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Abstract Using epistemic logic, we provide a non-probabilistic way to formalise
payoff uncertainty, that is, statements such as ‘player i has approximate knowledge
about the utility functions of player j .’ We show that on the basis of this formalisation
common knowledge of payoff uncertainty and rationality (in the sense of excluding
weakly dominated strategies, due to Dekel and Fudenberg (1990)) characterises a new
solution concept we have called ‘mixed iterated strict weak dominance.’

Keywords Common knowledge · Epistemic characterisation theorem · Payoff
uncertainty · Rationality

1 Introduction

Interactive epistemology (Aumann 1999; Bonanno 2002; Kaneko 2002) deals with the
beliefs and the knowledge of players of games. It comes in two versions. The semantic
approach represents knowledge by means of possible worlds structures, identifying the
knowledge of a player i with the set of propositions true at all worlds which i cannot
distinguish from the actual world. The syntactic approach represents knowledge by
sentences that are provable in extensions of various epistemic logics.

The semantic approach to interactive epistemology has been most commonly
adopted (Board 2004; Heifetz and Mongin 2001; Stalnaker 1996), but interesting
syntactic investigations have found their way into the economic and game theoretic
literature (Baltag 2002; van Benthem 2001; Bonanno 2003; Clausing 2004; Pauly
2002; Rabinowicz 1998). Most such applications are concerned with extensive games
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or cooperative game theory. This paper, by contrast, applies syntactic methods to the
study of the interactive epistemology of normal form games.

In this paper we develop a syntactic framework to shed light on payoff uncertainty,
that is, on game playing situations in which the players do not have exact knowledge
concerning the utility functions of their opponents, but only approximate knowledge.
Dekel and Fudenberg (1990) were among the first to study payoff uncertainty, and
their pioneering paper gave rise to a literature relating, stated informally, common
knowledge of payoff uncertainty and rationality to the iterated elimination of strictly
dominated strategies preceded by one round of elimination of weakly dominated strate-
gies, the Dekel-Fudenberg procedure. A key assumption guiding this literature is that
payoff uncertainty be cast in probabilistic terms.

By contrast to this literature, using epistemic logic we develop a non-probabilistic
model of payoff uncertainty, and show that under such a conception common knowl-
edge of payoff uncertainty and rationality characterises a new solution concept that
we call ‘mixed iterated strict weak dominance.’

The structure of the paper is as follows. Section 2 introduces game theoretic and
logical notation. Section 3 develops the formalisation of payoff uncertainty, rationality,
and knowledge about payoff uncertainty and rationality. Section 4 contains the epis-
temic characterisation theorem and a proof. Section 5 compares our approach with
the literature and motivates the axioms in terms of lexicographic beliefs. Section 6
concludes.

2 Notation

2.1 Game theory

Let � = (I, (Ai )i , (ui )i ) be an N -person normal form game, and let X1, X2, and
so on, be sets of strategies satisfying Xi ⊆ Ai for all i ∈ I. The subgame of �
‘spanned’ by

∏
i Xi is the game (I, (Xi )i , (ui |Xi )i ) resulting from � by removing

for all i the strategies in the complement of Xi (with respect to Ai ) and adapting the
utility functions correspondingly. We write

nsd�i (X1, . . . , X N )

for the pure strategies that are not strictly dominated for player i in the subgame of �
spanned by

∏
i Xi , and nwd�i analogously for weak dominance. With some abuse of

notation, this applies to functions with different domains. Assuming some enumera-
tion, player i’s strategies are written i1, i2, and so on. A multi-matrix (ri,k1,...,kN )i,k1,...,kN

containing reals ri,k1,...,kN is used to build constructs of the form

nsd�i (X1, . . . , X N , (ri,k1,...,kN )i,k1,...,kN )

denoting the set of pure strategies that are not strictly dominated in the subgame of �
spanned by

∏
i Xi in which the utility functions ui are replaced by utility functions u′

i
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defined by

u′
i (1k1 , . . . , NkN ) = ri,k1,...,kN .

That is, take �, remove all strategies in the complement of Xi , substitute ui by u′
i ,

and collect all strategies that are not strictly dominated in the resulting game. A multi-
matrix containing sets of reals (Di,k1,...,kN )i,k1,...,kN is used to build constructs of the
form

nsd�i (X1, . . . , X N , (Di,k1,...,kN )i,k1,...,kN )

denoting the set of pure strategies of player i that are not strictly dominated in any
subgame spanned by

∏
i Xi in which the utility functions ui are replaced by utility

functions u′
i satisfying

u′
i (1k1 , . . . , NkN ) ∈ Di,k1,...,kN .

