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Basic Boundary Interpolation for
Generalized Schur Functions and Factorization
of Rational J-unitary Matrix Functions

Daniel Alpay, Aad Dijksma, Heinz Langer and Gerald Wanjala

Abstract. We define and solve a boundary interpolation problem for gene-
ralized Schur functions s(z) on the open unit disk D which have preassigned
asymptotics when z from D tends nontangentially to a boundary point z1 ∈ T.
The solutions are characterized via a fractional linear parametrization for-
mula. We also prove that a rational J-unitary 2 × 2-matrix function whose
only pole is at z1 has a unique minimal factorization into elementary factors
and we classify these factors. The parametrization formula is then used in an
algorithm for obtaining this factorization. In the proofs we use reproducing
kernel space methods.

Mathematics Subject Classification (2000). Primary: 47A57, 46C20, 47B32;
Secondary: 47A15.

Keywords. Generalized Schur function, Boundary interpolation, Rational J-
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1. Introduction

Recall that s(z) is a generalized Schur function with κ negative squares (for the
latter we write sq−(s) = κ), if it is holomorphic in a nonempty open subset of the
open unit disk D and if the kernel

Ks(z, w) =
1 − s(z)s(w)∗

1 − zw∗ , z, w ∈ D(s), (1.1)

has κ negative squares on D(s), the domain of holomorphy of s(z). We denote
the class of generalized Schur functions s(z) with sq−(s) = κ by Sκ and set S =
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ematics, Ben–Gurion University of the Negev and by the Netherlands Organization of Scientific
Research NWO (grant B61-524).
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∪κ≥0 Sκ. The function s(z) ∈ S0 has a holomorphic and contractive continuation
to all of D and is called a (classical) Schur function. In fact, the following three
statements are equivalent:

(a) s(z) ∈ S0.
(b) s(z) is holomorphic on D and bounded by 1 there.
(c) s(z) has the form

s(z) = γzn
∏
j

|αj |
αj

z − αj

1 − α∗
jz

exp
(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
, (1.2)

where n is a nonnegative integer, the αj ’s are the zeros of s(z) in D \ {0}
repeated according to multiplicity, γ is a number of modulus one, and µ(t)
is a nondecreasing bounded function on [0, 2π]. The Blaschke product on the
right-hand side of the first equality in (1.2) is finite or infinite and converges
on D, because

∑
j(1 − |αj |) < ∞.

By a result of M.G. Krein and H. Langer [24], a function s(z) ∈ Sκ has a
meromorphic extension to D and can be written as

s(z) =

⎛⎝ κ∏
j=1

z − βj

1 − β∗
j z

⎞⎠−1

s0(z), (1.3)

where s0(z) ∈ S0, and the zeros βj of the Blaschke product of order κ belong
to D and satisfy s0(βj) �= 0, j = 1, . . . , κ. Conversely, every function s(z) of the
form (1.3) belongs to Sκ. It follows from (1.3) that any function s(z) ∈ S has
nontangential boundary values from D in almost every point of the unit circle T.
In particular, a rational function s(z) ∈ S of modulus one on T is holomorphic on
T, and it is the quotient of two finite Blaschke products.

A nonconstant function s(z) ∈ S0 has in z1 ∈ T a Carathéodory derivative ,
if the limits

τ0 = lim
z→̂z1

s(z) with |τ0| = 1, τ1 = lim
z→̂z1

s(z) − τ0

z − z1
(1.4)

exist, and then
lim

z→̂z1
s′(z) = τ1.

Here and in the sequel z→̂z1 means that z tends from D non-tangentially to
z1. The relation (1.4) is equivalent to the fact that the limit

lim
z→̂z1

1 − |s(z)|
1 − |z|

exists and is finite and positive; in this case it equals τ∗
0 τ1z1; see [33, p. 48]. The

following basic boundary interpolation problem for Schur functions is a particular
case of a multi-point interpolation problem considered by D. Sarason in [34]: Given
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z1 ∈ T and numbers τ0, τ1, |τ0| = 1, such that τ∗
0 τ1z1 is positive. Find all functions

s(z) ∈ S0 such that the Carathéodory derivative of s(z) in z1 exists and

lim
z→̂z1

s(z) = τ0, lim
z→̂z1

s(z) − τ0

z − z1
= τ1.

The study of the Schur transformation for generalized Schur functions in [14],
[1], and [3] motivates the generalization of this basic interpolation problem for
generalized Schur functions, which we consider in this note.

Problem 1.1. Let z1 ∈ T, an integer k ≥ 1, and complex numbers τ0, τk, τk+1,
. . . , τ2k−1 with |τ0| = 1, τk �= 0 be given. Find all functions s(z) ∈ S such that

s(z) = τ0 +
2k−1∑
i=k

τi(z − z1)i + O((z − z1)2k), z→̂z1. (1.5)

We solve this problem under the assumption that the matrix

P := τ∗
0 TB (1.6)

is Hermitian, where

T =

⎛⎜⎜⎜⎜⎜⎝
τk 0 · · · 0 0

τk+1 τk . . . 0 0
...

...
. . .

...
...

τ2k−2 τ2k−3 · · · τk 0
τ2k−1 τ2k−2 · · · τk+1 τk

⎞⎟⎟⎟⎟⎟⎠ (1.7)

and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 (−1)k−1
(
k−1
0

)
z2k−1
1

0 0 · · · (−1)k−2
(

k−2
0

)
z2k−3
1 (−1)k−1

(
k−1
1

)
z2k−2
1

...
...

...
...

...

