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Scattering of Light by Photonic Crystals

B.J. HOENDERS, M. DOOSJE* AND J. KNOESTER

Institute for Theoretical Physics and Materials Science Centre
University of Groningen

Nijenborgh 4, 9747 AG Groningen, The Netherlands

A new method is developed to calculate the scattering of light at the
surface of a photonic crystal. The problem is solved in terms of virtual
surface—current distributions and the calculation takes full advantage of
the infinite-space plane-wave expansion method for obtaining the photonic
band structure. Working with surface currents makes the calculations less
time-consuming by means of reduction of the dimensionality in the prob-
lem. The method is applied to a semi-infinite dielectric continuum and for
semi-infinite two-dimensional photonic crystals of small and large dielectric
contrast.

PACS numbers: 42.70.Qs, 42.25.Fx, 42.25.Bs, 03.50.De, 41.20.Jb

1. Introduction

Photonic crystals are materials with a spatially periodic dielectric function
£(r). Their dispersion relation w(k) is described by the photonic band structure,
which consists of different photonic bands, showing gaps between them at the
boundary of the Brillouin zone (BZ). The width of a photonic band gap depends
strongly on the dielectric contrast and on the geometrical configuration of the
crystal structure. The interest in these materials started with the pioneering work
of Bykov [1], Yablonovitch [2], and John [3] on the localization of light and the
inhibition of spontaneous emission. Research activities on photonic crystals and
photonic band structures have increased enormously since that time [4-7].

One of the main motivations to produce dielectric structures possessing large
photonic band gaps, is the desired ability to control the spontaneous emission of
radiation from atoms [1-3, 8].
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134 B.J. Hoenders, M. Doosje, J. Knoester

Let us suppose that we have a photonic crystal with an omnidirectional
photonic band gap for a frequency range w; < w < ws. If an atom, which natu-
rally emits radiation of a frequency which lies inside this range, is placed inside
the photonic crystal, then it cannot emit its radiation, because electromagnetic
waves of that particular frequency cannot propagate through the crystal. This is
the principle used in e.g. the measurement of fluorescence spectra of dye incorpo-
rated in photonic crystals, in experiments aimed at the detection of photonic band
gaps [9, 10].

Another example is the suppression of molecular interactions in periodic
dielectric structures [11]. Control of spontaneous emission is relevant for lowering
the laser threshold in semiconductor lasers [2]. Another application for this effect
is a single-mode light-emitting diode, proposed by Yablonovitch [12, 13].

Other possibilities for practical applications of photonic crystals include the
realization of low-threshold lasers, single-mode lossless waveguides. The principle
for photonic-crystal waveguides [14-23] is to guide light with a frequency inside
the band gap of the photonic crystal along lattice defects which provide localised
modes for this frequency. The lattice defects can be rows of point defects, but also
linear or planar defects. Special features such as sharply bent waveguides [15—18]
and branched waveguide structures ( “beam splitters”) [18-20] have also been de-
veloped.

Further applications include: high-quality resonant cavities [24, 25], perfectly
reflecting mirrors and substrates for antennas [26, 27]. See also [28] for the calcula-
tion of the largest width of the band gap of a 3D fcc air-sphere crystal optimizing
the values of the pertinent geometrical parameters.

During the past decade, much theoretical effort in this field has been de-
voted to calculating photonic band structures and densities of states for ideal
infinite crystals [4, 28—-32]. However, such calculations do not account for the scat-
tering of the light at the crystal’s surface. This scattering problem has received
relatively little attention. Methods that have been developed, include the gener-
alised field-propagator method [33] and the transfer-matrix method [34, 35]. The
former formulates the scattering problem in terms of three-dimensional vector in-
tegral equations, whose numerical solution is a time-consuming process. The latter
assumes that the crystal can be built up from thin infinite layers and has such dis-
advantages that 1t 1s restricted to slab structures and excitation by plane-wave
fields.