That is, take as many copies of � as there are u′
i satisfying this condition, remove all

strategies in the complement of Xi , substitute ui by u′
i in the corresponding copy of

�, and collect all strategies that are not strictly dominated in any resulting game.
Using the nsd�i and the nwd�i , the Dekel-Fudenberg procedure is defined recursively

by

DF0
i = Ai ,

DF1
i = nwd�i (DF0

1, . . . ,DF0
N ),

DFn+1
i = nsd�i (DFn

1, . . . ,DFn
N ) (n ≥ 1);

iterated strict dominance, by

S0
i = Ai ,

Sn+1
i = nsd�i (S

n
1, . . . ,S

n
N ) (n ≥ 0);

and the concept we characterise, which we call ‘mixed iterated strict weak dominance,’
by

M0
i = Ai ,

Mn+1
i = nwd�i (S

n
1, . . . ,M

n
i , . . . ,S

n
N ) (n ≥ 0),

showing mixed recursion. Informally put, the idea is that player i considers a sequence
of games spanned by, for opponent strategies, the relevant stages from the sequence of
iterated strict dominance, and for himself, the strategies that are not weakly dominated
for him in the previous stage. Stage zero is Ai . To obtain stage one, he removes from
the entire game those strategies of his that are weakly dominated. To obtain stage two,
he considers the game spanned by, for opponent strategies, the sets S1

j , j �= i , and for
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himself, the set obtained at stage one (that is, nwd�i (A1, . . . ,Ai , . . . ,AN )), and he
removes from this game those strategies of his that are weakly dominated. And so he
continues.

Players are ‘rational’ if they conform to Dekel and Fudenberg’s (1990) maxim not
to play weakly dominated strategies.

2.2 Logic

We use logical symbols ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implica-
tion), and ↔ (equivalence). No quantifiers are needed. The conjunction (disjunction)
of all sentences from a finite set � is abbreviated by

∧
�(

∨
�). If the ϕi enumerate

� we often write
∧

i ϕi (
∨

i ϕi ).
The �i operator has an epistemic reading (‘i knows that…’). In fact, we shall

formally cast the epistemic characterisation theorem in a proof system without veridi-
cality, that is, in terms of ‘true belief’ (ϕ ∧ �iϕ). But we follow standard convention
informally to phrase epistemic characterisation theorems in terms of knowledge in-
stead of true belief. The EI operator stands for ‘every player i ∈ I knows that…’
The CI is used to speak about ‘common’ knowledge: ‘all players know that…, and all
players know that all players know that…, and all players know that all players know
that all players know that…, and so on ad inf.’ An abbreviation for EI · · · EIϕ with
n occurrences of EI is En

Iϕ. Furthermore, EIϕ ∧ E2
Iϕ ∧ . . .∧ En

Iϕ is written E≤n
I ϕ.

This is referred to as common knowledge ‘up to level n.’ We write �i� for player i’s
knowledge that at least one of the propositions from � holds; that is, for �i

∨
�.

Proposition letters im are used for the statement ‘i plays his mth strategy im .’ The
formal analogue of the statement that ui (1k1 , . . . , NkN ) = r for some real number
r is ui (1k1 , . . . , NkN ) = r. At most countably many symbols for real numbers are
needed. Proposition letters rati are used for rationality in the sense of Dekel and
Fudenberg’s (1990) maxim to exclude playing weakly dominated strategies. The set
of proposition letters for player i’s pure strategies that survive at least n rounds of the
Dekel-Fudenberg procedure is denoted by DFn

i , and its limit (the set of player i’s pure
strategies that survive the entire Dekel-Fudenberg procedure), by DF∞

i . Sets Sn
i (for

iterated strict dominance), and Mn
i (for the solution concept we characterise, mixed

iterated strict weak dominance), and their limits, are defined similarly.
The following axioms from epistemic logic are standard:

Prop All classical propositional tautologies.
K �i (ϕ → ψ) → (�iϕ → �iψ).
D �iϕ → ¬�i¬ϕ.
4 �iϕ → �i�iϕ.
E EIϕ ↔ ∧

i∈I �iϕ.
C CIϕ ↔ EI(ϕ ∧ CIϕ).

The following axioms describe situations of normal form game playing:

Strat≥1
∧

i∈I
∨

m im.
Strat≤1

∧
i∈I

∧
m �=n ¬(im ∧ in).

KnStrat
∧

i∈I
∧

m(�i im ↔ im).
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Every player plays at least one strategy (Strat≥1) and at most one strategy (Strat≤1),
and knows which strategy he chooses (KnStrat).

The following proof rules of modus ponens, necessitation, and induction are
standard:

MP If � ϕ → ψ and � ϕ, then � ψ .
Nec If � ϕ, then � �iϕ.
Ind If � ϕ → EI(ϕ ∧ ψ), then � ϕ → CIψ .

3 Formalisation

3.1 Payoff uncertainty

Without loss of generality we assume that we are dealing with a two-person normal
form game, and that we wish to formalise the statement that player i has approximate
knowledge about player j’s utility function. What makes the formalisation task a non-
trivial one is that we have to accomplish this in a context in which player i knows,
too, that player j has exact knowledge about player j’s utility function. We will first
formalise knowledge about exact knowledge, and then turn to approximate knowledge.

Knowledge about exact knowledge about a utility function The most straightforward
way to formalise the statement that player j has exact knowledge about the utility r j,k,l

player j assigns to strategy profile (ik, jl) is

� j u j (ik, jl) = r j,k,l ,

and as a result the most straightforward way to formalise the statement that player i
knows that player j has exact knowledge about the utility player j assigns to strategy
profile (ik, jl) is to add a �i to the above sentence, resulting in

�i� j u j (ik, jl) = r j,k,l . (1)

Yet this cannot be coherent in a context where player i has only approximate knowledge
about player j’s utility function, for in such a context sentence (1) implies that player
i has in mind the specific utility value r j,k,l , illegitimately suggesting a kind of exact
knowledge about player j’s utility function.

