialised of all sectors and the other services sector the most specialised.

The administration and support sector demands the most cognitive skills and the

wholesale trade the least.

Next, Figures 3.4 to 3.7 present the spatial distribution of jobs regarding their

specialisation level and demanded skills. Figure 3.4 shows the kernel distribution

of the performed number of subtasks in small, medium and large cities. The dis-

tribution of the number of subtasks performed shows an inverted u-shape distri-
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Table 3.4. Summary statistics - occupational groups

Number of subtasks Required cognitive skills
Mean SD Mean SD

1. Managers 0.36 0.97 0.11 1.01
2. Professionals 0.03 0.84 0.38 1.03
3. Technicians 0.10 0.94 0.05 1.00
4. Clerks 0.10 1.04 -0.15 0.91
5. Service workers -0.10 1.03 -0.03 0.95
7. Craft and trade workers 0.02 1.03 -0.42 0.92
8. Operators and assemblers -0.40 1.03 -0.34 0.85
9. Elementary -0.71 1.71 -0.03 0.80

Note: n = 15,670. Variables are standardised with a mean of zero and a standard deviation of one. Table
B.2 in Appendix B displays the definitions of the variables. Occupations are defined by one-digit ISCO
1988 codes. Skilled agricultural and fishery are dropped because their location depends on natural
resources.

bution. Workers in large cities perform slightly fewer subtasks than workers in

medium and small cities. The differences are however only modest. Figure 3.5

presents the same distributions for a sample of high-skilled workers. The distri-

butions are rather similar but the spatial variation is somewhat larger. Figures 3.6

and 3.7 show the same exercise for the number of demanded cognitive skills. Most

workers indicate that their job demands a maximum of two cognitive skills. The

share of workers who perform more cognitive skills is larger in large cities than in

medium and small cities.

Lastly, we test whether scarce occupations are more likely to be performed in

large cities and replicate the analysis of Duranton & Jayet (2011) for German cit-

ies. Cities produce many (intermediate) products with various demand thresholds.

Duranton & Jayet (2011) show that scarce occupations are more often found in large

cities. Using a logit approach, we estimate the probability that a job (occupation–

industry combination) is performed in a city. Within each industry, the occupations

are classified into four categories: occupations with a very high scarcity level, a

high, a low and a very low scarcity level. The scarcity level represents the national

employment of that occupation within a certain industry. Appendix B describes the

full estimation method. Table 3.6 presents the results. Scarce occupations appear

more often in large cities than in small cities. This relation increases both with the

scarcity level of the occupation and the size of the city. Thus, to measure the spatial

division of specialisation, we should control for the division of jobs across cities.
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Table 3.5. Summary statistics - industrial groups

Number of subtasks Cognitive skills
Mean SD Mean SD

3. Manufacturing 0.00 1.03 -0.17 0.97
4. Electricity and gas 0.06 1.05 -0.19 0.88
5. Water supply -0.05 0.98 -0.30 0.90
6. Construction 0.16 1.06 -0.28 0.95
7. Wholesale trade 0.21 1.05 -0.47 0.91
8. Transport 0.03 1.08 -0.16 0.94
9. Accommodation and food 0.06 1.2 -0.09 0.09
10. Information and communication -0.15 1.05 -0.16 0.89
11. Financial 0.15 0.97 -0.01 0.99
13. Professional, scientific and technical activities -0.04 0.98 0.11 0.97
15. Administration and support -0.04 0.85 0.55 1.03
16. Education -0.04 0.92 0.18 1.00
18. Arts, entertainment 0.05 1.01 0.18 1.03
19. Other services -0.37 1.2 -0.02 0.99
20. Household -0.27 1.19 -0.03 1.00
21. International organisations 0.18 0.96 -0.45 1.07

Note: n = 15,670. Variables are standardised with a mean of zero and a standard deviation of one. Table
B.2 in Appendix B displays the definitions of the variables. Industries are defined by one-digit NACE
codes. Agriculture, forestry, fishing, mining and quarrying industries are dropped as the location of
these industries depends on natural resources.

Table 3.6. Logit estimation results for all occupations - six city categories

Scarcity
City size Very High High Low Very Low

Less than 5,000 inhabitants -1.285*** -1.118*** -0.927*** 0
[0.209] [0.201] [0.190]

5,000 - 20,000 inhabitants -1.591*** -1.594*** -1.102*** 0
[0.207] [0.205] [0.199]

20,000 - 50,000 inhabitants -1.450*** -1.156*** -1.008*** 0
[0.207] [0.198] [0.189]

50,000 - 100,000 inhabitants -0.356 -0.296 -0.402** 0
[0.219] [0.209] [0.197]

100,000 - 500,000 inhabitants -0.810*** -0.744*** -0.628*** 0
[0.200] [0.196] [0.187]

More than 500,000 inhabitants 0 0 0 0
Note: n = 15,670. The estimation method is explained in Appendix B. Scarcity levels refer to the quartiles
of scarcity level of occupations by industry. For each industry the occupations with the least (most)
employment are defined as occupations with a very high (very low) scarcity level.
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Figure 3.4. Distribution of number of
performed subtasks
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Figure 3.5. Distribution of number of
performed subtasks - high-skilled
workers
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Figure 3.6. Distribution of demanded
cognitive skills
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Figure 3.7. Distribution of deman-
ded cognitive skills - high-skilled
workers
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3.4 Empirical strategy

Our empirical analyses consider the relation between the content of a job and the

size of the city where the job is performed:

Ci,o,j,l = α1 + α2Co,j + α3 Il + α4Si + α5(Il · Si) + α6Vi + εi,o,j,l . (3.10)

Ci,o,j,l refers to the job content, either the specialisation level or the demanded cog-

nitive skills, of worker i with occupation o in industry j and city l. Co,j are job fixed

effects controlling for the average job content. Furthermore, we control for the edu-

cation level of worker i (Si) and several other factors, such as age and gender (Vi). Il

refers to the main variables of interest; dummy variables indicating whether worker

i lives in a small, a medium or a large city. To avoid underestimation of the stand-

ard errors we cluster them at the job level (Moulton, 1990). The observations are
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weighted by the national employment of the job.

A concern with this empirical strategy is the possible impact of measurement

error. First, the task packages of individuals are determined in such a way that

each worker could perform all tasks. The underestimation of the range of job tasks

likely affects the estimations. The more individual job tasks exist, the more spa-

tial variation is possible. Therefore, we expect this measurement error to create

a underestimation of the spatial variation. Both the model in Section 3.2 and the

estimation as described in equation (3.10) do not take into account the relative po-

sition and importance of job tasks within the production process. The benefits of

specialisation and the demand for cognitive skills likely vary with the task pack-

age of jobs. We assume that we take this variation into account by including job

fixed effects. Section 3.6 displays the spatial variation of job contents across separ-

ate broad occupational groups. Furthermore, Section 3.6 shows additional analyses

with different indicators for specialisation and demanded skills.

Second, we observe the location of residence of the worker. No information is

available about the working location. We assume that the worker lives and works

in the same city. Most commuting workers in Germany commute from a small city

to a larger city (Patuelli et al., 2010). We expect workers in larger cities to perform

fewer subtasks and to possess more cognitive skills. If a worker lives in a small city

but works in a large city, the fewer subtasks / more cognitive skills are classified

under the small city but should be related to the large city. Again, this suggests that

we are more likely to underestimate the spatial variation than to overestimate the

actual spatial variation. In Section 3.6 we test several different spatial units to see

whether the results are sensitive to measures of city size.

Third, skilled workers sort into large cities. Workers with high observed and

unobserved abilities sort into larger cities for better education, career possibilit-

ies, spouse markets and amenities (Glaeser & Maré, 2001; Berry & Glaeser, 2005;

Combes et al., 2008; Venables, 2011). These sorting patterns have consequences for

the demand for cognitive skills in cities. Higher demand for cognitive skills in cities

might reflect specialisation benefits but it might also reflect sorting patterns of more

able workers. Our data limit us to proxy worker skills with education levels. Sec-

tion 3.6 presents the relation between specialisation and cognitive skills and separ-

ate analyses for educational groups. Again, workers with strong unobserved skills

might be more specialised which results in a relation between specialisation level

of and required cognitive skills for the job. We cannot rule out the role of sorting of

workers into jobs and locations. The explanation of spatial variation in job contents
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is therefore left for further research, here we focus on examining whether there is

spatial variation in job contents.

Fourth, Becker & Murphy (1992) indicate that especially coordination costs af-

fect the division of labour. When workers divide the complementary tasks of the

production of a good, they need to coordinate the production process. Even if

workers fully cooperate and do not compete to some extent, information about

the tasks will be lost within the coordination process. Tacit knowledge about tasks

is difficult to transfer across different workers. Coordination costs hinder workers

to perform a unique subset of tasks and fully exploit the increasing returns. The

model in Section 3.2 considers a continuum of tasks, resulting in a unique subset of

tasks for each worker in the market. There is no overlap in the worker’s subset of

tasks. In reality most workers do not perform a unique subset of tasks. Moreover,

as our dataset only contains 58 tasks, unique subsets are not possible. The demand

for and supply of scarce tasks and products rise with local population (Duranton &

Jayet, 2011). This suggests that possibilities to benefit from specialisation rise with

population as well.

Lastly, characteristics of cities such as the share of high-skilled workers, the in-

dustrial structure and the amount of amenities likely affect the demand for certain

tasks and with that the division of labour (Baumgardner, 1988b). Unfortunately,

the only location information in the BIBB is a categorised size variable. We do not

observe the name of the location or any other characteristics besides size. To test the

impact of industrial structure, analyses in Section 3.6 make the distinction between

manufacturing and service sectors.

3.5 Job contents across cities

3.5.1 Specialisation level

We start our empirical analysis by examining whether the division of labour is

bound by the extent of the market. The subset of tasks is different for each job.

The estimation of a simple regression explaining the number of subtasks by the

job results in an adjusted R-squared of 0.26. The correlation between number of

subtasks performed by a worker and the average number of subtasks of the job is

0.45 (significant at the 1 percent level). We confirm the notion of Autor & Handel

(forthcoming) that measures of task composition at the occupational level obtain

substantial measurement error.
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As expected, workers in large cities perform fewer subtasks and are more spe-

cialised given their job (column (1) in Table 3.7). We distinguish three size categor-

ies of local population: small (less than 20,000 inhabitant), medium (between 20,000

and 100,000 inhabitants) and large cities (more than 100,000 inhabitants). The level

of specialisation of a certain job increases linearly with city size. The variation in

specialisation across city size is significant, but only modest in terms of size. Work-

ers in large cities perform 5 percent of a standard deviation fewer subtasks than

workers in small cities.

Table 3.7. The level of specialisation is higher in cities

Number of subtasks
(1) (2) (3) (4)

Medium city -0.043** -0.045** -0.048** -0.047**
[0.019] [0.019] [0.021] [0.021]

Large city -0.053*** -0.065*** -0.062*** -0.070***
[0.020] [0.020] [0.023] [0.023]

Unskilled -0.218*** -0.282***
[0.079] [0.092]

Medium skilled 0.103*** 0.109**
[0.040] [0.045]

High skilled 0.167*** 0.254***
[0.041] [0.050]

Age -0.002** -0.003**
[0.001] [0.001]

Female -0.115*** -0.198***
[0.016] [0.027]

Native speaker 0.085** 0.104***
[0.034] [0.038]

Job average 1.000*** 0.957***
[0.001] [0.008]

Constant 0.030*** 0.003 0.026** 0.010
[0.010] [0.064] [0.012] [0.078]

Job fixed effects YES YES
Observations 15,670 15,670 15,670 15,670
Adjusted R-squared 0.193 0.202 0.001 0.019
Note: individual data. Table B.2 in Appendix B displays the definitions of
the variables. Clustered standard errors are in parentheses, * significant at the
10% level,** significant at the 5% level, *** significant at the 1% level.

Other personal characteristics affect the level of specialisation as well. The spa-

tial distribution of skilled workers is unequal. High-skilled workers are overrep-

resented in large cities. If high-skilled workers perform on average more (fewer)

subtasks this will underestimate (overestimate) our results. The same reasoning
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holds for the spatial distribution of young workers, females and non-native speak-

ers. The regression in column (2) includes information on the education level and

demographic characteristics of the worker. High-skilled workers perform on aver-

age more tasks than low-skilled workers, probably caused by higher productivity

levels. Workers with a college or university degree perform 17 percent of a standard

deviation more subtasks than workers with only a high school degree. Controlling

for the education level of the workers increases the impact of the city size dum-

mies. The unequal spatial distribution of high-skilled workers underestimated the

variation across cities in column (1). The number of subtasks varies significantly

across other subgroups as well. Older workers perform fewer tasks than younger

workers, females perform fewer tasks than males and native speakers more than

non-native speakers. Likely, variation in the trade-off between coordination costs

and efficiency benefits for specialisation causes these variations (Becker & Murphy,

1992).

To firm-up our results, the estimates in column (3) and (4) include job fixed ef-

fects. The estimates in these columns measure the spatial variation within jobs. The

coefficients of the medium-sized and large-sized city dummies remain significant

and negative. The size of the coefficients increases slightly. Workers in a large city

perform 7 percent of a standard deviation fewer subtasks than workers with the

same job in a small city. The explanatory power of the estimation is very low which

suggests that job codes do not explain a large part of the variations of job contents.

3.5.2 Demanded cognitive skills

Workers who specialise in a smaller subset of tasks gain benefits from increasing

returns to scale. The more time a worker spends on a certain task, the more skills

he develops to perform this task. Specialists tend to perform more complex and

cognitive tasks than workers who perform more tasks. The specialisation level of

jobs increases with city size, as indicated in the previous section, so we expect the

demand of cognitive skills to increase with city size as well.

The estimates in column (1) in Table 3.8 show that jobs demand more cognit-

ive skills when they are performed in large cities than when they are performed in

small cities. Workers in large (medium) cities indicate that their job requires 8 per-

cent (4.5 percent) of a standard deviation more cognitive skills than workers with

the same job in small cities. The regression in column (2) includes additional demo-

graphic and education information of the workers. Females indicate that their job

demands more cognitive skills than males with the same job do. The jobs of young
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Table 3.8. Jobs demand more cognitive skills in cities

Demanded cognitive skills
(1) (2) (3) (4)

Medium city 0.045** 0.039** 0.051** 0.043**
[0.019] [0.019] [0.021] [0.021]

Large city 0.081*** 0.067*** 0.093*** 0.079***
[0.021] [0.021] [0.024] [0.024]

Unskilled 0.035 0.029
[0.055] [0.065]

Medium skilled -0.102** -0.127**
[0.044] [0.051]

High skilled -0.034 -0.046
[0.045] [0.054]

Age -0.006*** -0.007***
[0.001] [0.001]

Female 0.126*** 0.195***
[0.022] [0.033]

Native speaker -0.019 -0.022
[0.034] [0.039]

Job average 0.994*** 0.960***
[0.002] [0.009]

Constant -0.040*** 0.246*** 0.051*** 0.350***
[0.010] [0.064] [0.011] [0.076]

Job fixed effects YES YES
Observations 15,670 15,670 15,670 15,670
Adjusted R-squared 0.202 0.210 0.002 0.015
Note: individual data. Table B.2 in Appendix B displays the definitions of
the variables. Clustered standard errors are in parentheses, * significant at the
10% level,** significant at the 5% level, *** significant at the 1% level.

and non-native workers require more cognitive skills than the same jobs of older

and native workers. The coefficients for city size are not affected by the inclusion

of these additional factors.

Lastly, columns (3) and (4) include job fixed effects and focuses on the estim-

ation of the spatial variation within jobs. Again, the explanatory power of the

regressions drops. The city size coefficients slightly increase in size and remain

significant and negative. Workers in large cities indicate that their job demands 8

percent of a standard deviation more cognitive skills than workers with the same

job and characteristics in small cities.

In summary, the specialisation level and demanded cognitive skills of jobs in-

crease with city population. The spatial variation in job contents is significant but

modest. As discussed in the previous section, the set up of the survey likely causes
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underestimation of the variation in job content. We find significant spatial vari-

ation in the content of jobs and expect the actual variation to be larger. It should be

noted that in most countries, the largest cities house the best workers (as discussed

in Section 3.4). We expect the sorting of the more skilled workers to affect the skill

demand as well.

3.6 Further analyses

Previous estimates include several assumptions which we test in this section with

five robustness checks. A first concern of the previous estimates is the impact of

measurement error. We start by testing the sensitivity of the indicators for spe-

cialisation and cognitive skills (Section 3.6.1). Second, we deal with the regional

measurement error in Section 3.6.2 and run estimations with different spatial units.

Third, the possible impact of sorting of more able workers is discussed in Section

3.6.3. Section 3.6.4 provides separate estimates for the manufacturing and service

sectors and for eight broad occupational groups to indicate whether spatial vari-

ation in job contents is present across the whole economy. Lastly, we test the hypo-

thesis that learning and experience could affect the results. We only show estimates

including job fixed effects.5

3.6.1 Indicators for specialisation and cognitive skills

Measuring task packages of jobs is challenging. As described in Section 3.3, we use

a broad interpretation of ’tasks’ and define specific skills and activities as tasks as

well. Although common in the literature, this is an arbitrary choice. We test the

sensitivity of our results towards the choice of included tasks and construct altern-

ative measures of our indicators. Our alternative measure for the job’s specialisa-

tion level only includes task information and does not include required cognitive

and specific skills any more (see Table 3.1 for an overview of the included tasks).

The alternative measure of the demanded cognitive skills includes only the inform-

ation on the question about the importance of required cognitive skills and not the

other tasks such as ’doing research’. Columns (1) and (2) in Table 3.9 present the

results. Our results are not sensitive to the measurement of our indicators. How-

ever, the demand for cognitive skills is only significantly larger in large cities when

we control for other factors as well. Our dataset likely underestimates the range

5 OLS-estimates show similar results and are available upon request.
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of job tasks which likely results in a underestimation of the spatial variation in job

tasks as well. The estimates in Table 3.9 indicate that measurement error does not

drive our results.

3.6.2 Spatial units

The empirical analyses define a city as the local labour market. Spatial units are

chosen for convenience and nothing guarantees that the city is indeed the correct

aggregation level for local demand and supply of tasks. We classified the cities into

three categories: small, medium and large cities. Column (3) of Table 3.9 presents

estimates for the level of specialisation in which we distinguish seven city size cat-

egories. The number of subtasks a worker performs diminishes with the size of the

city of residence. Column (4) presents estimates with the same city categories for

the cognitive skill demand. The importance of cognitive skills increases with city

size.

Column (5) and (6) present the results when applying alternative spatial units.

Instead of measuring the size of the city we measure the population density of the

region. In a region with a high population density it is easier to cooperate and to

learn from your peers than in a region with a low population density. Therefore,

population density of 16 German regions (’Bundesländer’) provides us information

on the possibilities to cooperate and divide the tasks among workers. Column (5)

presents the results with this measure of size (again classified into three categor-

ies: low, medium and high density) for estimations of the level of specialisation.

Workers in high density areas perform fewer subtasks and are more specialised

than workers in low density areas. Jobs in dense areas also demand more cognitive

skills (column (6)).

3.6.3 Sorting of more skilled workers

In most countries the largest cities house the ’best’ workers. Combes et al. (2008)

show that the sorting of these better workers into large cities is only partly cap-

tured by educational differences. Unobserved skills, such as cognitive skills, play

a key role in spatial wage disparities. Concerning our results it might be the case

that these better workers who sort into large cities are more specialised and have

more cognitive skills. In other words: our results may be driven by characteristics

of workers who sort into large cities instead of job characteristics based on mar-

ket efficiency. We test this hypothesis in two ways. First, we analyse the relation
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between cognitive skill demand and specialisation level of workers. Such a relation

does not need to be causal. Therefore, we estimate spatial variation in job contents

for separate educational groups as an additional sensitivity check.

If the cognitive skill demand depends on the job’s specialisation level this should

be visible in the estimation of cognitive skills. In column (7) in Table 3.9 we include

the job’s specialisation level into the estimation of demanded cognitive skills. There

is a strong and negative relation between the demanded cognitive skills of a job and

the performance of subtasks. Workers who focus more on core tasks indicate that

their job requires more cognitive skills. This relation remains significant when we

control for other factors (column (8)). The coefficients of the size dummies slightly

change when we include specialisation level of the worker. If we control for the

worker’s specialisation level, the spatial variation of the cognitive skill demand in-

creases. The coefficient of medium cities however becomes insignificant with the

inclusion of the number of subtasks.

Workers with relatively many unobserved skills may both have more cognitive

skills and be more specialised. The results in column (7) and (8) of Table 3.9 there-

fore could reflect the higher specialisation level of more capable people. We assume

that the sorting of more capable people into cities is partly captured by analysing

the sorting of observed skills. If we find spatial variation in job contents of other

skill groups this suggests that the spatial variation captures more than sorting of

the most capable workers. Table 3.10 presents separate estimations for four edu-

cational groups: unskilled, low-skilled, middle-skilled and high-skilled workers.

Columns (1) to (4) show that workers within all educational groups perform sig-

nificantly fewer subtasks when they are located in large cities. Columns (5) to (8)

show that workers within all skill groups, except the unskilled, indicate that their

job demands more cognitive skills when they are located in a large city. We con-

clude that the division of job tasks is beneficial for all skill groups. The fact that also

unskilled and low-skilled workers specialise more in large cities suggests that our

results are not solely driven by sorting patterns.