0 −
(
1
0

)
z3
1 · · · (−1)k−2

(
k−2
k−3

)
zk
1 (−1)k−1

(
k−1
k−2

)
zk+1
1

z1 −
(
1
1

)
z2
1 · · · (−1)k−2

(
k−2
k−2

)
zk−1
1 (−1)k−1

(
k−1
k−1

)
zk
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.8)

Evidently, for k = 1 the expression in (1.6) reduces to τ∗
0 τ1z1 from above. In

Theorem 3.2 we describe all solutions of this problem by a parametrization formula
of the form

s(z) = TΘ(z)(s1(z)) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

, Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
, (1.9)

where the parameter s1(z) runs through a subclass of S. The matrix function Θ(z)
is rational with a single pole at z = z1 and J-unitary on T for

J =
(

1 0
0 −1

)
.
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Recall that a rational 2 × 2-matrix function Θ(z) is J-unitary on T if

Θ(z)JΘ(z)∗ = J, z ∈ T \ {poles of Θ(z)}.

We prove the description (1.9) of the solutions of the Problem 1.1 by making
use of the theory of reproducing kernel Pontryagin spaces, see [19], [4], [5], [6] for
the positive definite (Hilbert space) case and [2], [3] for the indefinite case. The
essential tool is a representation theorem for reproducing kernel Pontryagin spaces
which will be formulated at the end of this Introduction.

Boundary interpolation problems for classical Schur functions have been stud-
ied by I.V. Kovalishina in [23], [22], by J.A. Ball, I. Gohberg, and L. Rodman in
[12, Section 21] and by D. Sarason [34], and for generalized Schur functions which
are holomorphic at the interpolation points by J.A. Ball in [11]. In these papers
different methods were used: the fundamental matrix inequality, realization theory
and extension theory of operators.

Problem 1.1 is similar to the basic interpolation problem for generalized Schur
functions at the point z = 0 considered in [3]. There, given an arbitrary complex
number σ0, one looks for generalized Schur functions s(z) which are holomorphic
in z = 0 and satisfy s(0) = σ0. In the case that |σ0| = 1 a certain number of
derivatives has to be preassigned in order to find all solutions. In Problem 1.1 this
additional information comes from the preassigned values τj , j = k, k+1, . . . , 2k−1,
and τ1 = τ2 = · · · = τk−1 = 0.

The Problem 1.1 is equivalent to a basic boundary interpolation problem
for generalized Nevanlinna functions at infinity, where one looks for the set of all
generalized Nevanlinna functions N(ζ) with an asymptotics of the form

N(ζ) = −s0

ζ
− s1

ζ2
− · · · − s2k−2

ζ2k−1
+ O

(
1

ζ2k

)
, ζ = iη, η → ∞.

In fact, these problems can be transformed into each other via Cayley transfor-
mation, and we mention that the cases τ∗

0 τ1z1 > 0, = 0, or < 0 correspond to
the cases s0 > 0, = 0, or < 0, respectively, and the hermiticity of the matrix P

in (1.6) corresponds to the reality of the moments sj . On the other hand, each
of these problems has special features and it seems reasonable to study them also
separately. Moreover, the boundary interpolation problem for generalized Nevan-
linna functions at infinity is equivalent to the indefinite power moment problem as
considered in (see [25], [26], [27], [28] [17], [18]). We shall come back to the basic
versions of these problems in another publication.

Basic interpolation problems are closely related to the problem of decompos-
ing a rational J-unitary 2× 2-matrix function as a minimal product of elementary
factors. For the positive definite case these results go back to V.P. Potapov ([30],
[31] and the joint paper [20] with A.V. Efimov); see also L. de Branges [16, Prob-
lem 110, p 116]. In the indefinite case, for a J-unitary matrix function on the
circle T with poles in D this was done in [2], and for the line case in [7]. Here we
prove a corresponding factorization result for a rational J-unitary 2 × 2-matrix
function Θ(z) with a single pole on the boundary T of D. In fact, with the given
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matrix function Θ(z) a basic boundary interpolation problem can be associated,
such that the matrix function which appears in the description of its solutions is
an elementary factor of Θ(z).

A short outline of the paper is as follows. In Section 2 we study the asymp-
totic behavior of the kernel Ks(z, w) near z1 for a generalized Schur function s(z)
which has an asymptotic behavior (1.5) with not necessarily vanishing coefficients
τ1, . . . , τk−1. It turns out, that an expansion of s(z) up to an order 2k implies
a corresponding expansion of the kernel up to an order 2k − 1 only if a certain
matrix P is Hermitian. This matrix P, in some interpolation problems called the
Pick or Nevanlinna matrix, is the essential ingredient for the solution of the basic
interpolation problem. It satisfies the so-called Stein equation (see (2.17)) which
is a basic tool for the definition of the underlying reproducing kernel spaces.

In Section 3 the main result of the paper (Theorem 3.2) is proved, which
contains the solution of Problem 1.1. In Section 4 we consider a basic boundary
interpolation problem with data given in several points z1, z2, . . . , zN of the circle
T and describe all its solutions via a parametrization formula. In Section 5 the
existence of a minimal factorization of a J-unitary matrix function on T with a
single pole on T is proved. Finally, in Section 6 we show how by means of the Schur
algorithm, based on the parametrization formula of Theorem 3.2, such a minimal
factorization can be obtained.

For the convenience of the reader we formulate here a basic representation
theorem for reproducing kernel Pontryagin spaces, see [9], which will be essentially
used in this paper. Infinite-dimensional versions of this result were proved by
L. de Branges [15] and J. Rovnyak [29] for the line case, and by J.A. Ball [10] for
the circle case. For a rational J-unitary 2×2-matrix function Θ(z) on D we denote
by P(Θ) the reproducing kernel Pontryagin space with reproducing kernel

KΘ(z, w) =
J − Θ(z)JΘ(w)∗

1 − zw∗ , z, w ∈ D(Θ).

Theorem 1.2. . Let M be a finite-dimensional reproducing kernel Pontryagin space.
Then M = P(Θ) for some rational J-unitary 2× 2-matrix function Θ(z) which is
holomorphic at z = 0 if and only if the following three conditions hold:

(1) The elements of M are 2-vector functions holomorphic at z = 0.
(2) M is invariant under the difference quotient operator

(R0f)(z) =
f(z) − f(0)

z
, f ∈ M.