What does work, though, is to cast player i’s knowledge about player j’s exact
knowledge about the utility player j assigns to strategy profile (ik, jl) in knowledge
about a conjunction of conditionals,

�i

∧

r∈D j,k,l

(u j (ik, jl) = r → � j u j (ik, jl) = r),

for a finite set D j,k,l containing r j,k,l and contained in a small environment of r j,k,l . In
words this expresses player i’s knowledge that if the utility player j assigns to (ik, jl)
is such and such, then player j knows that it is such and such, and this does not imply
that player i has particular utility values in mind.
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Generalising this,

�i

∧

k,l

∧

r∈D j,k,l

(u j (ik, jl) = r → � j u j (ik, jl) = r)

expresses the fact that player i knows that player j has exact knowledge about player
j’s utility function. We abbreviate this by �i� jυ j , and we abbreviate

∧

k,l

∧

r∈D j,k,l

(u j (ik, jl) = r → � j u j (ik, jl) = r)

by � jυ j , where the fact that this notation does not fully capture the logical form of
the statements is unproblematic.

Approximate knowledge about a utility function The careful formalisation of knowl-
edge about exact knowledge about a utility function makes it straightforward now to
formalise approximate knowledge about a utility function. Because of the above prob-
lem about illegitimate knowledge about specific utility values, it is no option to rep-
resent player i’s approximate knowledge about the utility player j assigns to strategy
profile (ik, jl) by means of

�i u j (ik, jl) = r′

for some r ′ sufficiently close to the real r j,k,l = u(ik, jl). What does work, by contrast,
is to write

�i

∨

r∈D j,k,l

u j (ik, jl) = r

for a finite set of reals D j,k,l containing r j,k,l and contained in a small environment
of r j,k,l , and to define the degree of approximation by putting specific conditions on
D j,k,l . A natural such condition we adopt in this paper is the following, suggested
by Dekel and Fudenberg (1990). Given a particular two-person normal form game,
one can find ε j,k,l > 0 such that if |r − r j,k,l | < ε j,k,l for all r ∈ D j,k,l , player i’s
knowledge is such that player i gets relations of strict dominance among the strategies
of player j right, but not (necessarily) relations of weak dominance. We shall say that
the ε j,k,l ‘ensure knowledge about strict dominance’ whenever these conditions hold
with respect to the utility player j assigns to strategy profile (ik, jl).

3.2 Rationality

The rationality principle we wish to formalise is defined by its exclusion of weakly
dominated strategies, and was suggested by Dekel and Fudenberg (1990). It is not our
aim here to defend the conceptual or empirical plausibility of the principle, the purpose
of this paper being to construct a logical formalism to capture structural aspects of
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common knowledge of payoff uncertainty and rationality. However, we are well aware
of the fact that weak dominance is generally considered to be more problematic than
strict dominance, witness elaborate treatments of this issue in the literature referred
to in Sect. 5 and references therein. But while a structural clarification of common
knowledge of payoff uncertainty and rationality is the main objective of this paper,
we do believe that our formalisation can help shed light on issues about plausibility
by showing the precise logical consequences of such assumptions.

The following two axioms capture the rationality principle of excluding weakly
dominated strategies:

Ratbas (rati ∧ �i
∧

ik∈Ai , jl∈A j
ui (ik, jl) = ri,k,l)

→ nwd�i (Ai ,A j , (ri,k,l)i,k,l).
Ratind (rati ∧ �i

∧
ik∈Xi , jl∈X j

ui (ik, jl) = ri,k,l ∧ �i Xi ∧ �i X j )

→ nwd�i (Xi , X j , (ri,k,l)i,k,l).

Without loss of generality, the rationality axioms are phrased for a two-person normal
form game, for player i . With the convention that j = 3 − i is player i’s opponent,
the rationality axioms for player j are analogous.

The axioms fix the meaning of the term rati in an inductive and implicit manner.
The Ratbas axiom states that if player i is rational, that then he chooses a strategy that
is not weakly dominated in the entire game. Often, however, player i will be able to
exclude more than only the strategies that are weakly dominated in the entire game
because he will know that certain strategies of his opponent and of himself will not be
chosen. Such knowledge is represented by means of the clauses �i Xi (player i knows
that player i will choose a strategy from Xi ) and �i X j (player i knows that player
j will choose a strategy from X j ). Given such knowledge, the rationality principle
holds that player i chooses a strategy that is not weakly dominated in the subgame of
the original game spanned by Xi × X j .

All in all, the two axioms take care of a situation without additional knowledge as
well as of a situation with additional knowledge.

3.3 Knowledge about payoff uncertainty and rationality

To sum up, we have formalised payoff uncertainty (knowledge about exact knowledge
about utility functions, and approximate knowledge about utility functions), and we
have formalised rationality. To investigate the behavioural consequences of common
knowledge of payoff uncertainty and common knowledge of rationality, we have to
take one more step and add two axioms to ensure that common knowledge of payoff
uncertainty and common knowledge of rationality do the job they are supposed to do.