3.6.4 Variation across industry and occupational groups

The production processes of jobs vary across sectors and occupational groups. For

instance, the local market for the demand and supply for service products may be

much more local (smaller) than the market for manufacturing products. Further-

more, the importance of tacit knowledge within service sectors causes coordination

costs to be higher in service sectors than in manufacturing sectors. The relatively
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low importance of tacit knowledge enables manufacturing firms to split up their

production process easier between workers and even across space (Glaeser & Ponz-

etto, 2010). Therefore, the spatial unit of interest might also vary between manufac-

turing and services. Similarly, we expect benefits from specialisation and cognitive

skill demand to vary across occupational groups. These sectoral differences likely

result in different spatial patterns.

Table 3.11 presents separate estimates for manufacturing and services to assess

whether our results hold for both type of industries. Columns (1) and (2) show that

the specialisation level of jobs in manufacturing and of jobs in services are higher

in larger cities than in small cities. Workers in the manufacturing (services) per-

form about 9 percent (7 percent) of a standard deviation fewer subtasks when they

are located in a large city. Columns (3) and (4) present the same exercise for the

requirement of cognitive skills. Within the sample of manufacturing sectors, the

city size coefficient becomes insignificant while the one in the service sector sample

remains positive and significant. This result suggests that benefits from specialisa-

tion in large cities occur in both industry types. Specialisation does not lead to a

higher demand for cognitive skills in the manufacturing sector. This result could

be caused by the focus of manufacturing on product-producing while services rely

more on cognitive intense idea-producing (Glaeser & Ponzetto, 2010).

Table 3.12 presents separate estimates for eight broad occupational groups (one-

digit). As expected, not all occupational groups experience spatial variation in their

job contents. Within the samples of professional, service and craft occupations the

coefficient of a large city is significant and negative. These occupational groups

seem to benefit most from specialisation possibilities in cities. Noticeable is the

negative and significant coefficient for medium-sized cities within the technical oc-

cupations. This confirms the theory of Duranton & Puga (2001) and Desmet &

Rossi-Hansberg (2009) that medium-sizes cities focus on technical specialisation.

Columns (9) to (16) present the same estimates for the cognitive skill demand. A

similar spatial variation pattern is found. Professional and service occupations re-

quire more cognitive skills when they are performed in large cities, while technical

occupations require more skills in medium-sized cities.

3.6.5 Learning and experience

The task packages of workers vary with age (Autor & Dorn, 2009). During their

career, workers specialise and become experts on a subset of core tasks (Lazear,

2009). Experience probably leads to more expert knowledge and with that to more
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Table 3.11. Manufacturing and service sectors

Subtasks Cognitive skills

Manufacturing Services Manufacturing Services

(1) (2) (3) (4)

Medium city -0.008 -0.057** -0.005 0.055**
[0.036] [0.024] [0.039] [0.025]

Large city -0.088** -0.067** 0.018 0.092***
[0.036] [0.026] [0.036] [0.027]

Unskilled -0.007*** -0.002 -0.005*** -0.007***
[0.002] [0.001] [0.002] [0.001]

Medium skilled -0.241*** -0.189*** 0.189*** 0.195***
[0.050] [0.030] [0.048] [0.037]

High skilled 0.084 0.110** 0.001 -0.032
[0.063] [0.047] [0.054] [0.047]

Age -0.155 -0.308** 0.121 0.003
[0.101] [0.122] [0.082] [0.083]

Female 0.219*** 0.086* -0.057 -0.144**
[0.071] [0.052] [0.075] [0.060]

Native speaker 0.487*** 0.206*** 0.003 -0.058
[0.085] [0.057] [0.081] [0.064]

Constant 0.122 -0.017 -0.051 0.445***
[0.127] [0.092] [0.109] [0.093]

Job fixed effects YES YES YES YES
Observations 6,583 9,087 6,593 9,087
Adjusted R-squared 0.032 0.017 0.010 0.016

Note: individual data. Table B.2 in Appendix B displays the definitions of the variables. Standard errors
are in parentheses, * significant at the 10% level,** significant at the 5% level, *** significant at the 1%
level.
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Table 3.13. Age groups

Subtasks Cognitive skills

Age 35− 35-50 50+ 35− 35-50 50+

(1) (2) (3) (4) (5) (6)

Medium city -0.029 -0.055* -0.066 0.080 -0.005 0.119**
[0.049] [0.030] [0.043] [0.052] [0.029] [0.049]

Large city -0.071* -0.081*** -0.049 0.173*** 0.058* 0.030
[0.040] [0.031] [0.045] [0.053] [0.030] [0.048]

Unskilled -0.011* 0.000 -0.007 0.009 -0.010*** -0.007
[0.007] [0.003] [0.005] [0.007] [0.003] [0.005]

Medium skilled -0.237*** -0.191*** -0.181*** 0.224*** 0.160*** 0.256***
[0.041] [0.035] [0.057] [0.058] [0.041] [0.081]

High skilled 0.075 0.080 0.103 -0.008 -0.048 0.025
[0.067] [0.050] [0.124] [0.061] [0.058] [0.126]

Age -0.020 -0.261** -0.295 -0.064 0.032 0.197
[0.215] [0.119] [0.191] [0.175] [0.103] [0.145]

Female 0.188** 0.118* 0.083 -0.148 -0.106 -0.065
[0.084] [0.072] [0.118] [0.111] [0.084] [0.123]

Native speaker 0.297*** 0.249*** 0.292** -0.088 -0.037 0.051
[0.086] [0.076] [0.128] [0.111] [0.081] [0.127]

Constant 0.233 -0.076 0.145 -0.183 0.520*** 0.213
[0.205] [0.130] [0.341] [0.219] [0.139] [0.356]

Job fixed effects YES YES YES YES YES YES
Observations 3,600 8,518 3,552 3,600 8,518 3,552
Adjusted R-squared 0.019 0.016 0.022 0.016 0.009 0.018

Note: individual data. Table B.2 in Appendix B displays the definitions of the variables. Standard
errors are in parentheses, * significant at the 10% level,** significant at the 5% level, *** significant at the
1% level.
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specialisation. Here, we test whether the found results hold for all age groups.

Table 3.13 presents results for separate age groups. For all age groups, the num-

ber of performed subtasks decreases with city size (columns (1) to (3)). Within the

group of workers above 50 years this relation is not significant. Columns (4) to (6)

present separate estimates for the cognitive skill demand for the three age groups.

Again, our main findings hold for all the age groups but the large city coefficient

for workers above 50 years is insignificant. Workers of all ages below 50 indicate

that their job consists of fewer subtasks and demands more cognitive skills when

they are located in a large city. The spatial variation in cognitive skill demand is the

strongest for young workers in the beginning of their career.

3.7 Concluding remarks

This chapter shows that a job contains a different task package in a large city com-

pared to the same job in a small city. Our theoretical model suggests that the spatial

variation in job contents is the result of a stronger division of labour in large cities.

The empirical analyses indicate that both the specialisation level of jobs and the

demand for cognitive skills rise with city size.

Most research ignores the possible spatial variation in job contents. Our indic-

ators rely on very broad tasks and measure spatial variation of job contents and

might underestimate the variation. The fact that we do find spatial variation in job

contents despite this possible underestimation suggests a substantial spatial vari-

ation.

Regional inequality is a hot policy topic. We take a step towards unravelling the

inequality in wages and productivity. Further steps, especially in more adequately

separating sorting and productivity effects, is an important challenge for research.



CHAPTER 4

MATCHING WORKER SKILLS TO JOB TASKS

SORTING INTO CITIES FOR BETTER CAREERS

4.1 Introduction

The matching of workers to jobs is better in thick labour markets than in thin ones.

The benefits of thick labour markets first gained attention with the work of Alfred

Marshall (1920). A thick labour market is associated with both a better chance of a

job match and better match quality. An extensive literature has studied whether the

chances of a job match rise with market size. The empirical evidence is, however,

ambiguous, see (Petrongolo & Pissarides, 2001). Both workers and employers likely

raise their match standards when they have more choice. This results in constant

returns to scale for the matching chance and increasing returns to scale in match

quality (Petrongolo & Pissarides, 2006). Empirical work on the quality of matches

is scarce, mainly because it is hard to define quality (Rosenthal & Strange, 2004). In

a first attempt, Petrongolo & Pissarides (2006) proxy the quality of the match using

wages.

The present chapter compares the quality of matches between thick city labour

markets and thin ones in the Netherlands. The extent to which the skills of workers

suit their job tasks is used to define job match quality. Heterogeneity in both worker

skills and job tasks is considered in match quality, in addition to commonly used

education level and occupation codes. This chapter thus extends the work of Pet-

rongolo & Pissarides (2006) by applying a more detailed measure of match quality.

We find that the quality of the match is indeed significantly better in Dutch cities

than in the Dutch countryside. The better career prospects induce better workers

and more complex jobs to gravitate to cities.

To assign skills to tasks across labour markets, we propose a model in the spirit

of Burdett & Coles (1997) and Gautier et al. (2010). The model considers hetero-
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geneous workers searching for a job and employers holding heterogeneous jobs for

which they are seeking workers. Workers seek the most complex and subsequently

best-paying jobs they can obtain. Employers seek the most skilled workers willing

to accept the job, since more skilled workers are more productive. The ’distance’

between worker skills and job complexity determines the quality of the match: the

smaller the distance, the better the match. Workers and jobs are divided into qual-

ity segments. Hence, the maximum difference between worker skills and job com-

plexity is the difference between the least (most) skilled worker in a segment and

the most (least) complex job in the same segment. Workers and employers choose

a location to work/operate in before they start their search. The economy has two

locations: a scarcely populated countryside and a densely populated city. The dens-

ity of the city results in a better match quality but also in higher rents. Because of

these better matching qualities, the expected utility of the matches depends more

on the quality of workers and jobs in cities than the more ’random’ assignments in

the countryside. Relatively more skilled workers and more complex jobs sort into

the city, since they have higher opportunity costs. The advantages of better matches

soon exceed the disadvantage of higher rents in the city.

Empirically, we employ the Longitudinal Internet Studies for the Social Sciences

(LISS) panel of 3,000 Dutch individuals. The panel contains information about the

suitability of skills for a person’s job and additional information about personal-

ities, job tasks, and the usual demographic, occupational, and educational vari-

ables. In contrast with the commonly used Occupational Information Network

(ONET) and Dictionary of Occupational Titles (DOT) datasets of job tasks, the LISS

panel contains person-level instead of occupation-level information. As indicated

by Autor & Handel (forthcoming), the within occupation differences in task pack-

ages are substantial, which makes our dataset relevant. Each respondent indicates

the suitability of his or her job skills, the importance of 33 broad job tasks within

the job, and statements about personality. The indicated suitability is used as an

estimate of the quality of the match between the worker’s skills and job tasks. In-

formation about preferences, as in preferring complex problems to simple prob-

lems, proxies for the investment a person has made in developing skills, given his

or her education. We assume, for instance, that workers who prefer complex over

simple problems invest more in their cognitive skills than workers with the same

education who prefer simple problems. The importance of certain job tasks, given

the occupation, defines the job’s complexity. In line with the work of Heckman

et al. (2006), Borghans et al. (2006), and Bacolod et al. (2009), we can decompose
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skills and tasks into cognitive and social worker skills and job tasks. We define the

quality of a match as the inverse gap between cognitive (social) skills and cognitive

(social) job tasks.

Our results can be summarised as follows. The skills of workers in Dutch cities

suit their job tasks better than the average suitability in the Dutch countryside. In

addition, spatial variation in match quality exists within occupations. Given the

occupation, the match of skills to tasks is 14 percent of a standard deviation better

in cities than in the Dutch countryside. The spatial patterns for industrial occupa-

tions resemble that of service occupations but are less extensive. Regions outside

the Randstad area show stronger spatial variation than those within the Randstad

area, which operate more as a single regional labour market. As expected, more

skilled workers sort into cities. Additional analyses suggest that work location

choice for more skilled workers is mainly based on job opportunities. Learning

mechanisms raise the skills of workers in cities only slightly more than in the coun-

tryside, but this does not explain the variation in match quality. Lastly, we show

that better match quality is associated with higher wages. Thick labour markets in

the Netherlands have advantages in terms of more productive matches.

Labour demand and supply matching is one of the three microfoundations of

urban agglomeration economies, suggested by Duranton & Puga (2004), and a com-

monly cited source for agglomeration externalities. The frameworks of Helsley &

Strange (1990), Kim (1990), and Kim (1991) generate externalities whereby the ex-

pected match quality increases with the size of the local market. The model of Dur-

anton & Puga (2004) extends this mechanism by showing that the stronger compet-

ition for labour in cities results in additional agglomeration economies. Wheeler

(2001) suggests that lower search costs in cities result in better matches, greater

output per worker, more wage inequality, and higher expected returns to worker

skills. Venables (2011) finds that the better match quality derives from the city’s

signalling function and crowding costs. The empirical evidence for these models

is scarce. Petrongolo & Pissarides (2006) find positive scale effects in both post-

employment and reservations wages. This study contributes to this work by ana-

lysing the spatial variation in the match between worker skills and job tasks. In

a different field but using the same underlying mechanism, Costa & Kahn (2001)

find that the overrepresentation of power couples in cities can be explained by bet-

ter dual career possibilities with better chances and better match quality. Gautier et

al. (2010) show that more attractive singles sort into cities for better matches.

The rest of the chapter is organised as follows. Section 4.2 proposes a matching
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model to guide empirical analyses about spatial variation in match quality. The

strategy of these empirical analyses is presented in Section 4.3. Section 4.4 discusses

the results of the empirical analyses. Section 4.5 presents some additional analyses

to rule out other mechanisms and provides some back-of-the-envelope calculations

of wage returns of match quality. Section 4.6 offers some concluding remarks.

4.2 Model

We consider a labour market in the spirit of Burdett & Coles (1997) and Gautier et

al. (2010).1 In the labour market, heterogeneous workers are assigned to hetero-

geneous jobs. Skill level characterises workers while complexity level character-

ises jobs. More skilled workers have a comparative advantage in more complex

jobs. Skill and complexity level are indexed continuously: the shorter the distance

between worker skills and job complexity, the better the quality of the match. Em-

ployers holding a vacancy seek the most skilled worker who wants the job, while

workers search for the most complex job they can get. Our economy consists of two

locations: the city, with a high density of agents, and the countryside, with a low

density.2 Workers (employers) decide where to work (operate) before they enter

the market. Working (living) in the city is more expensive than working in the

countryside. However, the thicker labour market of the city increases the possible

matches for workers and employers, which tightens matches.

4.2.1 Basic setting

The model only considers searching workers and job openings. We assume that

both workers and employers seek a ’lifetime’ deal; hence nobody considers taking

a job or filling a vacancy for just a few years.3 Once a job or a worker is chosen, there

is no turning back. Quitting or firing is ruled out. An agent’s choice of location is

indexed l ∈ [0, 1], with 0 = countryside and 1 = city. The countryside is a scattered

1 The models of, for instance, Helsley & Strange (1990) and Duranton & Puga (2004) relate city forma-
tion to matching advantages. Our focus lies on scale effects in the match quality between heterogeneous
workers and heterogeneous jobs. The main advantage of the dataset is the detailed information about
the heterogeneity of workers, jobs, and matches, but information about location is limited. Therefore,
we choose to set up a framework that focuses on scale effects for the match and does not explain city
formation. Following Gautier et al. (2010) and Petrongolo & Pissarides (2006), we consider location
characteristics as given.

2 Note that the economic structure does not differ between the city and the countryside. The spatial
division is not based on urban versus rural industries.

3 If workers do consider future job opportunities or, for example, job opportunities after shocks, this
would strengthen the advantage of the city as a location (Helsley & Strange, 1990; Strange et al., 2006).
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location and its population density remains low, even if many work seekers and

employers choose to be located there. City life is more expensive; Δc = c1 − c0

defines the additional costs in the city. These additional costs reflect higher housing

prices (which are exogenous in this model) or the commuting price of travel from a

cheap location to the city for work.4

The quality of workers is defined by their skill level a. We assume that a worker’s

skills are given and do not vary across locations. When a worker performs a job in

the city, the skills are the same as when the job is performed in the countryside. We

relax this assumption in the sensitivity analyses. Employers hold vacancies with

complexity α. In addition, job complexity is static. Both workers and employers try

to optimise their utility: workers search for the most complex and best paid jobs

they can obtain. Workers maximise the nominal wage:

w(a, l) = α − cl . (4.1)

More complex jobs pay more. All workers earn the same wage for a certain job,

regardless of their skills. The variable cl reflects the location costs of location l.

Employers maximise their revenue and seek the most skilled worker willing to

accept the job. The revenue depends on the skills of the worker, a, and the costs of

the city:

r(α, l) = a − cl . (4.2)

The revenue of the job increases with worker skills. For the employer, a more skilled

worker is more valuable than a less skilled worker who needs additional job train-

ing. The amount of training costs required for the job and, in turn, the employer’s

revenue, decreases with worker skills (Helsley & Strange, 1990). For simplicity, we

further assume that workers and employers face the same location costs.

4.2.2 Search segments

We now define the segments in which workers and employers search for possible

matches. A worker with skills a who is willing to settle for a job with complexity

α∗ is also willing to settle for all jobs with α > α∗ as wages increase with com-

plexity. Workers and jobs are classified into segments z, for example, labelled by

educational categories. Each worker searches for a job within his or her segment

4 The model ignores location choices based on social or living preferences. We admit that amenities can
play a significant role in location choice and address this factor in the robustness section.



86 Chapter 4

and each employer seeks a worker within the job’s segment. Segments are exogen-

ously given. The segments operate as ’labels’ for workers and jobs. A worker with

a university degree never accepts a job for a high school graduate and employers

with a vacancy for a university graduate never invite a high school graduate to a

job interview.5 The labour market can be decomposed into a number of consecut-

ive, non-overlapping segments. The first segment contains the workers with the

highest skill levels and the jobs with the highest complexity and wages. Workers

and employers never match outside their segments of the market.

Workers maximise their expected nominal wage, given their segment, while

choosing a job and do not consider possible promotions or job changes:

w(a, l) = maxEl [w(αz, l)− w(α−z )]− cl , (4.3)

where α−z is the least complex job of segment z. A worker’s wage is always positive,

since accepting the worst-paying job is always more beneficial than remaining a job

seeker: w(α−) > 0.

Similar, employers maximise job revenue, given the segment z of the job. Em-

ployers consider a one-time match for a lifetime. Once hired, a worker cannot be

fired:

r(α, l) = maxEl [r(az, l)− r(a−z )]− cl . (4.4)

where r(a−z ) is the revenue the least skilled worker of the segment produces. For an

employer, letting a worker perform the job is always more beneficial than leaving

the job vacant: r(a−) > 0. Note that in contrast with the standard model of Piss-

arides (2000) the value of being unemployed and the value of vacancy is zero. Let

Sz,l be the mass of job seekers and Vz,l the mass of vacancies in segment z, location

l. All job seekers and vacancies are ’new’; the number of seekers and vacancies is

related only to the size of the market and not to market clearing. Larger markets

have more seekers and vacancies: Sz,1 > Sz,0 and Vz,1 > Vz,0. The utility, in terms

of wage or revenue, of a segment match is always positive for workers and for

employers. Thus, the number of matches m of job seekers to vacancies is

mz,l = min(Sz,l , Vz,l). (4.5)

Given the number of vacancies and job seekers, the maximum number of matches

5 This is a strong assumption to keep things simple. In reality, workers may find jobs outside their
education segment.
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in the local market is created.6 If the number of job seekers in the market (z, l)

exceeds the number of vacancies, all vacancies are filled and vice versa.

4.2.3 Match requirements

A match between a worker and an employer requires mutual agreement. This mu-

tual agreement requires two conditions:

C1 : Elw(αz, l)− cl ≥ w(α−z , 0). (4.6)

Condition C1 is the condition under which a worker in segment z is willing to ac-

cept a job with complexity αz. The expected net wage of the job should equal or

exceed the expected income of the least complex job of the segment in the coun-

tryside.

C2 : Elr(az, l)− cl ≥ r(a−z , 0). (4.7)

Condition C2 states that an employer holding a vacancy in segment z should be

willing to let a worker with skills az perform the job. The revenue generated by the

worker should equal or exceed the revenue of employing the least skilled worker

in the countryside.

All job seekers face the same problem: the wage of the job with the lowest com-

plexity they accept equals that of the least complex job of their segment performed

in the countryside. The upper bound is formed by the job with the highest com-

plexity and wage they are able to obtain. Hence, workers would accept a job in

a higher segment. Condition 2 states, however, that an employer would not hire a

worker from a lower segment. The range of job possibilities for a worker with skills

a in segment z is bounded. The lower bound of the set of jobs for which a worker is

willing to settle is bound by the lower bound α−z of matches and the upper bound

α+z . The upper bound sets the job with the highest complexity the worker is able to

obtain. The lower bound is the complexity for which condition C1 is just violated,

while the upper bound is the highest complexity for which condition C2 holds. The

range of possibilities reflects the jobs for which the worker is willing to settle (C1)

and able to obtain (C2). The worker searches in the job set α ∈ [α−z , α+z ]. Employ-

6 The standard model of Pissarides (2000) assumes a Cobb-Douglas function. Our matching function
results from the assumption that both the value of being unemployed and the value of having a vacancy
are zero. This assumption relates to our empirical analysis which contains a cross-section of matches
which are already made. It therefore ignores unemployed workers and vacancies.
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ers in the same segment z face a similar problem and search for workers in the set

a ∈ [a−z , a+z ].

Figure 4.1 displays the labour market set-up. Workers are ranked by their skills

on the horizontal axis and jobs are ranked by their complexity on the vertical axis.