(3) The following identity holds:

〈f, g〉M − 〈R0f, R0g〉M = g(0)∗Jf(0), f, g ∈ M. (1.10)

In this case M is spanned by the elements of the form Rn
0 Θ(z)c, where n runs

through the integers ≥ 1 and c through C2.
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In the sequel, for s(z) ∈ S we denote by P(s) the reproducing kernel Pon-
tryagin space with reproducing kernel Ks(z, w) given by (1.1). The negative index
of this space equals the number of negative squares of s(z).

2. Auxiliary statements

For given numbers τ0, τ1, . . . , τ2k−1 we introduce the following k × k-matrices:

T̂ = (t�r)
k−1
�,r=0 , t�r = τ�+r+1, (2.1)

B̂ = (brs)
k−1
r,s=0 , brs = zk+r−s

1

(
k − 1 − s

r

)
(−1)k−1−s, (2.2)

and
Q = (csm)k−1

s,m=0 , csm = τ∗
s+m−(k−1). (2.3)

Here B̂ is a left upper, Q is a right lower triangular matrix.

Lemma 2.1. Suppose that the function s(z) ∈ S has the asymptotic expansion

s(z) = τ0 +
2k−1∑
�=1

τ�(z − z1)� + O
(
(z − z1)2k

)
, z→̂z1, (2.4)

with |τ0| = 1, and that the matrix P := T̂ B̂Q is Hermitian. Then the kernel
Ks(z, w) has the asymptotic expansion

Ks(z, w) =
∑

0≤�+m≤2k−2

α�m(z − z1)�(w − z1)∗m

+O
(
(max{|z − z1|, |w − z1|})2k−1

)
, z, w→̂z1, (2.5)

where the coefficients α�m for 0 ≤ �, m ≤ k − 1 are the entries of the matrix
P : P = (α�m)k−1

�,m=0.

Proof. The asymptotic expansion (2.5) will follow if we show that the relation

1 − s(z)s(w)∗ −
∑

0≤�+m≤2k−2

α�m(z − z1)�(w − z1)∗m(1 − zw∗)

= O
(
(max{|z − z1|, |w − z1|})2k

)
(2.6)

holds, where the symbol O refers again to the non-tangential limit z, w→̂z1. To
see this we consider only the radial limits of z and w and observe that then for z
and w sufficiently close to z1 the relation

|1 − zw∗| ≥ max{|z − z1|, |w − z1|}
holds. Dividing (2.6) by 1 − zw∗ we obtain

Ks(z, w)−
∑

0≤�+m≤2k−2

α�m(z− z1)�(w− z1)∗m =
O

(
(max{|z − z1|, |w − z1|})2k

)
max{|z − z1|, |w − z1|}

,

and this is (2.5).
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To prove (2.6) we set u = z − z1, v = w∗ − z∗1 . Then the expression on the
left-hand side of (2.6) becomes

1 −
(
τ0 + τ1u + τ2u

2 + · · · + O(u2k)
) (

τ∗
0 + τ∗

1 v + τ∗
2 v2 + · · · + O(v2k)

)
−

∑
0≤�+m≤2k−2 α�mu�vm(−uz∗1 − vz1 − uv).

(2.7)

Comparing coefficients we find that the following relations are equivalent for (2.6)
to hold:

u : τ∗
0 τ1 = α00z

∗
1 , v : τ0τ

∗
1 = α00z1, (2.8)

u2 : τ2τ
∗
0 = α10z

∗
1 , uv : τ∗

1 τ1 = α00+α01z
∗
1 +α10z1, v2 : τ0τ

∗
2 = α01z1, (2.9)

u3: τ3τ
∗
0 = α20z

∗
1 , u2v: τ2τ

∗
1 = α10 + α11z

∗
1 + α20z1,

uv2: τ1τ
∗
2 = α01 + α11z1 + α02z

∗
1 , v3: τ0τ

∗
3 = α02z1,

etc. The general relation is

τ�τ
∗
m = α�−1,mz∗1 + α�,m−1z1 + α�−1,m−1, (2.10)

�, m = 0, 1, . . . , 2k − 2, 1 ≤ � + m ≤ 2k − 2,

where all α′s with one index = −1 are set equal to zero, and we have to find
solutions α�m of this system (2.10). The relation (2.10) can be written as

α�m = −z∗1α�−1,m − z∗21 α�−1,m+1 + z∗1τ�τ
∗
m+1, 0 ≤ � + m ≤ 2k − 2, (2.11)

and also as

α�m = −z1α�,m−1 − z2
1α�+1,m−1 + z1τ�+1τ

∗
m, 0 ≤ � + m ≤ 2k − 2. (2.12)

The numbers α�m, 0 ≤ � + m ≤ 2k − 2 in (2.6) or (2.10) can be considered as the
entries of a left upper triangular matrix P̃, which has the matrix P as its left upper
k × k diagonal block. According to the assumption, P is a Hermitian matrix. The
elements of the last row of P determine according to (2.11) the left lower k × k

block of P̃, which is a left upper triangular matrix, and, similarly, the last column
of P determines by the relations (2.10) the right upper k × k block of P̃. These
relations and the hermiticity of P imply that also the matrix P̃ is Hermitian.

From (2.12) we find successively

α�0 = τ∗
0 z1τ�+1, � = 0, . . . , 2k − 2,

α�1 = τ∗
1 z1τ�+1 − τ∗

0 (z2
1τ�+1 + z3

1τ�+2), � = 0, . . . , 2k − 3,

α�2 = τ∗
2 z1τ�+1 − τ∗

1 (z2
1τ�+1 + z3

1τ�+2) + τ∗
0 (z3

1τ�+1 + 2z4
1τ�+2 + z5

1τ�+3),

� = 0, . . . , 2k − 4,

α�3 = τ∗
3 z1τ�+1 − τ∗

2 (z2
1τ�+1 + z3

1τ�+2) − τ∗
1 (z3

1τ�+1 + 2z4
1τ�+2 + z5

1τ�+3)

−τ∗
0 (z3

1τ�+1 + 3z4
1τ�+2 + 3z5

1τ�+3 + z6
1τ�+4), � = 0, . . . , 2k − 5,

(2.13)



8 D. Alpay, A. Dijksma, H. Langer and G. Wanjala

and so for m = 0, . . . , 2k − 2, we have

α�m =
m∑

s=0

τ∗
m−s

s∑
r=0

(−1)s

(
s

r

)
zs+r+1
1 τ�+r+1, � = 0, . . . , 2k − 2 − m.

