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32 Time-Dependent Transport Through Single
Molecules: Nonequilibrium Green’s Functions

G. Stefanucci, C.-O. Almbladh, S. Kurth, E. K.U. Gross, A. Rubio,
R. van Leeuwen, N. E. Dahlen, and U. von Barth

32.1 Introduction

The nomenclature quantum transport has been coined for the phenomenon
of electron motion through constrictions of transverse dimensions smaller
than the electron wavelength, e.g., quantum-point contacts, quantum wires,
molecules, etc. To describe transport properties on such a small scale, a quan-
tum theory of transport is required. In this Chapter we focus on quantum
transport problems whose experimental setup is schematically displayed in
Fig. 32.1a. A central region of meso- or nanoscopic size is coupled to two
metallic electrodes which play the role of charge reservoirs. The whole sys-
tem is initially in a well defined equilibrium configuration, described by a
unique temperature and chemical potential (thermodynamic consistency).
No current flows through the junction, the charge density of the electrodes
being perfectly balanced. In the previous Chapter, Gebauer et al. proposed
to join the left and right remote parts of the system so to obtain a ring
geometry, see Fig. 30.1. In their approach the electromotive force is gen-
erated by piercing the ring with a magnetic field that increases linearly in
time. Here, we consider the longitudinal geometry of Fig. 32.1a and describe
an alternative approach. As originally proposed by Cini [Cini 1980], we may
drive the system out of equilibrium by exposing the electrons to an external
time-dependent potential which is local in time and space. For instance, we
may switch on an electric field by putting the system between two capacitor
plates far away from the system boundaries, see Fig. 32.1b. The dynamical
formation of dipole layers screens the potential drop along the electrodes and
the total potential turns out to be uniform in the left and right bulks. Ac-
cordingly, the potential drop is entirely limited to the central region. As the
system size increases, the remote parts are less disturbed by the junction, and
the density inside the electrodes approaches the equilibrium bulk density.

There has been considerable activity to describe transport through these
systems on an ab initio level. Most approaches are based on a self-consistent
procedure first proposed by Lang [Lang 1995]. In this steady-state ap-
proach, based on density functional theory (DFT), exchange and correla-
tion is approximated by the static local density potential, and the charge
density is obtained self-consistently in the presence of the steady current.
However, the original justification involved subtle points such as differ-
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Fig. 32.1. Schematic sketch of the experimental setup described in the main text.
A central region which also includes few layers of the left and right electrodes is
coupled to macroscopically large metallic reservoirs. (a) The system is in equilib-
rium for negative times. (b) At positive times the electrons experience an electric
field generated by two capacitor plates far away from the system boundaries. Dis-
carding retardation effects, the screening of the potential drop in the electrodes is
instantaneous and the total potential turns out to be uniform in the left and right
electrodes separately

ent Fermi levels deep inside the left and right electrodes and the im-
plicit reference of nonlocal perturbations such as tunneling Hamiltonians
within a DFT framework. (For a detailed discussion we refer to [Stefanucci
2004b].) The steady-state DFT approach has been further developed [Derosa
2001, Brandbyge 2002, Xue 2002, Calzolari 2004] and the results have been
most useful for understanding the qualitative behavior of measured current-
voltage characteristics. Quantitatively, however, the theoretical I-V curves
typically differ from the experimental ones by several orders of magni-
tude [Di Ventra 2000]. Several explanations are possible for such a mis-
match: models are not sufficiently refined, parasitic effects in measurements
have been underestimated, the characteristics of the molecule-contact in-
terfaces are not well understood and difficult to address given their atom-
istic complexity. Another theoretical reason for this discrepancy might be
the fact that the transmission functions computed from static DFT have
resonances at the non-interacting Kohn-Sham excitation energies, which
in general do not coincide with the true excitation energies. Furthermore,
different exchange-correlation functionals lead to DFT-currents that vary by
more than an order of magnitude [Krstić 2003].
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On the other hand, excitation energies of interacting systems are acces-
sible via time-dependent (TD) DFT [Runge 1984, Petersilka 1996a]. In this
theory, the time-dependent density of an interacting system moving in an
external, time-dependent local potential can be calculated via a fictitious sys-
tem of non-interacting electrons moving in a local, effective time-dependent
potential. Therefore, this theory is in principle well suited for the treatment
of nonequilibrium transport problems [Stefanucci 2004b, Stefanucci 2004c].
Below, we combine the Cini scheme with TDDFT and we describe in detail
how TDDFT can be used to calculate the time-dependent current in systems
like the one of Fig. 32.1. The theoretical formulation of an exact theory based
on TDDFT and nonequilibrium Green functions (NEG) has been developed
in [Stefanucci 2004b] and shortly after used for conductance calculations of
molecular wires [Evers 2004]. A practical scheme to go beyond static calcu-
lations and perform the full time evolution has been recently proposed by
Kurth et al. [Kurth 2005]. The theory was originally developed for systems
initially described by a thermal density matrix. An extension to unbalanced
(out of equilibrium) initial states can be found in [Di Ventra 2004].