The diagonal represents optimal matches between worker skills and job complexity.

The squares represent the market segments. For instance, the first square consists of

all low-educated workers and all jobs for low-educated workers. All low-educated

workers search for a job within the set of low-educated jobs, which are labelled as

low educated and attract only low-educated workers. The label of low educated

does not tell the whole story, however. Within the group of low-educated workers,

skills vary. Although they are both low-educated, worker B has more skills than

worker A, for example. Similarly, the complexity of jobs within the low-educated

group varies and job Y is more complex than job X.

Figure 4.1. Matching

job complexity  α 

worker skills a 

B A 

Y 

Z 

C 

X 

4.2.4 Match quality

The number of matches within a location and segment affects the quality of the

match between worker skills and job complexity. Within a market with many
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matches, both agents have more match choices than in a low-density market. Since

both parties maximise their utility, the distance between worker skills and job com-

plexity is as small as possible. The density of vacancies and job seekers is higher

in the city than in the countryside and both workers and employers are choosier in

the city. Therefore, we assume the expected distance between complexity and skills

to decrease with the number of matches in the market:

E[αz,l − az,l ] =
1

E(Qz,l)
=

1
mz,l

=
1

min(Sz,l , Vz,l)
, (4.8)

where Qz,l is the quality of the matches in segment z in location l. The intuition

is simple: the chance of a worker having the required job skills is smaller in a thin

market than in a thick market. When there are only a few workers and vacancies,

the match of a worker to a job becomes less efficient.

The spatial variation in match quality results in spatial variation in the expected

wage of a worker with skills a in segment z. In a market with better match quality,

the gap between worker skills and job complexity is smaller. The thinner the mar-

ket, the more friction within the matches and the less the expected wage depends

on the worker’s skills. Following this intuition, we assume

El [w(αz, l)− w(α−z )− cl ] = (az − a−z )E(Qz,l) + δ1−E(Qz,l), (4.9)

where w(αz, l) is the expected wage for segment z at location l and w(α−z ) is the

minimum segment wage. The expected wage in a location depends on the worker

skills and the match quality and costs of the location. The term (az − a−z )E(Qz,l)

defines the part of the expected wage that depends on worker skills, namely, the

skill difference between a worker and the least skilled worker in the same segment.

The better the match quality in the location, the more the wage depends on the

skill difference. The term δ1−E(Qz,l) defines a randomly assigned additional wage

caused by the sub-optimality of the matches in the location. The more agents in

market z, l, the smaller the distance between skills and complexity and the more the

wage difference reflects the skill difference; the importance of (az − a−z ) increases

with E(Qz,l). The rest of the wage, δ1−E(Qz,l), is a randomly assigned disturbance

term caused by a mismatch due to the friction.7 As explained above, we assume

the quality of the match to be better in the city and the impact of the friction to be

larger in the countryside: Q1 > Q0 > 0 for all segments z.

The expected revenue for an employer with a vacancy with complexity α in

7 By definition, the expected value of δ is 0.
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segment z varies across the two locations and is defined similarly:

El [r(az,l)− r(a−z )− cl ] = (αz − α−z )E(Qz,l) + δ1−E(Qz,l), (4.10)

where αz − α−z is the difference in complexity between the job and the least complex

job in the same segment.

4.2.5 Location choice

Both workers and employers choose their location before the matching moment.

Workers maximise their nominal wage (equation (4.3)) given the conditions C1 and

C2 and expected wages at both locations (equation (4.9)). A worker with skills a in

segment z maximises

Elw(az) = (az − a−z )E(Qz,l) + δ1−E(Qz,l) − cl . (4.11)

The ratio between the expected nominal wage in the city and in the countryside is

therefore:

E1w(az)

E0w(az)
=

(az − a−z )E(Q1,z) − Δc
(az − a−z )E(Q0,z)

. (4.12)

There is a trade-off between the better matching in the city, (Q1,z > Q0,z), and the

additional costs Δc of working there. Because the expected value of the disturbance

term δ is zero, this term does not affect the trade-off. The relative nominal wage in

the city increases with worker skills az. However, location costs are higher in the

city (Δc) and decrease the nominal city wage. Workers who are relatively skilled,

given their segment, benefit more from the better matching in the city than less

skilled workers in their segment do. Hence, the less skilled a worker is, the lower

the additional costs Δc need to be to locate in the countryside. At a given Δc, there

exists a value a∗z for which all workers with az < a∗z locate in the countryside and

all workers with skills az > a∗z locate in the city.

Employers maximise their revenue at a location (equation (4.4)) given the con-

ditions C1 and C2 and expected revenues at both locations (equation (4.10)). An

employer with a vacancy with complexity α in segment z maximises

Elr(αz,l) = (αz − α−z )E(Qz,l) + δ1−E(Qz,l) − cl . (4.13)

The ratio between the expected nominal revenue in the city and in the countryside
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is

E1r(αz)

E0r(αz)
=

(αz − α−z )E(Q1,z) − Δc
(αz − α−z )E(Q0,z)

. (4.14)

Employers face a similar trade-off between the better matching in the city (Qz,1 >

Qz,0) and the additional costs Δc of working in the city. Similar to the worker’s

problem, the less complex a job, the lower the additional location costs Δc need to

be for the employer to locate in the countryside. At a given Δc, there exists a value

α∗z for which all vacancies with αz < α∗z locate in the countryside and all vacancies

with complexity αz > α∗z locate in the city.

As in Gautier et al. (2010), there is an elite city ordering8: the better workers and

more difficult jobs locate in the city to benefit from the better matching because

their opportunity costs are higher. Note that in this model the elite ordering occurs

within segments (e.g. education groups) and not between for example low and

high educated workers.

Again, Figure 4.1 illustrates this mechanism. Workers A and B both search for a

job in the lowest segment, segment 1. Since worker B has more skills than worker

A (aB
1 > aA

1 ), in an optimal match worker B’s wage is higher than the one of worker

A. The distance between worker B’s optimal wage and the minimum wage in the

segment is higher than that of worker A. Worker B therefore has more wage to

lose in a thin market than worker A and a larger incentive to locate in the city than

worker A. Worker C has more skills than worker B but operates in another segment.

The difference between the optimal and minimum segment wage of worker C is

lower than for worker B. Although worker C has more skills, worker C’s wage

depends less on the tightness of the match than the wage of worker B. Worker B

has the strongest incentive of workers A, B, and C to locate in the city with a high

Qz,l .

4.2.6 Empirical predictions

The model suggests that the higher density in cities results in more productive and

tighter matches. Workers with greater skills and employers with more complex

vacancies have higher opportunity costs, because they simply have more to lose. In

summary, the model results in three hypotheses:

1. Matches between worker skills and job complexity are better in the city than

8 Note that the difference between locations reflects differences in the density of agents.
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in the countryside. Rewriting equation (4.8), we obtain

E(Qz,l) = min(Sz,l , Vz,l) and
∂E(Qz,l)

∂Ll
> 0, (4.15)

where L reflects the binary location choice: L1 = 1 and L0 = 0.

2. Skilled workers are found more often in the city than in the countryside.

Equation (4.12) implies a positive relation between skills and the wage dif-

ference between the city and the countryside:

∂EΔw
∂az

> 0, (4.16)

where EΔw = Ew1,z − Ew0,z reflects the expected wage difference between

the locations as defined in equation (4.12). The larger wage difference between

locations results in a positive relation between worker skill level and city loc-

ation since the cost differences are compensated more:

∂E(az)

∂Ll
> 0. (4.17)

3. More complex jobs are found more often in the city than in the countryside.

Equation (4.14) implies a positive relation between skills and revenue differ-

ence between the city and the countryside:

∂EΔr
∂αz

> 0, (4.18)

where EΔr = Er1,z − Er0,z reflects the expected wage difference between the

locations as defined in equation (4.14). Similar to the case of skilled workers,

this results in a positive relation between job complexity and location:

∂E(αz)

∂Ll
> 0. (4.19)

4.3 Empirical strategy

4.3.1 Data

We employ the LISS panel to empirically test the theoretical framework. The LISS

panel is the core element of a project titled ’Measurement and Experimentation in
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the Social Sciences’ from the Dutch research institute CentERdata. The panel con-

sists of 5,000 households, with a total of 8,000 individuals. This household sample

is a true representation, obtained from the Dutch population register. The survey

involves no self-selection.

All panel members complete the questionnaires online and update their inform-

ation monthly. Households without Internet access receive a computer with Inter-

net access. About half of the yearly interview time is reserved for the longitudinal

study. The other half is divided among additional questionnaires from researchers.

This chapter uses data from one of these additional questionnaires: a survey about

job tasks carried out in May 2012. The questionnaire aims to gain insight into the

importance of job tasks, the location where workers learned these tasks, and how

efficient workers are in performing these tasks. A total of 3,883 household members

were asked to fill out the questionnaire, with a response rate of 71.6 percent (2,780

household members).

We match additional personal and career information from several studies of the

LISS panel; the background study, the work and schooling study, and the personal-

ity study to this dataset. We drop all skilled agricultural, fishery, and forestry work-

ers, since the locations of these occupations depend on natural resources. Only 29

individuals in the sample hold a job in this occupational group. Missing inform-

ation about matching is replaced with the answers to the same question from the

work and schooling study. A total of 13 respondents provided no matching in-

formation and 136 respondents provided no skill information. The ratio of city to

countryside work location does not vary across missing and non-missing observa-

tions.

4.3.2 Variables

Worker skills. An education diploma displays the vast amount of skills a worker

holds and defines the worker’s segment. Skills tend to be occupation specific; there-

fore we also distinguish between broad occupational groups. The theoretical model

suggests that worker skills vary among students within the same graduation class.

Honours, such as student of the year, underline this assumption. Skill variation

within an education segment is estimated by the worker’s personality. The idea

is that more ambitious workers tend to invest more in their own skills. Both cog-

nitive and social skills seem to be important for job performance, as indicated by

Heckman et al. (2006), Borghans et al. (2006), and Bacolod et al. (2009).

We measure cognitive investments by the inclusion of five survey statements
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about a worker’s cognitive orientation (see Table 4.1). Scaling varies across state-

ments, which we rescale into three categories: zero if the worker (strongly) dis-

agrees, one if the worker is neutral, and two if the worker (strongly) agrees. The

cognitive skills index is standardised with a mean of zero and a standard deviation

of one. In the same spirit, we define the social capacity of workers, given their

education. Workers with more socially oriented personalities will develop more

suitable skills for the performance of social tasks. Table 4.1 presents the five social

characteristics of our index. The index for social skills is standardised with a mean

of zero and a standard deviation of one.9

Job complexity. The dataset does not contain employer information about va-

cancies or job characteristics. All job information is gathered from the worker. The

indicated importance of several job tasks defines the job’s complexity. Thus, we

assume that workers in more complex jobs indicate higher task importance.10 We

distinguish between tasks that are crucial or very important for a job (core tasks)

and tasks that are moderately or barely important for a job (subtasks). A job’s com-

plexity increases with the amount of core tasks. Again, we distinguish between

cognitive and social job requirements. Table 4.1 defines eight cognitive and eight

social job tasks. These tasks form a cognitive task index and a social task index,

both standardised with a mean of zero and a standard deviation of one.

Matching. Match quality defines the gap between worker skills and job com-

plexity: αz − az, as defined in Section 4.2. The smaller the gap between these two,

the better the match. First, we include the question ’How do your knowledge and

skills suit the work you do?’. The answer choices range from zero (do not suit

my work at all) to 100 (suit my work perfectly). Both the survey about job tasks

and the work and schooling study include this question. When the answers dif-

fer between the two questions, we use the mean of the two.11 The second quality

measure considers the gap between the importance of cognitive (social) job tasks

and the worker’s invested skills in such cognitive (social) tasks. The smaller the

gap between the (standardised) importance and (standardised) skills, the better the

worker is suited for the job. For comparability, we standardise the matching in-

9 Another possible measure of skill variation could be the indicated effectiveness of workers in per-
forming job tasks. This measure relates more to job tasks than to the degree of investment in developing
skills. However, the survey asks about effectiveness directly after questions about the importance of job
tasks. We are concerned about measurement error, since we assume workers will be reluctant to indic-
ate they are ineffective in the performance of an important job task. This fear is underlined by weak
correlations with other variables. Therefore, we exclude the information about effectiveness from our
analyses.
10 Self-reporting job tasks may induce measurement errors, as discussed in Section 4.3.4.
11 For 9 percent of the sample, the difference between the two answers is more than one standard devi-
ation.
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dexes.

Location. The questionnaire includes two questions about location, one about

the location of residence and the other about the work location. Both questions

indicate the urban character of the location by its density. Five categories are dis-

tinguished by the amount of dwellings per square kilometre: extremely urban

(more than 2,500 dwellings), very urban (1,500–2,500 dwellings), moderately urban

(1,000–1,500 dwellings), slightly urban (500–1,000 dwellings), and not urban (fewer

than 500 dwellings). In line with the theoretical model, we distinguish a city labour

market and a countryside labour market. We generate a city dummy indicating

whether the place of work consists of more than 1,500 dwellings per square kilo-

metre.

Additional variables. Besides urban character, job complexity, worker skills,

and the matching between these two, we include personal characteristics and wage

information. Table 4.2 gives an overview of the dependent variables, while Table

C.1 in Appendix C presents all the variables, measurements, and summary statist-

ics.

4.3.3 Descriptive statistics

Tables 4.3 presents simple descriptive statistics for our dataset. On average, work-

ers rate the suitability of their skills for their job as 69.86 on a scale of zero to 100,

with a standard deviation of 20.09. This indicated suitability is higher among high-

skilled workers and workers in cities than across low- and middle-skilled workers

and workers located in the countryside. The matching of cognitive skills to cog-

nitive job tasks shows a similar pattern. The cognitive skills of high-skilled work-

ers match their cognitive job tasks better than the skills of low- and middle-skilled

workers do. The cognitive job matches are better in the city than in the countryside.

Table C.2 in Appendix C shows significant spatial variation. The tables also show a

less clear pattern of the matching of social job tasks across skill groups and working

locations. Table 4.4 presents the summary statistics by broad occupational groups.

Professionals enjoy, on average, the best assignment of skills to jobs, while work-

ers in elementary jobs indicate the worst matches. For cognitive skills the match

is especially strong among managers and weak among operators and within ele-

mentary occupations.

A worker’s cognitive skill level is estimated by the number of cognitive state-

ments with which the worker agrees or strongly agrees. On average, a worker

agrees with 0.23 statements out of 5. High-skilled workers agree with more state-
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Table 4.1. Skill and task variables

Cognitive skills: cognitively oriented personality statements

1. I like to have the responsibility of handling a situation that requires a lot of thinking.
2. I prefer complex problems to simple problems.
3. I enjoy tasks that involve coming up with good solutions for new problems.
4. I prefer my life to be filled with puzzles that I must solve.
5. The notion of thinking abstractly is appealing to me.

Social skills: socially oriented personality statements

1. I’m interested in other people.
2. I make people feel at ease.
3. I have social recognition.
4. I start conversations.
5. I feel comfortable around other people.

Cognitive tasks

1. Knowledge of use or operation of tools/equipment machinery.
2. Solving problems.
3. Analysing problems.
4. Planning the work of others.
5. Reading long documents.
6. Writing short documents with correct spelling and grammar.
7. Writing long documents with correct spelling and grammar.
8. Simple calculations.
9. Calculations with math and/or statistics.

Social tasks

1. Dealing with people.
2. Working together or in a team.
3. Listening to other people.
4. Teaching people.
5. Making speeches/presentations.
6. Selling a product or service.
7. Persuading or influencing others.
8. Counselling, advising, or caring for customers or clients.
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ments than low- and middle-skilled workers. Respondents who work in the city

have more cognitively oriented personalities than respondents who work in the

countryside. The same pattern is apparent for social skills. Managers have the

most cognitive and social skills according to themselves, while operators attribute

the least skills to themselves.

The last two rows of the table show the summary statistics of core cognitive

and core social job tasks. Out of the five possible core cognitive job tasks, workers,

on average, indicate that their job consists of 0.33 cognitive tasks. For core social

job tasks, this average is 0.48. Similar to cognitive and social skills, high-skilled

workers and workers in cities perform more cognitive and social job tasks than low-

and middle-skilled workers and workers in the countryside. Again, managers state

that their job contains the most cognitive and social job tasks, while elementary

workers and operators indicate that their jobs contain the fewest.

As in Teulings (1995), personal characteristics correlate with job characterist-

ics. More cognitive oriented persons perform more cognitive tasks (correlation 0.30

(0.00)) while more social oriented persons perform more social tasks (correlation

0.20 (0.00)). These correlations are stronger in the city than in the countryside. Table

C.2 shows no significant correlation between the indexes for match quality. The

matches of skills to tasks are better for workers with more skills and more complex

jobs. The positive and significant correlation with gross monthly earnings suggests

that better matches lead to higher wages.

4.3.4 Empirical model

The theoretical model results in empirical predictions about the distribution of

match quality, worker skills, and job complexity across location L. We define a

simple empirical strategy following equations (4.15) to (4.19) to test these predic-

tions:

yi,l = α0 + α1Ll + α2Ei + α3Zi,+εi,l , (4.20)

where yi,l is the dependent variable for worker i in location l and reflects either

match quality Qi,l , skill level ai,l , or job complexity αi,l . The term Ll is a dummy

variable indicating whether the worker works in the city or the countryside. This

dummy captures the impact of the local mass of vacancies and job seekers

(min(Sz,l , Vz,l)). The worker’s segment, z, is defined by the worker’s educational

background (Ei) and demographic characteristics (Zi). The theoretical model as-
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sumes workers search for a job within their educational class. However, within

educational classes, the task packages and skills required vary strongly between

different fields. To control for this heterogeneity, we also estimate a model with

standard errors clustered at one-digit occupations and a model with occupational

fixed effects.

Several measurement issues can affect the estimation of this empirical model.

First, our dataset is a self-reporting survey, which can lead to measurement error.

Measurement error affects our results when the error varies between countryside

and cities. We have no reason to expect such a spatial variation. Second, the spa-

tial sorting of workers may be driven by certain consumption preferences (Glaeser

& Gottlieb, 2006). If this is the case, our estimates of matching and sorting re-

flect a sorting pattern of workers for consumption instead of for job opportunities.

Third, the strong regional differences in the Netherlands, especially that between

the Randstad area and the other regions, can result in biased results for the sample

of all regions. Fourth, higher skill levels in cities may reflect a more efficient learn-

ing mechanism in cities instead of the sorting of more skilled workers into cities.

In line with this reasoning, our results could show additional learning effects of

city locations. Lastly, the unequal spatial distribution of industrial and service sec-

tors may drive the results, since these sectors have different location advantages

and different production structures. Section 4.5 discusses these issues in detail and

provides sensitivity analyses.

4.4 Results

4.4.1 Match quality in cities

The theoretical framework argues that the quality of the match of worker skills to

job tasks increases with the density of the local market. Table 4.5 presents the res-

ults of estimating the empirical model with three measures of match quality. In the

first column, the suitability of a worker’s skills for a job is explained by location

and demographic characteristics. The coefficient of the city dummy is positive and

significant: suitability is better in thick labour markets than in thin ones in the Neth-

erlands. Furthermore, the quality of the match increases with age: young workers

indicate that their skills suit their job worse than older workers. During their ca-

reers, workers self-select into jobs that match their skills better as their knowledge

of both their own skills and required job tasks increase with experience. On-the-

job training and learning by doing likely improve the match as well. Matches are



102 Chapter 4

better for men than for women and better for native workers than for non-native

workers. The quality of the match increases with education level, which suggests

that education is effective in terms of skill development.

Next, we cluster the standard errors at two-digit occupations (column (2)) and

include fixed occupational effects (column (3)) to control for differences across edu-

cation fields. Both worker skills and the task packages of jobs vary heavily between

occupational groups. For instance, managers and clerks perform different tasks and

therefore need different skills to perform their tasks. The coefficient of being loc-

ated in a city remains significant and positive when we control for occupational

differences. The match of worker skills to job tasks in cities is, on average, 14 per-

cent of a standard deviation better than that of workers in the same occupational

group in the countryside. In absolute terms, this finding is a difference of 2.8 points

on a scale of zero to 100. Column (4) shows that relatively skilled workers, given

their segment, experience better matches than less skilled workers in their segment.

The second measure of assignment quality considers cognitive skills and cognit-

ive job tasks. Workers who focus on a smaller subset of job tasks and are more spe-

cialised develop more specific skills (Becker & Murphy, 1992). Furthermore, highly

cognitive workers sort into specialised jobs (Bacolod et al., 2009). The higher the

specialisation level of a worker and a job, the more difficulties arise with finding a

decent match between the two. Among different skill types, cognitive skills seem

to be an important measure for the relevance of the match. The match of cognitive

skills to cognitive tasks is also significantly better in cities than in the countryside

(column (5)). When we control for broad occupational groups, the city coefficient

loses some significance but remains significant and positive (columns (6) and (7)).12

Workers with abundant cognitive skills face a better match to cognitive job tasks.

A worker’s social skills do not affect the cognitive match.

Economic activity in cities benefits from proximity, learning, and knowledge

spillovers. Considering these advantages, skills that ease or improve communica-

tion and interactions with others are especially valued in cities (Bacolod et al., 2009).

Furthermore, more social, non-cognitive skills determine labour market outcomes

as well (Heckman et al., 2006). Columns (9) to (12) of Table 4.5 show the estimates

for the determinants of the assignment of social worker skills to social job tasks.