With the convention that τ� = 0 for � < 0, observing that
(

s

r

)
= 0 if r > s, and

substituting s by k − 1 − s we find for 0 ≤ �, m ≤ k − 1

α�m =
k−1∑

r,s=0

τ�+r+1(−1)k−1−s

(
k − 1 − s

r

)
zk−s+r
1 τ∗

m+s−(k−1) =
k−1∑

r,s=0

t�rbrscsm

and hence (see (2.1)–(2.3))

(α�m)k−1
�,m=0 = T̂ B̂Q.

These considerations also imply that if a solution of the equations (2.10) exists, it
is unique.

As to the existence of a solution, the first relation in (2.13) determines the
elements of the first column of P̃, and the following columns are successively deter-
mined by the other relations of (2.13) or by (2.12). Because of the symmetry of P̃,
the resulting elements α0� are the complex conjugates of α�0, � = 1, 2, . . . , 2k − 2,
and α00 is real. Thus, these α′s satisfy all the relations of the system (2.10) and
hence are its unique solution. �

The relation (2.10) implies that

α�−1,mz∗1 + α�,m−1z1 + α�−1,m−1 = τ�τ
∗
m, 1 ≤ �, m ≤ k − 1. (2.14)

If we introduce the k × k-matrices

Sk =

⎛⎜⎜⎜⎜⎜⎝
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ , A = z∗1Ik + Sk, (2.15)

and the 2 × k-matrix

C =
(

1 0 · · · 0
τ∗
0 τ∗

1 · · · τ∗
k−1

)
, (2.16)

then the relation (2.14) is equivalent to the relation (2.17) below, and hence we
have:

Corollary 2.2. Under the assumptions of Lemma 2.1 the matrix P satisfies the
Stein equation

P − A∗
PA = C∗JC. (2.17)
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Remark 2.3. 1) Formula (2.8) implies a condition on τ0 and τ1: the number τ∗
0 τ1z1

has to be real. As was mentioned in the Introduction, for Schur functions this
number must be nonnegative if it is finite. In (2.9) the first and the last equation
determine α10 and α01, the second equation is an additional condition. Similarly
in the relations following (2.9): the first and last equation determine α20 and α02,
then there are 2 equations left for to determine α11. These additional conditions
are automatically satisfied since the matrix P is Hermitian.

2) If the equations (2.10) have a solution α�m, 0 ≤ � + m ≤ 2k − 2, then these
numbers must be symmetric in the sense that α�m = α∗

m�, 0 ≤ � + m ≤ 2k − 2,
since they are the coefficients of the expansion of the Hermitian kernel Ks(z, w).

3) For a function s(z) ∈ S with an expansion (2.4), such that the correspond-
ing matrix P is not Hermitian, the kernel Ks(z, w) does in general not have an
expansion (2.5). An example is the function

s(z) = 1 +
1
2
(z − 1),

which has at z = 1 an expansion (2.4) with any k ≥ 1 but for the corresponding
kernel we obtain, for example, for real z, w,

Ks(z, w) =
1
2

+
1
4

(z − 1)(w∗ − 1)
1 − zw∗ =

1
2

+ O
(
max{|1 − z|, |1 − w|}

)
,

and the order of the last term cannot be improved. For this example it holds

P =

⎧⎪⎨⎪⎩
1/2 k = 1,(

1/2 −1/4
0 0

)
k = 2.

4) For a function s(z) which is analytic on an arc around z1 and has values of
modulus one on this arc the matrices P are Hermitian for all k and the kernel
Ks(z, w) is analytic in z and w∗ near z = w = z1. To see this we observe that
the function s(z) satisfies in some neighborhood of this arc the relation s(1/z∗) =
1/s(z)∗. Now it follows that in this neighborhood, for each fixed w the function
Ks( · , w) and for each fixed z the function Ks(z, · )∗ is holomorphic. According to
a theorem of Hartogs [32, Theorem 16.3.1] the kernel Ks(z, w) is holomorphic in z
and w and the claim follows. We mention, that a function s(z) ∈ Sκ has the above
properties if and only if in its representation (see (1.2) and (1.3))

s(z) =

⎛⎝ κ∏
j=1

z − βj

1 − β∗
j z

⎞⎠−1

γzn
∏
j

|αj |
αj

z − αj

1 − α∗
jz

exp
(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
the nondecreasing function µ(t) is constant at t1 where z1 = exp(it1). In particular,
all rational functions in S, which are of modulus one on T, have these properties.
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Lemma 2.4. Under the assumptions of Lemma 2.1 the functions

f0(z) =
1 − s(z)τ∗

0

1 − zz∗1
and

f�(z) =
zf�−1(z) − s(z)τ∗

�

1 − zz∗1
, � = 1, 2, . . . , k − 1,

are elements of P(s) and 〈f�, fm〉P(s) = αm�.

Proof. First we note that for z ∈ D and � = 0, 1, . . . , k − 1,

f�(z) = lim
w→̂z1

1
�!

∂�

∂w∗�
Ks(z, w).

This implies that for all w′ ∈ D

lim
w→̂z1

〈
1
�!

∂�

∂w∗�
Ks( · , w), Ks( · , w′)

〉
P(s)

= lim
w→̂z1

1
�!

∂�

∂w∗�
Ks(w′, w) = f�(w′),

(2.18)
and for �, m = 0, 1, . . . , k − 1

lim
w→̂z1,w′→̂z1

〈
1
�!