Here we also mention that another thermodynamically consistent scheme
has been proposed by Kamenev and Kohn [Kamenev 2001]. They consider a
closed system (ring) and drive it out of equilibrium by switching an exter-
nal vector potential. As the Cini scheme, this approach also overcomes the
problem of having two or more chemical potentials. Since the Kamenev-Kohn
approach uses a vector potential rather than a scalar potential, TD current
DFT (TDCDFT) would be the natural density-functional extension to use.

32.2 An Exact Formulation Based on TDDFT

In quantum transport problems like the one discussed in the previous section,
we are mainly interested in calculating the total current through the junction
rather than the current density in some point of the system. Assuming that
the electrons can leave the region of volume V in Fig. 32.1b only through the
surface S, then the total time-dependent current IS(t) is given by the time
derivative of the total number of particles in volume V. Denoting by n(r, t)
the particle density we have

IS(t) = −e
∫

V
d3r

d
dt

n(r, t) . (32.1)

Runge and Gross have shown that n(r, t) can be computed in a one-particle
manner provided that it falls off rapidly enough for r →∞ (this theory ap-
plies only to those cases where the external disturbance is local in space).
Therefore, we may calculate n(r, t), and in turn IS(t), by solving a ficti-
tious non-interacting problem described by an effective Hamiltonian ĤKS(t).
The potential vKS(r, t) experienced by the electrons in ĤKS(t) is called the
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Kohn-Sham (KS) potential and it is given by the sum of the external po-
tential, the Coulomb potential of the nuclei, the Hartree potential and the
exchange-correlation potential vxc. The latter accounts for the complicated
many-body effects and is obtained from an exchange-correlation action func-
tional, vxc(r, t) = δAxc[n]/δn(r, t) (as pointed out in [van Leeuwen 1998], the
causality and symmetry properties require that the action functional Axc[n]
is defined on the Keldysh contour – see Chap. 3). Axc is a functional of the
density and of the initial density matrix. In our case, the initial density matrix
is the thermal density matrix which, due to the extension of the Hohenberg-
Kohn theorem [Hohenberg 1964] to finite temperatures [Mermin 1965], is also
a functional of the density.

Without loss of generality we will assume that the external potential
vanishes for times t ≤ 0. The initial equilibrium density is then given by∑

i f(εi)|〈r|ϕi(0)〉|2, where f is the Fermi function. The KS states |ϕi(0)〉
are eigenstates of ĤKS(0) with KS energies εi. For positive times, the time-
dependent density can be calculated by evolving the KS states according to
the Schrödinger equation

i
d
dt
|ϕi(t)〉 = ĤKS(t)|ϕi(t)〉 . (32.2)

Thus,
n(r, t) =

∑

i

f(εi) |〈r|ϕi(t)〉|2 , (32.3)

and the continuity equation, ṅ(r, t) = −∇· jKS(r, t), can be written in terms
of the KS current density

jKS(r, t) = −
∑

i

f(εi)�[ϕ∗i (r, t)∇ϕi(r, t)] , (32.4)

where ϕi(r, t) = 〈r|ϕi(t)〉 are the time-dependent KS orbitals. Using Gauss
theorem and the continuity equation it is straightforward to obtain

