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Retailers face the problem of finding the assortment that maximizes category profit. This is a challenging task
because the number of potential assortments is very large when there are many stock-keeping units (SKUs)

to choose from. Moreover, SKU sales can be cannibalized by other SKUs in the assortment, and the more similar
SKUs are, the more this happens. This paper develops an implementable and scalable assortment optimization
method that allows for theory-based substitution patterns and optimizes real-life, large-scale assortments at
the store level. We achieve this by adopting an attribute-based approach to capture preferences, substitution
patterns, and cross-marketing mix effects. To solve the optimization problem, we propose new very large neigh-
borhood search heuristics. We apply our methodology to store-level scanner data on liquid laundry detergent.
The optimal assortments are expected to enhance retailer profit considerably (37.3%), and this profit increases
even more (to 43.7%) when SKU prices are optimized simultaneously.
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1. Introduction
Assortment is a key element of a retailer’s market-
ing mix (Levy and Weitz 2004). It differentiates a
retailer from its competitors and has a very strong
influence on retail sales (Fox et al. 2004). Retailers
face the problem of selecting the assortment that
maximizes category profitability. The proliferation of
stock-keeping units (SKUs) in the last few decades has
made the problem of assortment selection even more
challenging.

The academic literature has looked at assortment
issues. One stream focuses on the impact of assort-
ment reductions on purchase behavior and category
sales (Boatwright and Nunes 2001, Borle et al. 2005,
Broniarczyk et al. 1998, Drèze et al. 1994, Sloot
et al. 2006). However, these studies offer little or no
guidance on finding the optimal assortment.

Our study fits in a second stream of papers that
offer methods to find the assortment that optimizes
category profits. Both the marketing literature (e.g.,
Borin and Farris 1995, Chong et al. 2001, McIntyre
and Miller 1999, Urban 1998) and the operations man-
agement literature (e.g., Kök et al. 2009, Mahajan

and van Ryzin 2001) have made significant contribu-
tions to solve the issue of assortment optimization.
Although some headway has been made, practition-
ers and academics agree that more research is needed
to provide feasible solutions to realistic assortment
problems (Bucklin and Gupta 1999, Kök et al. 2009,
Mantrala et al. 2009).

Specifically, the challenge of assortment optimiza-
tion is compounded by the fact that the demand for
SKUs cannot be assumed to be fixed; it is instead
affected by the presence of other SKUs as a result of
product substitution. Another challenge is to account
for similarity effects: an item is a stronger substi-
tute for similar items than it is for dissimilar items
(Rooderkerk et al. 2011, Tversky 1972). Demand is
also driven by own- and cross-marketing mix instru-
ments such as price, promotion, and shelf space
and by heterogeneous preference across stores (e.g.,
Montgomery 1997). Capturing these aspects in a
response model is further complicated by the fact that
assortments and prices observed in empirical data
are unlikely to be exogenous. Finally, retailers have
to decide not only about assortments but also about
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pricing, and these decisions need to be customized to
the store level (Rigby and Vishwanath 2006).

This paper develops an implementable and scal-
able assortment optimization method that meets these
challenges. Our method allows for realistic, theory-
based substitution patterns and is feasible to estimate
and to optimize. The starting point is a SKU-level
demand model with price, promotion, and shelf-
space effects and with heterogeneous parameters
across stores. Instead of SKU-specific intercepts and
response parameters, we develop an attribute-based
approach inspired by Fader and Hardie (1996) to
obtain a parsimonious model. The model accounts
for cross-SKU substitution and marketing mix effects,
where the cross effects are moderated by the simi-
larities between SKUs. Model estimation accounts for
assortment and price endogeneity by using a Bayesian
instrumental variable approach.

The paper also proposes a comprehensive optimiza-
tion approach to find the assortment that maximizes
retailer profit for a product category. We solve the
assortment selection problem at the store level to
address the need for store-level customization of the
assortment (Rigby and Vishwanath 2006). We extend
the optimization to jointly set SKU prices.

The assortment optimization problem is a highly
nonlinear extension of a knapsack problem that is
very hard to solve, especially for many SKUs. To over-
come this challenge, we propose new local improve-
ment heuristics that start from the current assortment
and iteratively improve profitability by searching for
better neighboring solutions.

We apply our methodology to three years of weekly
store-level scanner data provided by Information
Resources, Inc. (IRI). The data concern a liquid laun-
dry detergent category with 61 SKUs from a French
hypermarket retail chain. The optimal assortments
are expected to enhance retailer profit considerably
(37.3%); this profit increases even more (to 43.7%)
when SKU prices are optimized simultaneously.

The remainder of this paper is organized as follows.
Section 2 reviews the relevant literature on assortment
optimization. Section 3 describes our methodology,
consisting of an attribute-based SKU sales model and
an optimization procedure. Section 4 describes the
data, and §5 describes the model results. Next, §6
reports the optimization results. We conclude in §7
with a discussion of our results.

2. Literature Review
This section briefly discusses normative studies on
assortment selection. For extensive reviews of this lit-
erature, we refer to Kök et al. (2009) and Mantrala
et al. (2009). Table 1 offers a number of key character-
istics of the studies.

A first point of differentiation between studies is
the type of data that has been used. Borin et al.
(1994) and Borin and Farris (1995) consider a super-
market assortment selection based on synthetic model
parameters. Their objective is to maximize the return
on inventory subject to space constraints. They solve
a “small” problem (6 SKUs) and a “large” problem
(18 SKUs) using a simulated annealing heuristic.
Using the same data as Borin et al. (1994), Urban
(1998) extends this methodology by proposing a
greedy and genetic heuristic to solve the problem of
jointly optimizing item selection, space allocation, and
inventory policy. McIntyre and Miller (1999) consider
an assortment selection problem based on data from
an individual choice experiment regarding backpacks.
They find a solution to their problem by applying
an exhaustive search to a set of eight backpacks.
The studies based on synthetic (Borin and Farris 1995,
Borin et al. 1994, Smith and Agrawal 2000) or exper-
imental (McIntyre and Miller 1999, Miller et al. 2010)
data raise the issue of external validity. To overcome
this issue, several of the studies reviewed in Table 1
(including ours) use empirically observed data.

We structure the rest of the discussion alongside the
six key challenges that retailers face when optimiz-
ing assortments. These challenges were briefly men-
tioned in §1 but are discussed in more detail below.
The columns in Table 1 correspond closely with these
challenges, which highlight the points of differentia-
tion between studies.

1. Choosing among large numbers of SKUs: A typical
product category contains many dozens or hun-
dreds of SKUs (Bucklin and Gupta 1999). Model-
ing a large set of SKUs imposes challenges for the
demand model. We have to construct a parsimo-
nious sales model to predict the sales for all SKUs
in an assortment, including low-selling ones. Using
SKU-specific parameters (which is what most studies
in Table 1 do) means that every additional SKU needs
extra parameters (e.g., an intercept). To mitigate this
problem, we adopt the attribute-based approach that
replaces intercepts by attribute dummies (Fader and
Hardie 1996).

A large set of items complicates not only model esti-
mation but also the optimization problem. It becomes
very hard to solve, and exhaustive search is infea-
sible. Therefore, this study develops new heuristics
that solve the problem within a reasonable amount
of time.

2. Allowing for similarity effects: Key to any assort-
ment optimization exercise is that the demand model
accounts for similarity effects. Similarity effects imply
that items whose attributes are more similar are more
likely to compete for demand (Rooderkerk et al. 2011,
Tversky 1972). Although some of the reviewed stud-
ies in Table 1 account for similarity effects, none of
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Table 1 Overview of Selected Assortment Optimization Studies

Modeling of Accounting for Assortment Price Store-level Joint assortment and
Study Data type SKU parametersa similarity effect Marketing mix endogeneity endogeneity optimization price optimization

Borin and Farris (1995) Synthetic SKU-specific No Shelf space No No No No
McIntyre and Empiricalb SKU-specific No Price No No No Yes

Miller (1999)
Smith and Synthetic SKU-specific Yes None No No No No

Agrawal (2000)
Chong et al. (2001) Empirical Brand-specific Yes Price, Promotion No No Yes No
Mahajan and Synthetic SKU-specific Yes None No No No No

van Ryzin (2001)
Kök and Fisher (2007) Empirical SKU-specific Yes Price, Promotion No No Yes No
Misra (2008) Empirical Attribute-based Yes Price Yes No No No
Miller et al. (2010) Empiricalb SKU-specific Yes Price No No No No
Sinha et al. (2012) Empirical Attribute-based Yes Price No No Yes Yes
This study Empirical Attribute-based Yes Price, Shelf Yes Yes Yes Yes

space, Promotion

aModeling of SKU-specific parameters is SKU-based (separate parameter per SKU) or attribute-based.
bThese studies use experimental data.

them allows for substitution patterns that are gov-
erned by attributes. We use choice theory to allow
for attribute-based similarity effects in the demand
model. Thus, we extend the Fader and Hardie (1996)
approach by not only modeling preferences (inter-
cepts) as a function of attributes but also modeling
substitution patterns and cross-marketing mix effects.