It may come as a surprise that we need extra axioms to that end, since given
our formalisation of rationality one could at first sight expect that, technically put,
applying the rule of necessitation to the rationality axioms would suffice. But as we
shall see, such a route is blocked for reasons that are quite similar to the reasons why
we had to develop a special formalisation of knowledge about exact knowledge about
utility functions. The assumptions of common knowledge of payoff uncertainty and
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rationality remain powerless in a proof of an epistemic characterisation theorem if
necessitation on the rationality axioms is the only way to proceed.

This is why. Necessitation for � j and the K axiom yield, applied to the Ratbas

axiom for player i ,

(� j rati ∧ � j�i

∧

ik∈Ai , jl∈A j

ui (ik, jl) = ri,k,l)

→ � j nwd�i (Ai ,A j , (ri,k,l)i,k,l). (2)

The antecedent of this sentence will, however, not be made true under the assumption of
common knowledge of payoff uncertainty and rationality. This is because the second
conjunct of the antecedent involves knowledge possessed by player j about player
i’s knowledge about specific utility values player i assigns to certain outcomes of
the game, and as we saw, this is incoherent in a context in which player j has only
approximate knowledge about player i’s utility function.

In fact, it is a good thing that the antecedent of sentence (2) cannot be made true
under the assumption of common knowledge of payoff uncertainty and rationality, for
if it were true, player j would have knowledge about weak dominance relations among
player i’s strategies. Such knowledge was excluded because approximate knowledge
about utility functions was defined in terms of getting strict dominance relations right,
but not (necessarily) weak dominance relations.

Necessitation, then, does not get the right procedure off the ground without extra
axioms. Our solution is to use clauses of the form

(� j rati ∧ � j�iυi ∧ � j

∧

k,l

∨

r∈Di,k,l

ui (ik, jl) = r)

→ � j nsd�i (Ai ,A j , (Di,k,l)i,k,l),

to express the consequences of player j’s knowledge about player i’s rationality in a
situation in which player j only has approximate knowledge about player i’s utility
functions. Clearly, the antecedent conditions are fulfilled once common knowledge of
payoff uncertainty and rationality is assumed: player j knows that player i is rational
(first conjunct), player j knows that player i has exact knowledge of player i’s utility
function (second conjunct), and player j has approximate knowledge about player i’s
utility function (third conjunct). Equally clearly, the consequent provides the appro-
priate knowledge: player j knows that player i will choose a strategy that is not strictly
dominated.

More intricate, but structurally similar, reasoning occurs in the proof of the epis-
temic characterisation result, for which more intricate, but structurally similar, axioms
are needed. In fact, again a distinction is made between two cases, depending on
whether player i has additional knowledge in the form of �i Xi and �i X j , or not:

Knwbas (� j�n
i rati ∧ � j�n

i �iυi ∧ � j
∧

k,l
∨

r∈Di,k,l
ui (ik, jl) = r)

→ � j�n
i nsd�i (Ai ,A j , (Di,k,l)i,k,l).

Knwind (� j�n
i rati ∧ � j�n

i �iυi ∧ � j�n
i Xi ∧ � j�n

i X j
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∧� j
∧

ik , jl

∨
r∈Di,k,l

ui (ik, jl) = r) → � j�n
i nsd�i (Xi , X j , (Di,k,l)i,k,l).

Without loss of generality, the knowledge axioms are phrased for a two-person normal
form game, to grasp the knowledge player j has about player i’s rationality and
knowledge (n = 0), or his knowledge about player i’s knowledge about player i’s
rationality and knowledge (n = 1), or his knowledge about player i’s knowledge
about player i’s knowledge about player i’s rationality and knowledge… (n > 1).
With the convention that j = 3 − i is player i’s opponent, the knowledge axioms for
player j are analogous.

4 Epistemic characterisation theorem

We turn to statement and proof of the epistemic characterisation theorem of mixed
iterated strict weak dominance in terms of common knowledge of payoff uncertainty
and rationality.

The proof system consists of the following axioms: Prop, K, D, 4, E, C, the proof
rules modus ponens, necessitation, and induction, the three axioms Strat≥1, Strat≤1,
and KnStrat, plus the four axioms Ratbas , Ratind , Knwbas , and Knwind .

Theorem 1 Let � = (I, (Ai )i , (ui )i ) be a two-person normal form game, let i =
1, 2, j = 3 − i , and let Di,k,l be finite sets of reals such that |r − ui,k,l | < εi,k,l for all
r ∈ Di,k,l and εi,k,l ensuring knowledge about strict dominance. Then

�
⎛

⎝
∧

i,k,l

ui (ik, jl) = ri,k,l ∧
∧

i

rati∧
∧

i

�i

∧

k,l

ui (ik, jl) = ri,k,l ∧ �i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r

∧C
∧

i

�iυi ∧ C
∧

i

�i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r ∧ C
∧

i

rati

⎞

⎠

→
∧

i

M∞
i

Proof We write ϕn for

∧

i

rati ∧
∧

i,k,l

ui (ik, jl) = ri,k,l ∧
∧

i

�i

∧

k,l

ui (ik, jl) = ri,k,l ∧ �i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r

∧E≤n�iυi ∧ E≤n�i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r ∧ E≤n
∧

i

rati

and ϕn
i for the part of ϕn starting with �i conjoined with the statement rati , that is,
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rati ∧ �i

∧

k,l

ui (ik, jl) = ri,k,l ∧ �i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r

∧�i E≤n−1�iυi ∧ �i E≤n−1�i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r ∧ �i E≤n−1
∧

i

rati ,

with the convention that if n = 0 the �i E≤n−1 vanish completely.
We prove

Claim 1 ∀n � ϕn
i → Mn+1

i .