IS(t) = e
∑

i

f(εi)
∫

S

dσ n̂ · �[ϕ∗i (r, t)∇ϕi(r, t)] , (32.5)

where n̂ is the unit vector perpendicular to the surface element dσ.
The switching on of an electric field excites plasmon oscillations which

dynamically screen the external disturbance. Such metallic screening prevents
any rearrangements of the initial equilibrium bulk density, provided that the
time-dependent perturbation is slowly varying during a typical plasmon time-
scale (which is usually less than a fs). Thus, the KS potential vKS undergoes
a uniform time-dependent shift deep inside the left and right electrodes and
the KS potential drop is entirely limited to the central region.

Let us now consider an electric field constant in time. After the transient
phase, the current will slowly decrease. We expect a very long plateau with
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superimposed oscillations, whose amplitude is inversely proportional to the
system size. As the size of the electrodes increases the amplitude of the os-
cillations decreases and the plateau phase becomes successively longer. The
steady-state current is defined as the current at the plateau for infinitely large
electrodes.

What is the physical mechanism leading to a steady-state current? In
the real system, dissipative effects like electron-electron or electron-phonon
scatterings provide a natural explanation for the damping of the transient
oscillations and the onset of a steady state. However, in the fictitious KS
system the electrons are noninteracting and the damping mechanisms of the
real problem are described by the local potential vxc. We conclude that, for
any non-interacting system having the geometry of Fig. 32.1, there must
be a class of time-dependent local potentials leading to a steady current.
Below, we use the NEG techniques to study under what circumstances a
steady-state current develops and what is the underlying physical mechanism.
We also show that the steady-current can be expressed in a Landauer-like
formula in terms of fictitious transmission coefficients and one-particle energy
eigenvalues.

32.3 Non-Equilibrium Green Functions

The one-particle scheme of TDDFT corresponds to a fictitious Green func-
tion Ĝ(z, z′) that satisfies a one-particle equation of motion on the Keldysh
contour of Fig. 32.2,

{
i
d
dz
− ĤKS(z)

}
Ĝ(z, z′) = δ(z, z′) . (32.6)

Fig. 32.2. The Keldysh contour γ is an oriented contour with endpoints in 0− and
−iβ, β being the inverse temperature. It constitutes of a forward branch going from
0− to ∞, a backward branch coming back from ∞ to 0+ and a vertical (thermic)
track on the imaginary time axis between 0+ and −iβ. The variables z and z′ run
on γ
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It is convenient to define the projectors Pα =
∫

d3rα |r〉〈r| onto the left
or right electrodes (α = L,R) or the central region (α = C). Although the r
basis is not differentiable, the diagonal and off-diagonal matrix elements of
the kinetic energy remain well defined in a distribution sense. We introduce
the notation

Oαβ ≡ PαÔPβ , (32.7)

where Ô is an arbitrary operator in one-body space. The uncontacted KS
Hamiltonian is Ê ≡ ĤKS, LL +ĤKS, CC +ĤKS, RR while V̂ ≡ ĤKS−Ê accounts
for the contacting part. Since V̂LR = V̂RL = 0, from (32.1)–(32.6) the current
from the α = L,R electrode to the central region is

Iα(t) = e

∫
d3r i

d
dt
〈r|Ĝ<

αα(t, t)|r〉

= e

∫
d3r 〈r|V̂αC Ĝ<

Cα(t, t)− Ĝ<
αC(t, t)V̂Cα|r〉 . (32.8)

We define the one-particle operator Q̂α(t) in the central subregion C as

Q̂α(t) = Ĝ<
Cα(t, t)V̂αC (32.9)

and write the total current in (32.8) as

Iα(t) = 2e �Tr
{
Q̂α(t)

}
, α = L,R , (32.10)

where the symbol “Tr” denotes the trace over a complete set of one-particle
states of C.

