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Tuning of dynamic feedback control for nonlinear mechanical systems

Daniel A. Dirksz and Jacquelien M.A. Scherpen

Abstract— Mechanical systems are often only equipped with
position measurement encoders and obtain the velocity signal by
differentiation. However, differentiation largely amplifies noise.
In this paper we look at dynamic feedback control of Euler-
Lagrange mechanical systems. Dynamic feedback is often used
to avoid velocity measurements in the control feedback. In
the Euler-Lagrange literature it is shown that the dynamic
extension realizes an approximate differentiator, justifying its
application. We show in this paper that the dynamic extension
used in the Euler-Lagrange literature actually realizes a lead-
compensator, proving that a lead-compensator can also globally
asymptotically stabilize a nonlinear mechanical systems. Fur-
thermore, based on the lead-compensator structure it is then
possible to offer a frequency approach to tune the controller
gains.

I. INTRODUCTION

In motion systems optical encoders are extensively used
for feedback control, measuring the position at a fixed
sampling rate. The position accuracy is however limited
by the quantized position measurement of the encoder, i.e.,
it is limited by the number of slits on the encoder disk.
Velocity (and sometimes acceleration) estimations are often
obtained by numerical differentiation, which largely ampli-
fies the quantization errors. Furthermore, differentiation is
also known to amplify high frequency noise. The derivative
action is however very important in control since it provides
the system with damping, which influences the convergence
of the system position to a desired value. In classical linear
control the derivative action also provides the system with
the necessary phase lead in order to have satisfactory stability
margins.

In classical linear control [6], [13] a pure differentiator
is often avoided by application of lead-compensators or
observers. A lead compensator is a control system that
differentiates the position only for a specific frequency range.
By doing so amplification of high frequency noise is avoided.
Another alternative is to use observers. An observer is
a dynamic system used to estimate the state of another
dynamic system, given knowledge of the system inputs and
measurements of the system outputs. Observers have the
disadvantage that their design depends on the model of the
system, which can make them sensitive to modeling errors
or parameter uncertainty. In this paper we look at dynamic
feedback as presented in the literature on control of Euler-
Lagrange mechanical systems [14], used to avoid velocity
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measurements (derivative of position). Dynamic feedback
with only position measurements for nonlinear mechanical
systems was first presented in [7], for control of robots
using approximate differentiation. The dynamic extension is
a virtual system, the control system, with dynamics equal to
the approximate differentiation filter of [7]. A similar idea
was presented in [1] for setpoint control, however, they have
a controller consisting of k second order systems (where k
are the degrees of freedom). The controller presented in [7]
has k first order systems. The idea was later extended for
tracking control of robots in [8] and to the case with bounded
control inputs in [9]. Many publications on the subject of
control with only position feedback have appeared in the
last decades. It is however out of the scope of this paper
the summarize all of them, we refer to e.g. [1], [2], [3], [4],
[7], [8], [9], [10], [12]. Furthermore, the main contribution
of this paper is not to present an alternative method to the
control with only position feedback problem.

The main contribution of this paper is to show that the
dynamic control structure in [1], [8], [14] actually realizes
the well-known lead-compensator in classical linear control.
By showing the lead-compensator structure we justify the
application of lead-compensators for (global) asymptotic
stabilization of nonlinear mechanical systems. Furthermore,
based on the lead-compensator structure we provide a fre-
quency approach to tune the control parameters. In a similar
way as in [5], we also show that we can improve the transient
response of the system by also tuning the initial conditions
of the controller states. The application of linear controllers
for nonlinear systems is usually not trivial, while nonlinear
control methods often lack control tuning guidelines. The
need for tuning guidelines for control of nonlinear systems
is however very high.