The coefficient for working in a city is positive but insignificant. There is no signi-

ficant spatial variation in match quality of social skills to social job tasks. Workers

with strong social skills have better matches than workers with few social skills.

12 We obtain more observations for the matching quality of all skills than for the ones of cognitive and
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4.4.2 Worker skills and job tasks in cities

The model suggests self-selection of more skilled workers and complex jobs into

cities. Table 4.6 presents the results of an estimation of the spatial distribution of

worker skills and job tasks. The cognitive interest of workers in cities is, on av-

erage, greater than that of workers in the countryside (column (1)). Column (2)

clusters the standard errors by broad occupational groups and column (3) includes

fixed effects at the occupational level. The coefficient for working in a dense urban

area remains positive and significant. The spatial differences are substantial. City

workers have 14 percent of a standard deviation more cognitive skills than workers

in the countryside. Given their job, older workers, males, and high-skilled workers

have more cognitive skills than younger workers, females, and low-skilled work-

ers.

Columns (4) to (6) present the same estimates for workers’ social skills. Work-

ers in cities have more social skills than workers in the countryside. The spatial

variation of 10 percent of a standard deviation is somewhat smaller than that for

cognitive skills. Females have more social skills, while males have more cognitive

skills.

Not only better workers but also better jobs are expected to sort into cities. Here,

we consider the importance of several cognitive and social tasks (defined in Sec-

tion 4.3.2) in job complexity. Jobs in cities demand more cognitive core job tasks

than jobs in the countryside (column (7)). Bacolod et al. (2009) find no such spatial

differences. Since they only measure the average task package of occupations, this

finding suggests spatial variation within the content of jobs. Columns (8) and (9) in-

deed show significant spatial variation in task packages within broad occupations.

Occupations in cities contain 9 percent of a standard deviation more cognitive job

tasks than comparable occupations in the countryside. Column (10) shows that

workers in cities perform more social job tasks than workers in the countryside.

This spatial variation is, however, fully explained by the spatial distribution of jobs

(column (11)).

social skills. The results for the matching quality of all skills are similar in both samples of observations.
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4.5 Further analyses

Previous estimates may be affected by several estimation issues, as discussed in

Section 4.3.4. To test the sensitivity of the results to these issues, this section presents

several additional analyses. First, in Section 4.5.1 we test the impact of measure-

ment error caused by the self-reporting of the main variables. Next, in Section 4.5.2

we test whether our results reflect the sorting of workers for job opportunities or

for consumption preferences. Regional differences in local labour markets are ana-

lysed in Section 4.5.3. Fourth, Section 4.5.4 discusses the role of quicker human

capital accumulation in cities. Section 4.5.5 presents separate analyses for indus-

trial and service occupations. Lastly, Section 4.5.6 presents a first indicator for the

relevance of match quality in urban wage premia. Here, we only present the results

for one measure of match quality, namely, the suitability of all skills. The quality of

the cognitive match shows similar patterns, with less significant spatial variation.

Social match quality never shows significant spatial variation.

4.5.1 Subjective measurement

The dataset consists of self-reported personalities, self-reported job tasks, and self-

reported quality of job matches. Autor & Handel (forthcoming) discuss several

issues with these kind of surveys. Bias caused by the respondents’ subjective an-

swers is our main concern. First, bias can result from the abstract definitions of

the variables, resulting in different interpretations among respondents. Second,

respondents likely vary in how they distribute scores. For instance, some respond-

ents will label a score as important, whereas others will label the same score as very

important. This measurement error affects our results when workers in cities have

different biases in their answers than workers in the countryside.

The survey includes questions about task importance and the effectiveness of

several tasks for commonly known example jobs. All respondents should have

an image of the task package and required skills of these well-known jobs, such

as secretary or teacher. The questions measure the respondent’s answering bias.

The idea is that when a respondent interprets a certain task differently or provides

higher scores than others, he or she will do so for the example job as well. We use

the relative answers of respondents to proxy for answering bias in match, skill, and

task questions. The relative answers about the effectiveness of workers in certain

tasks in the example jobs proxy for measurement error in skills, while the relative

answers about the importance of tasks proxy for errors in relevance of job tasks.
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Lastly, the error in a match is proxied for by the difference between relative import-

ance and relative effectiveness. Appendix C.2 displays the details of the measure-

ment.

The average value of all three proxies is significantly higher in cities than in

the countryside. Workers who work in cities attribute relatively more importance,

more effectiveness, and better match quality between importance and effectiveness

to the job tasks of example jobs. This spatial variation could be driven by different

worker attitudes in cities and the spatial sorting of workers. The value of all three

proxies also varies significantly across education groups. We test the impact of

this spatial variation in measurement error in two steps. First, we test whether the

spatial variation remains significant when we control for other characteristics, such

as education and gender. Second, we include the proxy in our baseline empirical

model to see whether the results change when we control for measurement error.

The first three columns of Table 4.7 show the spatial variation in these three

proxies, controlling for the usual factors. Only the spatial variation of attributing

effectiveness to a task in an example job remains significant when we control for

other characteristics. This finding suggests that measurement error could affect our

measure of the sorting of skilled workers in cities, but probably not that of match

quality. Columns (4) to (8) present our previous estimates, including the proxy. The

proxy for the measurement error has an insignificant coefficient in the matching es-

timation and a significant coefficient in the skill and task estimations. Respondents

who value the importance and effectiveness of job tasks in the example job more

have higher skill levels and jobs with more demanding tasks. The proxy for the er-

ror of matching is defined by the difference between importance and effectiveness;

the insignificant coefficient suggests that the bias in the two cancels out. None of

the previous results is affected by the inclusion of the proxy. City workers have a

significantly positive bias to their answers compared to countryside workers. This

bias does not, however, affect our results.

4.5.2 Consumption preferences

Urban areas facilitate interactions not only between workers and employers, but

also between the workers themselves. Many people like to live in urban areas for

social interaction and a larger variety of consumption amenities, from schools to

theatres (Glaeser & Gottlieb, 2006; Glaeser et al., 2001). Urban consumption variety

is deemed a luxury good (Lee, 2010). Thus, richer people tend to value urban con-

sumption variety more than poor people. The relation between skills and wages
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suggests that more skilled people value urban consumption variety more and are

more likely to locate in an urban area.

Our estimates of the spatial distribution of skills could reflect the sorting of more

skilled workers into cities for consumption preferences instead of for job opportun-

ities. The Netherlands is an interesting case to test whether jobs follow people or

people follow jobs. A substantial part of the Dutch labour force (more than 50 per-

cent; see Statistics Netherlands) does not work in the same municipality as they

live. Distances are short in the Netherlands and commuting to work is very com-

mon. On average, a Dutchman travels 17 kilometres to work. Because many people

choose to commute to work in the Netherlands, we can test whether the location

of residence or the location of work reflects the matching and sorting patterns we

find. In the sample, 27 percent of the individuals do not work and live in a location

with the same density; 57 percent of these workers live in the countryside and work

in the city, while the other 43 percent live in the city and work in the countryside.

Table 4.8 presents the results of an estimation including a city dummy for the

worker’s location of residence instead of the location of work. The location of res-

idence does not explain variation within the match of all worker skills to job tasks.

Worker skills do vary with the density of the location of residence (see columns (2)

and (3)). Workers who live in the city have more cognitive and social skills than

workers who live in the countryside. The importance of cognitive and social job

tasks does not vary with the density of the location of residence (columns (4) and

(5)). Lastly, column (6) explains the quality of the match for a sample of commuters.

The coefficient for the city of residence is negative and significant. Workers who

commute from a large city of residence to the countryside for work have a worse

match than workers who commute the other way.

The complexity of jobs and match quality only increase with the density of the

worker’s work location and not with the density of the location of residence. This

underlines our hypothesis that the density of workers and jobs in cities results in

better matching between the two. Our findings suggest that more skilled workers

sort into cities of residence for consumption preferences or other reasons, such as

the partner’s location of work, while their location of work depends on job oppor-

tunities.

4.5.3 Regional differences in the Netherlands

Both the theoretical and empirical models neglect a city’s hinterland. Cities are as-

sumed to be isolated in space. In the case of the Netherlands, the hinterland across
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regions differs substantially. In the Randstad provinces, the distance between large

cities is much smaller than in other provinces. Several studies therefore refer to

the Randstad provinces as one city (Lambooy, 1998). If the Randstad operates as a

single labour market, workers and employers search for matches within the Rand-

stad. This suggests that the importance of a city’s density should be more important

outside the Randstad than within it.

Table 4.9 shows separate estimations for workers located in and outside the

Randstad. The matching of skills to job tasks is better in cities than in the coun-

tryside in both regions. If we control for self-selection into occupational groups,

this spatial variation remains significant only outside the Randstad. Workers who

work in cities have more cognitive skills than workers in the countryside in both

regions. In the Randstad, city workers also have more social skills. The complexity

of jobs does not vary across cities or the countryside in the Randstad, whereas it

does outside the Randstad.

The results in Table 4.9 suggest that the more integrated labour market in the

Randstad diminishes the spatial variation in match quality. Since the Randstad

is often seen as one labour market, we assume that the Randstad operates more

efficiently in the matching of workers to jobs because a relatively large market is

created. The variation in the scope of the labour market likely affects the optimal

spatial unit of observation in the Netherlands. Analyses for an alternative spatial

unit may bias the results. This so-called modifiable area unit problem (MAUP)

seems to bias our results for the Randstad area (see Briant et al. (2008) for a discus-

sion on the MAUP).

4.5.4 Human capital accumulation

Many studies suggest that cities stimulate knowledge spillovers and learning (Jaffe

et al., 1993; Rosenthal & Strange, 2008; Glaeser & Ressenger, 2010). The quicker

and deeper human capital accumulation of workers in cities may be the driving

force behind the higher productivity rates in these cities. Glaeser & Maré (2001),

for instance, show that workers start earning an urban wage premium three to five

years after their move to the city.

Considering our estimates, the quicker and better human capital accumulation

in cities could result in a quicker development of workers’ skills with respect to

their tasks in cities. If workers in cities learn more and faster than workers in the

countryside, their skill development towards job tasks will be better and faster as

well. The results for the spatial distribution of worker skills could reflect a learning
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mechanism if these additional skills reflect newly learned skills instead of initial

skills a worker had before the job match.

Table 4.10 shows estimates that test this hypothesis. The density of the work

location does not explain the development of the job match between 2010 and 2012.

City workers also do not learn more cognitive and social tasks at work (columns (2)

and (3)) than workers in the countryside. Moreover, workers in dense cities learned

their cognitive skills more often at school than workers in the countryside.

Table 4.10. Learning in cities

Matching Tasks learned at work
2010–2012 Cognitive Social

(1) (2) (3)

City -1.022 -0.038** -0.011
[1.158] [0.018] [0.020]

Age -0.276*** 0.006*** 0.007***
[0.051] [0.001] [0.001]

Female 1.228 0.018 0.007
[1.219] [0.025] [0.015]

Native -0.686 0.023 0.018
[2.677] [0.031] [0.024]

Medium skilled -7.475*** -0.058** -0.034
[2.124] [0.022] [0.023]

High skilled -9.673*** -0.123*** -0.110***
[1.795] [0.017] [0.024]

Cognitive skills -0.940 -0.024** -0.009
[0.585] [0.012] [0.007]

Social skills 0.575 0.013 0.003
[0.929] [0.008] [0.006]

Constant -54.573*** 0.454*** 0.504***
[3.684] [0.083] [0.062]

Clustered standard errors YES YES YES
Fixed effects YES YES YES
Observations 1,567 1,501 1,496
Adjusted R-squared 0.023 0.077 0.088
Note: the dependent variable ’matching’ measures the matching quality of all skills.
Tasks learned at work is a dummy variable indicating whether cognitive (social)
tasks are learned at work or not. The definitions and measurement of the variables
are displayed in Table C.1 in Appendix C. Clustered standard errors are in paren-
theses. Fixed effects refer to those at the two-digit occupational level (ISCO codes).
*** significant at the 1% level, ** significant at the 5% level, * significant at the 10%
level.
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4.5.5 Industrial and service jobs

Location advantages vary across several stages and tasks of the production pro-

cess. For instance, a metalworker performing routine tasks in a factory and an

innovator working for the same industry but in the research and development de-

partment face different advantages of dense areas. Different locations are beneficial

for different stages of product life cycle (Harrison et al., 1996), firm life cycle (Dur-

anton & Puga, 2001), and industry life cycle (Desmet & Rossi-Hansberg, 2009). This

results in an unequal distribution of these production stages over space. Our the-

oretical model, however, suggests that the amount of vacancies and job seekers

is larger in cities for all workers and employers. If, for instance, manufacturing

jobs are overrepresented in the countryside, this would result in scale benefits in

the countryside for these jobs instead of in the city. More land-intense and less

knowledge-intense product processes result in less agglomeration economies for

goods production than for idea production (Glaeser & Ponzetto, 2010). Therefore,

we distinguish between industrial and service occupations. Industrial occupations

focus on producing goods, while service occupations focus on either producing

ideas or providing services. Indeed, 47 percent of the service occupations are per-

formed in the city, while only 31 percent of industrial occupations are.

Table 4.11 presents separate estimations for both occupation types. The coeffi-

cient for city work location is positive and insignificant for industrial occupations

and positive and very significant for service occupations. Both the weaker spatial

distribution of industrial occupations and the smaller number of observations can

explain the insignificant coefficient for industrial occupations. Columns (3) to (6)

show the distribution of worker skills for both occupation types. Again, only the

spatial distribution of the service sector is significant. We do not find a significant

spatial distribution for the importance of cognitive and social tasks for either type

of occupation.

4.5.6 Explaining regional wage differences

Our results show that the matching of worker skills to job tasks is of better quality in

the cities than in the countryside. Here, we test whether this better match quality

determines part of the urban wage premium in the Netherlands. Clearly, a full

assessment of the role of matching in urban wage premia is beyond the scope of

this chapter and not feasible with our dataset. This section presents a simple back-

of-the-envelope estimation and suggests that more productive labour matches in
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the cities result in higher wages.

Table 4.12 presents the results of a simple wage model. Workers in Dutch cities

earn, ceteris paribus, 13 percent of a standard deviation more than workers in the

countryside (column (1)). Column (2) shows that a one standard deviation better

job match increases wages by 23 percent of a standard deviation. When we include

both variables, both coefficients decrease slightly (column (3)).

Column (4) includes a worker’s cognitive and social attitudes as additional skill

information. These hardly affect the wage returns of the match quality. The coeffi-

cient of the urban wage premium does decrease slightly. Cognitive skills are valued

positively, while social skills have no wage returns. Borghans et al. (2008) argue

that the supply and demand of skills determine their wage returns. These authors’

results resemble ours and suggest that social skills are overrepresented relative to

cognitive skills.

Additionally, we follow the task approach literature and proxy for worker skills

with job tasks (see Acemoglu & Autor (2011) for a review of this literature). This

approach assumes that job tasks reflect work activities that produce output. The

ongoing self-selection of workers into job tasks implies an interplay between work-

ers skills and job tasks (Autor & Handel, forthcoming). Columns (5) to (10) include

information about a worker’s job tasks and the job’s broad occupational group.

The performance of both cognitive and social job tasks is valued positively. A sub-

stantial part of the urban wage premium is explained by different job tasks: wage

returns decrease by 8 to 12 percent of a standard deviation. In addition, the coef-

ficient of match quality decreases substantially, from 0.22 to 0.10. Column (6) in-

cludes both skills and tasks and shows that the latter are especially valued.

Lastly, columns (7) to (10) show fixed effects regressions explaining variation

within broad occupational groups. The urban wage premia and the returns to

match quality decrease when we include occupational fixed effects. Hence, the

spatial distribution of occupations explains a substantial part of the spatial wage

differences in the Netherlands. Columns (9) and (10) show substantial explanatory

power of job tasks. As we control for additional cognitive and social job tasks, the

spatial wage variation in the Netherlands becomes insignificant. This finding sug-

gests that the spatial wage variation reflects different activities and not increasing

returns to scale. Only the economic activity of workers explains spatial wage dif-

ferences. The wage return of match quality remains significant but decreases to 9

percent of a standard deviation.
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4.6 Conclusion

This chapter estimates the spatial variation in the match quality of worker skills

to job tasks in the Netherlands. We argue that the assignment of heterogeneous

workers to heterogeneous jobs is better in a larger market. Tighter matches attract

relatively skilled workers and relatively complex jobs to these large markets to op-

timise returns to their skills and complexity. Within the debate about the sorting of

skilled workers, we show that workers indeed sort into cities for better matching

opportunities. This pattern is apparent in the spatial distribution of occupations as

well. The better matching of worker skills to job tasks results in higher individual

wages for workers with the same occupation but with a better match.

This chapter contributes to the literature about agglomeration economies by

measuring labour market pooling directly, see the work of Rosenthal & Strange

(2004) and Glaeser & Gottlieb (2009) for reviews. Earlier work of, among others,

Helsley & Strange (1990), Kim (1990), and Wheeler (2001) frames the idea of la-

bour market pooling and the impact of scale on match quality. Extending the work

of Petrongolo & Pissarides (2006), we measure the quality of the match between

skills and tasks. The finding that the match quality of skills to jobs is better in cities

indicates the labour market advantages of economic concentration.



CHAPTER 5

RETURNS TO COMMUNICATION

IN SPECIALISED AND DIVERSIFIED US CITIES*

5.1 Introduction

A key factor in today’s urban wealth is the means by which cities reduce costs

of communication. Rapid progress in transport, information and communication

technologies lowered the costs of production at distance. Still, in 2009 metropolitan

areas were responsible for 85 percent of US employment, income and production.

The significance of personal communication for innovation is a fundamental as-

pect of the current economic success of cities. The economic structure of cities var-

ies; diversified cities focusing on producing ideas and specialised cities focusing

on producing products successfully coexist in the US. Is communication equally

important and valued within both city types?

Variation in the advantages of clustering of economic activity resulted in the

existence of different economic city structures. Typically two types of cities coexist

in the US: cities with a specialised industrial structure and cities with a diversified

industrial structure (Duranton & Puga, 2000). Within specialised cities firms benefit

from cost sharing, labour matching and learning from similar firms. The produc-

tion costs are relatively low in these cities and the focus lies on producing products.

A diversified environment with a wide variety of firms and ideas is beneficial for

innovation and producing ideas. The knowledge spillovers are more extensive in

diversified cities but the production costs are higher. Especially for young firms and

products the flows of ideas within diversified cities are key to success, while more

mature firms flourish in specialised cities (Duranton & Puga, 2001; Desmet & Rossi-

Hansberg, 2009). These variations in trade-offs between knowledge spillovers and

* This chapter is based on Kok (forthcoming)
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production costs suggest that communication is less important within specialised

cities. However, this suggestion does not reconcile with the assigned role of know-

ledge spillovers to the success of specialised clusters such as Silicon Valley.

In this chapter we focus on the role of communication within the coexistence

of diversified and specialised cities. We measure the individual returns to com-

munication job tasks in a cross-section of both city types in the US. Workers, who

communicate more in and outside the organisation, earn higher wages. The main

contribution to regional science and policy is our finding that the importance of

communication decreases with the specialisation level of cities.

First, a simple framework is set out to guide our empirical analyses. The frame-

work captures an economy with perfect competition, free firm entry, full mobility

of labour and spatial wage differences. The differences in wages across local labour

markets are compensated with differences in productivity, labour ability and other

local characteristics. In equilibrium both firms and workers are indifferent towards

location. The productivity of a firm increases with the specialisation level of the

city when the firm operates in the dominant industry of the city, hence the industry

in which the city specialises. The productivity benefits of local communication de-

crease with the specialisation level of the city.

Second, we estimate the returns to communication job tasks for workers in the

largest 168 US cities in 2009. Individual data from the Current Population Sur-

vey (CPS) is combined with the job characteristics from the Occupational Inform-

ation Network (ONET) Skill Survey. The performance of communication job tasks

is defined by the work context and work activities information from the ONET

Skill Survey. We start by estimating simple wage regressions in which we test the

correlation between communication job tasks and individual wage, conditional on

several individual and city characteristics. We find a positive relation between the

number of communication job tasks a worker performs and his wage. Further-

more, our estimates show that this relation is present in both specialised and diver-

sified cities but diminishes with the specialisation level of the city. The correlation

between wage and communication is significantly stronger in diversified cities than

in specialised cities.

Third, we control for differences in unobserved ability and perform IV-estimates.

The occupational communication job tasks are instrumented with a language-skill

proxy. Workers with weaker language-skills are assumed to be less likely to per-

form communication job tasks. The language-skill proxy measures the share of

workers in an occupation who did not grow up in an English-speaking household.
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Several tests prove that the language-skill proxy does not measure the wage im-

pact of cultural differences. Following Ciccone & Hall (1996) historical population

(1930) is used as an instrument for current city size or the extent to which the in-

dustrial structure is either specialised or diversified. The IV-estimates correspond

to the OLS-estimates. A one standard deviation increase in the importance of com-

munication, increases wages by 18 percent of a standard deviation. However, in

cities with a specialised sectoral structure, these returns are about 16 percent of a

standard deviation. The returns are somewhat higher in large cities: about 21 per-

cent of a standard deviation. The returns to communication do not vary with the

diversity level of the city. The variation in returns to communication over city types

explains part of the lower wages in specialised cities and part of the higher wages

in larger cities.

Lastly, we carry out several robustness checks and analyse alternative specific-

ations. First, we test the sensitivity of the measure of communication and measure

the returns to the relative importance of communication, non-routine interactive

tasks as in Autor et al. (2003) and people skills as in Bacolod et al. (2009). Next, we

perform an additional test on the effect of unobserved ability and allow the returns

to communication to vary across skill level (Glaeser & Maré, 2001). The results

are robust to all these specifications. Moreover, the results hold for both industrial

sectors and service sectors.