First, however, we prove

Claim 2 All you need to prove the statement ∀n � ϕn
i → Mn+1

i from Claim 1 is:
∀n � ϕn

i → (�iMn
i ∧ �iSn

j ).

Proof of Claim 2 Assume ∀n � ϕn
i → �iMn

i ∧ �iSn
j is proved. By definition of ϕn

i
we have, too,

∀n � ϕn
i → (rati ∧ �i

∧

k,l

ui (ik, jl) = ri,k,l).

Apply Ratind for i to get

∀n � ϕn
i → nwd�i (Mn

i ,Sn
j ),

which, observing that Mn+1
i = nwd�i (Mn

i ,Sn
j ), concludes the proof of Claim 2. ��

One level deeper we prove

Claim 3 All you need to prove the statement ∀n � ϕn
i → (�iMn

i ∧ �iSn
j ) from

Claim 2 is

∀n � ϕn
i → (�i�iMn−1

i ∧ �i�iSn−1
j ∧ �i� jSn−1

j ∧ �i� jSn−1
i ).

Proof of Claim 3 Assume ∀n � ϕn
i → (�i�iMn−1

i ∧ �i�iSn−1
j ∧ �i� jSn−1

j ∧
�i� jSn−1

i ) is proved. To show

∀n � ϕn
i → �iMn

i ,

we observe that by definition of ϕn
i and the assumption we have

∀n � ϕn
i → (�i rati ∧ �i�i

∧

k,l

ui (ik, jl) = ri,k,l

∧�i�iMn−1
i ∧ �i�iSn−1

j ).
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Apply the rule of necessitation for i to the appropriate instance of Ratind for i , and
observe that its consequent is what we wish to show and that its antecedent is what
we have just shown. To show

∀n � ϕn
i → �iSn

j ,

we observe that by definition of ϕn
i and the assumption we have

∀n � (ϕn
i → �i rat j ∧ �i� jυ j ∧ �i� jSn−1

j ∧ �i� jSn−1
i

∧�i

∧

k,l

∨

r∈D j,k,l

u j (ik, jl) = r).

Take the appropriate instance of Knwind for i (the instance of the axiom that speaks
about i’s beliefs about j’s iterated beliefs), and observe that its consequent is what we
wish to show and that its antecedent is what we have just shown. This concludes the
proof of Claim 3. ��

Now we are ready for

Claim 4 The statement ∀n � ϕn
i → (�i�iMn−1

i ∧ �i�iSn−1
j ∧ �i� jSn−1

j ∧
�i� jSn−1

i ) from Claim 3 is true.

Proof of Claim 4 Induction on n. The basis is left to the reader. Assume that the
statement holds for some n. We prove the four implications for n + 1 separately.

(i) To prove

ϕn+1
i → �i�iMn

i ,

it is sufficient to prove ϕn+1
i → (�i�i�iMn−1

i ∧ �i�i�iSn−1
j ). Assume the

latter to be true. Apply the rule of necessitation for i to the appropriate instance
of Ratind for i twice, and observe that its consequent is what we wish to show
and that its antecedent follows from the definition of ϕn+1

i and the assumption.
To prove the truth of the assumption apply necessitation for i to the inductive

hypothesis and observe that ∀n � ϕn+1
i → �iϕ

n
i .

(ii) To prove

ϕn+1
i → �i�iSn

j ,

it is sufficient to prove ϕn+1
i → (�i�i� jSn−1

j ∧ �i�i� jSn−1
i ). Assume the

latter to be true. Apply the rule of necessitation for i once to the appropriate
instance of Knwind for i and for n = 0, and observe that its antecedent follows
from the definition of ϕn+1

i and the assumption, and that the consequent is what
we wish to prove.

To prove the truth of the assumption apply necessitation for i to the inductive
hypothesis and observe that ∀n � ϕn+1 → �iϕ

n
i .
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(iii) To prove

ϕn+1
i → �i� jSn

j ,

it is sufficient to prove ϕn+1
i → (�i� j� jSn−1

j ∧ �i� j� jSn−1
i ). Assume the

latter to be true. Take the appropriate instance of Knwind for i and for n =
1, and observe that its consequent follows from the definition of ϕn+1

i and the
assumption.

To prove the truth of the assumption observe that, first, ∀n � ϕn+1
i → ϕn

i , and
second, ∀n � (�i� jSn−1

j ∧ �i� jSn−1
i ) → (�i� j� jSn−1

j ∧ �i� j� jSn−1
i ).