∂�

∂w∗�
Ks( · , w),

1
m!

∂m

∂w′∗m
Ks( · , w′)

〉
P(s)

(2.19)

= lim
w→̂z1,w′→̂z1

1
�!m!

∂�+m

∂w∗�∂w′m Ks(w′, w) = αm�. (2.20)

The claim follows now from [21, Theorem 2.4] and [8, Theorem 1.1.2]. In fact,
(2.18) and (2.19) imply f� ∈ P(s), � = 1, 2, . . . , k − 1, and (2.19) also yields the
formula for the inner product between the f�’s. �

In Section 4 below we also need the following generalization of Lemma 2.1.
To formulate it, we suppose that at two points z1, z2 ∈ T, z1 �= z2, the function
s(z) ∈ S has the asymptotic expansions

s(z) = τ1;0 +
2k1−1∑
�=1

τ1;�(z − z1)� + O
(
(z − z1)2k1

)
, z→̂z1, (2.21)

s(z) = τ2;0 +
2k2−1∑
m=1

τ2;m(z − z2)m + O
(
(z − z2)2k2

)
, z→̂z2, (2.22)

and we introduce for i = 1, 2 the ki × ki-matrices

Ai = z∗i Iki + Ski

and the 2 × ki-matrices

Ci =
(

1 0 · · · 0
τ∗
i;0 τ∗

i;1 · · · τ∗
i;ki−1

)
.
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Lemma 2.5. Suppose that at two points z1, z2 ∈ T, z1 �= z2, the function s(z) ∈ S
has the asymptotic expansions (2.21) and (2.22). Then the kernel Ks(z, w) has the
asymptotic expansion

Ks(z, w) =
∑

0 ≤ � ≤ k1 − 1,
0 ≤ m ≤ k2 − 1

α�m(z − z1)�(w − z2)∗m

+O
(
(max{|z − z1|k1 , |w − z2|k2})

)
, z→̂z1, w→̂z2,

where

α�m = lim
z→̂z1,w→̂z2

1
�! m!

∂�

∂z�

∂m

∂w∗m
Ks(z, w).

Moreover, the k1×k2-matrix P12 = (α�m), 0 ≤ � ≤ k1−1, 0 ≤ m ≤ k2−1, satisfies
the relation

P12 − A∗
1P12A2 = C∗

1JC2. (2.23)

Proof. Similar to the proof of Lemma 2.1 we set now u = z − z1, v = w∗− z∗2 , and
equate the coefficients of their powers in the analog of the expression in (2.7):

1−
(
τ1;0 + τ1;1u + τ1;2u

2 + · · · + O(u2k1)
) (

τ∗
2;0 + τ∗

2;1v + τ∗
2;2v

2 + · · · + O(v2k2)
)

−
∑

0≤�≤k1−1,0≤m≤k2−1 α�mu�vm(−uz∗2 − vz1 − uv + 1 − z1z
∗
2).

This gives
1 − τ1;0τ

∗
2;0 = α0,0(1 − z1z

∗
2),

and for 0 ≤ � ≤ k1 − 1, 0 ≤ m ≤ k2 − 1, and � + m > 0,

τ1;�τ
∗
2;m = α�−1,mz∗2 + α�,m−1z1 + α�−1,m−1 + α�m(1 − z1z

∗
2),

which is easily seen to be equivalent to (2.23). �

3. The basic interpolation problem at one boundary point

With the data of the Problem 1.1 the k × k-matrix T was defined in (1.7), and
we recall the definition of B in (1.8). Then the matrix P from Lemma 2.1 can be
written in the form

P = τ∗
0 TB. (3.1)

Observe that P is a right lower triangular matrix, which is invertible because of
τ0, τk, z1 �= 0. We define the vector function

R(z) =
(

1
1 − zz∗1

z

(1 − zz∗1)2
. . .

zk−1

(1 − zz∗1)k

)
,

fix some z0 ∈ T, z0 �= z1 and introduce the polynomial p(z) by

p(z) = (1 − zz∗1)k R(z)P−1R(z0)∗. (3.2)

It has degree at most k − 1 and p(z1) �= 0.
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Lemma 3.1. With p(z) from (3.2) we have that

τ0
(1 − zz∗1)k

(1 − zz∗0)p(z)
= −

2k−1∑
i=k

τi(z − z1)i + O
(
(z − z1)2k

)
, z→̂z1.

Proof. Since 1 − zz∗1 = −z∗1(z − z1), it suffices to show that if

τ0
(−1)k−1z∗k

1

(1 − zz∗0)p(z)
= σk+σk+1(z−z1)+· · ·+σ2k−1(z−z1)k−1+O

(
(z − z1)k

)
, (3.3)

then σj = τj , j = k, k+1, . . . , 2k−1. An expansion of the form (3.3) exists because
the quotient on the left-hand side is rational and the denominator does not vanish
at z = z1. Write

1 − zz∗0 = −z∗0 [(z − z1) + (z1 − z0)],

p(z) =
k−1∑
j=0

pj(z − z1)j =
(
1 z − z1 · · · (z − z1)k−1

)
⎛⎜⎜⎜⎝

p0

p1

...
pk−1

⎞⎟⎟⎟⎠ ,

and define

T ′ =

⎛⎜⎜⎜⎝
σk 0 · · · 0

σk+1 σk . . . 0
...

...
. . .

...
σ2k−1 σ2k−2 · · · σk

⎞⎟⎟⎟⎠ .