We present a rigorous alternative method, which 1s generally applicable to
two- and three-dimensional crystals of arbitrary shape and to incident monochro-
matic fields of arbitrary spatial form. Moreover, the method utilises as input the
infinite-space photonic band structure, which can be calculated by well-known
methods. The advantage of the latter is that, once calculated for a particular ma-
terial, this band structure may be used to calculate the scattering for any crystal
shape and incident field.
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2. Theory

We consider the scattering of monochromatic electromagnetic waves of fre-
quency w at the surface of a photonic crystal. Our solution of this problem is based
on the general property that the solutions to Maxwell’s equations in a medium with
a boundary surface S, may be considered as arising from equivalent tangential (vir-
tual) surface-current distributions just above S. Thus, the magnetic components
H(r,t) of the electromagnetic fields outside (inside) S may be expressed in terms
of integrals over the surface-current distribution Jy (J2), using an appropriate
Green tensor (Fig. 1).

vacuum

Fig. 1. Scattering of light by a photonic crystal. The electromagnetic fields outside the
crystal are generated by the virtual current J; on the outside of the boundary surface
S. The fields inside the crystal are generated by J>.

The crux of our method is that one is rather flexible in the choice of this
Green tensor. It should only obey Eq. (3) inside the medium of interest, but, except
for satisfying the radiation condition at infinity, no particular boundary conditions
are to be imposed on it. This allows us to work with infinite-space Green’s tensors,
even though we are interested in finite media. While this may appear paradoxal,
we point out that for the scalar wave equation this is well known [36]; the extension
to the vector wave equation can be proved in a very analogous way.

The result being that any solution of the scalar Helmholtz- or potential
equation in a finite or semi-infinite volume V' can be written as the superposition
of the fields generated by source- or dipole distributions located at the boundary
of the volume V. In fact, our theory is a generalization of Huygens’ principle
for electromagnetic waves: the field is supposed to be generated by a weighted
superposition of the fields arising from e.g. source- or dipole distributions located
at an appropriate boundary.

Having expressed the fields in terms of the virtual surface currents, the scat-
tering problem is solved by imposing the continuity of the tangential components of
the magnetic and the electric fields across S. This leads to a set of linear equations
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for the, hitherto unknown, surface currents. Solution of these equations suffices to
obtain the fields everywhere. We note that for a d-dimensional photonic crystal,
the equations for the surface currents have a dimensionality of only d — 1, which
is an important computational advantage of our method.

We now turn to the explicit formulation of the solution. Omitting the time-
-dependence e“?  the magnetic field on the vacuum side of the interface S, reads

Hi(r) = / T (ol w) T3 (5 )y (1)

Here F is the dyadic Green tensor for electromagnetic waves in vacuum, which
depends on the dimensionality of the problem (see below). Similarly, on the crystal
side of the interface S, the magnetic field is expressed as

= [ G (s rsyars, )
S

where G is the dyadic Green tensor for the infinite photonic crystal satisfying the
inhomogeneous wave equation

1 G / _WczH'f"f‘/w:H 7‘_7‘/
VX[%ww,rs,m] (@] G (r, vl ) = To(r— ). 3)

We would like to note once again the essential point that this particular
choice for the Green tensor is certainly not unique, but that any solution of Eq. (3)
valid inside V' could be used!

The dyadic Green tensor for the infinite photonic crystal reads

(r; k)®h (vs; k)
dk. 4
(75, Z/BZ [(wn( —w2+’y + 2iyw] /2 (4)

Here izn(r; k) are the normalised Bloch modes

=% Z R (k) iy, e~ m 7, (5)

m A=1

defined uniquely by the equation

2

1 .
V x [—V X hn (7 k)] =

e(r)
and the condition that the fields are bounded at |r| — co. The index n is used for
labelling the eigenfrequencies w, and the eigenvectors l}ggg\(k) These Bloch modes
are the eigenvectors, which are calculated in the standard plane-wave expansion
method, that is used to obtain the photonic band structure [4, 29]. By u , A=
1,2, 3, we denote an orthonormal basis for Euclidean space, for each index m Wthh
labels a reciprocal-lattice vector g,,. The vector k,, equals k+ g,,. Our definition
for = @ is the same as in Ref. [37], except for the fact that we do not need to
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incorporate the longitudinal Bloch modes due to V - H = 0. The small absorption
parameter v has been introduced to handle the singularity of the Green tensor
along the dispersion curves in k-space where wy, (k) = w.