For the noninteracting system of TDDFT everything is known once we
know how to propagate the one-electron orbitals in time and how they are
populated before the system is perturbed. The time evolution is fully de-
scribed by the retarded or advanced Green functions ĜR,A, and by the initial
population at zero time, i.e., by Ĝ<(0, 0) = if(ĤKS(0)), where f is the Fermi
distribution function [since ĤKS(0) is a matrix, so is f(ĤKS(0))]. Then, for
any t, t′ > 0 we have [Cini 1980, Stefanucci 2004c, Blandin 1976]

Ĝ<(t, t′) = i ĜR(t, 0)f(ĤKS(0))ĜA(0, t′)

= ĜR(t, 0)Ĝ<(0, 0)ĜA(0, t′) , (32.11)

and hence
Q̂α(t) =

[
ĜR(t, 0)Ĝ<(0, 0)ĜA(0, t)

]

Cα
V̂αC . (32.12)

The above equation is an exact result. For noninteracting electrons, (32.12)
agrees with the formula obtained by Cini [Cini 1980]. Indeed, the derivation
by Cini does not depend on the details of the noninteracting system and
therefore it is also correct for the Kohn-Sham system, which however has the
extra merit of reproducing the exact density. The advantage of this approach
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is that the interaction in the leads and in the conductor are treated on the
same footing via self-consistent calculations on the current-carrying system. It
also allows for detailed studies of how the contacts influence the conductance
properties. We note in passing that (32.12) is also gauge invariant since it does
not change under an overall time-dependent shift of the external potential
which is constant in space. It is also not modified by a simultaneous shift of
the classical electrostatic potential and the chemical potential for t < 0.

Let us now focus on the long-time behavior and work out a simplified ex-
pression. We introduce the uncontacted Green function ĝ which obeys (32.6)
with V̂ = 0, {

i
d
dz
− Ê(z)

}
ĝ(z, z′) = δ(z, z′) . (32.13)

The ĝ can be expressed in terms of the one-body evolution operator Û(t)
which fullfils

i
d
dt
Û(t) = Ê(t)Û(t), with Û(0) = 1̂ . (32.14)

The retarded and advanced components are

ĝR(t, t′) = −Θ( t− t′)Û(t)Û†(t′) (32.15a)

ĝA(t, t′) = Θ(−t + t′)Û(t)Û†(t′) , (32.15b)

while the lesser component ĝ<(t, t′) = iĝR(t, 0)f(Ê(0))ĝA(0, t), since also the
uncontacted system is initially in equilibrium [cf. (32.11)].

We convert the equation of motion for Ĝ into an integral equation

Ĝ(z, z′) = ĝ(z, z′) +
∫

γ

dz̄ ĝ(z, z̄)V̂ Ĝ(z̄, z′) , (32.16)

γ being the Keldysh contour of Fig. 32.2. The TDDFT Green function Ĝ pro-
jected in a subregion α = L,R or C can be described in terms of self-energies
which account for the hopping in and out of the subregion in question. Con-
sidering the central region, the self-energy can be written as

Σ̂(z, z′) =
∑

α=L,R

Σ̂α, Σ̂α(z, z′) = V̂Cα ĝ(z, z′)V̂αC . (32.17)

Equations (32.16)–(32.17) allow to express Q̂α in terms of the projected Green
function onto the central region, Ĝ ≡ ĜCC, and Σ̂. Below we shall make an
extensive use of the Keldysh book-keeping of Chap. 3. After some tedious
algebra one finds
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Q̂α(t) =
∑

β=L,R

[
ĜR · Σ̂<

β ·
(
δβα + ĜA · Σ̂A

α

)]
(t, t)

+
∑

β=L,R

[
ĜR · Σ̂� � ĜM � Σ̂

	
β ·

(
δβα + ĜA · Σ̂A

α

)]
(t, t)

+i
∑

β=L,R

ĜR(t, 0)
[
ĜM � Σ̂

	
β ·

(
δβα + ĜA · Σ̂A

α

)]
(0, t)

+
{
ĜR(t, 0)ĜM(0, 0)− i

[
ĜR · Σ̂� � ĜM

]
(t, 0)

}[
ĜA · Σ̂A

α

]
(0, t) .