Together with the inductive hypothesis this shows the truth of the assumption.
(iv) To prove

ϕn+1
i → �i� jSn

i ,

it is sufficient to prove ϕn+1
i → (�i� j�iSn−1

i ∧ �i� j�iSn−1
j ). Assume the

latter to be true. Apply necessitation for i to the appropriate instance of Knwind

for j and for n = 0, and observe that its antecedent follows from the definition
of ϕn+1

i and the assumption and that its consequent is what we wish to prove.
To prove the truth of the assumption we observe that, indeed, the inductive

hypothesis may be assumed to hold for ϕn
j as well. Applying the rule of necessi-

tation for i to it yields �iϕ
n
j → (�i� j�iSn−1

i ∧ �i� j�iSn−1
j ). What we now

need is ϕn+1
i → �iϕ

n
j . And that is easy to see. ��

5 Discussion

5.1 Comparison with the literature

The motivation to prove epistemic characterisation theorems typically comes from one
of two sides. One may start with a familiar game theoretic solution concept in mind,
and ask under what epistemic conditions it will capture game play adequately. And
one may start with certain epistemic conditions in mind, and investigate what solution
concept follows, that is, in the game theoretic jargon, investigate the ‘behavioural
consequences’ of certain epistemic conditions. This may lead, in the first case, to the
discovery of new and surprising epistemic conditions, and in the latter case, to new
and surprising solution concepts.

This paper investigates the behavioural consequences of epistemic conditions inv-
olving common knowledge of payoff uncertainty and rationality. Dekel and Fudenberg
(1990) presented a formalisation of conditions involving payoff uncertainty, and linked
them to the iterated elimination of strictly dominated strategies preceded by one round
of elimination of weakly dominated strategies, the Dekel-Fudenberg procedure. Sub-
sequent game theoretic and logical research zoomed in on the solution concept of the
Dekel-Fudenberg procedure and provided epistemic characterisations in terms of ap-
proximate common knowledge of rationality (Börgers 1994), a lexicographic variant
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thereof called ‘common first-order knowledge’ (Brandenburger 1992), the weakest per-
fect τ -theory (Gul 1996), in terms of players believing that opponents make errors with
small (and correlated) probability (Herings and Vannetelbosch 2000), and in terms of
common knowledge of perfect rationality (Stalnaker 1996).

By contrast to this literature, rather than starting with the solution concept in
mind, we zoom in on the epistemic conditions. We provide an alternative formali-
sation of common knowledge of payoff uncertainty and rationality, and investigate its
behavioural consequences. These consequences are quite different from the Dekel-
Fudenberg procedure, and this is, of course, due to the fact that our formalisation
of common knowledge of payoff uncertainty and rationality is different. Precisely to
locate these differences, we discuss the conceptions of common knowledge of payoff
uncertainty and rationality developed by Dekel and Fudenberg and Börgers (as they
are fairly representative for the literature), and show by means of an example to what
extent they are different from the model we propose.

The difference lies in the formalisation of payoff uncertainty, not in that of ratio-
nality, for as we noted, we explicitly adopt Dekel and Fudenberg’s principle that a
rational player does not choose weakly dominated strategies (Dekel and Fudenberg
1990). Payoff uncertainty, however, we model differently. Without going into too much
technical detail, what Dekel and Fudenberg do is to model payoff uncertainty by means
of elaborations of games as they were developed by Harsanyi (1967–1968). Roughly,
a sequence of games is considered in which the utility functions of the players are
slightly different than in the original game. A notion of convergence is defined, both
on sequences of games and on sequences of strategies, and the main result is then
that a strategy survives the Dekel-Fudenberg procedure just in case it is the limit of
a sequence of strategies that survive the iterated elimination of weakly dominated
strategies in elaborations converging to the original game.

Börgers (1994), in turn, defines a notion of approximate common knowledge, and
shows that approximate common knowledge of rationality characterises the Dekel-
Fudenberg procedure. A proposition ϕ is approximate common knowledge whenever
everyone believes with high probability that ϕ, everybody believes with high proba-
bility that everyone believes with high probability that ϕ, and so on.

The difference between these two models and the model we propose becomes trans-
parent once we compare the respective formalisations of statements such as ‘player
i has approximate knowledge about the utility player j assigns to strategy profile
(ik, jl).’ Dekel and Fudenberg and Börgers model this by having player i assign high
probability to the correct, actual utility value, and low probability to alternative utility
values. Under this reading, approximate knowledge is modelled in probabilistic terms.
In our model, by contrast, player i has knowledge about a disjunction of statements
one of which expresses the correct utility, and all of which fall in a small environment
of the correct utility. Our non-probabilistic model has, one could say, player i assign
equal probability to finitely many alternatives close to the actual value.

To show that this makes a difference, consider the games shown in Fig. 1. The
game on the left correctly represents the utility functions of both players. It is the
game that they actually play. The game on the right is the game as player 2 perceives
it. It represents player 2’s utility correctly, but it gives an approximation of the utility
player 1 assigns to strategy profile (11, 22). The intended interpretation is that player 2
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Fig. 1 The real game and the believed game

knows that u1(11, 22) ∈ D for some finite set D containing the actual utility value,
and contained in a small environment of it, such that the conditions of the epistemic
characterisation theorem are satisfied. That is, that player 2 has approximate knowledge
about the utility player 1 assigns to (11, 22) is formalised in our model by knowledge
about a disjunction over D. Strictly speaking, the game on the right represents not one
but |D| games. For completeness, we should mention that player 1 perceives the game
as it is.