In section II we first summarize the basics on passivity-
based control as presented in [14] and the application of
dynamic feedback for nonlinear systems. In section III we
first take a classical control view at derivative feedback. That
is, we look at the properties of derivative feedback and its
alternatives in the frequency domain. We then show the con-
ditions under which the approximate differentiation structure
(also called dirty derivative) of [1], [8], [14] becomes a lead-
compensator. A simulation example to confirm our findings
is shown in section V. Some final remarks are then given in
section VI.

II. PASSIVITY-BASED CONTROL

In this section we summarize some important results of
[14].
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A. Stabilization of fully actuated mechanical systems

Consider a mechanical system described by the EL equa-
tions

M(q)q̈ + C(q, q̇)q̇ +
∂V

∂q
(q) +

∂F

∂q̇
(q̇) = Gu (1)

where q ∈ Rn is the vector of generalized coordinates,
M(q) is the positive definite mass-inertia matrix, C(q, q̇)
is the matrix of Coriolis and centrifugal forces, V (q) is the
potential energy function, F (q̇) is the dissipation function, G
the input matrix of rank m ≤ n and input vector u. For fully
actuated system we have direct actuation on each degree of
freedom, and we can take G = I .

Proposition 1 (Proposition 3.1 in [14]): Consider the
system (1) with G = I (fully actuated system). Define the
functions Va(q), Fd(q̇) ∈ R which satisfy the following
assumptions:

A. 1: The function Va(q) is such that the potential energy
of the closed-loop system

Vd = V (q) + Va(q) (2)

has a unique global minimum at q = qd, with qd constant,
and is radially unbounded with respect to q − qd.

A. 2: The (dissipation) function Fd(q̇) satisfies

∂Fd

∂q̇
(0) = 0, q̇⊤

∂Fd

∂q̇
(q̇) > 0, ∀q̇ ̸= 0 (3)

Then, the feedback control input

u = −∂Va

∂q
(q) − ∂Fd

∂q̇
(q̇) (4)

Globally asymptotically stabilizes system (1) in (q, q̇)⊤ =
(qd, 0)⊤. ▹

Common choices for Va and Fd are quadratic functions,
i.e.,

Va = −V (q) +
1
2
(q − qd)⊤Kp(q − qd) (5)

Fd =
1
2
q̇⊤Kdq̇ (6)

with Kp and Kd positive definite constant matrices.

Remark 1: The control input (4) with Vd and Fd as in (5)
and (6) is often called PD control plus gravity cancelation
in the EL literature. Notice that the Va term in (4) cancels
the original potential energy (often caused by gravitational
forces) and adds a proportional feedback term, while the Fd

term in (4) adds the derivative action. ▹

B. Dynamic extension and control of underactuated systems

The results of the previous subsection can be extended
to underactuated systems and systems for which the feed-
back control input u can only depend on the measured
positions. Control with only position measurements is very
useful, since then differentiation of the position measure-
ments is avoided. In [14] the vector q is partitioned into

q = (qr, qm)⊤, where qm ∈ Rk is the vector of measur-
able/actuated coordinates and qr is the vector of regulated
coordinates with constant desired value qrd. For ease of
presentation and without loss of generality we assume that
G = [0 Ik]⊤.

Proposition 2 (Proposition 3.6 in [14]): Define a control
system with states qc ∈ Rk, potential energy Vc(qm, qc)
and dissipation function Fc(q̇c). The control system with
dynamics given by

∂Vc

∂qc
(qm, qc) +

∂Fc

∂q̇c
(q̇c) = 0 (7)

globally asymptotically stabilizes the system (1) if
1) (Energy shaping). V (q) is proper and has a unique

minimum at qr = qrd.
2) (Damping injection). Fc(q̇c) satisfies

q̇⊤c
∂Fc

∂q̇c
≥ α||q̇c||2 (8)

for some constant α > 0.
3) (Dissipation propagation). For each trajectory such that

qc ≡ constant and ∂Vc

∂qc
(qm, qc) = 0, we have that q

is constant. ▹

By describing the dissipation by the Rayleigh dissipation
function, i.e.,

Fc(q̇c) =
1
2
q̇⊤c Rcq̇c (9)

with Rc a positive definite constant matrix we satisfy the
damping injection condition in Proposition 2 and get the
controller dynamics

q̇c = −R−1
c

∂Vc

∂qc
(qm, qc) (10)

The interconnection between system (1) and controller (10)
is defined by

Gu = − ∂Vc

∂qm
(qm, qc) (11)

It can be verified that (10) and (11) satisfy the conditions of
Proposition 2 for fully actuated systems, i.e., systems with
G = I and qm = q.