Our work is based on a small theoretical literature explaining the coexistence

of diversified and specialised cities. Duranton & Puga (2001) and Desmet & Rossi-

Hansberg (2009) set up a dynamic general-equilibrium model that explains the co-

existence of the two city types within the life-cycle of respectively firms and indus-

tries. Glaeser & Ponzetto (2010), Gaspar & Glaeser (1998) and Ioannides et al. (2008)

model two rival spatial effects of technological progress. All these papers underline

their theory with empirical analyses. Furthermore, Harrison et al. (1996), Kelley &

Helper (1999) and Feldman & Audretsch (1999) document the contributions of sec-

toral diversity towards new production processes and new products.

A very broad and extensive literature indicates the (non random) coexistence of

diversified and specialised cities (Duranton & Puga, 2000; Ellison & Glaeser, 1999)

and the relative advantages at the city level (see Glaeser & Gottlieb (2009) for an

overview). The importance of communication in the current wealth of cities relates

to empirical contributions of (among others) Jaffe et al. (1993), Rauch (1993), Charlot

& Duranton (2004), Bacolod et al. (2009) and Florida et al. (2012). Our work adds

to these contributions by focussing on the variation in returns to communication
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between different city types. Therefore, we focus on the suggested microfounda-

tions of the coexistence of these two city types as in Duranton & Puga (2001).

The rest of the chapter is structured as follows. The next section discusses a

simple framework underlying our ideas and Section 5.3 sets out the estimation

strategy of this framework. Section 5.4 describes the construction of the database

and some descriptive statistics. Section 5.5 presents the OLS-estimates and Section

5.6 the IV-estimates. In Section 5.7 several other specifications are tested for robust-

ness. Section 5.8 concludes.

5.2 Spatial wage differences and communication

Before we present the estimates of the returns to communication we set out a frame-

work which captures the underlying mechanism. Our framework explains the ex-

istence of spatial wage differences and the role of communication. It relies on the

assumption that in equilibrium wage differences can exist while workers and firms

should be indifferent to location. Local markets (l) are characterised by (both ob-

served and unobserved) ability, productivity level, price level, and industrial struc-

ture (specialisation level).

5.2.1 General setting

We consider an economy with perfect competition, free firm entry and full mobility

of labour. Firms either focus on mass-products or on new and developing products.

Firm’s output is a function of productivity (A), number of workers (L) and city

characteristics (C): Y = f (A, L, C). These factors are mutually dependent. The

productivity of a firm, for example, depends on its workers and its location and

varies between mass-production and relatively newly initiated production (Dur-

anton & Puga, 2001; Desmet & Rossi-Hansberg, 2009). The free entry assumption

implies that firms obtain zero profits. As often noted in the literature, large spa-

tial wage differences exist (Glaeser & Maré, 2001). The spatial wage differences are

compensated by spatial variation in the input factors productivity, labour and city

characteristics. In equilibrium workers and firms are indifferent regarding location

l. The spatial variation in A and C explains why not all workers move to the high

wage cities and not all firms move away from these cities.
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5.2.2 Spatial distribution of firms

Following the theoretical work of Duranton and Puga, firms locate in a less special-

ised (or diversified) city during the learning stage in which they develop their ideal

production process. In these ’nursery’ cities firms learn from the ideas and know-

ledge of a broad variety of firms. Human capital externalities are crucial for the

productivity and innovation of new products since the cross-fertilisation of ideas

and knowledge stimulates the generation of new ideas (Lucas, 1988; Duranton &

Puga, 2001; Desmet & Rossi-Hansberg, 2009). When firms find their optimal pro-

duction process and move to mass-production they relocate to more specialised

cities. Specialised cities house a co-agglomeration of similar firms which enables

firms to share, match and learn from their direct competitors.

5.2.3 Productivity

The ability of the local work force varies over space (Combes et al., 2008). All firms

in location l benefit from a productive labour force (φl). The determinants of local

productivity vary with the local specialisation level (ρl). Firms who focus on mass-

production and locate in specialised cities benefit from sharing facilities, matching

labour and knowledge spillovers from similar firms. If the firm operates in the

dominant local industry, productivity rises with the specialisation level (Mρl ).1 A

mature firm in the textile industry benefits from the co-location of textile industry

and a high local specialisation level in this industry.

As indicated, both firms in specialised and diversified cities benefit from learn-

ing and communication with other firms. The cross-fertilisation of ideas is more

likely to happen when people meet face-to-face. Not only is face-to-face contact a

very efficient communication technology, it also helps solving incentive problems

and more importantly facilitates learning and human capital externalities (Storper

& Venables, 2004).2 The amount of local knowledge spillovers and communica-

tion depends on the allocation of labour between core work activities and commu-

nication tasks. Core work activities are the job tasks of the worker’s occupation.

Communication tasks contain the communication with other workers (inside or

outside the firm) about work activities. θ is the fraction of labour spent on com-

munication tasks. The firm allocates labour optimally between work activities and

1 M is the productivity effect of operating in the local dominant industry. This effect increases with the
specialisation level of the city.

2 This explains why human capital spillovers and learning are bound by distance (Jaffe et al., 1993;
Jacobs, 1969).
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communication tasks given local characteristics. However, learning and commu-

nication are more crucial for firms in less specialised cities who still optimise their

production process by learning from others (Duranton & Puga, 2001; Desmet &

Rossi-Hansberg, 2009).

To sum up, the productivity of a firm (A) depends on whether the firm operates

in the local dominant industry (M), the specialisation level of the local industry (ρl),

the amount of local communication (θL) and the ability or productivity of the local

work force (φl). Firms which operate in the local industry experience a productivity

which increases with the local specialisation level. The productivity benefits of local

communication, on the other hand, decrease with the specialisation level of the city.

Therefore,

A = Mρl E1−ρl φl , (5.1)

where: 0 < ρl < 1, E = dθL and d is a scalar indicating the level of productivity of

the labour force.

Labour input to produce output only includes the fraction of labour spent on

work activities ((1− θ)L). Output is produced with labour spent on work activities

(which decreases with the fraction spent on communication) at a productivity level

that increases with the fraction spent on communication:

Y = A(1 − θ)L. (5.2)

5.2.4 Optimal allocation of labour

Output is only produced with work activities while wages and rents are paid for

both communication tasks and work activities (L). Local wages (Wl) and rents (Rl)

are given. Congestion costs cause the local rents to rise with the size of the local

market. Profits are defined as follows:

π = A(1 − θ)L − Wl L − Rl . (5.3)

There is a trade-off between increasing productivity by spending labour on commu-

nication and increasing production output by spending labour on work activities.

This trade-off varies with the local level of specialisation ρl . Firms maximise profits

π, given the local dominant industry, specialisation level and rents, and optimally

allocate labour between communication tasks and work activities. They optimise
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the following equation:

π = Mρl (dθL)1−ρl φl(1 − θ)L − Wl L − Rl . (5.4)

Optimising equation (5.4) leads to the following optimal allocation of labour between

core activities (1 − θ) and communication about core activities (θ), given the local

specialisation level ρl :

(1 − θ) =
θ

1 − ρl
. (5.5)

Substituting the optimal allocation of labour into equation (5.4) it follows that:

π = bφl Mρl (θL)2−ρl − Wl L − Rl , (5.6)

where b = d1−ρl
1−ρl

.

5.2.5 Individual wages

Firm entry is free which implies zero profits. This leads to the following total labour

costs:

Wl L = bφl Mρl (θL)(2−ρl) − Rl . (5.7)

We assume that individual wages correspond to individual ability. Setting L to 1,

individual wage of worker i is then:

Wi = bφi Mρl (θi)
(2−ρl) − Rl . (5.8)

The individual wage is determined by a constant, the worker’s ability (φi), the level

of local specialisation (ρl), whether the worker works in the dominant industry (M),

the fraction of labour which the worker spends on communication (θi), and the av-

erage local rent costs (Rl). If the worker works in the dominant local industry, his

wage rises with the local industrial specialisation of the relevant industry. How-

ever, the wage benefits of communication decrease with the local level of special-

isation:

∂Wi
∂θi

> 0. (5.9)
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∂W2
i

∂θiρl
< 0. (5.10)

5.3 Empirical strategy

5.3.1 Reduced form

We bring equation (5.8) to the data and estimate the reduced form for worker i in

city l.

ln wi,l = α1 + α2φ̂i + α3M̂i + β1θ̂i + β2ρ̂l + β3R̂l + γ1(θ̂i · ρ̂l) + γ2(M̂i · ρ̂l) + εi,l ,

(5.11)

where wi,l is the hourly wage earnings of individual i, in city (Metropolitan Statist-

ical Area) l. Individual ability is estimated by φ̂i: a set of standard, demographical

controls (age, age squared, gender, race and marital status), a set of occupational

dummies and a set of education dummies of the highest grade completed. M̂i

represents the productivity effect of mass-production and indicates whether indi-

vidual i works in the dominant industry in city l or not. Indicator θ̂i denotes the

estimate of the performance of communication tasks by worker i.3 The local level of

specialisation is estimated with the Regional Specialisation Index (RSI). The RSI cal-

culates the maximum over-representation (subject to national share) of an industry

in the city. ρ̂l = maxl
(
logEl,j − logEj

)
in which El,j represents the employment

share of industry j in city l and Ej the employment share of industry j in national

employment. We allow the returns to communication to vary with the local spe-

cialisation level (γ1(θ̂i ∗ ρ̂l)). The returns to working in the local dominant industry

vary with the local level of specialisation as well (γ2(M̂i · ρ̂l)). Lastly, (R̂l) indicates

the average rent in city l.

5.3.2 Measurement

The estimation of this empirical model requires a number of assumptions. First,

the indicator for communication tasks (θ̂i) and its interaction with local industrial

specialisation (θ̂i · ρ̂l) are measured at aggregated levels and do not vary by worker.

The dependent variable (wi,l) is however measured at the worker level. This leads

3 As explained in the next section, data limit us to measure communication at the occupational level.
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to underestimation of the standard errors as indicated by Moulton (1990). To avoid

this issue, we cluster standard errors at the occupational level.

Second, endogeneity issues may bias our OLS-estimates. The ability of indi-

viduals is estimated and not fully observed. The measurement error εi,l includes

ability characteristics (Ai) such as talent and work discipline and some measure-

ment error at the individual and city level (μi,l): εi,l = Ai + μi,l . When Ai correlates

with the local specialisation level ρl or city rents Rl , we cannot isolate the effect of

these indicators on wages and the estimates become biased. To deal with endogen-

eity, Section 5.6 shows the results when instrumenting communication.

Third, specialisation and diversity are not opposite measures. The RSIi meas-

ures the over-representation of an industry in city l while the local diversity level

reflects the mixture of industries within the city. Thus, the regional diversity index

(RDIl) captures all industries in the city while RSIl only includes information on

the dominant industry.4 We experiment with including both RSIl and RDIl .

Fourth, specialised cities tend to be smaller than diversified cities (Duranton &

Puga, 2000).5 Hence, ρ̂l correlates with city size. The correlation between the size

and the specialisation (and diversity) is too strong to include both in the regres-

sions. Therefore, we attempt additional estimates with city size instead of special-

isation or diversity and a cross-term of city size with communication.

Lastly, work activities might also involve communication. Especially low skilled

service occupations often involve several communication tasks such as waiting

tables. We aim however to measure the returns to communication about job activ-

ities, for example a worker who informs his manager about the results of his ana-

lyses. To distinguish between these two forms of communication we include in-

formation about communication work activities as well. Communication work

activities are defined as the ONET work activity ’performing for or working dir-

ectly with the public’ with the description: ’Performing for people or dealing dir-

ectly with the public. This includes serving customers in restaurants and stores,

and receiving clients or guests’.

4 RDIl is defined as RDIl =
1

∑j(El,j/Ej)
where El,j represents employment in industry j in city l and Ej

national employment in industry j.
5 This is the case in our dataset as well, see Section 5.4.2.
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5.4 Data

5.4.1 Database construction

We use individual wage data for 2009 provided by the Current Population Sur-

vey (CPS). For each individual it contains information on personal characteristics

(education level, age, marital status etc), occupation, industry, wage and location.

Occupations are converted to a time-consistent scheme of 326 occupations as in

Autor & Dorn (forthcoming). Our sample consists of working individuals living

in Metropolitan Statistical Areas (MSAs) in 2009, aged between 16 and 65, working

outside the agricultural sector. We exclude all self-employed workers. This results

in a sample of 83,078 individuals.

Wages are measured by hour. Following Lemieux (2006), outliers are removed

by trimming very small (hourly wage below $ 1) and very large values (hourly

wage above $101) of wages. Hourly wages above $101 are top coded within the

CPS and are therefore replaced with the 1.4 top coded value. For missing wage

values we apply a no-imputation approach. The no-imputation method excludes

the wages of missing cases but counts them when calculating occupational sizes

(Mouw & Kallenberg, 2010).

Communication job tasks and work activities are collected from the Occupa-

tional Information Network (ONET) Skill Survey. The ONET data characterises

the workers abilities, interest, knowledge, skills, work activities, work context and

work values, by occupation. Three types of work activities and three work context

items are included as communication job tasks. They measure the importance of:

• Establishing and maintaining interpersonal relationships (label ’relations’)

• Communicating with persons outside organisation (label ’external commu-

nication’)

• Communicating with supervisors, peers, or subordinates (label ’internal com-

munication’)

• Face-to-face discussions (label ’face-to-face’)

• Work with work group or team (label ’teamwork’)

• Contact with others (label ’contact’)

Table 5.1 lists the ONET definition of these communication job tasks. We stand-

ardise the scores of these variables (a mean of zero and a standard deviation of
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one) to equalise scaling. The communication job task scores of the occupations are

matched to the occupations in the CPS database. A Communication-Index is estim-

ated by using a principal component analysis:

Y =
i=6

∑
i=1

(βiCommunicationi + εi). (5.12)

Y is the constructed index based on the input of the six communication tasks rep-

resented by i. The estimates are presented in Appendix A.4, together with the cor-

relations between the communication tasks. The principal component loadings (βi)

could be viewed as weights and are rather equal for all communication tasks in

the first component. The first component explains about 0.60 percent of the total

variation in the six tasks. The first component explains a substantial larger vari-

ation than the other components. Therefore, the first component is defined as the

Communication-Index. It should be noted that the measurement error in the com-

ponent is not taken into account in the analyses below.

Employment figures are gathered from the Local Area Unemployment Statistics

from the Bureau of Labor Statistics Additional. The employment figures include in-

formation about the total city employment and the employment by industry (which

is used for the construction of the local specialisation level). Lastly, additional city

data, such as average rents, are collected from the Census Decennial Database.

Appendix A describes the data sources, the used classifications and Appendix

A.4 includes a list of all the used variables, measurements and source.

5.4.2 Descriptive statistics

Before we proceed to present a set of estimates, we first discuss the descriptive

statistics for our dataset. Table 5.2 provides an overview of the characteristics of

our entire sample of 83,078 individuals.6 The average worker earns 22 US dollars

per hour, is 40 years old and works in a city with almost 1.3 million employees. One

out of two workers is female. Individuals who perform more communication job

tasks earn higher wages, live more often in diversified cities, are more often high

skilled and female.

The last column of Table 5.1 shows the correlations between the performance

of the six communication job tasks and individual wages. All the correlations are

positive and significant. The establishment of relations, communication outside

6 Note that the measurement of the variables results in possible values which conflict with the assump-
tions of the theoretical model. This does not affect the interpretation of the results.
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Table 5.2. Summary statistics

Mean Standard deviation Minimum Maximum Correlation
with

communication

Hourly wage 21.90 16.26 2.49 230.6 0.35***
Log hourly wage 2.88 0.62 0.91 0.54 0.40***
Communication Index 0.43 0.99 -3.11 2.46
Specialisation -city 0.00 1.00 -1.46 3.74 -0.05***
Diversity -city 0.00 1.00 -2.17 1.69 0.02***
Employment - city 1,311,017 1,136,008 60,580 4,328,589 0.01***
Dominant industry 0.01 0.11 0.00 1.00 -0.03***
High-school drop-out 0.08 0.27 0.00 1.00 -0.31***
High-school 0.26 0.44 0.00 1.00 -0.28***
Some college 0.29 0.45 0.00 1.00 -0.02***
College graduate 0.37 0.48 0.00 1.00 0.44***
Communication job activities 2.55 0.98 1.00 4.83 0.33***
Non-white 0.21 0.41 0.00 1.00 -0.04***
Non-married 0.45 0.50 0.00 1.00 -0.11***
Age 40.00 12.44 16.00 64.00 0.10***
Female 0.52 0.5 0.00 1.00 0.14***

Note: source Current Population Survey 2009, n=81,262. *** significant at the 1% level.

the organisation and communication with workers inside the organisation show

the strongest correlations with individual wages. The measure for contact in gen-

eral only weakly correlates with wages. Cities which house many communication

intensive occupations also obtain high average wages (correlation of 0.71, signific-

ant at the 1 percent level, see Figure 5.1). The relation between local wages and

local communication, as predicted in equation (5.6), does hardly show any outliers.

Ann Arbor has the most communication intensive labour market and is the sixth

city on the wage ranking. Canton-Massillon has the least communication intens-

ive labour market and only 17 of the 168 cities have a lower average wage than

Canton-Massilon.

Equation (5.1) suggests that cities with a lower specialisation level benefit more

from the performance of communication tasks. Indeed, workers in diversified cities

perform on average more communication tasks, while workers in specialised cities

perform less communication tasks (see Figure 5.2). Given a certain level of diversity

or specialisation, the variation in communication is however large between cities.

Appendix A.4 presents a correlation matrix of all variables.
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Figure 5.1. Wages and communication in cities
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Note: source Current Population Survey 2009. City level data, n=168. The correlation is 0.71 (0.00) and
significant at the 1% level. Communication is measured as the average score on the Communication-
Index as defined in Section 5.4. Wage is measured as average hourly wage 2009 in logs.

Figure 5.2. Communication in specialised and diversified cities
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Note: source Current Population Survey 2009. City level data, n=168. The correlations are respectively
-0.40 (0.00) and 0.33 (0.00) and significant at the 1% level. RSIl and RDIl are measured as described in
Section 5.3. Communication is measured as the average score on the Communication-Index as defined
in Section 5.4.
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5.5 OLS-estimates

Before we address causality, we present a set of OLS-estimates to show the relation-

ship between wage and communication in a more rigorous way. Column 1 in Table

5.3 presents the estimates of a straightforward wage regression. We find the usual

returns to education, see Rauch (1993) and Bacolod et al. (2009). Both industrial

specialisation and diversity correlate negatively with individual wages. The pos-

itive correlation between local diversity and individual wage (as found in Section

5.4.2) turns negative when we control for demographic and educational factors.

Workers who work in the dominant local industry (M in equation (5.11)) earn sub-

stantially more than workers who do not work in the dominant industry. This effect

increases with the specialisation level of the city. Notable is the positive impact of

rents on wages which indicates the cities’ role as centre for consumption (Glaeser et

al., 2001). All the covariates, such as age and gender, obtain the expected sign and

size.

Next, we test whether the correlations between wages and communication vary

with the city’s industrial specialisation and diversity level. Column (3) includes a

cross-term between communication and the local specialisation level (all variables

are standardised to ease comparison). The coefficient of the cross-term is negative

and significant: the correlation between wage and performed communication tasks

is weaker in specialised cities. The linear impact of communication remains posit-

ive and significant, while the size of the coefficient of local specialisation decreases.

Column (4) performs the same regression but includes a cross-term between com-

munication and sector diversity instead of sector specialisation. The coefficient of

the cross-term is positive and significant. Both in specialised and in diversified cit-

ies workers in communication intensive jobs earn more, but this relation is stronger

in diversified cities and weaker in specialised cities.

Lastly, we allow the relation between wages and communication to vary across

city size. Diversified cities are on average larger than specialised cities. Column (5)

presents the baseline results including city size instead of industrial structure and

column (6) presents the results including the cross-term as well. The correlations

between wage and performed communication tasks are stronger in larger cities.

Workers in larger cities who perform communication tasks earn more than workers

in small cities with the same task package. The positive coefficient of the cross-term

between city size and communication outweighs the negative linear coefficient for

communication.

Similar to the theory of Section 5.2, individual wages increase with the worker’s
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ability, the worker’s communication when the local industry is not very special-

ised and the specialisation level when the worker works in the dominant industry.

The OLS-estimates suggest that a one standard deviation more communication job

tasks increases individual wage with about 16 percent of a standard deviation.7 In

specialised cities this is 13 percent of a standard deviation, in diversified cities 18

percent and 20 percent of a standard deviation in large cities.