The only Dekel-Fudenberg outcome is (12, 21). If player 2 assigns high probability
p to the correct utility player 1 assigns to (11, 22), any other outcome disappears
when p tends to infinity. Similar observations hold for Börgers’ model. If we assume
common knowledge of payoff uncertainty and rationality as we have formalised it,
however, there is a second outcome possible, namely (12, 22). An informal way to
demonstrate this is the following. First note that under common knowledge of payoff
uncertainty and rationality as we have formalised it player 1 will indeed play his
second strategy: both his first one and his third one are weakly dominated. To see
that player 2 can play his second strategy under these assumptions, observe that, since
he is rational, he will not play the weakly dominated 23. Further, player 2 knows that
player 1 is rational. From the game which player 2 thinks is being played (the matrix on
the right), player 2 removes player 1’s weakly dominated strategies, but the only such
strategy is 13. In particular, since player 2 only has approximate knowledge about the
utility function of player 1, he cannot justifiably remove 11: player 2 holds it possible
that 11 will score more for player 1 against 22 than any other strategy of player 1.
From player 2’s point of view, player 1 will either play his first or his second strategy,
and this makes, for player 2, playing his first as well as his second strategy rational.
Rationality does not exclude 22, and hence (12, 22) is a possible outcome.

5.2 Motivation of the axioms

A syntactic approach as proferred in this paper makes it possible to analyse the role of
various levels of common knowledge about rationality and a particular form of payoff
uncertainty, but it has the admitted drawback to make it more difficult to motivate
the axioms in terms of the lexicographic beliefs characteristic of the semantic ap-
proach. While to some extent this is distinctive of the syntactic approach to interactive
epistemology (see, e.g., Clausing 2004; van Benthem 2003), such a motivation may
justifiably be demanded, and we shall attempt to give one here.
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Let us start with the Ratbas axiom. In our formalisation the purpose of this axiom
is to capture the rationality principle according to which weakly dominated strategies
are to be excluded, and it does so by stating that it can be concluded that player i will
not play a strategy that is weakly dominated in the entire game on the basis of no more
information than that player i is rational and that he knows his own utility function.
A high-yielding place to look for a basis of a motivation for this axiom is a result due
to Pearce (1984). It states that a strategy is not weakly dominated for player i in the
entire game iff it is a best response for him to some probability distribution with full
support (that is, assigning zero probability to no alternative) over player j’s available
strategies. Ratbas indeed formalises such a situation in which no specific information
is available about which alternatives player i’s belief exclude.

In the process of iteratively eliminating strategies as discussed in this paper, player
i’s beliefs focus in on certain sets of strategies of player j and himself. By doing
so his beliefs start excluding alternatives and as a result cease to have full support
(the temporal phrasing of this process is rather metaphoric). At the first stage of the
elimination process player i assigns zero probability to no strategy of his opponent.
At the next stage of the elimination process, however, he will remove strategies that,
given his own payoff uncertainty and knowledge about his opponent j’s rationality, he
believes player j will not play. If such strategies exist, player i’s beliefs at this stage
will exclude them and consequently not have full support. In our formalism this case
is dealt with by Ratind .

How to motivate this axiom? First, consider the following attempt to motivate
Ratind . If player i’s beliefs are captured by �i Xi ∧ �i X j for Xi ⊆ Ai and a real
subset X j ⊂ A j , they have indeed no full support with respect to the entire game,
but they do have full support with respect to the subgame spanned by Xi × X j . This
shows, the attempt would go, that the result by Pearce still may be used to motivate
why Ratind has player i choose a strategy that is not weakly dominated in that very
subgame: simply reduce Pearce’s result to the subgame.

This may sound like a plausible defense of Ratind , but it has an important defect.
Going from the first to the second stage, player i has given up his full support beliefs
from the first stage. While these beliefs have full support with respect to the subgame
of the second stage, the fact that they no longer have full support with respect to
the entire game makes it impossible simultaneously to adopt Ratbas (which seems to
presuppose full support beliefs with respect to the entire game), and Ratind (which
seems to presuppose non-full support beliefs).

This is very much related to a puzzle presented by Larry Samuelson (1992).
A solution to that puzzle by means of lexicographic probability systems by
Brandenburger et al. (2007) proves very useful for our motivational task. Consider
Brandenburger et al.’s version of Samuelson’s game shown in Fig. 2. If player 2 is
rational in the sense of not choosing weakly dominated strategies, he will not play
22. This means that if player 1 expects player 2 to be rational in that sense, he will
not form a full support belief. But how is that possible if at the same time player 1 is
rational, too, in the sense of excluding weakly dominated strategies. There seems to be
a friction, then, between assuming someone to be rational in that sense, and assuming
someone to believe others to be rational in that same sense.
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Fig. 2 The puzzle