In [1], [8], [14] classes of mechanical systems of the
form (1), including both fully and underactuated systems, are
described which can be asymptotically stabilized according
to Proposition 2. The dynamic control systems used in [1],
[8], [14] have the control structure

u =
∂V

∂q
(q)−Kpq̄m − Kd(qc + Bq̄m)︸ ︷︷ ︸

û

(12)

q̇c = −A(qc + Bq̄m) (13)

where A = diag{ai} and B = diag{bi} are constant positive
definite matrices, i = 1, ..., k and q̄m = qm − qd. The
controller (13) is then obtained from (10) with

Vc =
1
2
(qc + Bq̄m)⊤KdB

−1(qc + Bq̄m) (14)
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and dissipation function

Fc =
1
2
q̇⊤c KdB

−1A−1q̇c (15)

Remark 2: For tracking control of fully actuated mechan-
ical systems in [8], [14] the control input also uses some
kinetic energy shaping terms, i.e., then

u =
∂V

∂q
(q)+M(q)q̈d+C(q, q̇d)q̇d−Kpq̄m−Kd(qc+Bq̄m)

with desired trajectory qd(t) ∈ C2. For tracking control the
dynamic extension part has the same structure as in (13), but
with q̄m = q − qd(t). In this paper we are only interested in
stabilization and thus do not shape the kinetic energy. ▹

Notice that the control input (12) does not depend on
velocity measurements, i.e., the derivative of qm. In [1],
[8], [14] the authors explain and justify the control structure
by showing that it is the same as applying approximate
differentiation. This is shown by taking

v = qc + Bq̄m (16)

We can then define the dynamics

v̇ = q̇c + B ˙̄qm

= −Av + B ˙̄qm (17)

which is a linear state-space system with input ˙̄qm. The
control input part û in (12) can then also be written in the
Laplace domain form

Û(s) = −KpQ̄m(s) − KdV (s)

= −KpQ̄m(s) − Kd(sI + A)−1BsQ̄m(s)

= −KpQ̄m(s) − Kd diag
{

bis

s + ai

}
︸ ︷︷ ︸

Ci(s)

Q̄m(s)(18)

where s is the Laplace variable and Û(s), V (s) and Q̄m(s)
the Laplace transform of û, v and q̄m respectively. We want
to emphasize that we are dealing here with a multi-input
multi-output (MIMO) system. The controller structure is
however diagonal, which makes a single-input single-output
(SISO) analysis of the diagonal components sufficient.

Notice that Ci(s) is a transfer function giving the approx-
imate derivative, also called dirty derivative in [1], [8], [14].
In the next section we take a closer, frequency-based, look
at the dynamic control structure presented above. We show
that, under certain conditions, the total control input (12)
with (13) realizes a lead-compensator.

III. DERIVATIVE FEEDBACK IN CLASSICAL CONTROL

In the previous section we summarized some results from
[1], [8], [14] on dynamic feedback control for EL nonlinear
mechanical systems. The main reason for the application of
dynamic feedback is to avoid velocity measurements in the
control input. We already explained in the Introduction that
mechanical systems are often only equipped with position

measurement encoders. Velocity estimations are often ob-
tained by numerical differentiation, which largely amplifies
the quantization errors. Furthermore, a pure differentiator
with transfer function Cd(s) = s is known to amplify high
frequency noise. The gain of the pure differentiator increases
as the frequency increases, with an infinite gain at infinite
frequencies.