(32.18)

Here we briefly explain the notation used. The symbol “·” is used to write∫∞
0

dt̄ f(t̄)g(t̄) as f ·g, while the symbol “�” is used to write
∫ −iβ

0
dτ̄ f(τ̄)g(τ̄) as

f�g. The superscripts “M”, “”, “�” in Green functions or self-energies denote
the Matsubara component (both arguments on the thermal imaginary track),
the Keldysh component with a real first argument and an imaginary second
argument and the Keldysh component with an imaginary first argument and
a real second argument, respectively.

Let us now take both the left and right electrodes infinitely large and
thereafter consider the limit of t→∞. Then, only the first term on the r.h.s.
of (32.18) does not vanish as both Ĝ and Σ̂ tend to zero when the separation
between their time argument increases. Thus, the long-time limit washes out
the initial effect induced by the conducting term V̂ . Moreover, the asymptotic
current is independent of the initial equilibrium distribution of the central
device. We expect that for small bias the electrons at the bottom of the left
and right conducting bands are not disturbed and the transient process is
exponentially short. On the other hand, for strong bias the transient phase
might decay as a power law, due to possible band-edge singularities.

Using the asymptotic (t, t′ →∞) relation [Stefanucci 2004c]

Ĝ<(t, t′) =
[
ĜR · Σ̂< · ĜA

]
(t, t′) , (32.19)

we may write the asymptotic time-dependent current as

Iα(t) = 2e �Tr
{[

ĜR · Σ̂<
α

]
(t, t) +

[
Ĝ< · Σ̂A

α

]
(t, t)

}
. (32.20)

Equation (32.20) is valid for interacting devices connected to interacting elec-
trodes, since the noninteracting TDDFT Green function gives the exact den-
sity. It also provides a useful framework for studying the transport in inter-
acting systems from first principles. It can be applied both to the case of a
constant (dc) bias as well as to the case of a time-dependent (e.g., ac) one.
For noninteracting electrons, the Green function Ĝ of TDDFT coincides with
the Green function of the real system and (32.20) agrees with the formula by
Wingreen et al. [Wingreen 1993, Jauho 1994].
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32.4 Steady State

Let us now consider an external potential having a well defined limit when
t → ∞. Taking first the thermodynamic limit of the two electrodes and
afterward the limit t → ∞, we expect that the KS Hamiltonian ĤKS(t)
will globally converge to an asymptotic KS Hamiltonian Ĥ∞

KS, meaning that
limt→∞ Ê(t) = Ê∞ = const. In this case it must exist a unitary operator ¯̂U
such that

lim
t→∞

Û(t) = exp[−iÊ∞t] ¯̂U . (32.21)

Then, in terms of diagonalizing one-body states |ϕ∞mα〉 of Ê∞αα with eigenvalues
ε∞mα we have

Σ̂<
α (t, t′) = i

∑

m,m′

e−i[ε∞mαt−ε∞
m′αt′]V̂Cα|ϕ∞mα〉〈ϕ∞mα|f(¯̂E)|ϕ∞m′α〉〈ϕ∞m′α|V̂αC ,

(32.22)
where ¯̂E = ¯̂U Ê0 ¯̂U† and Ê0 ≡ Ê(t = 0). For t, t′ → ∞, the left and right
contraction with a nonsingular V̂ causes a perfect destructive interference for
states with |ε∞mα−ε∞m′α| � 1/(t+t′) and hence the restoration of translational
invariance in time

Σ̂<
α (t, t′) = i

∑

m

fmαΓ̂mαe−iε∞mα(t−t′) , (32.23)

where fmα = 〈ϕ∞mα|f(¯̂E)|ϕ∞mα〉 while Γ̂mα = V̂Cα|ϕ∞mα〉〈ϕ∞mα|V̂αC.1 The above
dephasing mechanism is the key ingredient for the appearance of a steady
state. Substituting (32.23) into (32.20) we get the steady state current

Iα = −2e
∑

mβ

fmβ

[
Tr
{
ĜR(ε∞mβ)Γ̂mβĜ

A(ε∞mβ)�[Σ̂A
α (ε∞mβ)]