3. Controlling for the marketing mix: Many stud-
ies ignore the role of (part of) the marketing mix
(e.g., price, shelf space, promotional support) during
demand estimation and/or assortment optimization.
However, the marketing mix instruments have a pro-
found effect on the demand for individual SKUs and
need to be accounted for.

4. Accounting for assortment and price endogeneity:
Retailers are likely to include SKUs in the assortment
that (are expected to) sell well. Similarly, prices are set
based on demand shocks that can be observed by the
retailer but not by the researcher. Hence, assortments
and prices are likely to be endogenous. Accommo-
dating endogeneity is needed for consistent parame-
ter estimates in the sales response function that are
used in the optimization. To our knowledge this study
presents the first method accounting for assortment
and price endogeneity simultaneously.

5. Store-level optimization: Differences in store char-
acteristics and demographics of the trade area
challenge retailers to customize their marketing mix
to the store level (Bambridge 2007, 2008; Campo
et al. 2000; Mantrala et al. 2009; Montgomery 1997),
including assortments. Leading retailers such as
Macy’s have realized that a “one size, one style fits
all” strategy does not work and have begun tailoring
a substantial part of their assortment to the local level
(O’Connell 2008). Hence, Mantrala et al. (2009) label
store-level customization as one of the key challenges
that demands more research attention. To address this

issue, we develop a model that allows for heterogene-
ity in parameters across stores, and we then conduct
store-specific assortment (and price) optimization.

6. Joint assortment and price optimization: Besides
the assortment, another important element of the
retailer’s marketing mix are SKU prices. Personal
communication with retailers has made it clear to
us that most retailers use a two-stage optimization
approach. First, they optimize the assortment. Next,
they optimize the prices of the available SKUs. There
seems to be potential to jointly optimize the assort-
ment and SKU prices, and our approach offers this.

To conclude, Table 1 clearly shows that whereas
some papers address some of the challenges, our
paper addresses all of them. The key contribution
is that we develop an implementable and scal-
able assortment optimization method that allows
for theory-based substitution patterns yet is feasi-
ble to estimate and to optimize for real-life, large-
scale assortments. Our new method includes (i) an
attribute-based demand model to capture preferences,
substitution patterns, and cross-marketing mix effects;
and (ii) heuristics that optimize retailer category profit
subject to constraints such as the amount of available
shelf space. The next section details the methodology
of our approach.

3. Methodology
Our approach consists of a sales model, described
in §3.1, and an optimization methodology, outlined
in §3.2.

3.1. Sales Model
Before formulating our model, we look at a signifi-
cant challenge encountered when developing a sales
model: modeling SKU sales while retaining parsi-
mony. We explain how modeling SKU sales at the
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store level using attribute-based modeling helps over-
come this challenge.

3.1.1. Modeling Framework. To model SKU sales,
we develop a model for SKU sales at the store level.
We choose store-level scanner data (as opposed to
household-level scanner data) because they are often
readily available, cost relatively little, and provide a
census of sales of all SKUs in a store. This is espe-
cially important for low-selling items. Reliable sales
measurement for these items (which could be prob-
lematic with household data) is crucial to assortment
optimization, because these are the items that are pos-
sibly eliminated.

A critical issue when modeling sales at the SKU
level is parsimony. A typical product category con-
sists of many SKUs, which means that a large set of
SKU-specific intercepts would have to be estimated
(Hardie et al. 1998). A parsimonious approach to
overcome this problem is using an attribute-based
way of modeling, proposed by Fader and Hardie
(1996). This approach is motivated by the asser-
tion that consumers do not form preferences for
each individual SKU in a particular product category
but that these preferences are derived from prefer-
ences for the underlying attributes (e.g., size, flavor,
color). Theoretical justification for this approach is
offered in economics (Lancaster 1971) and psychology
(Fishbein 1967).

Our model thus replaces SKU-specific intercepts by
SKU attributes as in Fader and Hardie (1996). We take
the approach one step further to accommodate the
substitution between SKUs, both because of the mere
presence of other SKUs and because of their mar-
keting mix activities. Using SKU-specific parameters
would increase the number of cross-effect parame-
ters quadratically in the number of SKUs. Conse-
quently, the number of parameters would quickly
grow too large to estimate. To overcome this problem,
we model cross-SKU substitution and cross-SKU mar-
keting mix effects based on attribute-based similarity
between SKUs.1

3.1.2. Model Formulation. We now develop our
attribute-based demand model and highlight the role
similarity variables play. We then compare our model
with the commonly used aggregate logit model.
SKU Sales. Modeling SKU sales at the store

level, we allow for flexible substitution patterns and
nonlinear effects by starting with a log–log model

1 Other papers have also explored models with similarity variables
that are a function of attributes. Examples include Nakanishi et al.
(1974), Cooper and Nakanishi (1983), and Hardie et al. (1998). Sim-
ilar to the last paper, our similarity variables explicity account
for the fraction of SKUs during each store-week that share the
same attribute. A point of distinction is that our similarity mea-
sure makes an explicit distinction between nominal and metric
attributes. For more details, refer to §3.1.2.

similar to the SCAN∗PRO model (Wittink et al. 1988):

log4Skti5 = �ki
︸︷︷︸

[A] SKU-store intercept

+

2
∑

q=1

�kqi log4Dkqti5

︸ ︷︷ ︸

[B] Own-price and shelf-space
responsiveness

+

5
∑

q=3

�kqiDkqti

︸ ︷︷ ︸

[C] Own-promotional support
responsiveness

+

K
∑

k′=1/8k9
xk′ ti=1

�kk′ti

︸ ︷︷ ︸

[D] Cannibalization due
to mere presence

+

2
∑

q=1

K
∑

k′=1/8k9
xk′ ti=1

�kk′qi log4Dk′qti5

︸ ︷︷ ︸

[E] Cross-price and shelf-space
responsiveness

+

5
∑

q=3

K
∑

k′=1/8k9
xk′ ti=1

�kk′qiDk′qti

︸ ︷︷ ︸

[F] Cross-promotional
responsiveness

+�Sales
kti 1 (1)

where
Skti = volume sales of SKU k ∈ 811 0 0 0 1K9 in week t ∈

811 0 0 0 1 T 9 in store i ∈ 811 0 0 0 1 I93
xkti = 1 if SKU k is present in week t in store i and

is 0 otherwise; and
Dkqti = the value for marketing mix instrument q for

SKU k in week t at store i, where
q = 1 represents the actual unit price,
q = 2 represents the amount of shelf space,
q = 3 represents the feature only activity (1 if yes,

0 if no),
q = 4 represents the display only activity (1 if yes,

0 if no), and
q = 5 represents the feature and display activity

(1 if yes, 0 if no).
Our model offers three key extensions to the clas-
sic SCAN∗PRO model. First, it controls for SKU shelf
space. The more facings a SKU receives, the more
shelf space it occupies and the more salient the prod-
uct is. Second, our model allows for store-level het-
erogeneity (all parameters are indexed i). Third, the
model explicitly accounts for cannibalization effects
via term [D] in Equation (1) with parameters �kk′ti

(explained below).
Parsimony. There are four ways in which parsi-

mony is achieved in our model.
1. Parsimony in SKU intercepts: Following Fader

and Hardie (1996), we replace SKU-store intercepts
in (1) by a set of fixed store intercepts (�i) and
attribute dummies:

�ki = �i +

L
∑

l=1

Ml−1
∑

m=1

�ilmAklm1 (2)

where Aklm = 1 if SKU k possesses level m of
attribute l and 0 otherwise.
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2. Parsimony in own-marketing mix effectiveness: To
achieve parsimony, we decompose the own effect �kqi

for SKU k belonging to brand b in store i and for mar-
keting mix variable q into two components:

�kqi = �qi + �qb4k51 (3)

where �qb4k5 is brand-specific responsiveness to mar-
keting variable q and �qi is the store-specific effect.
The rationale for (3) is that SKUs from the same brand
react in a similar way to changes in their own mar-
keting mix, whereas there may be systematic differ-
ences across stores in the marketing mix responses
(e.g., Hoch et al. 1995).

3. Parsimony in the cross-marketing mix effectiveness:
Most of the model complexity is due to the high num-
ber of cross effects (i.e., the number of marketing mix
instruments × the number of SKUs × (the number
of SKUs −15× the number of stores). To alleviate this
problem, we model the cross-marketing mix effects as
follows:2

∀k′
6= k: �k′kqti = �qi +

L
∑

l=1

�qli SIMkk′lti1 (4)

where SIMkk′lti is the similarity between SKU k and
k′ on attribute l in store i’s assortment in week t.
We operationalize the similarity variables below. The
rationale for (4) is that the more similar two SKUs
are, the stronger their cross effects are expected to be
(e.g., van Heerde et al. 2004). Parameter �qi captures
between-store heterogeneity.