The approximate differentiator described in the previous
section is one possible solution to avoid high gains at high
frequencies. Figure 1 show the Bode plot for the approximate
differentiator

Ci(s) =
κis

s + ρi
(19)

in (18), with κi and ρi positive constants. The constant ρi
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Fig. 1. Bode plot for the tamed differentiator (19) with κi = 2 and
ρi = 10.

determines at which frequency a pole is placed, such that the
differentiating action is terminated. Such a controller is also
called tamed differentiator in [11], since the differentiating
action is only limited to the relevant (and relatively) low
frequencies. However, such a tamed differentiator has the
disadvantage that the gain decreases with lower frequencies.
In classical control this can be seen as a proportional decrease
of the virtual stiffness, as described in [11]. The direct
consequence is then that the capability to suppress errors
at the low frequencies is also reduced. This shortcoming can
be dealt with by a lead-compensator, which has the transfer
function

CL(s) =
1

ω1
s + 1

1
ω2

s + 1
(20)

with positive constants ω2 > ω1. A lead-compensator has
neutral gain for the lower frequencies, and a bounded gain
increase (to be tuned) for the higher frequencies. Figure 2
shows the Bode plot for (20). The lead compensator places
a zero at frequency ω1, which is the frequency at which the
differentiation action is started. The differentiating action is
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Fig. 2. Bode plot for the lead-compensator (20) with ω1 = 0.1 and ω2 = 1
rad/s.

terminated by placing a pole at frequency ω2. With a lead-
compensator (20) approximate differentiation is realized only
in a specific frequency range, in order to keep the gain at
low frequencies high and low at high frequencies. The gain
GL (in dB) of the lead-compensator after the approximate
differentiation action is terminated is equal to

GL = 20 log(
ω2

ω1
) (21)

In [1], [8], [14] the application of the controller (13) with
control input (12) is justified since it includes the tamed
differentiator (19) described above. However, we can show
that under mild conditions the controller (13) with control
input (12) actually realizes a lead-compensator. Consider
again the controller dynamics given by (13) and describe
the matrix B by B = B1 − B2. Define

x = qc + B1q̄m (22)

We then have the dynamics

ẋ = q̇c + B1 ˙̄qm

= −Ax + AB2q̄m + B1 ˙̄qm (23)

We now have a linear system with two inputs, i.e., q̄m and
˙̄qm.

Proposition 3: Assume that Kp = diag{ki},Kd =
diag{di}, with ki and di positive constants and i = 1, ..., k.
The control input part û in (12) with controller dynamics (13)
realizes a lead-compensator control structure as described by
(20).

Proof. The control input part û in (12) is described in
terms of x by

û = −Kpq̄m − Kdx + KdB2q̄m (24)

Take B2 = K−1
d Kp, we then have

û = −Kdx (25)

Let X(s) be the Laplace transform of x(t). We can describe
the response of (23) in Laplace domain by

X(s) = (sI + A)−1AB2Q̄m(s) + (sI + A)−1B1sQ̄m(s)

= (sI + A)−1(B1s + AB2)Q̄m(s) (26)

Taking B2 = K−1
d Kp implies that B1 = B + K−1

d Kp and
since all the matrices are assumed diagonal we can write for
(26)

(sI + A)−1(B1s + AB2)Q̄m(s) = diag
{

γis + βi

s + ai

}
Q̄m(s)

(27)
where γi = bi + ki

di
and βi = aiki

di
. The control input (25)

then becomes

Û(s) = −Kd diag
{

γis + βi

s + ai

}
Q̄m(s)

= −Kd diag

{
βi

ai
·

γi

βi
s + 1

1
ai

s + 1

}
Q̄m(s)

= −Kp diag

{
γi

βi
s + 1

1
ai

s + 1

}
︸ ︷︷ ︸

Ĉi(s)