Using the above representation of the fields on either side of .S, the unknown
surface-current distributions J; and J» can be solved by requiring continuity of
the tangential components of H (i.e. continuity of n x H) and the tangential
components of E (i.e. continuity of nx E, or, equivalently, of nx (V x H)/e(r)) [38].
Here, n 1s the unit vector perpendicular to S. In practice, imposing the boundary
conditions leads to a linear set of equations for the discretised surface-current
distributions. Once these distributions have been solved, they may be substituted
back into Egs. (1) and (2) to calculate the fields anywhere. In particular we are
interested in the far field distributions of the scattered field.

Thus, in practice our method involves:

a) the construction of the Green tensor of the photonic crystal using standard
band-structure calculations,

b) the solution of a set of linear equations for the discretised surface-current
distributions, and

¢) the calculation of the fields of interest using the solution obtained for the
currents.

3. Calculation of the photonic band-structure:
the plane-wave expansion method
3.1. Mazwell’s equations and the electromagnetic wave equation

In any physical situation where electric and/or magnetic fields play a role,
these fields must be a solution of Maxwell’s equations. The next step 1s usually to
derive the wave equation from Maxwell’s equations.

Thus, let us start with Maxwell’s equations in SI units, in the presence of
free charges and currents

9B
V.D= vxE=-22

p’ X at’
V.B=0, VXH:%—?—i—J, (1)

where the displacement field D = eg £+ P and the magnetic field B = po H + M.
Without the free charges and currents, these equations are written as

v.D=0, vxE=-28
o
V.B=0, VXH:%—?. (8)

In these equations we did not specify the dependence of the fields on the space
coordinate r and on the time ¢t explicitly, but it should be obvious that these
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dependencies exist. For instance, for the electric field one should read E = E(r,1),
etc.

We suppose the material under consideration is non-magnetic, so that
B = poH. Then it is easy to derive the wave equation, which can be done in
terms of either the electric field E or the magnetic H. The speed of light in vac-
uum appears in the wave equation as ¢ = 1/\//%.

In terms of the electric field E, the wave equation, which must be satisfied
by any electromagnetic wave, is

1 8°E o’P
VX(VXEH—C_Z@?:_“OW' (9)

We assume that P depends linearly on E:

P=cyx(r)E, (10)
where x(7) is the position dependent (for photonic crystals: periodically varying)
dielectric susceptibility. This leads to the wave equation in terms of the electric
field E:

vX(vXE):_ciz[Hx(r)]%sz. (11)

In terms of the magnetic field H, the wave equation, which must be satisfied
by any electromagnetic wave, is

1 0%H
VX [n(r)V x H) = ——" (12)

where
(== (13)
M=) T T+

Instead of expressing the wave equation in terms of E or H, we can also
derive the wave equation in terms of the displacement field D.

3.2. Deriwvation of the plane-wave expansion method

The dielectric function () of a photonic crystal possesses a lattice periodic-
ity, 1.e. it 1s invariant under a translation over a basis vector of the crystal lattice.
Therefore it is convenient to express the material properties (the inverse dielectric
function n(r)) and the relevant electromagnetic-field components (the magnetic
field H(», 1)) in terms of their Fourier expansions.

Thus, the periodic dielectric structure is modelled by a Fourier series for the
inverse dielectric function n(r):

0(r) = % =3l exp (i 7), (14)
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where m labels the three-dimensional set of reciprocal-lattice vectors g,,. In princi-
ple, the summation ", is carried out overall reciprocal-lattice vectors that exist
in reciprocal space. The Fourier coefficients 7, are given by

- _/ r)exp (ig,, - r)dr, (15)

where the integration extends over the volume {2 of one unit cell in the direct
lattice. Because of the inversion symmetry possessed by the unit cell and the fact
that the dielectric function £(r) is assumed real, the Fourier coefficients 7, are
also real.