7 The standard deviation of the dependent variable is 0.62. One standard deviation more communica-
tion results in an increase of 0.098 in the individual wage which is 15.8 percent of 0.62.
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Table 5.3. Returns to communication, specialised and diversified cities (OLS)

Dependent: individual wage (log)
(1) (2) (3) (4) (5) (6)

Communication 0.098*** 0.099*** 0.098*** 0.098***
[0.019] [0.019] [0.019] [0.019]

COM*specialisation -0.019***
[0.004]

COM*diversity 0.010***
[0.003]

COM*size 0.023***
[0.004]

Specialisation -0.038*** -0.038*** -0.030*** -0.038***
[0.004] [0.004] [0.004] [0.004]

Diversity -0.009** -0.009*** -0.009** -0.014***
[0.004] [0.004] [0.003] [0.004]

Size 0.043*** 0.035***
[0.004] [0.003]

Dominant industry 0.105*** 0.118*** 0.115*** 0.119*** 0.107*** 0.120***
[0.026] [0.023] [0.023] [0.023] [0.026] [0.020]

DOM*specialisation 0.066*** 0.065*** 0.057*** 0.060*** 0.047*** 0.039**
[0.018] [0.018] [0.017] [0.017] [0.017] [0.017]

Drop-out -0.204*** -0.185*** -0.183*** -0.185*** -0.204*** -0.181***
[0.013] [0.014] [0.014] [0.014] [0.014] [0.014]

College 0.080*** 0.069*** 0.069*** 0.069*** 0.080*** 0.070***
[0.008] [0.008] [0.008] [0.008] [0.008] [0.008]

College grad 0.363*** 0.348*** 0.347*** 0.348*** 0.373*** 0.357***
[0.021] [0.020] [0.020] [0.020] [0.021] [0.020]

Rent 0.046*** 0.047*** 0.047*** 0.047***
[0.003] [0.003] [0.003] [0.003]

Communication job -0.018 -0.041*** -0.041*** -0.041*** -0.018 -0.041***
[0.015] [0.013] [0.013] [0.013] [0.015] [0.013]

Non-white -0.085*** -0.082*** -0.082*** -0.082*** -0.062*** -0.061***
[0.008] [0.007] [0.007] [0.007] [0.007] [0.007]

Non-married -0.056*** -0.055*** -0.056*** -0.055*** -0.055*** -0.055***
[0.007] [0.006] [0.006] [0.006] [0.007] [0.006]

Age 0.049*** 0.048*** 0.049*** 0.048*** 0.050*** 0.049***
[0.003] [0.003] [0.003] [0.003] [0.003] [0.003]

Age squared -0.496*** -0.497*** -0.485*** -0.487*** -0.485*** -0.489***
[0.035] [0.034] [0.034] [0.034] [0.034] [0.033]

Female -0.184*** -0.183*** -0.183*** -0.183*** -0.185*** -0.184***
[0.014] [0.013] [0.013] [0.013] [0.014] [0.013]

Occupation dummies YES*** YES*** YES*** YES*** YES*** YES***
Observations 82,705 82,705 82,705 82,705 81,262 81,262
R-squared 0.438 0.445 0.446 0.445 0.433 0.440

Note: individual data. Communication represents the Communication-Index as defined in Section 5.4.
Specialisation refers to the RSIl , diversity to the RDIl as defined in Section 5.3. City size is measured
in standardised logs. Dominant industry is a dummy variable indicating whether the worker works
in the local dominant industry or not. The dominant local industry obtains the highest specialisation
level. High-school graduates are the reference group for education. Communication job refers to the
importance of communication work activities in the job as defined in Section 5.4. See Appendix A.4
for a detailed description of the variables, measurement and data sources. Regressions also include a
constant. Clustered standard errors are in parentheses, * significant at the 10% level,** significant at the
5% level, *** significant at the 1% level.
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5.6 IV-estimates

The main issue with OLS wage estimates is a possible omitted ability bias. Equa-

tion (5.1) distinguishes between an ability and a productivity effect. This distinc-

tion is hampered if workers in highly productive cities or jobs are simply ’better’

in an unobserved way. Ability characteristics such as talent, work discipline and

ambition are unobserved in our analyses. For instance, relatively talented workers

might be attracted to certain cities. Diversified cities tend to be larger and house

more amenities than the smaller, specialised cities. Talented workers could value

these amenities more than less talented workers. Talent of workers is however not

measured. In OLS-estimates the higher wages within these cities are assigned to

higher local productivity of these cities while they might simply reflect higher (un-

observed) ability levels of their workers. The same feature might bias the impact

of communication on wage. It could be the case that communication intensive jobs

offer more carrier opportunities in the long run. Workers with a relatively high am-

bition are more likely to sort into these jobs. In the OLS-estimates, the high wages

of these jobs are related to the communication intensity while the impact of worker

ambition is unobserved. Combes et al. (2009) refer to this issue as the ’endogenous

quality of labour’ problem.

5.6.1 Instruments

Communication

We construct a language-skill proxy as an instrument for communication job tasks.8

We assume workers with weaker language-skills to be less likely to perform com-

munication job tasks. Transferring tacit knowledge is key to communication job

tasks and strongly affected by language-skills. Language-skills are proxied by in-

formation on the worker’s country of birth and the worker’s parents. The country

of birth indicates the worker’s mother tongue. We assume workers who grew up

in an English speaking household to obtain better language-skills (in the US) than

workers who grew up in a non-English speaking household. The language-skill

proxy obtains four values which are described in Table A.5 in Appendix A.4.

Our instrument should be exogenous and not affecting wage via other channels

8 Charlot & Duranton (2004) instrument communication job tasks with the use of computers and in-
ternet at the work floor. The Current Population Survey includes similar information for the year 2000.
However, we cannot rule out possible endogeneity of computer use. Workers may sort by ability into
communication and computer intensive jobs for the same reasoning. Specification tests underline that
computer use at the job is endogenous.
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than communication. Clearly, the country of birth is not chosen by the individual

and is exogenous. However, we do not observe the actual household language

which might be endogenous. We assume such an effect to be negligible. Another

possible issue with the proxy is that it might capture the sorting of migrants into

certain cities. Figures A.1 and A.2 in Appendix A.4 present the relations between

city’s specialisation level, diversity level and communication level and the average

native share in local occupations. The proxy does not seem to capture such sorting

patterns.

Language-skills may affect wages via other channels than communication. For

instance, the language-skill proxy captures cultural differences which could affect

wage as well. Lewis (2011) finds that this effect is rather small. We test the validity

of the instrument in Table 5.4. The first column shows a wage regression including

both communication job tasks and the language-skill proxy. After controlling for

communication, the language-skill proxy does not affect wage. Columns (2) and (3)

show the OLS-estimates for communication and physical job tasks. Physical tasks

are defined as ’handling and moving objects’ and correlate negatively with wage.

The next two columns show the first stage results for IV-estimates instrumenting

respectively communication and physical job tasks with the language-skill proxy.

The proxy correlates strongly with communication jobs tasks and not with physical

job tasks. Columns (6) and (7) present the IV-estimates. The IV-estimates for com-

munication (column (6)) correspond with the OLS-estimates. The IV-estimates for

physical tasks are insignificant. The significant wage effect of physical tasks dimin-

ishes in the IV-estimates. These results indicate that our language-skill proxy does

not measure a cultural wage effect.

Specialisation and diversity

Ciccone & Hall (1996) introduced the standard way to tackle the endogeneity prob-

lem of city size and productivity. The spatial population distribution in the US is (to

some extent) persistent over time. The division of employment across cities is re-

markably constant. Thus, the size of a city today can be predicted by the size of the

city many decades ago. Today’s main drivers of productivity strongly differ from

the historical drivers. Thus, historical population of a city strongly correlates with

today’s city size but does not affect the current wages in the city. Clearly, today’s

wages cannot affect historical city population. This makes historical population a

valid instrument for current city size, at least when the instrument is measured in

the far past. For an extensive discussion on the validity and exogeneity of histor-



138 Chapter 5

ical population as an instrument we refer to the work of Ciccone & Hall (1996) and

Combes et al. (2009).

The sectoral specialisation and diversity of cities is correlated with size (respect-

ively -0.66 and 0.57, significant at the 1 percent level). Therefore, we instrument

sectoral specialisation and diversity with population in 1930.

The MSA population in 1930 is composed using Census Historical County Pop-

ulation figures. For each county this database includes decennial information on its

population. We include population in 1930 since this is the first year with a decent

covering across counties. Next, we sum county population by MSA (1990 defin-

ition) to construct MSA population in 1930. The MSA population in 1930 varies

between 9,897 and 7,524,736 inhabitants.

5.6.2 Relevance of the instruments

Before we turn to the IV-estimates we test the relevance of our instruments. The cor-

relation between population in 1930 and sectoral specialisation in 2009 is -0.51 and

significant at the 1 percent level. For sectoral diversity this correlation is 0.61 (sig-

nificant at the 1 percent level). Also the instrument of communication is strongly

correlated with the communication index (0.58, significant at the 1 percent level).

Columns (1) and (2) of Table 5.5 show the first stage estimates for communic-

ation job tasks. In column (1) we include the city’s sectoral specialisation and di-

versity level as explanatory variables while in column (2) we include city’s popula-

tion in 1930. The language-skill proxy seems to be a sound instrument for commu-

nication. Natives are relatively more present in communication-intensive occupa-

tions. The covariates show the usual sign and coefficients. By definition, the com-

munication intensity of occupations does not vary across cities. This explains the

insignificant coefficients of historical and sectoral structure.9 Communication work

activities (e.g. waiting tables) and communication job tasks (communicating about

work activities) are positively correlated. The F-statistics show that the instrument

for communication is valid.10 Columns (3) and (4) present the first stage results for

sectoral specialisation, with and without instrumenting communication as well. To

produce interpretable results, we include the log of historical population. Histor-

ical city size is a decent predictor for current sectoral specialisation. The F-statistics

indicate that historical population is a valid instrument for current specialisation

level. Lastly, columns (5) and (6) show the first stage estimates for the industrial

9 The importance of communication is measured at the occupation level and independent of location.
10 F-statistics are generated for the additional instruments only (communication and population in 1930).
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diversity level of cities. Historical city size predicts current sectoral diversity even

more precise than it predicts current sectoral specialisation. In diversified cities,

workers perform more communication work activities while communication about

these activities is indifferent from the average.

5.6.3 Results

In Table 5.6 the returns to communication are allowed to vary with city specialisa-

tion level, diversity level and city size. For each city characteristic (specialisation,

diversity and size) we first present the baseline regression in which communication

is instrumented with our language-skill proxy and the characteristic with popula-

tion in 1930. The next column shows the IV-estimates with additional cross-terms

between the language-skill proxy and the city characteristics. The IV-estimates

provide similar results as the OLS-estimates.

The returns to communication remain positive and significant. An increase of

the communication job tasks of one standard deviation raises the individual wage

with about 18 percent of a standard deviation. The returns to communication are

about 16 percent of a standard deviation in specialised cities (column (2)).

In large cities the returns to communication are somewhat higher (about 21 per-

cent, column (6)). The coefficient of the cross-term between communication and

diversity level becomes insignificant (column (4)). Especially in large, not special-

ised cities workers earn more when they perform more communication tasks.

The variation in returns to communication between different city types partly

explains the lower wages in specialised cities. The negative specialisation wage

premium decreases from 9 percent of a standard deviation to 8 percent. The urban

wage premium decreases from 4 percent of a standard deviation to 2 percent of a

standard deviation.
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Table 5.5. First stage regressions

Communication Specialisation Diversity

(1) (2) (3) (4) (5) (6)

Language-skill proxy 0.434*** 0.434*** 0.010 -0.013
[0.097] [0.097] [0.013] [0.008]

Population 1930 0.001 -0.372*** -0.372*** 0.477*** 0.477***
[0.002] [0.005] [0.005] [0.003] [0.003]

Communication -0.003 0.006
[0.011] [0.007]

Specialisation -0.001
[0.004]

Diversity 0.003
[0.003]

Dominant industry -0.086** -0.088** -0.214*** -0.212*** -0.580*** -0.582***
[0.039] [0.039] [0.068] [0.068] [0.059] [0.058]

DOM*specialisation -0.022 -0.023 0.845*** 0.845*** 0.135* 0.136*
[0.037] [0.039] [0.036] [0.036] [0.072] [0.071]

Drop-out -0.050** -0.050** -0.023 -0.020 -0.023 -0.028*
[0.023] [0.023] [0.015] [0.014] [0.015] [0.015]

College 0.063*** 0.063*** 0.041*** 0.040*** 0.021*** 0.023***
[0.016] [0.016] [0.009] [0.009] [0.007] [0.007]

College grad 0.108*** 0.109*** -0.035*** -0.036*** -0.009 -0.007
[0.029] [0.029] [0.010] [0.010] [0.015] [0.015]

Communication job 0.175*** 0.175*** -0.000 -0.003 0.016*** 0.020***
[0.051] [0.051] [0.007] [0.007] [0.006] [0.006]

Rent -0.002 -0.001 -0.277*** -0.277*** 0.051*** 0.051***
[0.003] [0.003] [0.006] [0.006] [0.005] [0.005]

Non-white -0.004 -0.004 -0.162*** -0.161*** -0.101*** -0.102***
[0.016] [0.016] [0.010] [0.010] [0.010] [0.010]

Non-married -0.014 -0.014 -0.040*** -0.040*** -0.014** -0.014**
[0.009] [0.009] [0.008] [0.008] [0.007] [0.007]

Age 0.010** 0.010** -0.007*** -0.007*** 0.004** 0.004**
[0.004] [0.004] [0.002] [0.002] [0.002] [0.002]

Age squared -0.118** -0.118** 0.088*** 0.088*** -0.037* -0.037*
[0.049] [0.049] [0.028] [0.028] [0.019] [0.019]

Female -0.027 -0.027 0.023*** 0.023*** -0.012 -0.012
[0.032] [0.032] [0.008] [0.008] [0.007] [0.007]

Occupation dummies 1.464*** 1.465*** -0.139*** -0.154*** -0.026 -0.004
Observations 82,705 82,705 82,705 82,705 82,705 82,705
R-squared 0.736 0.736 0.365 0.365 0.383 0.383

Note: individual data. See Appendix A.4 for a detailed description of the variables, measurement
and data sources. Regressions also include a constant. Clustered standard errors are in parentheses, *
significant at the 10% level,** significant at the 5% level, *** significant at the 1% level.
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Table 5.6. IV-estimates

Dependent: individual wage (log)

City instrument: Specialisation Diversity Size

(1) (2) (3) (4) (5) (6)

Communication 0.110*** 0.108*** 0.110*** 0.110*** 0.108*** 0.106**
[0.042] [0.041] [0.042] [0.042] [0.042] [0.042]

COM*specialisation -0.015***
[0.005]

COM*diversity 0.006
[0.005]

COM*size 0.027***
[0.007]

Specialisation -0.055*** -0.047*** -0.033*** -0.033***
[0.010] [0.009] [0.004] [0.004]

Diversity -0.017*** -0.016*** 0.000 -0.002
[0.005] [0.005] [0.005] [0.005]

Size 0.022*** 0.012**
[0.004] [0.005]

Other controls YES*** YES*** YES*** YES*** YES*** YES***
Observations 82,705 82,705 82,705 82,705 8,1262 81,262
R-squared 0.444 0.445 0.444 0.445 0.445 0.446

Note: individual data. City characteristics are instrumented by population in 1930. Communication is
instrumented by language-skill proxy. Cross-terms are interactions of instruments. Regressions include
controls for dominant industry, a cross-term of dominant industry with specialisation, education dum-
mies, communication work activities, age, age squared, gender, marital status, occupational dummies
and a constant. See Appendix A.4 for a detailed description of the variables, measurement and data
sources. Clustered standard errors are in parentheses, * significant at the 10% level,** significant at the
5% level, *** significant at the 1% level.



Returns to communication in specialised and diversified US cities 143

5.7 Robustness

We test the robustness of our estimates by considering four robustness checks.

Here, we only present the IV-estimates including the cross-term between com-

munication job tasks and local specialisation level. The OLS-estimates and IV-

estimates including the other cross-terms provide similar results and are available

upon request. First, we test the sensitivity of the results towards the measure of

communication (Section 5.7.1). Second, Section 5.7.2 discusses an additional test for

the impact of unobserved ability. Next, we add cross-terms between communica-

tion and individual skill level to our analyses (Section 5.7.3). Lastly, the measure of

local specialisation level is put to the test (Section 5.7.4).

5.7.1 Other measures of communication

To address the validity of our results we test three alternative ways to measure

communication job tasks. First, we measure communication job tasks as the share

of all job tasks. This indicator measures the importance of communication relative

to other job tasks instead of the absolute importance of communication. Columns

(1) and (2) in Table 5.7 present the IV-estimates. The relative returns to commu-

nication are significantly larger than the absolute returns to communication. An

increase of one standard deviation in relative communication leads to an increase

of 41 percent of a wage standard deviation. Within specialised cities this return is

only 32 percent of a standard deviation. The returns to communication do not dif-

fer across local diversification levels while the returns in large cities are 52 percent

of a standard deviation.

Second, we consider the wage returns to non-routine interactive tasks. Informa-

tion and communication technology (ICT) acts as a substitute for some tasks and a

complement for others (Autor et al., 2003). Computer technology replaces labour in

performing routine tasks that can easily be described with programmed rules, such

as the repetitive tasks of clerks and cashiers (Bresnahan, 1999). On the other hand,

non-routine tasks, such as managing others, legal writing and selling, cannot, as of

yet, be described as a set of programmable rules. Non-routine tasks require an ad-

aptive attitude of the worker; these are typically tasks involving communication,

interaction and knowledge transfer. The rival effects of computer technology on

routine tasks on the one hand and non-routine on the other hand relate to the rival

spatial effects of technology as indicated by Glaeser & Ponzetto (2010), Gaspar &

Glaeser (1998) and Ioannides et al. (2008). Autor & Dorn (forthcoming) show that
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cities which initially specialised in routine-intensive occupations obtain employ-

ment and wage polarization after 1980. Clearly, non-routine interactive and com-

munication tasks are strongly related (0.72, significant at the 1 percent level). The

first stage regression shows a strong correlation between the language-skills proxy

and the non-routine interactive tasks of an occupation.11 Columns (3) and (4) of

Table 5.7 present the IV-estimates with the linear and cross-terms of non-routine

interactive tasks instead of communication job tasks. The IV-estimates indicate a

positive return to the performance of non-routiness interactive tasks of about 25

percent of a standard deviation. This return is - as expected - somewhat lower in

specialised cities (about 21 percent of a standard deviation) and somewhat higher

in diversified cities (about 30 percent of a standard deviation).

The last measure of communication stems from the work of Borghans et al.

(2006) and Bacolod et al. (2009) and measures the interpersonal skill requirements

of the job: the importance of ’people skills’. We calculate the importance of ’people

skills’ by the importance of six ONET skill variables: social perspectives, coordin-

ation, persuasion, negotiation, instruction and service orientation. The last three

columns of Table 5.7 present the results. Including people skills instead of commu-

nication job tasks does not change the results. There are positive wage returns to

the performance of people skills in cities, these returns increase with the size of city

and decrease with the specialisation level of the city.

5.7.2 Unobserved ability

Sorting of workers by unobserved ability is a commonly acknowledged measure-

ment issue for spatial wage estimations (Combes et al., 2008). Ideally, we would

eliminate unobserved worker heterogeneity using a large panel of individuals. The

CPS is not a panel but has a time dimension. We aggregate the individual data to

the city level (MSA) to obtain a panel of cities. Additionally to our IV-estimates we

take the first difference of local variables and remove the unobserved ability bias

using the time dimension.

As discussed in Section 5.3.2, unobserved ability (Ai) could cause biased estim-

ates when it correlates with other explanatory variables. We assume that unob-

served ability Ai (such as personal talent, ambition and work discipline) is time

invariant. Taking the first difference removes the eventual ability bias. To do so, we

11 The index is defined as in Acemoglu & Autor (2011). The index is standardised with a mean of zero
and a standard deviation of one. Appendix A.4 describes the measurement of this index.
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Table 5.7. Other measures of communication - IV-estimates

Dependent: individual wage (log)

Relative communication Non-routine interactive People skills

(1) (2) (3) (4) (5) (6)

Communication 0.264** 0.259** 0.162** 0.160** 0.133*** 0.131***
[0.132] [0.131] [0.077] [0.077] [0.049] [0.049]

COM*specialisation -0.047*** -0.023*** -0.019***
[0.016] [0.008] [0.006]

Specialisation -0.049*** -0.005 -0.058*** -0.057*** -0.052*** -0.042***
[0.010] [0.020] [0.011] [0.011] [0.010] [0.010]

Diversity -0.013*** -0.012** -0.018*** -0.017*** -0.015*** -0.014***
[0.005] [0.005] [0.006] [0.006] [0.005] [0.005]

Other controls YES*** YES*** YES*** YES*** YES*** YES***
Observations 82705 82,705 82,705 82,705 82,705 82,705
R-squared 0.413 0.414 0.412 0.412 0.435 0.436

Note: individual data. Relative communication is the importance of communication relative to all
other work activities and work context. Non-routine interactive tasks are measured as in Acemoglu &
Autor (2011). Regressions include controls for dominant industry, a cross-term of dominant industry
with specialisation, education dummies, communication work activities, age, age squared, gender,
marital status, occupational dummies and a constant. See Appendix A.4 for a detailed description of
the variables, measurement and data sources. Clustered standard errors are in parentheses, * significant
at the 10% level,** significant at the 5% level, *** significant at the 1% level.

add a time dimension to equation (5.11):

ln wi,l,y = α1 + α2φ̂i + α3M̂i,y + β1θ̂i,y + β2ρ̂l,y + β3 ˆRl,y + γ1( ˆθi,y · ˆρl,y)

+ γ2(M̂i,y · ˆρl,y) + εi,l,y.
(5.13)

Individual ability (φ̂i) is constant over year y. The amount of communication tasks

the worker performs ( ˆθi,y), the specialisation level (ρ̂l,y) and the size of the city ( ˆRl,y)

may change over time. The measurement error includes the ability of worker i

(Ai which is constant over time and place) and some measurement error at the

individual, city, time level (μi,l,y): εi,l,y = Ai + μi,l,y

To obtain a panel of cities we aggregate all indicators to the city level l:

Δln wl = α2Δφ̂l + α3M̂l + β1Δθ̂l + β2Δρ̂l + β3ΔR̂l + γ1(Δθ̂l · Δρ̂l)

+ γ2(ΔM̂l · Δρ̂l) + Δεl ,
(5.14)

in which Δεl does not include unobserved ability. Table 5.8 presents the estimates

of this model for the period 2006-2009. The results hold for several time periods.