From(
σk + σk+1(z − z1) + · · · + σ2k−1(z − z1)k−1

) (
1 z − z1 · · · (z − z1)k−1

)
=

(
1 z − z1 · · · (z − z1)k−1

)
T ′ + O

(
(z − z1)k

)
,

the definition of the shift matrix Sk from (2.15), and (3.3) we obtain

τ0(−1)k−1z0z
∗k
1

=
(
1 (z − z1) · · · (z − z1)k−1

)
((z1 − z0)Ik + S∗

k) T ′

⎛⎜⎜⎜⎝
p0

p1

...
pk−1

⎞⎟⎟⎟⎠ ,

and it follows that

T ′

⎛⎜⎜⎜⎝
p0

p1

...
pk−1

⎞⎟⎟⎟⎠ = τ0
(−1)k−1z0z

∗k
1

z0 − z1

⎛⎜⎜⎜⎜⎜⎜⎝

1
1

z0 − z1
...
1

(z0 − z1)k−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.4)
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On the other hand, from the definition of p(z) it follows that

p(z) = τ0

(
(1 − zz∗1)k−1 z(1 − zz∗1)k−2 · · · zk−1

)

×B−1T−1 z0

z0 − z1

⎛⎜⎜⎜⎜⎜⎜⎝

1
1

z0 − z1
...
1

(z0 − z1)k−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

A straightforward calculation shows that(
(1 − zz∗1)k−1 z(1 − zz∗1)k−2 · · · zk−1

)
=

(
1 z − z1 · · · (z − z1)k−1

)
B(−1)k−1z∗1

k

and hence

T

⎛⎜⎜⎜⎝
p0

p1

...
pk−1

⎞⎟⎟⎟⎠ = τ0
(−1)k−1z0z

∗k
1

z0 − z1

⎛⎜⎜⎜⎜⎜⎜⎝

1
1

z0 − z1
...
1

(z0 − z1)k−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

This equality and (3.4) imply⎛⎜⎜⎜⎝
σk 0 · · · 0

σk+1 σk . . . 0
...

...
. . .

...
σ2k−1 σ2k−2 · · · σk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

p0

p1

...
pk−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
τk 0 · · · 0

τk+1 τk . . . 0
...

...
. . .

...
τ2k−1 τ2k−2 · · · τk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

p0

p1

...
pk−1

⎞⎟⎟⎟⎠ .

From this relation, because of p0 = p(z1) �= 0, it readily follows that σj = τj ,
j = k, k + 1, . . . , 2k − 1. �

For a Hermitian matrix P, by ev−(P) we denote the number of negative
eigenvalues of P.

Theorem 3.2. Given z1 ∈ T and τ0, τk, . . . , τ2k−1 as in Problem 1.1 such that the
matrix P in (1.6) is Hermitian, and let Θ(z) be the J-unitary rational matrix
function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
= I2 −

(1 − zz∗0)p(z)
(1 − zz∗1)k

uu∗J, J =
(

1 0
0 −1

)
, u =

(
1
τ∗
0

)
,

(3.5)
with p(z) from (3.2) and fixed z0 ∈ T, z0 �= z1. Then the fractional linear trans-
formation

s(z) = TΘ(z)(s1(z)) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

, (3.6)
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establishes a bijective correspondence between all solutions s(z) of Problem 1.1 and
all s1(z) ∈ S with the property

lim inf
z→̂z1

|s1(z) − τ0| > 0. (3.7)

Moreover, if s(z) and s1(z) are related by (3.6) then

sq−(s) = sq−(s1) + ev−(P). (3.8)

Proof. With the given numbers τ0, τk, . . . , τ2k−1 we define the space M as the span
of the functions

f�(z) =
z�

(1 − zz∗1)�+1
u, � = 0, 1, . . . , k − 1. (3.9)

Then (
f0(z) f1(z) . . . fk−1(z)

)
= C(Ik − zA)−1, (3.10)

where the matrix C from (2.16) specializes now to

C =
(

1 0 · · · 0
τ∗
0 0 · · · 0

)
, (3.11)

and A = z∗1Ik + Sk as in (2.15) with Sk being the k × k shift matrix. Endowing
the space M with the inner product

〈fm, f�〉M = (P)�,m = α�m (3.12)

we have that M is a reproducing kernel Pontryagin space with reproducing kernel
equal to

C(Ik − zA)−1
P
−1(Ik − wA)−∗C∗. (3.13)

Evidently, the negative index of this space is equal to ev−(P).
On the other hand, according to (2.17) the matrix P satisfies the Stein equa-

tion
P − A∗

PA = C∗JC,

where now the expressions on both sides are equal to zero. Therefore for M all the
conditions of Theorem 1.2 are satisfied, and hence there exists a J-unitary rational
2 × 2-matrix function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
such that M = P(Θ), the reproducing kernel Pontryagin space with reproducing

kernel
J − Θ(z)JΘ(w)∗

1 − zw∗ . By the uniqueness of the reproducing kernel it must

coincide with the kernel from (3.13):

C(Ik − zA)−1
P
−1(Ik − wA)−∗C∗ =

J − Θ(z)JΘ(w)∗

1 − zw∗ .

Thus if we normalize Θ(z) by Θ(z0) = I2 we obtain

Θ(z) = I2 − (1 − zz∗0)C(Ik − zA)−1
P
−1(Ik − z0A)−∗C∗J.
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By (3.9) and (3.10) this matrix function can be written as

Θ(z) = I2 − (1 − zz∗0)uR(z) P
−1R(z0)∗ u∗J,

and this coincides with the formula for Θ(z) in the theorem.
Now we consider a solution s(z) of Problem 1.1:

s(z) = τ0 +
2k−1∑
�=k

τ�(z − z1)� + O((z − z1)2k), z→̂z1.

According to Lemma 2.1 the corresponding kernel Ks(z, w) admits the represen-
tation (2.5):

Ks(z, w) =
∑

0≤�+m≤2k−2

α�m(z − z1)�(w − z1)∗m

+O
(
(max{|z − z1|, |w − z1|})2k−1

)
, z, w→̂z1,

with

α�m = lim
z,w→̂z1

1
�!m!

∂�+m

∂w∗m∂z�
Ks(z, w) = α∗

m�. (3.14)

From

Ks(z, w) =
1 − s(z)s(w)∗

1 − zw∗ =
(
1 −s(z)

)
(

1
s(w)∗

)
1 − zw∗

we see that

lim
w→̂z1

1
m!