4. Parsimony in the cannibalization terms. Consistent
with the idea that more similar SKUs have stronger
substitution patterns (e.g., Tversky 1972), we model
the substitution effects by attribute-level similarity
measures:

∀k′
6= k: �kk′ti =

L
∑

l=1

�li SIMkk′lti 0 (5)

After substituting Equations (2)–(5) in the sales
Equation (1), we obtain the final sales equation:

log4Skti5 = �i+

L
∑

l=1

Ml−1
∑

m=1

�ilmAklm

︸ ︷︷ ︸

[A] SKU-store intercept

+

2
∑

q=1

4�qi+�qb4k55log4Dkqti5

︸ ︷︷ ︸

[B] Own-price and shelf-space
responsiveness

+

5
∑

q=3

4�qi+�qb4k55Dkqti

︸ ︷︷ ︸

[C] Own-promotional support
responsiveness

+

L
∑

l=1

�li

K
∑

k′=1/8k9

xk′ ti=1

SIMkk′lti

︸ ︷︷ ︸

[D] Cannibalization due to
mere presence

2 Note that the cross-marketing mix effect has a time index t: �k′kqti.
The motivation for this is that the cross-marketing mix effect of
another given SKU on the focal SKU depends on the nature of the
rest of the assortment, which can vary over time.

+

2
∑

q=1

�qi

K
∑

k′=1/8k9
xk′ ti=1

log4Dk′qti5

︸ ︷︷ ︸

[E1] Cross-price and shelf-space
responsiveness

+

2
∑

q=1

L
∑

l=1

�qli

K
∑

k′=1/8k9
xk′ ti=1

SIMkk′lti log4Dk′qti5

︸ ︷︷ ︸

[E2] Similarity-based moderation of
cross price and shelf space responsiveness

+

5
∑

q=3

�qi

K
∑

k′=1/8k9
xk′ ti=1

Dk′qti

︸ ︷︷ ︸

[F1] Cross-promotional
responsiveness

+

5
∑

q=3

L
∑

l=1

�qli

K
∑

k′=1/8k9
xk′ ti=1

SIMkk′ltiDk′qti

︸ ︷︷ ︸

[F2] Similarity-based moderation of cross-
promotional responsiveness

+ �Sales
kti 0 (6)

Similarity Variables. The similarity between SKU k
and k′ on either the nominal or metric attribute l in
store i’s assortment in week t, SIMkk′lti, is specified
such that it varies between 0 (minimum similarity)
and 1 (maximum similarity). A key requirement is
that the similarity between two SKUs on a given
attribute should not only reflect the similarity of their
own attribute levels in an absolute sense but also
vis-à-vis the full distribution of attribute levels in
the assortment. In particular, if two items share the
same level of a nominal attribute (e.g., fragrance), their
perceived similarity should be stronger when their
shared attribute level occurs less frequently (Goodall
1966). We obtain this by defining

SIMkk′lti = I8Akl =Ak′l9 ·

(

1 −
1
Nti

·

K
∑

k′′=1
xk′′ ti=1

I4Ak′′l =Akl5

︸ ︷︷ ︸

Fraction of SKUs sharing
an attribute level

)

if attribute l is nominal, (7a)

where
I4 · 5 = an indicator function that is 1 if its argument

holds and is 0 otherwise;
Akl = the level attained by a SKU on attribute l such

that Akl =m⇔Aklm = 1; and
Nti = the number of SKUs present in week t in

store i.
Figure 1 illustrates how this works for a fragrance
attribute. If 90% of the SKUs share the same Aloe
vera attribute level (panel a), the fragrance similarity
between two Aloe vera SKUs is 0.10. However, if the
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attribute is less common and only 50% of the present
SKUs have it, the similarity increases to 0.50 (panel b),
whereas it would be as high as 0.90 if 10% of the SKUs
share the focal level (panel c).

For metric attributes, the similarity definition also
needs to take into account the uniqueness of the exact
same attribute level. On top of that, and consistent
with frequency theory (Parducci 1965, Parducci and
Wedell 1986), two SKUs are perceived to be more sim-
ilar when there are fewer SKUs with attribute values
in between the attribute values of the two focal SKUs.

Figure 1 Similarity Variables for Nominal Attributes
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We achieve both requirements by defining

SIMkk′lti

=1−

(

1
Nti

·

K
∑

k′′=1
xk′′ ti=1

I4min8Akl1Ak′l9≤Ak′′l ≤max8Akl1Ak′l95

)

︸ ︷︷ ︸

Fraction of SKUs with an attribute level between Akl and Ak′ l

if attribute l is metric. (7b)

Equation (7b) defines the similarity between two
SKUs as one less the fraction of SKUs in between the
two SKUs. The definition is illustrated in Figure 2
for a volume attribute. The more SKUs that are in
between two items, the less similar they become, as
desired. Also, the fewer items that share the same
attribute, the more similar the items that share this
attribute (as shown in Figure 3).

Comparison to Aggregate Logit Model. A commonly
adopted demand model is the aggregate logit model
(e.g., Kök and Fisher 2007, Mahajan and van Ryzin
2001, Misra 2008), often motivated based on its roots
in utility maximization. A commonality between our
model and the aggregate logit model is that both
allow for non-IIA substitution patterns (i.e., substi-
tution patterns where more similar items compete
more strongly). The aggregate logit model achieves
this by aggregating across heterogeneous consumer
tastes, whereas our approach directly models cross
effects as a function of attribute similarity. The lat-
ter property is desirable because it offers insights into
which attributes enhance cross-item competition the
most. It also facilitates predicting demand for SKUs
that are not yet part of the assortment during the
assortment optimization.

Another reason we do not adopt the aggregate logit
model is that it is essentially a market share model,
whereas we need to predict sales levels. The aggregate
logit model needs to make assumptions about the out-
side good to estimate the parameters. Our approach
directly models sales without the need of outside
good assumptions. Please refer to the online appendix
of Sinha et al. (2012) and the paper by Chintagunta
and Nair (2011) for a thorough discussion on the role
of these assumptions.

3.1.3. Assortment and Price Endogeneity. Our
sales model assists the retailer in the optimization of
the assortment and SKU prices. Because the observed
assortments and prices are unlikely to be exoge-
nous, we account for endogeneity during the estima-
tion of the sales model. We achieve this through a
Bayesian instrumental variable approach (Rossi et al.
2005, Chapter 7). That is, we introduce two instru-
mental variable equations for the SKU presence and
price and correlate their error terms with the sales
equation error.
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Figure 2 Similarity Variables for Metric Attributes When SKUs Have
Different Attribute Levels
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We assume that there is a latent attractiveness Ukti

of including SKU k in the assortment of store i in
week t. We use a binary probit model that says
that the SKU is included in the assortment (xkti = 1)

Figure 3 Similarity Variables for Metric Attributes When SKUs Have
the Same Attribute Levels
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when the latent attractiveness exceeds 0 and is left out
of the assortment otherwise (xkti = 0). We model the
latent attractiveness as a linear function of the exoge-
nous variables in the system and a set of instrumental
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variables (IVs). We use the same covariates in the
equation for the endogenous variable log unit price
of SKU k in store i (Dk1ti).

The IVs have to be sufficiently strong yet valid,
i.e., uncorrelated with the demand error term.
Following the prior literature (e.g., Albuquerque and
Bronnenberg 2009; Chintagunta 2001; Ioannou et al.
2011; Nevo 2000, 2001), we use two types of IVs: cost-
related IVs and IVs based on geographically distant
observations. We apply our approach to liquid laun-
dry detergents. For the cost-related IVs, we looked at
the costs that go into producing, packing, and trans-
porting liquid laundry detergents. Key ingredients
of laundry detergents are alkalines and chlorines,
and we use weekly data on their global joint price
index from U.S. Labor Statistics as an IV. A next IV
is the monthly price of plastics, a key component
of the packaging of liquid laundry detergents, from
the Institute National de la Statistique et des Etudes
Economiques, the French Bureau of Statistics (note
that the data are French). To capture transportation
costs, we use as an IV the monthly raw diesel price,
also from the French Bureau of Statistics.

The second set of IVs are based on marketing vari-
ables observed in geographically distant observations.
We took as IVs, for each store in turn, the average
price, feature only, display only, feature and display,
and a dummy for SKU presence across 10 far-away
stores. This approach capitalizes on the strong regional
difference in grocery brand preferences in France (e.g.,
Ataman et al. 2007). The online appendix (available as
supplemental material at http://dx.doi.org/10.1287/
mksc.2013.0800) offers more details.

To further reduce the likelihood of a same-week
common demand shock affecting the endogenous
variables and the IVs, we lagged all IVs by one week.
We tested the strength of the IVs by running Angrist–
Pischke multivariate F -tests for excluded instruments
(Angrist and Pischke 2009, pp. 217–218). We con-
clude that the IVs are sufficiently strong because their
p-values are all < 0001.3

Error Correlation. We correlate the errors of the focal
sales equation with those of the presence and price
equations. The error covariance matrix is store spe-
cific. It is a full matrix with one element (variance of
the latent SKU attractiveness) set to 1 for the identifi-
cation of the probit component. Formal definitions of
the IV equations are provided in the online appendix.