}

+ δβα Tr
{
Γ̂mα�[ĜR(ε∞mα)]

}]
, (32.24)

with ĜR,A(ε) = [ε− Ê∞CC − Σ̂R,A(ε)]−1. Using the equalities

�[ĜR] =
1
2i

[ĜR − ĜA], [ĜR − ĜA] = [Ĝ> − Ĝ<] , (32.25)

together with

[Ĝ>(ε)− Ĝ<(ε)] = −2πi
∑

mα

δ(ε− ε∞mα)ĜR(ε∞mα)Γ̂mαĜ
A(ε∞mα) (32.26)

and
1 In principle, there may be degeneracies which require a diagonalization to be

performed for states on the energy shell.
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�[Σ̂A
α (ε)] = π

∑

m

δ(ε− ε∞mα)Γ̂mα , (32.27)

the steady-state current in (32.24) can be rewritten in a Landauer-like [Imry
2002] form

JR = −e
∑

m

[fmLTmL − fmRTmR] = −JL . (32.28)

In the above formula TmR =
∑

n T nL
mR and TmL =

∑
n T nR

mL are the TDDFT
transmission coefficients expressed in terms of the quantities

T nβ
mα = 2πδ(ε∞mα − ε∞nβ)Tr

{
ĜR(ε∞mα)Γ̂mαĜ

A(ε∞nβ)Γ̂nβ

}
= T mα

nβ . (32.29)

Despite the formal analogy with the Landauer formula, (32.28) contains
an important conceptual difference, since fmα is not simply given by the
Fermi distribution function. For example, if the induced change in effective
potential varies widely in space deep inside the electrodes, the band structure
¯̂Eαα may be completely different from that of Ê∞αα. However, if we asymptot-
ically have equilibrium far away from the central region, as we would expect
for electrodes with a macroscopic cross section, the change in effective poten-
tial must be uniform. To leading order in 1/N we then have

Êαα(t) = Ê0
αα + δvα(t) , (32.30)

and Ê∞αα = Ê0
αα + δvα,∞. Hence, except for corrections which are of lower

order with respect to the system size, ¯̂Eαα = Ê0
αα and

fmα = f(ε∞mα − δvα,∞) . (32.31)

We emphasize that the steady-state current in (32.28) results from a pure
dephasing mechanism in the fictitious noninteracting problem. The damping
effects of scattering are described by Axc and vxc. Furthermore, the current
depends only on the asymptotic value of the KS potential, vKS(r, t → ∞),
provided that (32.30) holds. However, vKS(r, t → ∞) might depend on the
history of the external applied potential and the resulting steady-state current
might be history dependent. In these cases the full time evolution can not
be avoided. In the case of the time-dependent local density approximation
(TDLDA), the exchange-correlation potential vxc depends only locally on the
instantaneous density and has no memory at all. If the density tends to a
constant, so does the KS potential vKS, which again implies that the density
tends to a constant. Owing to the non-linearity of the problem there might
still be more than one steady-state solution or none at all.

32.5 A Practical Implementation Scheme

The total time-dependent current IS(t) can be calculated from the KS or-
bitals according to (32.5). However, before a TDDFT calculation of transport



32 Time-Dependent Transport Through Single Molecules 489

can be tackled, a number of technical problems have to be addressed. In par-
ticular, one needs a practical scheme for extracting the set of initial states of
the infinitely large system and for propagating them. Of course, since one can
in practice only deal with finite systems this can only be achieved by apply-
ing the correct boundary conditions. The problem of so-called “transparent
boundary conditions” for the time-dependent Schrödinger equation has been
attacked by many authors. For a recent overview, the reader is referred to
[Moyer 2004] and references therein. Below, we sketch how to compute the
initial extended states and how to propagate them (we refer to [Kurth 2005]
for the explicit implementation of the algorithm).