∂m

∂w∗m
Ks(z, w) =

(
1 −s(z)

)
fm(z), m = 0, . . . , k − 1.

On the other hand, according to Lemma 2.4 the elements

fm(z) = lim
w→̂z1

1
m!

∂m

∂w∗m
Ks(z, w) =

(
1 −s(z)

)
fm(z), m = 0, 1, . . . , k − 1,

belong to the reproducing kernel Pontryagin space P(s) with reproducing kernel
Ks(z, w) and〈(

1 −s
)
fm,

(
1 −s

)
f�
〉
P(s)

= lim
z,w→̂z1

1
�!m!

∂m+�

∂w∗m∂z�
KS(z, w). (3.15)

By (3.15), (3.12), and (3.14) the map T of multiplication by
(
1 −s(z)

)
is an

isometry from M into P(s). Setting

s1(z) =
b(z) − d(z)s(z)
c(z)s(z) − a(z)

we have that s(z) is of the desired form:

s(z) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

. (3.16)
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From

Ks(z, w) =
(
1 −s(z)

) J − Θ(z)JΘ(w)∗

1 − zw∗
(
1 −s(w)

)∗ (3.17)

+ (a(z) − c(z)s(z))Ks1(z, w)(a(w) − c(w)s(w))∗,

and since T is an isometry, it follows that s1(z) is a generalized Schur function
and

P(s) = T M⊕ (a − cs)P(s1).
By the observations at the end of the Introduction and after formula (3.12) this
implies the equality (3.8).

From the definition (3.5) of Θ(z):

Θ(z) =
(

1 − θ(z) τ0θ(z)
−τ∗

0 θ(z) 1 + θ(z)

)
, θ(z) =

(1 − zz∗0)p(z)
(1 − zz∗1)k

= (1−zz∗0)R(z)P−1R(z0)∗,

(3.18)
and (3.16) we obtain

s(z) − τ0

(
1 − (1 − zz∗1)k

(1 − zz∗0)p(z)

)
=

τ0(1 − zz∗1)
2k

(1 − zz∗0)p(z) {(1 − zz∗1)k − τ∗
0 (1 − zz∗0)p(z)(s1(z) − τ0)}

. (3.19)

By Lemma 3.1 the expression on the left is O((z− z1)2k), z→̂z1, and this can only
be the case if (3.7) holds. Thus, every solution of the Problem 1.1 is of the form
given in the theorem.

As to the existence of solutions, the equality (3.19) readily implies that any
function s(z) of the form (3.6) has the desired asymptotics and since Θ(z) is J-
unitary and rational, the formula (3.17) implies that if s1(z) belongs to the class
S then also s(z) belongs to this class. �

Remark 3.3. 1) The J-unitarity of Θ(z) implies that

p(z) = z0(−z∗1)kzk−1p

(
1
z∗

)∗
. (3.20)

2) Note that the matrix function Θ(z) in Theorem 3.2 is normalized such that
Θ(z0) = I2. Replacing z0 by another point ẑ0 ∈ T, ẑ0 �= z1, amounts to multiplying
Θ(z) from the right by a J-unitary constant matrix. This follows from the fact
that the fractional linear transformations with the corresponding matrix function
Θ̂(z) and with Θ(z) have the same range. It can also be shown directly using the
equality (3.22) below.
3) For θ(z) as in (3.18) we have

θ(z) = (1 − zz∗0)R(z)P−1R(z0)∗, R(z) =
(
1 0 · · · 0

)
(I − zA)−1, (3.21)

where A = Sk+z∗1Ik. If the point z0 is replaced by another point ẑ0 ∈ T, ẑ0 �= z0, z1,
then for the corresponding function θ̂(z) the difference θ(z) − θ̂(z) is independent
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of z. In fact, a direct calculation using (3.21) and (2.17) with C∗JC = 0 shows
that

θ(z) − θ̂(z) = −θ̂(z0). (3.22)

4) For rational parameters s1(z) the condition (3.7) is equivalent to the fact that
the denominator in (3.6):

c(z)s1(z) + d(z) = −τ∗
0 (s1(z) − τ0)θ(z) + 1

has a pole of order k (see (3.18)).

5) The matrix P in (1.6) is right lower triangular and the entries on the second
main diagonal are given by

(P)i,k−1−i = (−1)k−1−iz2k−1−2i
1 τ∗

0 τk, i = 0, 1, . . . , k − 1. (3.23)

If P is Hermitian, then by (3.23), zk
1 τ∗

0 τk is purely imaginary if k is even and real
if k is odd, and we have

ev−(P) =

⎧⎪⎨⎪⎩
k/2, k even,

(k − 1)/2, k odd, (−1)(k−1)/2zk
1 τ∗

0 τk > 0,

(k + 1)/2, k odd, (−1)(k−1)/2zk
1 τ∗

0 τk < 0.

Recall that the Schur algorithm is originally defined for a Schur function s(z).
Theorem 3.2 allows us to define an analog for functions s(z) in the class S which
have an asymptotics (1.5) at z1 with a Hermitian matrix Pk and τk �= 0. The
Schur transform of s(z) is the function ŝ(z) := s1(z) = TΘ(z)−1(s(z)) with Θ(z)
as in Theorem 3.2. By this Schur transformation the set of functions in S with
the above mentioned properties is mapped into S. The Schur algorithm consists
in iterating the Schur transformation. It will be considered in Sections 5 and 6.

4. Multipoint boundary interpolation

We generalize Problem 1.1 to an interpolation problem with N distinct points
z1, . . . , zN on the unit circle.

Problem 4.1. Let N ≥ 1 be an integer, let z1, . . . , zN be N distinct points on
T, let k1, . . . , kN be integers ≥ 1, and let τi;0, τi;ki , τi;ki+1, . . . , τi;2ki−1 be complex
numbers such that |τi;0| = 1 and τi;ki �= 0, i = 1, . . . , N . Find all generalized Schur
functions s(z) ∈ S such that

s(z) = τi;0 +
2ki−1∑
�=ki

τi;�(z − zi)� + O((z − zi)2ki), z→̂zi, i = 1, . . . , N.