Also the magnetic field is expressed as a Fourier series, which is known as
the Bloch-wave expansion [39]

H(r,t) = exp (iwt) ZZZhA u exp(—ikm - 7). (16)

m k A=1

Here, for any label m, {un,, 42, @, } is a right-handed orthonormal basis for

Euclidean space, chosen in such a way that a% || k. Furthermore, ky, = k+ g,,,
and the summation over k denotes the summation over all wave vectors within
the first Brillouin zone. The length of the vector k,, will be denoted k,,. Note that
we write a summation over k, in the same way as in Refs. [40, 41], whereas it
would appear to be more correct to write an integration over k, because k is a
continuous variable throughout the Brillouin zone.

We can show that the A = 3 components of the magnetic field vanish because

V-H=0:

V- H(r,t) = —iexp(iwt ZZZhA ko - 0, exp(—iky, - 7)

m  k A=1

k) i, -y, exp(—ikm - 7)

Fjw

= —iexp(iwt ZZ
m k

>
I
—

= —iexp(iwt) Z Z h%(k)km exp(—ikm - r) = 0. (17)

This implies that, for any m and any k, h2,(k) = 0. The Bloch-wave expansion for
the magnetic field in Eq. (16) is simplified as

H(r,t) = exp (iwt ZZZhA u exp(—ikm - 7). (18)

m kA=l

Substituting these Fourier expansions for n(r), Eq. (14), and for H(r,1),
Eq. (18), into the wave equation (12), then leaving out the time-dependence factor
exp (iwt), we arrive at
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OSSN btk i, x (uf x 4 )b (k) exp(—iky, - )
I m k

A=1

= ((.u/c)zZ:Z:Z:hﬁl(k)icg1 exp(—ikny, - 7). (19)

m kE =1
As two Fourier series are equal, if and only if their Fourier coefficients are equal,
this leads to the following set of equations for every k and m:

0N bk, x (4 x w)h (k) = (w/e)? D> b, (k). (20)
I A=1 A=1

Working out the summation over A in the left-hand side of Eq. (20), we obtain

=3 bkt (i, x @RER) — (i, x @ RER)] = (w/e)? 3 WA (K. (21)

A=1
Taking the inner product of Eq. (21) with @, gives
> kbt - 4ot (k) = (i, - )i (R)] = (w/e)* iy (k). (22)
]
Taking the inner product of Eq. (21) with @2, gives
Y kikono-i[= (i, - @i )hE (k) + (i, - af)hF (k)] = (w/e)*h, (k). (23)
]

Then we write Eqgs. (22) and (23) as a matrix equation

Uy, - U Uy - U hi(k) | _ o | him(k)

In practical cases, a finite number of N reciprocal-lattice vectors is selected
and the set of fundamental equations (24) is commonly written as a 2N x 2N
matrix equation. Then the eigenvalues of the 2N x 2N matrix must be identified
with (w/c¢)?, which immediately gives us the photonic band structure. This 2N x2N
matrix M is constructed in the following way. We regard the matrix M as an N x N
matrix with elements M,y,;, where each of the labels m and [ corresponds to one
of the reciprocal-lattice vectors g,, and g; selected. In turn, each element M, is
a 2 X 2 matrix, assigned according to the following prescription:

Uy U~ U

m W Uy W

My = klkmnm—l 1 .9 1 a1 (25)
Uy Y U, - Uy

Because of the inversion symmetry mentioned above and the assumption that the
index of refraction of the material is a real quantity, the matrix M is real and
symmetric. Its eigenvalues are real-valued quantities, to be identified with (w/c)?.
Our calculations show that the eigenvalues are indeed non-negative.
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4. Results

We will demonstrate the application of the above approach for the case
of two-dimensional (2D) photonic crystals filling a half space. The pertinent 2D

free-space Green tensor f reads

— 1 —

I (r,7s,w) = £IT H(e/w)'V @ VIHE (w]r = #%5]/c), (26)
where Héz) is the zeroth-order Hankel function of the second kind. The crystal

under consideration has a 2D periodicity of the dielectric function ¢(r) in the #
and y directions and is infinitely extended in the z direction, see Fig. 2.

vacuum

Fig. 2. Cross-section of a two-dimensional photonic crystal with the zy-plane. The

boundary surface S of the crystal is defined to be the yz-plane.