Q̄m(s) (28)

Notice that Ĉi(s) has the same structure as (20), with

ωi,1 =
βi

γi
=

aiki

dibi + ki
(29)

ωi,2 = ai (30)

�
Notice that besides proving the lead-compensator structure,
we also show how ω1 and ω2 (which determine the differen-
tiating frequency interval) are related to the control matrices
Kp,Kd, A and B in (12) and (13). Relations (29) and (30)
can then provide more insight for tuning of these control
matrices. Proposition 3 also proves that a lead-compensator
asymptotically stabilizes a nonlinear mechanical system. We
already mentioned that the application of linear controllers,
although very popular, is not trivial for nonlinear systems.
Furthermore, we also have the advantage that the lead-
compensator structure offers clear tuning guidelines.

We want to emphasize that we have changed neither the in-
put (12) nor the controller dynamics (13) from [1], [8], [14].
While in [1], [8], [14] the coordinate transformation (16)
is applied to justify the dynamic extension, here we apply
the transformation (22). Coordinate transformations are often
used to give a different, however equivalent, representation
of a system and usually provides new insights for both the
analysis and synthesis of control systems. Such a new insight
is described in this paper, where by applying a different
coordinate transformation we prove the lead-compensator
structure in the results of [1], [8], [14].

Remark 3: From classical linear control theory we know
that the controller (20) realizes a lag-compensator when we
choose ω1 > ω2 (the lead-compensator has ω2 > ω1).
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In control applications a lag-compensator is applied as an
alternative for the pure integrator to reduce the steady-
state errors of a system. While it is straightforward to take
ω1 > ω2 in (20), this is not the case for the EL control
structure described in section II-B. The proof of Proposition
2 in [14] is based on the candidate Lyapunov function

H =
1
2
q̇⊤M(q)q̇ + Vd(q) + Vc(q, qc) (31)

Given the controller dissipation function (9), we then have

Ḣ ≤ −∂Vc

∂qc

⊤
R−1

c

∂Vc

∂qc
(32)

and LaSalle’s invariance principle is used to prove asymp-
totic stability. Notice that, whatever we choose for Vc(q, qc)
in Proposition 2, the inequality (32) is always satisfied.
Inequality (32) shows that a controller with any function
Vc(q, qc) satisfying the conditions of Proposition 2 is meant
to dissipate energy. Energy dissipation or damping in linear
control is the same as phase lead. It is then not possible to
tune the controller such that it becomes a lag-compensator.▹

IV. IMPROVING TRANSIENT PERFORMANCE

In [5] it is shown that the initial conditions of the controller
qc(0) can be tuned to improve the transient performance of
the system. We show here a similar analysis by determining
the square L2-norm of qc + Bq̄m for the control structure
(12), (13). From (32) with (31) and Vc as in (14) we know
that

Ḣ ≤ −(qc + Bq̄m)⊤B−1KdA(qc + Bq̄m) (33)

Let the constant λ > 0 be the smallest eigenvalue of the
matrix B−1KdA. We then have

Ḣ ≤ −λ||qc + Bq̄m||2 (34)

For the L2-norm of (qc + Bq̄m) we then have

||qc + Bq̄m||22 =
∫ ∞

0

||qc(τ) + Bq̄m(τ)||2dτ

≤ − 1
λ

∫ ∞

0

Ḣ(τ)dτ

≤ 1
λ

(
H(0) −H(∞)

)
≤ 1

λ
H(0) (35)

The square of the L2-norm of a signal is the energy in
the signal. Since qc + Bq̄m forms part of the control input
(12), a lower energy for qc + Bq̄m means a lower energy in
the control input. The bound (35) can be reduced not only
by reducing λ, but also by reducing H(0). In the previous
section we showed how to tune the controller matrices
A,B, Kd, so we prefer the leave λ unchanged. However,
if we take qc(0) = −Bq̄m(0) we then have Vc(0) = 0 and
we reduce the bound (35) without changing the controller
matrices A, B,Kd. By reducing the bound on ||qc +Bq̄m||2
we can then reduce the initial energy in the control input (the
initial input effort). A lower initial control effort can imply

lower overshoots. In the next section we show the effect of
tuning qc(0) with a simulation example.