3 The first-stage regressions show that the one-week lagged cost
price of ingredients (alkalines and chlorines) have significant effects
on retail prices. This may seem rather quick. We checked for longer
lags (up to lag 8), but the strength of the instruments (as mea-
sured by the Angrist–Pischke test) did not change substantially.
Frequent ordering by retailers of high-volume products such as
laundry detergent could result in a high passthrough speed of cost
changes, further enhanced by the increasing adoption of electronic
price tags.

Model Estimation. We allow for fixed store inter-
cepts in the sales and IV equations. Consistent
with previous literature (Blattberg and George 1991,
Boatwright et al. 1999, Montgomery 1997), we define
the remaining store-specific parameters to be inde-
pendently and identically distributed (i.i.d.) accord-
ing to a Normal distribution. In addition, we model
the brand-specific parameters to be i.i.d. Normal. For
more details about the prior distributions, refer to the
online appendix.

We estimate the model with Gibbs sampling
(Boatwright et al. 1999, Rossi and Allenby 1993), as
outlined in the online appendix. We have conducted
simulation tests confirming that we can retrieve the
model parameters, including the ones for the endoge-
nous regressors. All prior distributions are chosen
to be uninformative. We run the Gibbs sampler for
100,000 draws and retain each 10th draw of the last
50,000 draws. Visual inspection confirms convergence
of the Gibbs chain. We subsequently used Raftery
and Lewis’s (1996) test for Markov chain Monte Carlo
(MCMC) convergence (implemented in the “coda”
package in Matlab; see page 170 of LeSage 1998).
This test confirms that the burn-in and inference sam-
ples are sufficiently large. The procedure resulted
in 5,000 draws used for inference of the posterior
distribution.

3.2. Optimization Methodology
We now look at the assortment optimization prob-
lem. We propose an efficient solution method and
extend it to the joint assortment and price optimiza-
tion problem.

3.2.1. Retail Assortment Selection Problem. We
formulate the retail assortment selection problem (RASP)
as a constrained profit-maximization problem at the
store level. The central component of the retailer’s
objective function is the expected sales for an included
SKU in the focal store’s assortment. More specifically,
we compute the expected sales over a quarter. This is
the typical planning horizon for major assortment
revisions (Misra 2008). We account for the attractive-
ness of SKUs in promotional weeks by simulating NPC

promotional calendars and averaging the quarterly
sales across those simulated calendars. We simulate
the promotional calendars by drawing, for each SKU,
the feature and display activity from a binomial distri-
bution. The probability in every week is equal to the
historical proportion of weeks for that promotional
activity for that SKU.

The set of SKUs available for inclusion in the assort-
ment is U = 811 0 0 0 1K9. Binary decision variables
8xki9k=11 0001K are equal to 1 if SKU k is included in the
assortment of store i and are 0 otherwise. Ŝ

4z5
ki 4xi5 is

the estimated sales of SKU k in store i for promotional
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calendar pc for posterior draw z, conditional on the
selected assortment xi = 6x1i1 0 0 0 1 xKi7:

Ŝ
4z5
ki 4xi5 =

1
NPC

·

NPC
∑

pc=1

13
∑

t=1

(

exp
(

�
4z5
i +

L
∑

l=1

Ml−1
∑

m=1

�
4z5
lmi ·Aklm

))

·

[ 2
∏

q=1

Dkqi
4�

4z5
qi +�

4z5
qb4k55

5
∏

q=3

4�
4z5
qi + �

4z5
qb4k55

D
pc
kqti

]

·

[ K
∏

k′=1/8k9
xk′ i=1

exp
( L
∑

l=1

�
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li SIMkk′li

)

·

[ 2
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q=1
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4�

4z5
qi +

∑L
l=1 �

4z5
lqi ·SIMkk′ li5

·

5
∏

q=3

(

�
4z5
qi +

L
∑

l=1

�
4z5
lqi · SIMkk′li

)D
pc

k′qti
]]

1 (8)

where
z = 811 0 0 0 1Z9 indicates the posterior draw of the

corresponding parameter,
pc = 811 0 0 0 1NPC9 indicates the promotional calen-

dar draw,
Dkqi = the regular value of price (q = 1) or shelf space

(q = 2) of SKU k in store i, and
D

pc

kqti = the promotional support of SKU k in store i for
promotional calendar draw pc.

The retailer wants to maximize expected category
profit across the planning horizon of a quarter.
Revenues are the sum across all included SKUs of
the expected unit sales of the SKU times its unit
retail price. The retailer incurs three types of costs:
(a) purchasing, (b) order, and (c) inventory costs. Pur-
chasing costs are the wholesale price that has to be
paid to the manufacturer. We model the order and
inventory costs according to the efficient order quan-
tity (EOQ) model (Axsäter 1996, Wilson 1934, Zheng
1992). The EOQ model provides the optimal order
quantity that minimizes the sum of order and inven-
tory costs across the planning horizon. The derivation
of the EOQ and corresponding costs can be found in
the online appendix.

The RASP involves finding the store-level assort-
ment that maximizes retail profit while satisfying a
set of constraints. Combining expected revenues, the
three types of costs, and the EOQ model leads to the
following objective function for expected retail profit:

Maximize
xi

çRetailer
i =

1
Z

Z
∑

z=1

( K
∑

k=1
xki=1

Ŝ
4z5
ki 4xi5· 4Dk1i−wki5

︸ ︷︷ ︸

Gross unit retail margin

−

√

2· Ŝ
4z5
ki ·OC·Hki

︸ ︷︷ ︸

Total quarterly ordering and
inventory costs

)

1 (9)

where
Dk1i = the unit price of SKU k when selected in the

assortment of store i,
wki = the wholesale price of SKU k in store i,
OC = the fixed order costs, and
Hki = the quarterly holding costs for SKU k in store i.

Equation (9) shows that the ordering and inventory
costs are concave in the expected quarterly sales of
a SKU in the focal store. This reflects the retailer’s
desire for a concentration of sales in a few number
of SKUs, because this is easier from an administrative
point of view and hence less costly to supply.

The constraints, subject to which retailer profit is
optimized, are as follows:

K
∑

k=1

Dk2ixki ≤ �i1 (10)

K
∑

k=1

xki ≤ �i1 (11)

∑

k∈Ucurrent1 i

xki ≥ � ·Ncurrent1 i1 (12)

K
∑

k=1

Dk1iŜki4xi5≤ 41 +�5 · D̄·1i ·

K
∑

k=1

Ŝki4xi51 (13)

K
∑

k=1

Dk1iŜki4xi5≥ 41 −�5 · D̄·1i ·

K
∑

k=1

Ŝki4xi51 (14)

xki ∈ 801191 (15)

where
Dk2i = the amount of shelf space occupied

by SKU k when included in store i’s
assortment;

�i = the available amount of shelf space for the
category in store i;

�i = the maximum number of SKUs that can be
included in the assortment of store i;

Ucurrent1 i = the set of SKUs in the current assortment
(Ucurrent1 i ⊂ 811 0 0 0 1K9);

� = the fraction of SKUs in the current assort-
ment that should remain on the shelf;

Ncurrent1 i = the number of SKUs currently in the assort-
ment of store i;

Dk1i = the unit price of SKU k when selected in
the assortment of store i;

D̄·1i = the average unit price per item sold in the
current assortment of store i;

Ŝki = the expected quarterly sales of SKU k in
store i, i.e., Ŝki = 41/Z5

∑Z
z=1 Ŝ

4z5
ki ; and

� = the maximum allowed price change with
respect to the average current price.

The value of every Greek symbol in the opti-
mization problem (�i1�i1�1�) is set by the retailer.
We refer to these as control parameters. In addition,



Rooderkerk, van Heerde, and Bijmolt: Optimizing Retail Assortments
708 Marketing Science 32(5), pp. 699–715, © 2013 INFORMS

the retailer provides the cost parameters (wki1OC,
and Hki) in the objective function. The remaining
input parameters are statistics about the current
assortment or follow from the estimated sales model.
We outline each of the constraints in turn below.
Category-Space Restriction. Constraint (10), which

the retailer faces, requires that the total space
occupied by the selected items does not exceed the
available space for the category. In our empirical
application, we use the amount of space occupied by
the current assortment.
Assortment-Size Restriction. A second restriction (11)

is that the size of the assortment (i.e., number
of SKUs) cannot exceed a certain upper bound.
Larger assortments increase the costs for the retailer
because of increased handling and administrative
costs. In addition, consumers incur higher search
costs. Larger assortments could even lead to con-
sumer confusion (Broniarczyk 2008). To avoid these
adverse effects, retailers may want to impose a restric-
tion on the assortment size. In the application, we set
the upper bound (�i) equal to the number of SKUs in
the current assortment (Ncurrent1 i) in constraint (11).
Assortment-Change Restriction. Retailers may also

prefer assortments not to change too drastically
from one period to the next. Large changes could
lead to dissatisfaction and consumer confusion. Con-
straint (12) requires that a prespecified fraction of the
SKUs in the current assortment remain on the shelf.
Price-Level Restriction. A change in assortment

could result in a substantial increase or decrease
of the assortment’s average price level through the
inclusion of very (in)expensive SKUs compared with
the current assortment. A large increase in the
assortment’s price level is undesirable because this
increases the likelihood that consumers consider the
store to be too expensive and decide to do their
shopping elsewhere. On the other hand, a consid-
erable decrease in the price level may spark retal-
iatory actions by competitors and result in a price
war (van Heerde et al. 2008). Therefore, similar to
the store-level price optimization by Montgomery
(1997), we include a price-level constraint to pre-
serve the retailer’s current price level. The price-
level constraint limits the change in the average price
per unit sold to a maximum of � × 100%. Equa-
tions (13) and (14) limit price increases and decreases,
respectively.