The estimates resemble the IV-estimates. The change in communication tasks at

the MSA level between 2006 and 2009 is positively related with the change in MSA

wage. The coefficients of the cross-term with sector specialisation is negative and
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significant, the cross-term with diversity insignificant and the cross-term with size

is positive and significant.

5.7.3 Skill level

Especially the spatial clustering of high-skilled workers relates to higher local wages

(Glaeser & Maré, 2001; Glaeser & Gottlieb, 2009). Skilled workers cluster in cer-

tain cities (e.g. New York, San Francisco) and these cities tend to be the ones with

higher wages (Rauch, 1993) and higher growth rates (Glaeser et al., 1995). Table

5.5 showed strong correlations between the sectoral structure of cities and the skill

level of their inhabitants. Do high-skilled workers benefit more from performing

communication tasks than low-skilled workers? The first two columns of Table 5.9

present the IV-estimates including cross-terms between communication and edu-

cational dummies. The cross-terms are insignificant while our variables of interest

are hardly affected by the inclusion of these additional explanatory variables.

5.7.4 Industrial structure

Lastly, we test the sensitivity of the results to changes in the measure of the local

industrial structure. The bias in the classification of sectors might hamper the es-

timates of our indicators for the local industrial specialisation and diversity level.

Overall, manufacturing sectors are defined at a more detailed level in the classific-

ation than service sectors. A diverse local structure of manufacturing sectors there-

fore obtains a higher RDI than a diverse local structure of service sectors. Indeed,

the variation in specialisation and diversity in manufacturing sectors is larger than

the variation in service sectors. The last column of Table 5.9 presents IV-estimates

in which only manufacturing sectors (column 3) and only service sectors (column

4) are included in the RSI. The returns to communication job tasks vary with the

local specialisation level of both manufacturing and service sectors. As expected,

the variation in the local manufacturing specialisation obtains a stronger impact

than the variation in the local service sector.
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Table 5.8. First differences at MSA level

Dependent: change average MSA wage (2006-2009)
(1) (2) (3) (4) (5)

Communication 0.086*** 0.069*** 0.062***
[0.015] [0.017] [0.017]

COM*specialisation -0.030***
[0.005]

COM*diversity 0.012
[0.009]

COM*size 0.018**
[0.008]

Specialisation -0.055*** -0.043*** -0.055***
[0.002] [0.002] [0.001]

Diversity -0.010*** -0.011*** -0.016***
[0.002] [0.002] [0.004]

Size -0.005 0.040***
[0.008] [0.004]

Dominant industry 0.042 0.099 0.072 0.579** 0.144**
[0.078] [0.068] [0.070] [0.241] [0.060]

DOM*specialisation 0.132** 0.111** 0.122** -0.372** 0.070*
[0.053] [0.047] [0.049] [0.163] [0.041]

Drop-out -0.279*** -0.243*** -0.253*** -0.172** -0.250***
[0.027] [0.024] [0.024] [0.083] [0.022]

College 0.094*** 0.095*** 0.096*** 0.086 0.087***
[0.019] [0.016] [0.017] [0.059] [0.015]

College grad 0.378*** 0.378*** 0.377*** 0.429*** 0.369***
[0.023] [0.020] [0.021] [0.072] [0.019]

Rent -0.024 -0.030* -0.027 -0.061 -0.029**
[0.018] [0.016] [0.016] [0.057] [0.015]

Communication job -0.073*** -0.073*** -0.070*** -0.026 -0.076***
[0.016] [0.014] [0.015] [0.051] [0.013]

Non-white 0.009*** 0.009*** 0.009*** 0.004** 0.009***
[0.001] [0.001] [0.001] [0.002] [0.000]

Non-married 0.000 0.000 0.000 0.000 0.000
[0.000] [0.000] [0.000] [0.000] [0.000]

Age -0.192*** -0.202*** -0.202*** -0.276*** -0.202***
[0.024] [0.021] [0.022] [0.077] [0.019]

Age squared 0.328*** 0.247*** 0.256*** 0.385*** 0.265***
[0.032] [0.037] [0.039] [0.103] [0.034]

Female 0.241*** 0.177*** 0.180*** 0.348*** 0.200***
[0.036] [0.038] [0.040] [0.113] [0.035]

Occupation dummies YES*** YES*** YES*** YES*** YES***
Observations 165 165 165 165 165
R-squared 0.981 0.986 0.985 0.807 0.988

Note: city data (aggregated individual data). See Appendix A.4 for a detailed description of the vari-
ables, measurement and data sources. Clustered standard errors are in parentheses, * significant at the
10% level,** significant at the 5% level, *** significant at the 1% level.
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Table 5.9. Additional variation: skill levels, industry and services - IV-estimates

Dependent: individual wage (log)

Skill cross-terms Manufacturing Services

(1) (2) (3) (4)

Communication 0.114*** 0.113*** 0.182*** 0.125***
[0.036] [0.036] [0.055] [0.047]

COM*specialisation -0.016*** -0.069*** -0.015
[0.005] [0.021] [0.009]

COM*drop-out -0.002 -0.003
[0.006] [0.005]

COM*college 0.001 0.001
[0.007] [0.007]

COM*college grad -0.013 -0.015
[0.041] [0.041]

Specialisation -0.055*** -0.048*** -0.037*** -0.047***
[0.010] [0.010] [0.008] [0.006]

Diversity -0.017*** -0.016*** -0.002 0.001
[0.005] [0.005] [0.003] [0.017]

Other controls YES*** YES*** YES*** YES***
Observations 82,705 82,705 82,705 82,705
R-squared 0.443 0.444 0.446 0.445
Note: individual data. All variables are standardised with a mean of zero and a standard
deviation of one. Regressions include controls for dominant industry, a cross-term of dom-
inant industry with specialisation, education dummies, communication work activities, age,
age squared, gender, marital status, occupational dummies and a constant. See Appendix A.4
for a detailed description of the variables, measurement and data sources. Clustered stand-
ard errors are in parentheses, * significant at the 10% level,** significant at the 5% level, ***
significant at the 1% level.
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5.8 Discussion

The debate in the empirical literature and economic regional policy has been largely

about stimulating fruitful environments. The success of clusters like Silicon Valley

and diversified cities such as New York City stimulated many scientific and policy

projects on this subject and incited a massive literature on agglomeration econom-

ies. Many papers focus on the question whether specialised or diversified cities

are the most fruitful environments. Duranton & Puga (2001) were the first to point

out that both types are important in a system of cities. The question remains how-

ever how to induce such a beneficial environment and whether the advantages of

proximity are similar in both city types.

A major advantage of cities seems to lay in the role of proximity for the com-

munication of tacit knowledge and for learning from each other. Jaffe et al. (1993)

show that distance bounds patent citation. Bacolod et al. (2009) and Florida et al.

(2012) show that the returns to certain skills, such as social skills, increase with city

size. Charlot & Duranton (2004) find positive returns to communication in French

cities. This chapter takes a step towards unravelling the advantages of specialised

and diversified cities by analysing the role of communication in both city types. We

show substantial wage returns to communication in both diversified and special-

ised US cities. Given their occupation, workers who communicate more are more

valued by firms. These returns decrease however with the specialisation level of

the urban area. Communication is positively valued in all city environments but

plays more of a key role in diversified cities.

In line with the work of Duranton & Puga (2001) and Desmet & Rossi-Hansberg

(2009) we relate these findings to differences in the production processes of firms

across specialised and not-specialised (diversified) cities. The higher value of com-

munication in diversified cities seems to result from a more crucial role of learning

in these cities. Specialised and diversified cities have different comparative advant-

ages. Within their location choice, firms exploit these local comparative advantages.

Our results suggest that social and communication skills are more valued in diver-

sified than in specialised cities. In terms of urban policy implications, the results

indicate that there is no one-policy-fits-all urban development policy as the com-

parative advantages vary across city types.





CHAPTER 6

SUMMARY

AND RESEARCH AGENDA

In the age of information and communication technology, cities continue to play a

key role in production processes. Both workers and firms concentrate in expensive

cities. The current role of cities in economic processes has been extensively stud-

ied. A major road in these analyses is studying the impact of skill structure on city

development. This study takes a new angle and investigates the role of a city’s task

structure. The breaking-up of production processes into separate parts makes such

a task approach insightful. A task approach elucidates what it is that cities facilitate

in today’s production processes. The previous chapters showed substantial interac-

tions between tasks, occupations and cities. Below, the main findings of this study

are summarised following the considered connections and the questions raised in

the introduction. This section ends with an agenda for further research.

The economic importance of proximity and especially human interactions ex-

plains the role of cities in the age of information and communication technology

(Gaspar & Glaeser, 1998). Cities remain important in production processes, but the

characteristics of their value altered. Today, cities specialise in certain functions

instead of industries (Duranton & Puga, 2005) and focus more on producing ideas

instead of goods (Glaeser & Ponzetto, 2010). These changes in comparative advant-

ages and structures of cities demand a new approach towards explaining the rise

and fall of cities. Chapter 2 analyses the connection between task structure and city

development and focuses on the question:

1. Does the connectivity between tasks explain employment development across cities?

To answer this question the chapter employs a task approach in explaining the

rise and fall of the largest 168 US cities in the period 1990-2009. The initial task
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structure of 41 job tasks of these cities explains a substantial part of the changes in

the distribution of employment across them. Moreover, it is shown that the spa-

tial interconnectivity between job tasks is a key comparative advantage of US cities

today. The benefits from vicinity to other job tasks and human interactions vary

across tasks. Some tasks heavily depend on proximity, while others can be easily

performed in isolation. The relevance of interconnectivity of tasks affected the em-

ployment development across cities in the last decades. Cities with a large share of

occupations that initially performed tasks that demand close performance of other

tasks, gained in terms of employment in the last decades. The initial economic

structure of these cities fitted the comparative advantage of cities. However, cities

with a large share of occupations which used to perform tasks that can be easily

performed at distance experienced a loss in employment share. The additional ex-

planatory power of the interconnectivity of the task structure to the one of the skill

structure underlines the relevance of a task approach. Successful cities of yesterday

contained industries that benefit from co-agglomeration, successful cities of today

perform job tasks that benefit from co-agglomeration.

The task approach also contributes to documenting economic activities across

space. Employing task data visualises underlying spatial variation within jobs and

industries. Chapter 3 studies the connection between cities and the structure of job

tasks and the relating question:

2. Do workers in large cities specialise in a smaller subset of tasks and develop more

specialised skills than workers located outside these cities?

This chapter is an empirical investigation of this question and employs German

task data from the BIBB. Defining jobs as occupation-industry combinations, the

task packages of jobs across German cities of different size are measured. The task

packages vary substantially between small, medium and large German cities. First,

jobs hold a smaller subset of tasks when they are performed in large cities than in

small cities. Workers in large cities are more specialised. Second, the demanded

skills for a job go up with the size of the local market. Likely, the higher special-

isation level of workers in large cities generates more time to focus on their core

task(s) and develop more task specific skills (Becker & Murphy, 1992). Chapter 3

shows that comparing jobs (or industries) and their wages across space is a risky

approach. The different job contents across space likely impact spatial wage differ-

entials.

The thick labour markets in cities not only affect the content of jobs but also
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the assignment of worker skills to job contents. Workers tend to be more efficient

if their skills match their job tasks well. The existence of a large variety of worker

skills and job contents makes the match between the two complex. Education levels

do not capture the full range of worker skills, while occupation codes do not cap-

ture the full range of job tasks. Chapter 4 analyses the connection between cities

and the match of worker skills to job tasks. By doing so it answers the question:

3. Does the thick labour market in large cities result in better matches of heterogeneous

workers to heterogeneous job tasks?

Empirically, this chapter applies a survey among Dutch workers who, among

others, indicate the quality of the match between their skills and job tasks. The

match of heterogeneous worker skills to heterogeneous job tasks is better among

workers in dense cities than among workers in the scarcely populated Dutch coun-

tryside. The availability of more choice, both from the supply and the demand side,

increases the fastidiousness and improves the quality of the match between the two.

Chapter 4 takes additional skill investments on top of education into account and

distinguishes occupations by their job tasks. More skilled workers and more com-

plex jobs are more often observed in the dense cities. These better workers and

better jobs suffer more from a bad job match than less good workers and jobs. This

explains their over-representation in dense cities with high quality matches. Refer-

ring to the positive wage returns of the quality of labour matches, we conclude that

matches are more efficient in dense labour markets in the Netherlands.

Lastly, this study applies a task approach in a contribution to the debate about

the advantages of specialised and diversified city environments. Both types of cit-

ies seem to be important in a system of cities relating to different stages in produc-

tion processes. The most salient agglomeration economy of cities is that proximity

lowers communication costs and facilitates human interactions to simulate learn-

ing. Chapter 5 studies whether advantages of proximity are similar in both city

types. It does so by comparing the connection between city structure and the value

of communication jobs tasks and answers the question:

4. Are communication tasks equally valuable in specialised and diversified cities?

Empirically, this chapter relates the differences in production processes of firms

across both city types to different advantages of communication in these cities in

the United States. Within diversified cities, communication occurs between work-

ers from different fields. This complicates communication since workers have dif-
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ferent knowledge, use different jargon, etc. The communication in specialised cities

reflects communication between workers with similar job tasks. Therefore, commu-

nication is likely more specialised but also less complex as workers ’understand’

each other better. Chapter 5 compares the wage returns to performing communic-

ation job tasks across 168 US cities. Within all cities, the wage returns of commu-

nication jobs tasks are positive. The returns to communication are however larger

in diversified than in specialised cities. This suggests that comparative advantages

vary across city types. Firms exploit these comparative advantages with their loca-

tion choice.

6.1 Research agenda

The task approach is a relatively new and emerging approach. It faces many chal-

lenges, both conceptually and empirically as indicated by, among others, David

Autor (2013). Applying the task approach in the context of cities and regions gen-

erates additional challenges, especially regarding empirical analyses. This study

suggests that a task approach is worthwhile pursuing at the city level and contrib-

utes to the understanding of city economies.

Table 6.1 displays the sources for national task data. The task measurement in

all these datasets faces substantial limitations.1 Additionally, only two of the five

datasets include regional variation in tasks. This regional information is however

categorised and does not include information about actual location. It is there-

fore impossible to relate important regional factors, such as industrial structure and

education level, to these datasets.

Besides these data limitations, several challenges for further research and press-

ing questions remain. Here, we suggest four ways in which further research could

contribute to the understanding of what happens inside and outside cities.

Table 6.1. Sources of task data

Country Spatial information Main other limitations

Dictionary of Occupational Titles (DOT) United States None Infrequent updates
Likely status quo bias

Occupational Information Network (ONET) United States None No time series
IAB/BIBB labor force data Germany Categorised by population Questions vary over time

Self-reported information
British Skill Survey United Kingdom None Self-reported information
Dutch Skill Survey Netherlands Categorised by density Self-reported information

First, more insight in what spatially connects the performance of tasks is valu-

1 See Autor (2013) for a discussion about the limitations.
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able. The contribution of cities in the current economy seems to lay in the import-

ance of proximity and scale benefits. Chapter 2 shows that the connectivity between

tasks explains the development of cities. But what determines this interconnectiv-

ity? Why are some tasks performed in close vicinity and others not? Following

the influential work of Blinder (2006) an extensive literature focuses on the ’off-

shorability’ classification of tasks and jobs. The key attribute that defines a task as

’offshorable’ is that is does not depend on face-to-face worker contact or close prox-

imity between worker and customer. However, it might be possible to offshore a

task but not preferable to perform it in isolation. For example, a researcher is able

to perform all his tasks alone and far away from co-workers and customers. He

will be more productive when he is located in the close vicinity of other workers

and captures the benefits from knowledge spillovers. However, it does not matter

where this cluster of co-workers and customers is located. Put simply: the offshor-

ability measure does not include the proximity and scale benefits of certain tasks. A

clear definition of what bundles tasks together in space would provide more insight

in global supply chains and the role of cities in these chains.

Second, taking into account the hinterland of cities would be a valuable exten-

sion. Currently, most studies view cities as isolated places while the variation in

the hinterland of cities likely affects their economic structure as well. The hinter-

lands of cities in rich countries, for instance, fulfil a different role for city economies

than hinterlands in poor countries. Cities which are located in a densely populated

region experience different relations with their hinterland than cities in a scarcely

populated region. Networks of cities divide labour in another way than isolated

places. More insight in the role of various hinterlands and geographical linkages

would add to the knowledge about city economies and their task structures.

A third interesting extension would be to include worker skills in the analyses

of the interactions between tasks, jobs and cities. A broad literature relates the suc-

cess of cities to the preference of skilled workers to live in certain cities (Combes

et al., 2008; Lee, 2010). High-skilled workers sort into different task packages com-

pared to less skilled workers. Furthermore, the task packages of jobs may be flexible

towards the worker who performs them. Unravelling the interplay between task

packages and location preferences of skilled workers is an interesting and import-

ant challenge for further research.

Lastly, the assignment of skills to job tasks and the task structure of economies

altered the last decades. Little is known about the spatial changes in the task struc-

tures. To place the role of cities in past, current and future economic structures,
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such analyses are however very relevant.

In summary, the relatively new interest in the task approach results in many

interesting observations but also in several pressing questions and challenges. The

main challenge seems to be overcoming the data limitations which result in a lack

of knowledge about spatial patterns of job contents. The substantial spatial vari-

ation within German jobs and Dutch jobs (see Chapter 3 and 4) and the substantial

changes over time in the United Kingdom (Akcomak et al., 2013) indicate a possible

measurement error caused by these limitations. The continuing key role of cities in

today’s production processes makes knowledge about spatial task patterns and the

connections between tasks, skills, jobs and cities relevant for analyses and policy

on regional labour markets.



APPENDIX A

US DATA

A.1 Data description

Current Population Survey — May Outgoing Rotation Group

The Current Population Survey (CPS) is a monthly household survey of the US

government. It contains information about employment and other labour-market

variables. For each person it provides information on occupation, industry, hours

worked, earnings, education, and unionisation. The data also contain background

variables such as age, sex, race, ethnicity, geographic location. We use the May

Merged Outgoing Rotation Group (MORG) files in which more detailed informa-

tion about earnings and working hours are available. We use the years 1990-2009

because the residence of the respondent is available in terms of Metropolitan Stat-

istical Areas (MSA). We assume that the respondents work in the same MSA as they

live. In 1990 67 percent of the respondents lives in a MSA, in 2009 this is almost 75

percent.

ONET

Task information is gathered from the ONET Database (www.onetcenter.org). For

each occupation, this database provides information about the importance of 41

work activities. Work activities are defined as ’General types of job behaviours oc-

curring on multiple jobs’. Initial information of the ONET database is based on

data from occupation analysts. This information is supplemented and updated by

ongoing surveys of each occupation’s worker population and occupation experts.

The level of importance of the activities is measured by the question: How import-

ant is the work activity to the performance of the job? The importance is scaled

from 1 (not important at all) to 5 (extremely important). The database consists of a

cross-section, which is updated over time. The 3.0 version is used for this study.
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Local Area Unemployment Statistics

The employment data for counties is collected from the Local Area Unemploy-

ment Statistics of the Bureau of Labor Statistics (BLS). We use county data for em-

ployment statistics instead of Metropolitan Statistical Areas (MSAs). The border

definitions of MSAs change over time, so growth statistics are biased. Counties

are merged into MSAs following the 1990 definition of the Census. Details on the

construction of the city classifications are given below.

Census 1990 and 2000

The share of high-skilled people and the mean rent by MSA is gathered from the

Census data. For each MSA it contains information on the number of people that

have obtained at least a Bachelor’s degree in 1990 and 2000. We do not have in-

formation on the share of high-skilled people or rents by city for other years.

A.2 Classifications

Cities

In 2009, MSAs were responsible for more than 85 percent of the employment, in-

come, and production of products and services in the United States (Bureau of

Economic Analysis). MSAs are defined by the nature of their economic activity.

The scope of regional economic activity increases over time, which is replicated

in the borders of the MSA classification. To analyse the development of economic

structure within cities, we need a consistent city classification. To do so, we use

MSA definitions by combining counties following the 1990 definition of the Census.

Since county borders do not change over time, our MSA classification represents

cities, which do not change in geographical size over time. Due to a change in clas-

sification of MSAs in 2005 we loose a small fraction of our sample. The definition

of the Census is optimised for this break in classification. Our city classification

consists of 168 MSAs, which are stable over time.

Industries

The Census industry classification changes within the period 1990-2009. We use

a three-digit consistent classification provided by David Dorn and used in Autor

& Dorn (forthcoming). The classification includes 142 industries at the three-digit
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level. For the two-digit level we distinguish 11 industries. We exclude the agricul-

ture industry. To verify the CPS distribution of industries over MSAs we compare

it with the County Business Pattern data. Using data from the County Business

Patterns instead of the CPS does not change the results.

Occupations

The Census classification for occupations changes over time as well. We make use

of the occupation classification in Autor & Dorn (forthcoming). This classification

includes 326 occupations, which are consistently defined over time.

A.3 Data appendix chapter 2

Tasks are defined as ’General types of job behaviours occurring on multiple jobs’.