V. SIMULATION EXAMPLE: CONTROL OF A PLANAR
MANIPULATOR

The results of the previous section are now used to design
a controller for a two degrees of freedom planar manipulator,
shown in figure 3. Dynamic feedback, as described in section

θ2

θ1

x

y

Fig. 3. Illustration of the planar manipulator.

II-B, is applied to asymptotically stabilize the manipulator
without requiring velocity measurements. In practice the
motors that actuate the joints are relatively sensitive to noise,
which is (easily) amplified when applying a differentiator.
By application of dynamic feedback we avoid this problem,
while still asymptotically stabilizing the system. Denote the
length of link i by li, the angle of link i by θi such that
qm = q = (θ1, θ2)⊤, the distance from the joint to the
center of gravity of the link i by ri, the mass of link i
by mi and the inertia of link i by Ii. The control input
is given by u = (u1, u2)⊤, with ui the input torque of joint
i. Since the manipulator only works in the horizontal plane,
the gravitational forces can be neglected and V (q) = 0. The
manipulator is then described in the form of (1) by the mass-
inertia matrix

M(q) =
[

a1 + a2 + 2b cos θ2 a2 + b cos θ2

a2 + b cos θ2 a2

]
(36)

with constants

a1 = m1r
2
1 + m2l

2
1 + I1, a2 = m2r

2
2 + I2, b = m2l1r2

The Coriolis term is given by

C(q, q̇)q̇ = Ṁ(q)q̇ − 1
2

∂q̇⊤M(q)q̇
∂q

(37)

and
∂F

∂q̇
(q̇) = Dq̇ (38)

with constant matrices

D = diag{c1, c2}, c1, c2 > 0, G = I (39)

The manipulator parameters are shown in table I. The
parameters, except for the friction, describe an available
experimental manipulator from Quanser. The friction values
have not yet been verified on the experimental setup. Assume
we want the controller to have a derivative action (for both
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TABLE I
2R MANIPULATOR PARAMETER VALUES

Parameter Value Parameter Value Parameter Value

m1 0.5 l1 0.2 c1 0.1
m2 1 l2 0.25 c2 0.1
I1 0.01 r1 0.1 q1d 0.5π
I2 0.01 r2 0.1 q2d 0.25π

joints) between f1 = 1 Hz and f2 = 10 Hz, with a maximum
gain of 50 dB. From (21), with ω1 = 2πf1 and ω2 = 2πf2

rad/s, we know that GL = 20 dB, which means that the gain
ki should account for 50−20 = 30 dB, i.e., ki = 31.62. From
(30) we know that ai = ω2 and from (29) we can compute
that dibi = 284.6. Figure 4 shows the error trajectories for q1

and q2 for different choices of bi and di. Notice that there is

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

Time (s)

q 1−
q 1d

 (
ra

d)

0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

q 2−
q 2d

 (
ra

d)

Fig. 4. Error trajectories for the manipulator. Initial conditions
[qm(0) p(0) qc(0)] = [0 0 0 0 0 0]. Blue solid lines: ai = ω2, bi =
1, di = 284.6. Red dashed lines: bi = 10, di = 28.46. Black dotted
lines: bi = 50, di = 5.69.

no difference in the transient response for the three different
cases, which implies that the choice of bi and di is irrelevant
as long as dibi = 284.6. How to choose bi and di is not
obvious from the EL point of view. However, from (29) it
becomes obvious that only the product dibi is relevant, and
not the individual values for bi and di. This again emphasizes
the tuning insights gained from this paper.