3.2.2. Efficient Solution Method: Very Large
Neighborhood Search Heuristic. The RASP is a dif-
ficult problem; a special problem case, the (linear)
knapsack problem, is already an NP-complete prob-
lem (Kellerer et al. 2004). Consequently, it is unlikely
that the problem can be solved in a time that
is polynomial in the size of the input (Papadim-
itriou and Steiglitz 1982). Finding a feasible solution

that satisfies all constraints is compounded by the
time-consuming evaluation of the expected sales of
every SKU potentially included in the assortment.

A further challenge is that constraints (13) and (14)
are nonseperable in the decision variables because
these constraints are functions of the SKU demand
estimates, which in turn are nonseperable functions
of the decision variables. This precludes the use of
Kök and Fisher’s (2007) iterative heuristic to solve the
optimization problem, because it capitalizes on the
separability of the constraints.4 Therefore, we develop
improvement heuristics that start with a feasible solu-
tion and iteratively try to obtain a better solution
(Ahuja et al. 2002). We employ neighborhood search
heuristics that at each iteration attempt to achieve
improvement by searching the “neighborhood” of the
current solution (Ahuja et al. 2002). Because the neigh-
borhood is very large in every step, our heuristics can
be classified as very large neighborhood search (VLNS)
heuristics (Ahuja et al. 2002).

We use the current assortment as our starting
solution and look at kmax-distance neighborhoods,
which contain all solutions of which the assortment
vector (xi) differs in maximum kmax instances com-
pared with the current assortment. For example, for
kmax = 11 a neighbor can be obtained by deleting or
adding one SKU. And for kmax = 21 a neighbor can be
obtained by deleting or adding two SKUs from the
current assortment or by replacing a SKU from the
current assortment by one that is not yet in it. We have
implemented the heuristics in Matlab R2012b, and we
describe them in more detail in the online appendix.

3.2.3. Joint Assortment and Price Optimization.
An important extension of our assortment opti-
mization methodology is the joint optimization of
assortment and prices. To this end, we integrate
a pricing heuristic in our assortment optimization
heuristic. The idea behind this neighborhood search
heuristic is that every SKU can be included in the
assortment with one of a finite number of price levels.
To avoid too-strong price swings, we consider three
(regular) price levels: keep the current price, price
−5%, and price +5%. We define a price configuration
as the combination of price levels obtained by the
SKUs in the focal assortment. The pricing heuris-
tic moves between neighboring price configurations.
We look at pmax-distance neighborhoods, which con-
tain all price configurations in which the price levels
of maximum pmax SKUs differ with respect to their
levels in the focal price configuration. For example,
for pmax = 11 a neighbor can be obtained by changing
the price level of one of the available SKUs. And for

4 In a personal communication with the first author (email dated
January 25, 2013), Gürhan Kök confirmed that their approach does
not suit this optimization problem.
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Table 2 Descriptive Statistics for the Liquid Laundry Detergent
Category

Measure Estimate

Unit of sales 1 liter
Number of stores 54
Number of SKUs in chain 61
Number of weeks 156
Number of attributes (number of metric attributes) 3 (1)
Number of attribute levels across attributes 34
Average number of available SKUs per store per week (SD) 30092 450285
Average amount of shelf space per store per week 18033 450495

in meters (SD)
Average amount of shelf space per SKU in meters (SD) 0059 400315
Average number of units sold per week per store (SD) 3,559 (2,053)
Average price per unit sold (EUR per unit) 1088
Minimum price per unit (EUR per unit) 0047
Maximum price per unit (EUR per unit) 3065

pmax = 21 a neighbor can be obtained by changing the
price levels of a pair of SKUs. The online appendix
offers more details and explains how we jointly opti-
mize assortment and prices.

4. Empirical Application
The data we use are obtained from IRI and concern
54 stores from a large national French retailer. A total
of 156 weeks of weekly store-level scanner data are
available for the period of September 2002–September
2005. We use data from the liquid laundry detergent
category. Table 2 provides descriptive statistics for this
category. For an average store, there is space for close
to 31 SKUs, whereas there are 61 SKUs available to
choose from. Hence, for an average store, the number
of possible assortments is gigantic:

(61
31

)

= 2033 × 1017.
Full enumeration and evaluation would take a very
long time even on very fast computers.

The attributes and corresponding levels are listed
in Table 3. All SKUs are uniquely identified using
three attributes: brand (nominal), fragrance (nomi-
nal), and volume (metric). For identification, we have
to set one of the level parameters to zero for each
attribute in Equation (1). We set the levels “Private
label 2,” “Basic,” and “3 liter” to zero.5 We opera-
tionalize the sales variable as volume sales expressed
in number of liters. We control for the marketing mix
instruments unit price; shelf space; and dummies for
feature only, display only, and feature and display.
Shelf space is measured as the total width of the
facings occupied by the SKU (in meters). We mean-
center all metric variables in Equation (6) within every
store.

5 These are the levels that occur most frequently in the data.
A description of all 61 SKUs in terms of the underlying attribute
levels is provided in the online appendix.

Table 3 Overview of Attribute Levels

Attribute Number of levels Levels

Brand 18 Private label 1–2, National brand 1–16
Fragrance 9 Aloe vera, Basic, Blue, Flower, Fresh,

Marseille soap, Spring, Sweet almond,
White flower

Volume 7 1.5, 3, 4, 5, 6, 7, and 9 liter

5. Estimation Results
5.1. Predictive Validity
We have estimated two versions of the sales model:
the focal model with store-specific parameters and a
model with homogeneous parameters across stores.
In-sample fit (for the full three years of data) of the
models was determined by computing the deviance
information criterion (DIC; see Spiegelhalter et al.
2002), which balances model fit and complexity
(a lower DIC is better). In addition, both in-sample
and out-of-sample fit (predicting the last 1

2 year of
data based on the first 2 1

2 years of data) were estab-
lished by computing the log marginal density (LMD),
the correlation between actual and predicted sales,
1 minus Theil’s inequality index (1 − Theil’s U), the
mean absolute error (MAE), the mean absolute per-
centage error (MAPE), and the root mean squared
error (RMSE). For the DIC, MAE, MAPE, and RMSE
measures, lower values are more preferred. For all

Table 4 Summary of Descriptive and Predictive Fit

Model

Homogeneous Heterogeneous
Model fit across stores across stores

Full sample
DIC 494,946 411,164
LMD −247,534 −200,862
� (actual, predicted) 0078 0085
1 − Theil’s U 0093 0094
MAE 0045 0036
MAPE 17055 14055
RMSE 0063 0052

Estimation sample (first 2.5 years)
DIC 401,722 331,614
LMD −200,955 −162,047
� (actual, predicted) 0077 0085
1 − Theil’s U 0093 0094
MAE 0044 0036
MAPE 17020 14012
RMSE 0063 0052

Holdout sample (last 0.5 year)
LMD −49,719 −44,038
� (actual, predicted) 0079 0084
1 − Theil’s U 0093 0093
MAE 0048 0041
MAPE 20044 17020
RMSE 0067 0058

Note. The values for the best-fitting model are shown in bold.
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Table 5 Posterior Parameter Estimates of the Heterogeneous Sales Model

Symbol Variable Mean (SD) Symbol Variable Mean (SD)