The KS eigenstate ϕi of the Hamiltonian ĤKS(0) is uniquely specified by
its eigenenergy εi and a label i for the degenerate orbitals of this energy. It
is possible to show that the eigenfunctions of �ĜR

CC(E) can be expressed as
a linear combination of the ϕi projected onto the central region. If we use
Ng grid points to describe the central region, the diagonalization in principle
gives Ng eigenvectors, but only a few have the physical meaning of extended
eigenstates at this energy. It is, however, very easy to identify the physical
states by looking at the eigenvalues: only few eigenvalues are nonvanishing.
The corresponding states are the physical ones. All the other eigenvalues
are zero (or numerically close to zero) and the corresponding states have
no physical meaning. This procedure gives the correct extended eigenstates
in the central region only up to a normalization factor. When diagonalizing
�ĜR

CC(E) with typical library routines, one obtains eigenvectors that are nor-
malized in the central region. Physically this might be incorrect. Therefore,
the normalization has to be fixed separately. This can be done by matching
the wavefunction for the central region to the known form (and normaliza-
tion) of the wavefunction in the macroscopic leads.

Once the initial states have been calculated, we need a suitable algorithm
for propagating them. The explicitly treated region C includes the first few
atomic layers of the left and right electrodes. The boundaries of this region
are chosen in such a way that the density outside C is accurately described by
an equilibrium bulk density. It is convenient to write Êαα(t), with α = L,R,
as the sum of a term Êα which is constant in time and another term V̂α(t)
which is explicitly time-dependent, Êαα(t) = Êα + V̂α(t). In configuration
space V̂α(t) is diagonal at any time t since the KS potential is local in space.
Furthermore, the diagonal elements Vα(r, t) are spatially constant for metallic
electrodes. Thus, V̂α(t) = Vα(t)1̂α and VL(t) − VR(t) is the total potential
drop across the central region. Here 1̂α is the unit operator for region α. We
write ĤKS(t) = Ê(t) + V̂ = ˆ̃H(t) + V̂(t), with V̂(t) = V̂L(t) + V̂R(t). For any
given initial state ϕ(0) = ϕ(0) we calculate ϕ(tm = m∆t) = ϕ(m) by using a
generalized form of the Cayley method

(1̂ + iδ ˆ̃H
(m)

)
1̂ + i δ

2 V̂(m)

1̂− i δ
2 V̂(m)

ϕ(m+1) = (1̂− iδ ˆ̃H
(m)

)
1̂− i δ

2 V̂(m)

1̂ + i δ
2 V̂(m)

ϕ(m) , (32.32)
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with ˆ̃H
(m)

= 1
2 [ ˆ̃H(tm+1) + ˆ̃H(tm)], V̂(m) = 1

2 [V̂(tm+1) + V̂(tm)] and δ =
∆t/2. It should be noted that our propagator is norm conserving (unitary)
and accurate to second-order in δ, as is the Cayley propagator. Denoting by
ϕα the projected wave function onto the region α = R,L,C, we find from
(32.32)

ϕ
(m+1)
C =

1̂− iδĤ(m)
eff

1̂ + iδĤ(m)
eff

ϕ
(m)
C + S(m) −M (m) . (32.33)

Here, Ĥ(m)
eff is the effective Hamiltonian of the central region:

Ĥ
(m)
eff = Ê(m)

CC − V̂CL
iδ

1̂ + iδÊL

V̂LC − V̂CR
iδ

1̂ + iδÊR

V̂RC , (32.34)

with Ê(m)
CC = 1

2 [ÊCC(tm+1) + ÊCC(tm)]. The source term S(m) describes the
injection of density into the region C. For a wave packet initially localized in
C the projection onto the left and right electrode ϕ

(0)
α vanishes and S(m) = 0

for any m. The memory term M (m) is responsible for the hopping in and out
of the region C. Equation (32.33) is the central result of our algorithm for
solving the time-dependent Schrödinger equation in extended systems. We
refer to [Kurth 2005] for the implementation details.