The vector », which occurs in our expressions, is restricted to the zy-plane.
Since, for purely 2D Maxwell fields there 1s no mixing between the two polarizations
(TE, with the electric field parallel to the z-axis, and TM, with the magnetic field
parallel to the z-axis), we have a set of only two equations for each polarization,
namely the continuity of H, and (V x H), for TE polarization, with the surface
currents Jy; and Jy being only in the y direction, and the continuity of H, and
(V x H), for TM polarization, with J; and J2 being only in the z direction.

We have used our method to reconstruct the reflected fields in the vacuum
region from the surface-current distribution Ji. In particular, we have calculated
the distribution of the energy flow over all outgoing directions o (measured with
respect to the surface normal), upon irradiation of the crystal by a plane wave.

For this intensity distribution we use the asymptotic behaviour of F at large
distances away from the crystal surface. As a measure for the intensity we use the
dimensionless quantity (o) = D|H|?/|Hin|?, where D is the ratio of the distance
at which the field 1s observed and the length of the crystal surface. This measure
is independent of D, as for 2D systems | H| is inversely proportional to VD.

As a first test of the numerical implementation of our method, we have
considered the limiting case of a homogeneous medium (¢(r) = ¢ = const) filling
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the half space > 0. The Green tensor for the homogeneous medium is given by
that of the vacuum (Eq. (26)), with ¢ replaced by ¢/ /. For all angles of incidence
considered, we have found that the numerically obtained angular distribution of
the reflected and the transmitted intensity, agrees perfectly with the theoretically
expected behaviour based upon Fresnel’s and Snell’s laws. In particular, for TM
polarised light incident under Brewster’s angle g = arctan /g, the intensity of
the reflected light vanishes, both theoretically and in our numerical results.

Next, we have considered the scattering of a plane wave incident on a 2D
photonic crystal consisting of air cylinders (radius R = 0.48a), arranged on a
triangular lattice (lattice constant @) in a dielectric background. The orientation
of the lattice 1s as shown in Fig. 2. We will present results for two particular
configurations of the crystal, which only differ in the value of the dielectric contrast.

Figure 3 shows the angular distribution of the reflected intensity in the case of
a weakly scattering crystal where the dielectric background has index of refraction
Ve = 1.05, i.e., a weakly scattering crystal. We considered a scattering surface
with length L = 40a, which was discretised into 401 points. The calculation of
the Green tensor of the crystal was based on the plane-wave expansion method
using 283 plane waves. The integration over the first Brillouin zone in Eq. (4) was
performed by discretising half of this BZ into 12286 points. For the absorption rate
we used ¥ = 0.005w. The incident plane wave was taken TM polarised and incident
normally to the surface, its frequency ranging from w = 4.071l¢/a to w = 4.531¢/a.

2,
)
1.5
1,
N N
JL A
0.5
A A
AW AN
VAN VAN
O ; .

*7‘5 *5IO *2‘5 0 25 5IO 7I5
o (degrees)
Fig. 3. Angular distribution of the intensity of the light reflected from a weakly scat-
tering 2D photonic crystal consisting of air cylinders (radius R = 0.48a), arranged on
a triangular lattice (lattice constant a) in a dielectric background (index of refraction
v/ = 1.05). The incident light consists of a TM polarised plane wave, incident normally
onto the scattering surface, with frequency ranging from w = 4.071¢/a (bottom curve,

no offset) to w = 4.531¢/a (top curve, offset 2.0), using steps of Aw = 0.023¢/a.
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In Fig. 3, we observe that part of the light is reflected normal to the crystal
surface. This is the specularly reflected part of the field, which for the present
weak contrast is very small. In addition to this specular reflection, we observe two
peaks, occurring at o & £60°. These are the Bragg peaks, which follow from
single scattering of the incident beam on the dielectric periodicity (first-order
Born’s approximation). Momentum conservation dictates that the wave vector
of the outgoing beam differs from the incident one by a reciprocal lattice vector. If
we also account for energy conservation, it turns out that for the present geometry
Bragg scattering ideally should only occur for w = wy = (47/3)c/a = 4.189¢/a,
with scattering angles o = +60°. This ideal situation is represented by the sixth
curve from below in Fig. 3. The finite width of both peaks results from the finite
length of the crystal surface L = 40a.