Brandenburger et al.’s solution represents the players’ beliefs by means of lexi-
cographic probability systems. Player 1’s primary measure assigns probability 1 to
player 2 playing 21, thus grasping the consequences of his expectations about player
2’s rationality. But player 1 has a secondary measure assigning probability 1 to the
event that player 2 plays 22, and the interpretation of this is that player 1 considers
it infinitely more likely that player 2 is rational and plays 21 than that he plays 22.
The idea now is that player 1’s beliefs at the end of their iterative elimination process
(which is, of course, different from ours) can be represented by means of a lexico-
graphic probability system the primary measure of which assigns positive probability
to the surviving strategies only, while the remaining measures cover the subsequently
eliminated strategies. In doing so, Brandenburger et al. rely on the fact that a strategy
is not weakly dominated for player i in the entire game nor in the subgame spanned
by Xi and X j whenever it is a best response to a lexicographic probability system
with full support (all alternatives receive non-zero probability in some measure in
the system) according to which Xi is infinitely more likely than its complement. The
situation described by this result is exactly the one covered by Ratind without any
resulting incoherence with Ratbas .

This motivates Ratbas and Ratind from the perspective of lexicographic beliefs.
What about Knwbas and Knwind? These two axioms are intended to capture a specific
conception of payoff uncertainty, namely, that if player j is fully informed about player
i’s rationality as well as about the fact that player i knows his own utility function, but
player j is less than fully informed about player i’s utility function, that then player j
will form certain beliefs about player i’s prospective strategies as well as about player
i’s beliefs about his own prospective strategies.

At first sight there may seem to be an incoherence, if not an inconsistency, as the
antecedent rationality condition of Knwbas and Knwind refers to a rationality concept
that, by Ratbas and Ratind , was cast in terms of excluding weakly dominated strate-
gies, while the consequent refers to the exclusion of strong domination. It is important,
however, to realise that in Knwbas as well as in Knwind strong domination does not
occur in the sense of an alternative to weak domination, and that it does not entail that
player j would attribute to player i something like the possession of lexicographic
(or non-lexicographic) beliefs. Rather its occurrence is motivated by the fact that
player j is under the sway of a particular form of payoff uncertainty. He is so cautious
as to be unwilling epistemically to exclude those strategies that are weakly domi-
nated but not strongly dominated. An additional sign of his cautious epistemic attitude
is the requirement, in the consequent of Knwbas and Knwind , that these strategies
are strongly dominated in all games that player i holds epistemically open. Player
j may reason like this: I do not have any information about the likelihood of the
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games captured by the sets Di,k,l (in crucial contrast, mentioned before, to probabilis-
tic approaches to payoff uncertainty). Not being willing to take any epistemic risk,
I therefore zoom in on strategies that are not strongly dominated in any of the games
that I cannot epistemically exclude. This epistemic policy is motivated by combining
my epistemic risk-aversity with my knowledge about player i’s rationality of exclud-
ing weakly dominated strategies. If, for instance, I knew him to be irrational, and to
play completely arbitrary, I would not adopt any specific such policy and stay with
full support equiprobable beliefs.

Summarising, the assumptions of the epistemic characterisation theorem proved
in this paper involve players who adopt, on the level of the practical rationality of
strategy choice, a principle that is ‘broad’ in the sense that it allows for more than its
competitor, based on strong dominance. On the level of the theoretical rationality of
belief formation, by contrast, the players adopt a more ‘narrow’ and cautious policy.

While this motivates the axioms and makes them intelligible in terms of lexi-
cographic beliefs and epistemic policies, it does not yet directly show them to be
plausible. It is of course an empirical question whether actual players of games will
adequately be described in these terms, and alternative assumptions can be studied
which empirical research may reveal to be more realistic. Conceptually, however, we
believe that nothing speaks against the assumptions the theorem makes. In particular,
we believe that there is room for an analysis of the consequences of interpreting payoff
uncertainty in equiprobable terms in a context of cautious belief formation policies,
rather than as involving players whose uncertainty entails assigning different degrees
of likelihood to alternatives. And while our approach does not formalise all ingre-
dients of game playing situations that Brandenburger (2007) lists when he discusses
open questions about logic and the epistemic program in game theory, we do exploit a
uniquely logical tool to study the players’ reasoning processes in game playing situa-
tions with payoff uncertainty, namely, implicit and inductive definitions in a recursive
context to lay bare levels of knowledge and belief.

6 Conclusion

We have provided a way to formalise statements such as ‘player i has approximate
knowledge about the utility functions of player j ,’ and we have shown that on the
basis of this formalisation, common knowledge of payoff uncertainty and rationality
(in the sense of excluding weakly dominated strategies, due to Dekel and Fudenberg
(1990)) characterises a new solution concept we have called ‘mixed iterated strict
weak dominance.’

It would be interesting to investigate the possibilities of extending the present frame-
work to other iterated solution concepts. While this may be rather straightforward in
many cases, such a logical analysis may not always lead to an increase in theoretical
insight. In the present case, epistemic logic was fruitfully used to uncover asymme-
tries among the knowledge of players in settings of common knowledge of payoff
uncertainty and rationality. A set of intricate axioms was applied in an epistemic char-
acterisation theorem with a complex and informative proof. In the case of several
other iterated concepts, though, we expect proofs in which conclusions follow from
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assumptions without adding much insight to alternative proofs. Extending the formal-
ism to include ingredients of game playing situations listed by Brandenburger (2007)
seems a fruitful next step to take.
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