As an example, we consider a one-dimensional system of noninteracting
electrons at zero temperature where the electrostatic potential vanishes both
in the left and right leads. The electrostatic potential in the central region is
modeled by a double square potential barrier. Initially, all single particle levels
are occupied up to the Fermi energy εF . At t = 0, a bias is switched on in
the leads and the time-evolution of the system is calculated. The numerical
parameters are as follows: the Fermi energy is εF = 0.3 a.u., the bias is
VL = 0.15, 0.25 a.u. and VR = 0, the central region extends from x = −6 to
x = +6 a.u. with equidistant grid points with spacing ∆x = 0.03 a.u. The
electrostatic potential vext(x) = 0.5 a.u. for 5 ≤ |x| ≤ 6 and zero otherwise.
For the second derivative of the wavefunction (kinetic term) we have used a
simple three-point discretization. The energy integral in (32.5) is discretized
with 100 points which amounts to a propagation of 200 states. The time step
for the propagation is ∆t = 10−2 a.u.

In Fig. 32.3 we have plotted the total current at x = 0 as a function of
time for two different ways of applying the bias in the left lead: in one case
the constant bias VL = V0 is switched on suddenly at t = 0, in the other case
the constant V0 is achieved with a smooth switching VL(t) = V0 sin2(ωt) for
0 < t < π/(2ω). As a first feature we notice that a steady state is achieved and
that the steady-state current does not depend on the history of the applied
bias, in agreement with the results obtained in Sect. 32.4. Second, we notice
that the onset of the current is delayed in relation to the switching time t = 0.
This is easily explained by the fact that the perturbation at t = 0 happens
in the leads only, e.g., for |x| > 6 a.u., while we plot the current at x = 0. In
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Fig. 32.3. Time evolution of the current for a double square potential barrier when
the bias is switched on in two different manners: in one case, the bias VL = V0 is
suddenly switched on at t = 0 while in the other case the same bias is achieved with
a smooth switching VL(t) = V0 sin2(ωt) for 0 < t < π/(2ω). The parameters for the
double barrier and the other numerical parameters are described in the main text

other words, we see the delay time needed for the perturbation to propagate
from the leads to the center of our device region. We also note that the higher
the bias the more the current exceeds its steady-state value for small times
after switching on the bias.

32.6 Conclusions

In conclusion, we have described a formally exact, thermodynamically con-
sistent scheme based on TDDFT and NEG in order to treat the time-
dependent current response of electrode-junction-electrode systems. Among
the advantages, we stress the possibility of including the electron-electron
interaction not only in the central region but also in the electrodes. We
have shown that the steady state develops due to a dephasing mechanism
without any reference to many-body damping and interactions. The damp-
ing mechanism (due to the electron-electron scatterings) of the real prob-
lem is described by vxc. The nonlinear steady-state current can be ex-
pressed in a Landauer-like formula in terms of fictitious transmission coeffi-
cients and one-particle energy eigenvalues. Our scheme is equally applicable
to time-dependent responses and also allows the calculation of the (tran-
sient) current shortly after switching on a driving external field. Clearly,
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its usefulness depends on the quality of the approximate TDDFT function-
als being used. Time-dependent linear response theory for dc-steady state
has been implemented in [Baer 2004] within TDLDA assuming jellium-
like electrodes (mimicked by complex absorbing/emitting potentials). It has
been shown that the dc-conductance changes considerably from the stan-
dard Landauer value. Therefore, a systematic study of the TDDFT function-
als themselves is needed. A step beyond standard adiabatic-approximations
and exchange-only potentials is to resort to many-body schemes like those
used for the characterization of optical properties of semiconductors and
insulators [Marini 2003b, Reining 2002, Tokatly 2001] or like those based
on variational functionals [von Barth 2005]. Another path is to explore in
depth the fact that the true exchange-correlation potential is current depen-
dent [Ullrich 2002b].

We have also shown that the steady-state current depends on the history
only through the asymptotic shape of the effective TDDFT potential vKS pro-
vided that the bias-induced change δvα is uniform deep inside the electrodes.
(This is the anticipated behavior for macroscopic electrodes.) The present
formulation can be easily extended to account for the interaction with lattice
vibrations at a semiclassical level. The inclusion of phonons might give rise to
hysteresis loops due to different transient electronic/geometrical device con-
figurations (e.g., isomerisation or structural modification). This effect will be
more dramatic in the case of ac-driving fields of high frequencies where the
system might not have enough time to respond to the perturbation.
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