We observe, however, that for a range of frequencies around the resonance
frequency wg, the Bragg peaks survive. This is due to the finite damping rate =,
which may be interpreted as leading to a finite depth of the crystal, thus breaking
momentum conservation in the z direction. A simple calculation, based on the
conservation of momentum in the y direction (the direction parallel to the crystal
surface), shows that the angle o must satisfy the relation o = arcsin(%\/gwo/w).
This explains accurately the shifting of the peak position in Fig. 3 from o« = £61°
at w = 4.071l¢/a (bottom curve) to o = £53° at w = 4.531¢/a (top curve). The
width of the frequency region in which the Bragg peaks can be observed agrees
well with estimates based on the finite effective crystal depth imposed by y. We
finally note that changing the index of refraction to v/ = 1.1 leaves the angular
intensity distributions identical, except for changing the vertical scale by a factor
of 4, which confirms that we are in the single-scattering regime.

We have repeated these calculations for the same crystal geometry, but now
with a dielectric background of /¢ = 4.0. For this strong-scattering case, a full
band gap develops for both TM and TE polarization, as is clearly seen in the
calculated band structure plotted in Fig. 4a. The angular distribution of the re-
flected TM light for this crystal is given in Fig. 4b for a range of frequencies, all
lying above the band gap (frequencies inside the gap give rise to complete specular
reflection, as there are no Bloch modes to couple the light to).

Again, we observe the specular reflection and the “Bragg” peaks, which, of
course, all have a strongly increased intensity compared to the weak-scattering
case. More interesting is the observation that the range of frequencies over which
the “Bragg” peaks are observed has grown appreciably compared to the case of
weak scattering. While we are unable to give a simple theoretical estimate of this
frequency range, like we did for the case of weak scattering, it is noteworthy that
over the entire range the position of the peak i1s again accurately described by
o= arcsin(%\/gwo/w). The frequency for which the thus calculated angle becomes
o = 490°, equals (27/v/3)c/a, which lies just above the stop gap in the K direction
(direction of incidence) and agrees with the second curve from below in Fig. 4b.
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Fig. 4. (a) Band structure for the strongly scattering 2D photonic crystal with the same
parameters as in Fig. 3, except that the background index of refraction is \/e = 4.0. The
black (grey) curves correspond to the TM (TE) modes. (b) Angular distribution of the
intensity of the light reflected from this 2D photonic crystal, upon irradiation by a TM
plane wave of normal incidence, with frequencies ranging from w = 3.512¢/a (bottom

curve, no offset) to w = 5.464c/a (top curve, offset 160), using steps of Aw = 0.122¢/a.

We also note an interesting nonmonotonic behaviour of the intensities of the peaks
as a function of the frequency, where it seems that a redistribution of energy takes
place between the specular and the “Bragg” peaks. It will be of interest to monitor
this behaviour in experiments on strongly scattering crystals with a small but finite
damping rate.

5. Discussion

We have presented a method to calculate the scattering of light at the sur-
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face of a photonic crystal. The scattering problem is solved in terms of virtual
surface—current distributions and the calculation takes full advantage of the exist-
ing infinite-space plane-wave expansion method for obtaining the photonic band
structure. Working with surface currents reduces the dimensionality in the problem
and thus also reduces the required computer time and memory. We have tested our
method on the cases of scattering at the surfaces of a homogeneous medium and
a weakly scattering 2D photonic crystal; all results were found to agree accurately
with theoretical expectations. We have also used the method for a first study on a
strongly scattering crystal, where simple arguments based on Born’s approxima-
tion break down. A more extensive analysis of strongly scattering crystals, as well
as the application of our method to more general situations (crystals of different
shapes and incident light of non-plane-wave nature) will be the topic of further
study.
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