�1 Own price −2026 (0.06) �111 National brand 10 −0033 (0.04)
�2 Own shelf space 0024 (0.02) �112 National brand 11 −0088 (0.07)
�3 Own feature only 0064 (0.04) �113 National brand 12 −0007 (0.05)
�4 Own display only 0075 (0.04) �114 National brand 13 0034 (0.04)
�5 Own feature and display 1058 (0.03) �115 National brand 14 −0028 (0.04)
�1 Cross price 0005 (0.02) �116 National brand 15 −0015 (0.05)
�2 Cross shelf space 0000 (0.02) �117 National brand 16 −0027 (0.04)
�3 Cross feature only 0001 (0.02) �21 Aloe vera −0025 (0.03)
�4 Cross display only −0001 (0.02) - Basic a —
�5 Cross feature and display 0000 (0.02) �23 Blue −0014 (0.03)
�1 Cross-brand similarity −0010 (0.02) �24 Flower −0029 (0.02)
�2 Cross-fragrance similarity −0006 (0.02) �25 Fresh −0044 (0.03)
�3 Cross-volume similarity 0000 (0.02) �26 Marseille soap −0045 (0.03)
�11 Private label 1 0022 (0.06) �27 Spring −0039 (0.03)
— Private label 2a — �28 Sweet almond −0044 (0.04)
�12 National brand 1 0074 (0.05) �29 White flower −0013 (0.03)
�13 National brand 2 0028 (0.06) �31 1.5 liter −1019 (0.06)
�14 National brand 3 −0085 (0.06) - 3 liter a —
�15 National brand 4 −0098 (0.07) �32 4 liter −0009 (0.04)
�16 National brand 5 −0029 (0.05) �33 5 liter 0016 (0.03)
�17 National brand 6 −0029 (0.04) �34 6 liter −0025 (0.04)
�18 National brand 7 −0004 (0.04) �35 7 liter −0054 (0.04)
�19 National brand 8 −0005 (0.08) �36 9 liter −0074 (0.05)
�110 National brand 9 −0024 (0.06)

Notes. In bold are shown the parameters for which the 95% highest posterior density intervals exclude zero. The own-price
and shelf-space parameter estimates represent elasticities, and the own-promotion support parameter can be interpreted
as log multipliers.

aBase.

other statistics, higher values are more preferred.
Table 4 displays the resulting model comparison. The
best-fitting model based on descriptive and predictive
fit is clearly the heterogeneous model. Therefore, this
remains our focal model.

5.2. Face Validity
Table 5 summarizes the posterior parameter estimates
of the heterogeneous sales model. The own-marketing
mix parameters (�’s) have the expected signs, and
their posterior intervals exclude zero. As expected, the
own-price elasticity is negative (−2026) (Bijmolt et al.
2005). In addition, the log multiplier effects for fea-
ture only (0.64), display only (0.75), and feature and
display (1.58) are positive (van Heerde et al. 2004).
The shelf-space elasticity (0.24) is also in the range
reported in the literature (Bultez and Naert 1988,
Drèze et al. 1994, Van Dijk et al. 2004).

The cross-price parameter (0.05) is significant;
the other cross effects are not. The cross-brand similar-
ity parameter (�1 = −0010) is negative, indicating that
SKU sales are cannibalized by SKUs from the same
brand. Similarly, we find cannibalization along the
fragrance dimension (�2 = −0006). Interestingly, we do
not find any effect for the volume attribute (�3 = 0000),
implying that substitution mainly occurs across the
brand and fragrance dimensions.6

6 Because of space limitations, we omit the estimates for � (brand-
specific own-marketing mix parameters), for � (interaction between

6. Retail Assortment Optimization
6.1. Assortment-Only Optimization
We now discuss the results from optimizing the
assortment only. We apply our optimization method
to each of the 54 stores, using the currently available
SKUs in the whole chain as the set of items to choose
from. Per store, we set the price and shelf space of
each SKU equal to its regular value in the most recent
(i.e., most representative for the present) week of the
data set (i.e., week 156). From this week we also
derive the number of present SKUs and the amount
of available category space. To account for promo-
tions, we simulate 50 promotional calendars and aver-
age profit across these calendars. We use a constant
unit gross profit margin of 25% for the retailer on
national brands. This number is in line with the 25%
reported by Drèze et al. (1994) in the case of U.S.
grocery retailers, the 25% reported by Campo and
Gijsbrechts (2004) in the case of a large European
grocery retailer, and the 28.4% reported by the U.S.
Census Bureau (2010) for the U.S. grocery indus-
try. In addition, we adapt a 25% profit premium for
private labels (Ailawadi and Harlam 2004). That is,
we assume that private labels are associated with a
31.25% (= 1025 · 25%) unit profit margin. We assume a

similarity and the cross-marketing mix instrument), and for the
presence and price equations. However, these are available from
the authors upon request.
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fixed cost of EUR 4 per order. This corresponds with
a half hour’s worth of wages against the minimum
wage in the focal country. Furthermore, we assume
that a SKU loses half its value after one year as a
result of holding costs. Consequently, we assume that
the quarterly holding costs equal 12.5% of a SKU’s
wholesale price. All these numbers were verified with
industry experts.

Consistent with Montgomery (1997), we enforce a
rather strict price-change restriction, only allowing
for small average price changes (� = 00001, or 0.1%).
This value for � will unlikely lead to assortments that
change the store price perceptions, yet it is not too
rigid to prohibit any change from the current assort-
ment. Furthermore, we set the fraction of SKUs that
has to remain in the assortment (�) equal to 90%.
Finally, we do not allow for changes in the amount of
shelf space assigned to the category or increases of the
number of SKUs (�i =Ncurrent1 i). Of course, in practice,
it will be up to the retailer to set these values.

We have run the VLNS heuristic for assortment-
only optimization (Heuristic I in the online appendix)
for neighborhoods with maximum distance (kmax) of 1
and 2. Extending the maximum neighborhood dis-
tance from 1 to 2 raises the gain in the expected prof-
its across stores compared to the current assortment
from 17.3% to 37.3% while increasing the average time
till the heuristic terminates from 4 1

2 minutes per store
to 51 minutes. The increase in computation time is
substantial, but so too is the profit gain.7 That is why
we use kmax = 2 in all instances. Further increases
in kmax would lead to excessive computation times.
Figure 4 visually shows the profit increase of different
optimizations and offers confidence bounds.

Table 6(a) summarizes the average overlap across
stores for the different assortment sizes (in number of
SKUs). We find that the average overlap between any
two assortments (Hwang et al. 2010) drops from 0.97
to 0.85 when they are being optimized. Hence, our
methodology leads to stronger between-store differ-
ences in assortments, capitalizing on differences in
attribute attractiveness and substitution patterns.

Table 6(b) lists the top three added and removed
SKUs across the chain. National brand 10 is the great-
est benefactor, with three additions in the top three
and only one deletion in the top three. All of the
top three added SKUs are 6-liter variants, whereas
the top three removed SKUs include two 3-liter and

7 Our heuristic does not guarantee optimality, nor does it pro-
vide an upper bound on how far the heuristic solution is from
the optimal solution. Therefore, we tested the heuristic versus full
enumeration for the three smallest stores in our sample (full enu-
meration for larger stores would take excessively long). Our heuris-
tic results in very small optimality gaps (0.5%), and its running time
(1.2 hours) is about 30 times faster than that of full enumeration
(35.6 hours). For details, please refer to the online appendix.

Figure 4 Profit Increases of Optimized Assortments
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Notes. The dashed lines represent the 95% posterior intervals of the
expected relative profit increase. The 95% posterior interval of the difference
in relative profit increase between “Assortment and price” and “Assortment
only” runs from the 4.93% point to the 8.43% point and hence excludes zero.

one 1.5-liter variants. This swap indicates a market
need for larger packages sizes. The removed three-
liter variants have the Fresh fragrance. Given our
evidence for within-fragrance cannibalization, these
removals facilitate the addition of National brand 10’s
six-liter SKU with the same fragrance. In sum, our
attribute-based approach helps to identify preferences
for attribute levels while limiting within-attribute
cannibalization.

6.2. Joint Assortment and Price Optimization
We now discuss the simultaneous optimization of
assortment and SKU prices. We first ran the pric-
ing heuristic without assortment optimization on the
current store assortments (Heuristic II in the online
appendix). Based on a similar trade-off between com-
putation time and profit increase as in the case
of assortment-only optimization, we use pmax = 2.
The profit increase of the price-only optimization
is +709%.

Next, we jointly optimize assortment and prices
using Heuristic III in the online appendix. Jointly
optimizing the assortment and prices resulted in an
even larger profit increase of 43.7%. The average com-
putation time, starting from the assortments opti-
mized without considering prices, was just over two
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Table 6 Comparison of Current and Optimized Assortments

Overlap per assortment size Current assortments (%) Optimized assortments (%)

No. of stores Size (in no. of SKUs) Assortment only Assortment and price

(a) Assortment heterogeneity
10 35 88.3 80.1 80.7

8 37 93.2 82.3 82.5
7 36 91.4 81.8 80.7
6 39 95.1 84.4 83.8
6 33 87.7 78.0 79.0
5 34 87.4 77.4 78.5
3 40 98.3 88.3 86.7
2 30 80.0 63.3 66.7
2 38 89.5 79.0 81.6
1 8271281291311329 N.A. N.A. N.A.