The ONET database provides the importance of 41 work activities for occupations

following the Standard Occupation Classification (SOC 2000). The SOC occupa-

tional classification scheme of the ONET database is matched to the Census 2000

occupational classification scheme. This scheme is collapsed to the 326 consistent

occupations. Table A.1 shows the 41 tasks, their task group and descriptive statist-

ics.
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Table A.4. Regressions - task group combinations

Information Work Mental
input output processes

Work output -0.049
[0.043]

Mental process 0.065 0.047
[0.054] [0.046]

Interacting with others 0.032 0.035 -0.083
[0.038] [0.039] [0.054]

Note: Regressions include initial employment share (1990), employment in both
task groups separately and the control variables as well. Only the interaction term
between employment in two task groups is presented. For instance, the cell In-
formation input - Work output shows the coefficient of the interaction term of em-
ployment in information input and employment in work output tasks (both in 1990
while the regression furthermore includes the initial employment, the employment
shares in information input and work output in 1990 and the control variables).
Robust standard errors are in parentheses. The coefficients are insignificant.
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A.4 Data appendix chapter 5

Figure A.1. Native inhabitants in specialised and diversified cities
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Note: source Current Population Survey 2009. City level data, n=168. The correlations are respectively
0.30 (0.00) and -0.23 (0.00) and significant at the 1% level. RSIl and RDIl are measured as described
in Section 5.3. Native inhabitants are defined as workers born in the US and are measured as share of
employment.
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Table A.5. Variables

Variables Description Measurement Source

Wage Hourly wage Individual level, logs Current Population Survey 2009
Note: top coded as described in Section 5.4

Communication Principal component index by occupation Occupational level, standardised scores ONET Skill Survey 2000
Constructed by the standardised scores of the six
communication tasks as described in Section 5.4

Specialisation Regional Specialisation Index by city ρ̂l City level, standardised scores Current Population Survey 2009
ρ̂l = maxl

(
logEl,j − logEj

)
in which El,j represents employment
share of industry j in city l and
Ej the employment share of industry
j in national employment.

Diversity Regional Diversity Index by city RDIl City level, standardised scores Current Population Survey 2009
RDIl =

1
∑j El,j/Ej

Dominant industry Dummy variable indicating whether the individual Individual level, dummy variable Current Population Survey 2009
works in the dominant local industry or not
The dominant industry is the industry with the highest
specialisation level in the city.

Control variables

Drop-out Dummy variables indicating whether the individual Individual level, dummy variable Current Population Survey 2009
dropped-out of high-school

High-school Dummy variable indicating whether the highest Individual level, dummy variable Current Population Survey 2009
completed education of the individual was high-school

Some College (College) Dummy variable indicating whether the highest Individual level, dummy variable Current Population Survey 2009
completed education of the individual was some college

College (College grad) Dummy variable indicating whether the highest Individual level, dummy variable Current Population Survey 2009
completed education of the individual was college

Communication job activities Standardised score on the ONET variable Occupational level, standardised scores ONET Skill Survey 2000
performing for or working directly with the public’.

Non-white Race measurement, when the individual originates Individual level, dummy variable Current Population Survey 2009
from a non-white race the dummy equals unity.

Non-married When the individual is not married, the dummy equals Individual level, dummy variable Current Population Survey 2009
unity

Age and age squared Age and age squared of the individual Individual level Current Population Survey 2009
Female When the individual is a female, the dummy equals Current Population Survey 2009

unity
Occupation dummies Dummy variables for each two-digit occupation group Occupational level, dummy variables Current Population Survey 2009
Additional / robustness variables
Size Employment by MSA City level, standardised logs Local Unemployment Figures 2009
Language-skill proxy Average score on the following category: Occupational level, standardised shares Current Population Survey 2009

Who originates from a non-English speaking country?
Category 1: the worker him/herself
Category 2: both parents of the worker
Category 3: one of the parents of the worker
Category 4: nobody

Population 1930 County population in 1930, summed by MSA City level, standardised logs Census Historical Population Figures
Relative communication Share of communication job tasks within the total ONET Skill Survey 2000

score of job tasks by occupation
Non-routine interactive Occupational score on the non-routine interactive Occupational level, score ONET Skill Survey 2000

job tasks as defined in Acemoglu & Autor (2011)
Rent Standardised average rent by MSA in 2000 City level, standardised averages Census 2000
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Figure A.2. Communication and native inhabitants

0
.2

.4
.6

.8
Av

er
ag

e C
om

mu
nic

ati
on

 S
co

re
 20

09

.2 .4 .6 .8 1
Share of native inhabitants

Note: source Current Population Survey 2009. City level data, n=168. The correlation is -0.08 (0.34)
and not significant. Communication is measured as the average score on the Communication-Index as
defined in Section 5.4. Native inhabitants are defined as workers born in the US and are measured as
share of employment.
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Table A.7. Correlations among communication tasks

Variables (1) (2) (3) (4) (5) (6)

(1) Relations 1.000
(2) External communication 0.800 1.000
(3) Internal communication 0.658 0.603 1.000
(4) Face-to-face 0.479 0.447 0.500 1.000
(5) Teamwork 0.420 0.332 0.512 0.544 1.000
(6) Contact 0.579 0.522 0.308 0.472 0.535 1.000

Table A.8. PCA results for communication tasks

Communication-Index
loadings for first principal component

Relations 0.456
External communication 0.429
Internal communication 0.416
Face-to-face 0.386
Teamwork 0.371
Contact 0.386

Explained variance 0.599



APPENDIX B

GERMAN DATA

B.1 Data description

The empirical analyses in Chapter 3 employ the the survey of the working popula-

tion in Germany carried out by the German Federal Institute for Vocational Training

(BIBB) and the Federal Institute for Occupational Safety and Health (BAuA).1 Since

1979, the BIBB survey questions the German labour force about qualifications, ca-

reer history and detailed job characteristics etc. Chapter 3 employs the most recent

wave of the BIBB; the 2006 wave. This wave consists of a representative sample of

about 20,000 Germans. For more information about the survey and the dataset we

refer to the work of Rohrbach-Schmidt (n.d.).

1 Hereafter we refer to this dataset as the BIBB dataset.
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Table B.2. List of included variables

Measurement Mean S.D.

Specialisation Number of tasks that are performed ’sometimes or ’rarely’ by the worker 15.61 57.89
Required cognitive skills Number of performed cognitive core tasks - as defined in Section 3.3.2 1.66 1.09
Small city Dummy variables: city of residence houses less than 20,000 inhabitants 0.41 0.49
Medium city City of residence houses between 20,000 and 100,000 inhabitants 0.26 0.44
Large city City of residence houses more than 100,000 inhabitants 0.33 0.47
Unskilled No degree 0.03 0.18
Low skilled Obtained high-school degree 0.04 0.19
Medium skilled Obtained operational college degree 0.58 0.49
High skilled Obtained college or university degree 0.35 0.48
Age Age of the individual 42.45 9.54
Gender Dummy variable with value 0 for males and 1 for females 0.49 0.50
Native speaker Dummy variable indicating whether German is the workers mother tongue 0.94 0.23
Job Three-digit occupation and two-digit industry combination

This results in 1739 unique jobs.
Job average The mean of the dependent variable for the for the occupation-industry combination.
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B.2 Replication estimates of Duranton & Jayet (2011)

for Germany

Following Duranton and Jayet, Section 3.3.3 analyses whether scarce occupations

are more often performed in large cities. Ideally we estimate the employment share

for each sector j, city size l and occupation o combination Ej
o,l :

Ej
l,o = a0 + a1

(
1/Ej

o
)
+ a2Nl + a3Nj

l + a4(1/Ej
o) ∗ Nl + ε

j
l,o (B.1)

in which Ej
o represents the average employment share of occupation o in sector

j. Nl is a city size dummy and Nj
l is a dummy for each city category and sector

combination. However, there are too many zeros in the data to estimate this regres-

sion. Therefore, we use fixed effects and dummies for each sector and occupation

combination (aj
o), for each sector and city size combination (bj

l ) and for each city

size and scarcity level combination (dm(l),r(j,o)). Scarcity is defined as the scarcity of

occupation o within sector j, we measure this in terms of quartiles.

Ej
l,o = aj

o + bj
l + dm(l),r(j,o) + ε

j
l,o (B.2)

To make this estimation computationally tractable, we focus on the probability of

an individual to end up in each of these cells. We assume this probability follows a

logit form:

π
j
l,o =

exp
(
Yj

l,o
)

∑i=1,...L ∑l=1,...O exp
(
Yj

i,l
) (B.3)

with: Yj
l,o = α

j
l + β

j
o + ξm(l),r(j,o)

For more detailed information we refer to the work of Duranton & Jayet (2011).





APPENDIX C

DUTCH DATA

C.1 Data description

Chapter 4 employs the Longitudinal Internet Studies for the Social Sciences (LISS)

panel of 3,000 Dutch individuals. This panel is the core element of a project titled

’Measurement and Experimentation in the Social Sciences’ from the Dutch research

institute CentERdata. The chapter combines information from the background

study, the work and schooling study, the personality study and an additional ques-

tionnaire about job tasks (carried out in May 2012). We drop all skilled agricultural,

fishery, and forestry workers, since the locations of these occupations depend on

natural resources.

The website of the LISS panel (http://www.lissdata.nl/) provides detailed in-

formation about the panel and questionnaires and provides access to the data.
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C.2 Proxy measurement error

Respondents were asked to indicate the importance of a certain job task for an ex-

ample job followed by the effectiveness at performing that task in that occupation.

For two separate tasks, the respondent was questioned about the importance and

effectiveness of two example jobs. Table C.3 shows the task–occupation combina-

tions.

The proxy for the measurement error is a respondent’s indicated importance for

a task–occupation combination relative to its average indicated importance.

Table C.3. Task–occupation combinations for example jobs

Task Example jobs

Dealing with people Secretary Car mechanic
Persuading/influencing others Nurse Teacher
Physical strength Grocer Policeman
Dexterity Plumber Salesperson
Solving problems Ticket collector Journalist
Simple mathematics Cashier Real estate agent
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SAMENVATTING

(SUMMARY IN DUTCH)

Dalende informatie-, communicatie- en transportkosten stimuleren de ontwikke-

ling van mondiale productieketens. Het fabriceren van het hoofd van een barbie-

pop kan op een andere locatie plaatsvinden dan het maken van haar outfit of de

marketing rondom haar persoonlijkheid. Steden blijven een belangrijke productie-

plek en Baldwin & Evenett (2012) refereren zelfs aan steden als de fabrieken van

de 21ste eeuw. Waarom betalen bedrijven de hoge prijzen in steden ten tijden van

mondiale productieketens en gratis communicatie via media als Skype?

Steden bundelen mensen en hun economische activiteit. Recent ontwikkelde

informatie, communicatie- en transporttechnologieën veranderen de verdeling van

werk en daarmee de rol van steden in de economie. Lagere kosten maken geografi-

sche afstand minder relevant voor productieketens. Verwacht werd dat het belang

van steden daarmee ook zou afnemen. Tot nu toe bleven steden een belangrijke

en dure vestigingsplek. Sterker nog: de correlatie tussen bevolkingsdichtheid en

productiviteit neemt toe. De vraag wat steden faciliteren in het huidige productie-

proces vormt het onderwerp van deze dissertatie.

De hedendaagse verdeling van werk

Elke afzonderlijke taak van het productieproces kan vandaag de dag uitgevoerd

worden op de meest efficiënte locatie. Waar enkele decennia geleden een auto op

één locatie werd gefabriceerd is het productieproces van een auto nu verspreid

over verschillende werelddelen. Voor vele taken is een stad nog steeds de meest ef-

ficiënte plek. Het ontwerpen van Nissan auto’s gebeurt bijvoorbeeld onder andere

in Londen terwijl de productie plaats vindt in onder andere Marokko en Maleisië.

Waarom is dit zo?
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Schaalgrootte en nabijheid van dezelfde (of juist andere) taken, leveranciers en

consumenten zijn productievoordelen van steden. Het delen van kennis en faci-

liteiten en het matchen van werknemers aan banen gebeurt gemakkelijker op de-

zelfde locatie dan op afstand. Met het opknippen van productieketens is het niveau

waarop deze voordelen plaatsvinden veranderd. Waar vroeger agglomeratievoor-

delen relevant waren voor de locatie van industrieën zijn ze tegenwoordig relevant

voor de locaties van het uitvoeren van bepaalde taken (Desmet & Rossi-Hansberg,

2009). Het gaat om de beste plek voor ’ontwerpen’, ’repareren’ en ’lassen’ in plaats

van die van de auto-industrie. Vandaag de dag specialiseren steden zich in be-

paalde functies in plaats van in bepaalde sectoren (Duranton & Puga, 2005). Vooral

taken waarvoor nabijheid en persoonlijke interacties van belang zijn renderen in

steden.

Recente technologische ontwikkelingen, zoals de opkomst van de computer,

beı̈nvloeden ook de verdeling van werk binnen en tussen banen. De noodzaak

om bepaalde taken te laten uitvoeren door één werknemer neemt af dankzij be-

tere coördinatie en communicatiemogelijkheden. Bovendien vervangen computers

bepaalde taken terwijl andere taken juist complementair zijn aan computers. De

meeste taken van taxichauffeurs zijn niet vervangen door computers, terwijl vele

taken van een secretaresse zijn overgenomen.

Taken, banen en steden

De verdeling van werk tussen banen, bedrijven en locaties verandert. Wat is de rol

van steden in mondiale productieketens? De nieuwe comparatieve voordelen van

steden vragen om een nieuw perspectief om deze vraag te beantwoorden. Deze

dissertatie analyseert de rol van steden vanuit een ’takenperspectief’. Een taken-

perspectief verduidelijkt wat steden faciliteren in huidige productieketens. Welke

taken worden juist wel en welke juist niet uitgevoerd in steden? Zijn banen an-

ders in steden dan buiten steden? De recente literatuur relateert het succes van

steden veelal aan de capaciteiten van haar beroepsbevolking. Het is essentieel de

capaciteiten van werknemers te onderscheiden van de taken die zij uitvoeren op

het werk. Capaciteiten worden ingezet om taken uit te voeren en hiervoor loon te

ontvangen, maar zorgen niet direct voor productie. Nieuwe verdelingen van werk

zorgen ervoor dat werknemers met bepaalde capaciteiten andere taken zijn gaan

uitvoeren. Dit maakt een onderscheid tussen taken en capaciteiten relevant. Deze

studie toont verbanden tussen taken, banen en steden. Onderstaande figuur schetst

de onderzochte relaties tussen de drie facetten per hoofdstuk.
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Schematische weergave van deze studie

TAKEN 

Hoofdstuk 3 
Steden en de taakstructuur van banen 

Hoofdstuk 4 
Steden en de matching van banen 

Hoofdstuk 2 
Taakstructuur en stadsontwikkeling 

BEROEPEN          STEDEN 

Hoofdstuk 5 
Steden en de waarde van taken 

2 

3 

4 

5 

Groeiende steden voeren samenhangende taken uit

De interacties tussen taken, banen en steden resulteren in verschillende onder-

zoeksvragen. De eerste focus van deze dissertatie ligt bij de relatie tussen taken

en de ontwikkeling van stedelijke economieën. Hoofdstuk 2 brengt in kaart in hoe-

verre de taakstructuur van 168 Amerikaanse steden de werkgelegenheidsgroei in

deze steden verklaart. Hierbij wordt gekeken naar het belang van de nabijheid

van andere taken; de connectiviteit van taken. Bepaalde taken, zoals samenwer-

ken, profiteren sterk van persoonlijke interacties en nabijheid van andere taken.

Andere taken, zoals boekhouden, kunnen juist gemakkelijk geı̈soleerd uitgevoerd

worden. Hoofdstuk 2 laat zien dat steden waarin in 1990 veel taken verricht wer-

den die profiteren van nabijheid, een relatief sterke werkgelegenheidsgroei kenden

in de periode 1990 tot 2009. Het takenpakket in deze steden sluit goed aan bij de

comparatieve voordelen van Amerikaanse steden in de huidige economie. Begin

jaren ’90 waren er echter ook steden, zoals Detroit, die taken uitvoerden die rela-

tief gemakkelijk geı̈soleerd uitgevoerd kunnen worden. Deze steden kennen een

minder harde werkgelegenheidsgroei of zelfs een krimp. Succesvolle steden van

gisteren huisvestten industrieën die profiteren van agglomeratie, succesvolle ste-

den van vandaag huisvesten taken die profiteren van agglomeratie. De clustering

van de autoindustrie in Detroit resulteerde in een zeer succesvolle economie in de
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jaren ’70. Vandaag de dag floreren echter juist steden zoals Boston en New York

die zich richten op het uitvoeren kennis intensieve taken in de financiële wereld,

professionele diensten en nieuwe technologie (Glaeser & Ponzetto, 2010).

Banen zijn anders in steden ...

Een takenperspectief draagt tevens bij aan het documenteren van economische ac-

tiviteit over de ruimte. Takendata geven meer inzicht in de onderliggende geogra-

fische variatie in banen en in sectoren. Hoofdstuk 3 gaat na in hoeverre het taken-

pakket en de gevraagde vaardigheden van banen verschillen tussen locaties. Banen

worden gedefinieerd als een beroep in een sector. De takenpakketten van banen

variëren substantieel tussen kleine en grote Duitse steden. Ten eerste bevatten de

banen een kleiner takenpakket in grote steden dan in kleine steden. Werknemers in

grote steden zijn dus meer gespecialiseerd dan werknemers in kleine steden. Ten

tweede stijgen de vereiste vaardigheden van een baan met de stadsgrootte waar

deze wordt uitgevoerd. Waarschijnlijk hebben de meer gespecialiseerde werkne-

mers in grote steden meer tijd om zich te focussen op hun belangrijkste taken en

kunnen zij hierdoor meer vaardigheden voor deze taken ontwikkelen. Hoofdstuk

3 suggereert dat regionale loonanalyses rekening zouden moeten houden met de

regionale variatie in de inhoud van banen.

... en matches tussen werknemer en baan zijn beter

De banendichtheid van een stad beı̈nvloedt naast het takenpakket van banen ook

de match tussen werknemerscapaciteiten en hun taken. Werknemers zijn efficiënter

wanneer hun takenpakket goed aansluit bij hun vaardigheden. De grote varia-

tie aan zowel vaardigheden van werknemers als takenpakketten maakt een match

complex. Voor werknemers en werkgevers zijn deze variaties veelal zichtbaar,

maar voor onderzoekers niet. Hoofdstuk 4 maakt gebruik van een dataset met

informatie omtrent de aansluiting tussen vaardigheden en taken van werknemers.

De kwaliteit van de match tussen vaardigheden en het takenpakket neemt toe met

de baandichtheid van de lokale arbeidsmarkt. De grotere keuze maakt werkge-

vers en werknemers kieskeuriger wat resulteert in een betere match. Deze match

is belangrijker voor relatief getalenteerde werknemers en complexe banen omdat

zij meer loon of opbrengst verliezen bij een slechtere match. Deze werknemers

en banen vestigen zich dan ook onevenredig vaak in arbeidsmarkten met een hoge

baandichtheid. Werknemers met een goede match tussen hun capaciteiten en taken
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ontvangen een hoger loon. Dit suggereert dat baandichtheid resulteert in efficiënte

matches.

Maar de voordelen verschillen tussen steden

Tot slot draagt deze dissertatie bij aan het debat over de voordelen van verschil-

lende type steden. Zowel steden met een diverse als steden met een gespeciali-

seerde sectorstructuur kunnen succesvol zijn. In gediversifieerde steden leren be-

drijven van de verscheidenheid aan bedrijven. Bedrijven in gespecialiseerde ste-

den profiteren van de nabijheid van soortgelijke bedrijven. Nabijheid en schaal-

grootte zijn de vestigingsvoordelen van steden. Nabijheid drukt communicatie-

en coördinatiekosten. Schaalgrootte biedt gelegenheid de kosten van faciliteiten

te delen, zorgt voor een gemakkelijke match van werknemers uit dezelfde sector

en voordelen van nabijheid van leveranciers en consumenten. Hoofdstuk 5 meet

het belang van communicatie en coördinatie in beide type steden. Communicatie

verschilt sterk tussen gediversifieerde en gespecialiseerde steden. In gediversifi-

eerde steden vindt communicatie plaats tussen werknemers uit verschillende sec-

toren, dit stimuleert radicale innovatie en vormt het productieproces van relatief

nieuwe producten en bedrijven. De communicatie is echter relatief complex gezien

de verschillende achtergronden van de werknemers. In gespecialiseerde steden

communiceren werknemers uit soortgelijke bedrijven met elkaar wat resulteert in

optimalisatie van het productieproces. Deze communicatie is makkelijker omdat

werknemers met eenzelfde achtergrond elkaar beter begrijpen. Hoofdstuk 5 toont

aan dat het uitvoeren van communicatietaken in beide soorten steden een positief

effect heeft op loon. Dit effect is echter groter in gediversifieerde steden dan in ge-

specialiseerde steden. De resultaten suggereren dat de economische voordelen van

steden wisselen tussen verschillende type steden.

Deze dissertatie toont relaties tussen taken, banen en steden. Het onderzoe-

ken van de takenstructuur van steden staat nog in de kinderschoenen. Hoofdstuk

6 bespreekt empirische en conceptuele uitdagingen van dit onderzoeksveld. De

sleutelrol die steden vandaag de dag in de economie spelen maakt inzicht in de

verbanden tussen de taken, banen en locaties van het productieproces van Barbie

echter (beleids)relevant, zie Ter Weel et al. (2010).