Figure 5 compares the previous results (same values for
ai, ki and dibi) with the results when we tune qc(0) =
−Bq̄m(0). As we expected from the analysis in section IV,

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

Time (s)

q 1−
q 1d

 (
ra

d)

0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

Time (s)

q 2−
q 2d

 (
ra

d)

Fig. 5. Error trajectories for the manipulator. Initial conditions
[qm(0) p(0)] = [0 0 0 0]. Blue solid lines: qc(0) = [0 0]. Red dashed
lines: qc(0) = −Bq̄m(0).

tuning of qc(0) has reduced the overshoot without changing

the controller matrices A,B, Kp and Kd, since it reduces
the energy in the control input part depending on qc +Bq̄m.
Notice furthermore that, although the rise time has increased,
the settling time is similar to the previous simulation.

VI. CONCLUDING REMARKS

In this paper we show that dynamic feedback control
as applied in the Euler-Lagrange literature for nonlinear
mechanical systems actually includes the lead-compensator
structure. That is, a controller that only takes the derivative
in a specified frequency range. Since the lead-compensator is
well-known in classical linear control we are able to provide
a comprehensive interpretation of the dynamic feedback
control applied for nonlinear Euler-Lagrange mechanical
systems. Such a comprehensive interpretation of the control
structure gives a clear insight in how to tune the control pa-
rameters. Contrary to classical linear control, there is a great
lack of tuning guidelines for control of nonlinear systems.
It is well-known that the application of linear controllers
for nonlinear systems is usually not trivial. The results in
this paper prove that a nonlinear mechanical system can be
globally asymptotically stabilized with a lead-compensator.
To conclude, we also show how to tune the controller initial
conditions in order to improve the transient response.
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[4] G. Besançon, S. Battilotti, L. Lanari, 1998, State transformation and
global output feedback disturbance attenuation for a class of me-
chanical systems, Mediterranean Conference on Control and Systems,
Alghero, Italy, 561-566

[5] D.A. Dirksz, J.M.A. Scherpen, 2012, On tracking control of rigid-
joint robots with only position measurements, IEEE Transactions on
Control Systems Technology, doi:10.1109/TCST.2012.2204886

[6] R.C. Dorf, R.H. Bishop, 2008, Modern control systems, eleventh
edition, Upper Saddle River, Pearson Prentica Hall

[7] R. Kelly, R. Ortega, A. Ailon, A. Loria, 1994, Global regulation of
flexible joints robots using approximate differentiation, IEEE Trans-
actions on Automatic Control, Vol. 39, No. 6, 1222-1224

[8] A. Loria, R. Ortega, 1995, On tracking control of rigid and flexible
joints robots, Appl. Math. and Comp. Sci., Special issue on Mathe-
matical Methods in Robotics, Vol. 5, No. 2, 101-113

[9] A. Loria, H. Nijmeijer, 1998, Bounded output feedback tracking of
fully-actuated Euler-Lagrange systems, Systems & Control Letters,
Vol. 33, No. 3, 151-163

[10] A. Loria, K. Melhem, 2002, Position feedback global tracking control
of EL systems: A state transformation approach, IEEE Transactions
on Automatic Control, Vol. 47, No. 5, 841-847

[11] R. Munnig Schmidt, G. Schitter, J. van Eijk, 2011, The design of
high performance mechatronics: high-tech functionality by multidisci-
plinary system integration, Delft, IOS Press

[12] S. Nicosia, P. Tomei, 1995, A tracking controller for flexible joint
robots using only link position feedback, IEEE Transaction on Auto-
matic Control, Vol. 40, No. 5, 885-890

[13] N.S. Nise, 2004, Control systems engineering, fourth edition, Hobo-
ken, NJ, John Wiley & Sons

[14] R. Ortega, A. Loria, P.J. Nicklasson, H. Sira-Ramı́rez, 1998, Passivity-
based control of Euler-Lagrange systems: mechanical, electrical and
electromechanical applications, London, Springer

178