Average pairwise similarity in assortment 0.97 0.85 0.85

(b) Winning and losing SKUs

SKUs
Most frequently added (percentage of all additions)

1. National brand 10, Spring, 6 liter N.A. 21.8 21.5
2. National brand 10, Flower, 6 liter N.A. 14.1 13.9
3. National brand 10, Fresh, 6 liter N.A. 12.2 12.7

Most frequently removed (percentage of all removals)
1. Private label 2, Basic, 1.5 liter N.A. 13.0 19.5
2. National brand 10, Fresh, 3 liter N.A. 8.0 9.8
3. National brand 12, Fresh, 3 liter N.A. 7.4 7.3

(c) Price levels

SKU price level
Average percent of SKUs with lower price N.A. N.A. 5.5
Average percent of SKUs with regular price N.A. N.A. 56.6
Average percent of SKUs with higher price N.A. N.A. 37.9

hours per store. Table 6(b) shows that the top three
added and removed SKUs are the same as under the
pure assortment optimization case. Only the shares
of total additions and removals are slightly different.
For 5.5% of the SKUs, the current price goes down
by 5%, whereas for 37.9%, the price goes up by 5%
(see Table 6(c)).

Thus, price-only optimization leads to an expected
profit increase of 7.9%, assortment-only optimization
to an increase of 37.3%, and joint price and assortment
optimization lead to a 43.7% increase. These differ-
ences are meaningful as the confidence intervals for
these averages either do not overlap or, in case they
do, the confidence interval of the difference excludes
zero8 (see Figure 4).

7. Conclusion
In this study, we have constructed a method for
optimizing the retailer’s assortment composition.

8 Even though the posterior intervals of the relative profit increase
of the “Assortment only” and “Assortment and price” solutions
overlap, the posterior interval of the difference in relative profit
increase excludes zero. This is consistent with the observed posi-
tive correlation, across posterior draws, between the relative profit
increases for the two respective solutions.

The methodology consists of an attribute-based model
of store-level SKU sales and utilizes very large neigh-
borhood search heuristics to provide solutions to
the resulting optimization problem. We applied our
method to a realistic problem: a liquid laundry
detergent category with 61 SKUs, sold at a supermar-
ket chain with 54 stores. The suggested assortments
are found within a reasonable amount of time and are
expected to increase retail profitability substantially—
even more so when prices are jointly optimized.
We extend the current literature by simultaneously
(1) using an attribute-based approach to handle large
sets of items, (2) accounting for similarity effects,
(3) controlling for the marketing mix during estima-
tion and optimization, (4) accounting for assortment
and price endogeneity, (5) optimizing for each store
separately, and (6) optimizing assortments and prices
jointly.

As with any study, this research also has limita-
tions. Our similarity measures are based on observed
attributes. Alternatively, future research could attempt
to derive similarities from a latent positioning plot that
captures the market structure. Such a positioning plot
could be estimated simultaneously with the demand
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model. A disadvantage of this approach is that the
resulting estimation would become more complex.

The benefits of store-level assortment optimization
are great, and therefore they are the aim of many
retailers. However, chain-level assortments or assort-
ments for clusters of stores may bring administrative
and logistic efficiencies. Our methodology could aid
the retailer in constructing the trade-offs between ben-
efits and costs for assortment solutions at different
levels of customization. In our empirical application,
the assortments differed substantially between stores
because of the variations in amount of available shelf
space between stores, among other factors.

Another limitation is that we consider only exist-
ing products (present in the chain, not necessarily
the store) in the assortment optimization. However,
assortment revisions are especially relevant in the
event of new product introductions. A benefit of
our attribute-based approach versus more traditional
product-based models is that we can predict the
sales of new combinations of existing attribute levels.
Such imitative (e.g., copying attribute level(s) from
another brand; see Hardie 1994) or fill-in (e.g., new
combination of attribute levels that already occur for
the focal brand; see Hardie 1994) line extensions make
up all of the new product introductions in our empir-
ical application. However, our methodology cannot
readily deal with innovative (e.g., introducing new
attribute level to the category; see Hardie 1994) line
extensions or truly new products (e.g., new brands in
the category). In this light, a fruitful avenue to explore
is that of enriching scanner data with choice exper-
iments (Feit et al. 2010, Swait and Andrews 2003).
The idea behind this approach is to estimate the rela-
tive attractiveness of new, unobserved attribute levels
based on experimental choice data and use the esti-
mates in combination with those based on the scanner
data. Both Feit et al. (2010) and Swait and Andrews
(2003) use this approach to combine panel scan-
ner data with individual experimental data. Future
research could investigate whether this approach can
also be applied to assortment optimization.

Although our heuristics offer substantial profit
increases, it is not guaranteed that they provide the
truly profit-maximizing assortment. Future research
could focus on establishing formal upper bounds
for the optimality gaps for the heuristics developed
in this paper or work on further improving the
heuristics. In the meantime, from a practical point
of view, we recommend that retailers capitalize on
the improvements that the heuristics offer rather
than waiting for methods that could further enhance
profitability.

Finally, we do not consider shelf-space decisions
(how much space, what location on the shelf) in the
assortment optimization. We do not have shelf-space

layout data, which precludes controlling for location
or optimizing it. Although Drèze et al. (1994) and
van Nierop et al. (2008) optimize shelf location in
addition to shelf space, they do not consider the
important decision as to whether or not to include
an SKU in the assortment. In addition, they do not
optimize prices. Our model, however, does control for
the amount of shelf space per SKU. Future research
could attempt to integrate assortment, pricing, and
shelf-space decisions. However, optimizing the assort-
ment simultaneously on three dimensions (presence,
price, and shelf space) will complicate the optimiza-
tion even further.

In sum, our study contributes to solving one of the
core problems in retailing: how to select the optimal
assortment. By developing a scalable methodology
that is relatively straightforward to implement based
on readily available data, we hope this approach will
find its way to the practitioner community.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mksc.2013.0800.
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Özyeǧin University, and the UCLA Anderson School of
Management for helpful comments and suggestions. They
thank Mary Biathrow for research assistance. The authors
are grateful to IRI France for sharing the data. They grate-
fully acknowledge the Netherlands Organization for Scien-
tific Research (NWO) and the New Zealand Royal Society
Marsden Fund [MAU1012] for research support.

References
Ahuja RA, Ergun Ö, Orlin JB, Punnen AP (2002) A survey of large-

scale neighborhood search techniques. Discrete Appl. Math.
123(1–3):75–102.

Ailawadi KL, Harlam B (2004) An empirical analysis of the deter-
minants of retail margins: The role of store-brand share. J. Mar-
keting 68(1):147–165.

Albuquerque P, Bronnenberg BJ (2009) Estimating demand hetero-
geneity using aggregated data: An application to the frozen
pizza category. Marketing Sci. 28(2):356–372.

Angrist JD, Pischke J-S (2009) Mostly Harmless Economet-
rics: An Empiricist’s Companion (Princeton University Press,
Princeton, NJ).

Ataman B, Mela CF, van Heerde HJ (2007) Consumer packaged
goods in France: National brands, regional chains and local
branding. J. Marketing Res. 44(1):14–20.

Axsäter S (1996) Using the deterministic EOQ formula in stochastic
inventory control. Management Sci. 42(6):830–834.



Rooderkerk, van Heerde, and Bijmolt: Optimizing Retail Assortments
714 Marketing Science 32(5), pp. 699–715, © 2013 INFORMS

Bambridge P (2007) Consumer goods manufacturers are losing con-
trol of space management. Gartner Industry Research Report
G00154105, Gartner, Stamford, CT.

Bambridge P (2008) Categories where detailed space and assort-
ment planning delivers results. Gartner Industry Research
Report G00161939, Gartner, Stamford, CT.

Bijmolt THA, van Heerde HJ, Pieters RGM (2005) New empirical
generalizations on the determinants of price elasticity. J. Mar-
keting Res. 42(2):141–156.

Blattberg RC, George EI (1991) Shrinkage estimation of price
and promotional elasticities: Seemingly unrelated equations. J.
Amer. Statist. Assoc. 86(414):304–315.

Boatwright P, Nunes JC (2001) Reducing assortment: An attribute-
based approach. J. Marketing 65(2):50–63.

Boatwright P, Rossi PE, McCulloch R (1999) Account-level
modeling for trade promotion: An application of a con-
strained parameter hierarchical model. J. Amer. Statist. Soc.
94(December):1063–1073.

Borin N, Farris PW (1995) A sensitivity analysis of retailer shelf
management models. J. Retailing 71(2):153–171.

Borin N, Farris PW, Freeland JR (1994) A model for determining
retail product category assortment and shelf space allocation.
Decision Sci. 25(3):359–384.

Borle S, Boatwright P, Kadane JB, Nunes JC, Shmueli G (2005) Effect
of product assortment changes on customer retention. Market-
ing Sci. 24(4):612–622.

Broniarczyk SM (2008) Product assortment and consumer psychol-
ogy. Haugtvedt CP, Herr PM, Kardes FR, eds. Handbook of Con-
sumer Psychology (Psychology Press, New York), 755–779.

Broniarczyk SM, Hoyer WD, McAlister LM (1998) Consumer’s per-
ceptions of the assortment offered in a grocery category: The
impact of item reduction. J. Marketing Res. 35(2):166–177.

Bucklin RE, Gupta S (1999) Commercial use of UPC scanner
data: Industry and academic perspectives. Marketing Sci. 18(3):
247–273.

Bultez A, Naert P (1988) SH.A.R.P.: Shelf allocation for retailers’
profit. Marketing Sci. 7(3):211–231.

Campo K, Gijsbrechts E (2004) Should retailers adjust their micro-
marketing strategies to type of outlet? An application to
location-based store space allocation in limited and full-service
grocery stores. J. Retailing Consumer Services 11(6):369–383.

Campo K, Gijsbrechts E, Goossens T, Verhetsel A (2000) The
impact of location factors on the attractiveness and optimal
space shares of product categories. Internat. J. Res. Marketing
17(4):255–279.

Chintagunta PK (2001) Endogeneity and heterogeneity in a probit
demand model: Estimation using aggregate data. Marketing Sci.
20(4):442–456.

Chintagunta PK, Nair HS (2011) Discrete-choice models of con-
sumer demand in marketing. Marketing Sci. 30(6):977–996.

Chong J-K, Ho T-H, Tang CS (2001) A modeling framework for cat-
egory assortment planning. Manufacturing Service Oper. Man-
agement 3(3):191–210.

Cooper LG, Nakanishi M (1983) Standardizing variables in multi-
plicative choice models. J. Consumer Res. 10(June):96–108.

Drèze X, Hoch SJ, Purk ME (1994) Shelf management and space
elasticity. J. Retailing 70(4):301–326.

Fader PS, Hardie BGS (1996) Modeling consumer choice among
SKUs. J. Marketing Res. 18(3):442–452.

Feit EM, Beltramo MA, Feinberg FM (2010) Reality check: Combin-
ing choice experiments with market data to estimate the impor-
tance of product attributes. Management Sci. 56(5):785–800.

Fishbein M, ed. (1967) Attitude and Prediction of Behavior (John Wiley
& Sons, New York).

Fox EJ, Montgomery AL, Lodish LM (2004) Consumer shopping
and spending across retail formats. J. Bus. 77(2):25–60.

Goodall DW (1966) A new similarity index based on probability.
Biometrics 22(4):882–907.

Hardie BGS (1994) The market response to product line extensions.
Unpublished doctoral dissertation, University of Pennsylvania,
Philadelphia.

Hardie BGS, Lodish LM, Fader PS, Sutcliffe AP, Kirk WT (1998)
Attribute-based market share models: Methodological devel-
opment and managerial applications. Working paper, London
Business School, London.

Hoch ST, Kim B, Montgomery AL, Rossi PE (1995) Determi-
nants of store-level price elasticity. J. Marketing Res. 32(1):
17–29.

Hwang M, Bronnenberg BJ, Thomadsen R (2010) An empirical anal-
ysis of assortment similarities across U.S. supermarkets. Mar-
keting Sci. 29(5):858–879.

Ioannou I, Mortimer JH, Mortimer R (2011) The effects of capacity
on sales under alternative vertical contracts. J. Indust. Econom.
59(1):117–154.

Kellerer H, Pferschy U, Pisinger D (2004) Knapsack Problems
(Springer-Verlag, Berlin).

Kök AG, Fisher ML (2007) Demand estimation and assortment
optimization under substitution: Methodology and applica-
tion. Oper. Res. 55(6):1001–1021.

Kök AG, Fisher ML, Vaidyanathan R (2009) Assortment planning:
Review of literature and industry practice. Agrawal N, Smith
SA, eds. Retail Supply Chain Management (Springer, New York),
99–154.

Lancaster K (1971) Consumer Demand: A New Approach (Columbia
University Press, New York).

LeSage JP (1998) Applied econometrics using MATLAB. Working
paper, University of Toledo, Toledo, OH.

Levy M, Weitz BW (2004) Retailing Management, 5th ed. (McGraw-
Hill Irwin, New York).

Mahajan S, van Ryzin G (2001) Stocking retail assortments under
dynamic consumer substitution. Oper. Res. 49(3):334–351.

Mantrala MK, Levy M, Kahn BE, Fox EJ, Gaidarev P, Dankworth B,
Shah D (2009) Why is assortment planning so difficult for
retailers? A framework and research agenda. J. Retailing
85(1):71–83.

McIntyre SH, Miller CM (1999) The selection and pricing of retail
assortments: An empirical approach. J. Retailing 75(3):295–318.

Miller CA, Smith SA, McIntyre SH, Achabal DA (2010) Optimizing
and evaluating retail assortments for infrequently purchased
products. J. Retailing 86(2):159–171.

Misra K (2008) Understanding retail assortments in competitive
markets. Working paper, London School of Business, London.

Montgomery AL (1997) Creating micro-marketing pricing strategies
using supermarket data. Marketing Sci. 16(4):315–337.

Nakanishi M, Cooper LG, Kassarjian HH (1974) Voting for a politi-
cal candidate under conditions of minimal information. J. Con-
sumer Res. 1(September):36–43.

Nevo A (2000) A practitioner’s guide to estimation of random-
coefficients logit models of demand. J. Econom. Management
Strategy 9(4):531–548.

Nevo A (2001) Measuring market power in the ready-to-eat cereal
industry. Econometrica 69(2):307–342.

O’Connell V (2008) Reversing field, Macy’s goes local. Wall Street
Journal (April 21), http://online.wsj.com/article/SB120873643
128029889.html.

Papadimitriou CH, Steiglitz K (1982) Combinatorial Optimiza-
tion: Algorithms and Complexity (Prentice-Hall, Upper Saddle
River, NJ).

Parducci A (1965) Category judgment: A range-frequency model.
Psych. Rev. 72:407–418.



Rooderkerk, van Heerde, and Bijmolt: Optimizing Retail Assortments
Marketing Science 32(5), pp. 699–715, © 2013 INFORMS 715

Parducci A, Wedell DH (1986) The category effect with rating
scales: Number of categories, number of stimuli, and method
of presentation. J. Experiment. Psych.: Human Perception Perfor-
mance 12(4):496–516.

Raftery AE, Lewis SM (1996) Implementing MCMC. Gilks WR,
Richardson S, Spiegelhalter DJ, eds. Markov Chain Monte Carlo
in Practice (Chapman & Hall, London), 115–130.

Rigby DK, Vishwanath V (2006) Localization: The revolution in con-
sumer markets. Harvard Bus. Rev. 84(4):82–92.

Rooderkerk RP, van Heerde HJ, Bijmolt TH (2011) Incorporat-
ing context effects into a choice model. J. Marketing Res.
48(August):767–780.

Rossi PE, Allenby GM (1993) A Bayesian approach to estimating
household parameters. J. Marketing Res. 30(2):171–182.

Rossi PE, Allenby GM, McCulloch R (2005) Bayesian Statistics and
Marketing (John Wiley & Sons, Chichester, UK).

Sinha A, Sahgal A, Mathur SK (2013) Category optimizer:
A dynamic-assortment, new-product-introduction, mix-optimi-
zation, and demand-planning system. Marketing Sci. 32(2):
221–228.

Sloot LM, Fok D, Verhoef PC (2006) The short- and long-term
impact of an assortment reduction on category sales. J. Market-
ing Res. 43(4):536–548.

Smith SA, Agrawal N (2000) Management of multi-item inventory
systems with demand substitution. Oper. Res. 48(1):50–64.

Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002)
Bayesian measures of model complexity and fit (with discus-
sion). J. Roy. Statist. Soc. Ser. B 64(4):583–616.

Swait J, Andrews RL (2003) Enriching scanner panel models with
choice experiments. Marketing Sci. 22(4):442–460.

Tversky A (1972) Elimination by aspects: A theory of choice. Psych.
Rev. 79(4):281–299.

Urban TL (1998) Approach to product assortment and shelf-space
allocation. J. Retailing 74(1):15–36.

U.S. Census Bureau (2010) Gross margin as percentage of sales.
Report, U.S. Census Bureau, Suitland, MD. http://www.census
.gov/retail.

Van Dijk A, van Heerde HJ, Leeflang PSH, Wittink DR (2004)
Similarity-based spatial methods for estimating shelf space
elasticities from correlational data. Quant. Marketing Econom.
2(September):257–277.

van Heerde HJ, Gijsbrechts E, Pauwels K (2008) Winners and losers
in a major price war. J. Marketing Res. 45(5):499–518.

van Heerde HJ, Leeflang PSH, Wittink DR (2004) Decomposing
the sales promotion bump with store data. Marketing Sci.
23(3):317–334.

van Heerde HJ, Mela CF, Manchanda P (2004) The dynamic effect of
innovation on market structure. J. Marketing Res. 41(2):166–183.

van Nierop E, Fok D, Franses PH (2008) Interaction between shelf
layout and marketing effectiveness and its impact on optimiz-
ing shelf arrangements. Marketing Sci. 27(6):1065–1082.

Wilson RH (1934) A scientific routine for stock control. Harvard Bus.
Rev. 13:116–128.

Wittink DR, Addona MJ, Hawkes W, Porter JC (1988) SCAN∗PRO:
The estimation, validation, and use of promotional effects
based on scanner data. Working paper, Cornell University,
Ithaca, NY.

Zheng Y-S (1992) On properties of stochastic inventory systems.
Management Sci. 38(1):87–103.