Let Pi, Ci, Ai, and Θi(z) be related to zi as in Section 3 the matrices P, C,
A, and Θ(z) in formulas (3.1), (3.11), (2.15) and (3.5) are related to z1. Set

C =
(
C1 C2 · · · CN

)
, A = diag (A1, A2, . . . , AN ),
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and denote by P = (Pij)N
i,j=1 the N × N block matrix with Pii = Pi and Pij ∈

Cki×kj being the matrix given by (2.23) for z1 = zi and z2 = zj , i, j = 1, 2, . . . , N .
Then, according to (2.17) and (2.23) the matrix P satisfies the Stein equation

P − A∗
PA = C∗JC. (4.1)

We note that the relation (2.23) in the situation of this section reads as

Pij − A∗
i PijAj = C∗

i JCj =
(

1 − τi;0τ
∗
j;0 0 0 · · · 0

0 0 0 · · · 0

)
.

If no derivatives are involved, Pij is a complex number and equal to
1 − τi;0τ

∗
j;0

1 − z∗i zj
.

Theorem 4.2. Assume that the matrix P is invertible and Hermitian and define
the J-unitary matrix function Θ(z) by

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
= I2 − (1 − zz∗0)C(I − zA)−1

P
−1(I − z0A)−∗C∗J,

where z0 is any point in T different from the interpolation points. Then the frac-
tional linear transformation

s(z) = TΘ(z)(s1(z)) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

(4.2)

establishes a bijective correspondence between all solutions s(z) of Problem 4.1 and
all s1(z) ∈ S with the properties

lim inf
z→̂z1

∣∣∣∣∣ âi(z)s1(z) + b̂i(z)

ĉi(z)s1(z) + d̂i(z)
− τi,0

∣∣∣∣∣ > 0, i = 1, . . . , N, (4.3)

where (
âi(z) b̂i(z)
ĉi(z) d̂i(z)

)
= Θ̂i(z) := Θ−1

i (z)Θ(z).

In the correspondence (4.2),

sq−(s) = ev−(P) + sq−(s1). (4.4)

Proof. As in the proof of Theorem 3.2, to each of the interpolation points zi is
associated the finite-dimensional resolvent invariant space Mi of C2-valued ra-
tional functions spanned by the columns of the matrix function Ci(I − zAi)−1.
Then the space M = ⊕N

i=1Mi is spanned by the columns of the matrix function
C(I − zA)−1. We endow M with the inner product defined by P. It follows from
Theorem 1.2 that M = P(Θ) with Θ(z) as in the theorem.

Assume that s(z) is a solution of the interpolation problem. We claim that
the map T : f(z) �→

(
1 −s(z)

)
f(z) is an isometry from P(Θ) into P(s). Indeed,
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because of the Stein equation (4.1) and the relations

T Ci(I − zAi)−1 =(
lim

w→̂zi

Ks(z, w) lim
w→̂zi

∂

∂w∗ Ks(z, w) · · · lim
w→̂zi

1
(ki − 1)!

∂ki−1

∂w∗(ki−1)
Ks(z, w)

)
,

where i = 1, 2, . . . , N , the entries of the Gram matrix associated with the basis of
the space M, which is the union of the bases of the spaces Mi, coincides with the
Gram matrix of the images under T . Hence

P(s) = T P(Θ) ⊕ (a − cs)P(s1)

and s(z) = TΘ(z)(s1(z)) for some generalized Schur function s1(z) satisfying (4.4).
Since Mi is a non-degenerate R0-invariant subspace of M, Θ(z) admits the factor-
ization Θ(z) = Θi(z)Θ̂i(z), see [9]. Hence s(z) = TΘ(z)(s1(z)) = TΘi(z)(ŝ1(z)) with

ŝ1(z) = TΘ̂i(z)(s1(z)) =
âi(z)s1(z) + b̂i(z)

ĉi(z)s1(z) + d̂i(z)
.

This shows that s(z) is a solution of the interpolation problem at zi with parameter
ŝ1(z), therefore, according to (3.7), ŝ1(z) satisfies (4.3).

Conversely, let s(z) = TΘ(z)(s1(z)) be given with a function s1(z) as in the
theorem. If we write s(z) = TΘi(z)(ŝ1(z)), then, since Θ̂i(z) = Θ−1

i (z)Θ(z) is J-
unitary, ŝ1(z) is a generalized Schur function and by (3.7) it has all the properties
of the parameters in Theorem 3.2 and hence s(z) is a solution of Problem 4.1 �

Remark 4.3. 1) There exist rational parameters s1(z) satisfying the conditions
(4.3) for i=1,...,N . Indeed for each i there is a unique constant si =TΘ(zi)−1(τi;0)
such that in (4.3) there is equality rather than inequality. It suffices to take for
s1(z) any constant of modulus 1 which is different from these si, i = 1, 2, . . . , N .
2) If ki = 1, i = 1, 2, . . . , N , a description of all rational Schur functions which
satisfy the given interpolation conditions was given by J.A. Ball, I. Gohberg, and
L. Rodman [12, Theorem 21.1.2]: in this case the conditions (4.3) reduce to the fact
that c(z)s1(z) + d(z) has poles of order 1 at z = zi, i = 1, 2, . . . , N . Indeed, with

Θi(z) =
(

ai(z) bi(z)
ci(z) di(z)

)
and the relations in the proof of the theorem we have

c(z)s1(z) + d(z) = (ci(z)ŝ1(z) + di(z))(ĉi(z)s1(z) + d̂i(z)).

According to Remark 3.3, 4) the first factor on the right-hand side has a pole of
order 1 at zi and the second factor is rational and nonzero at zi.
3) We give an example where P is not invertible while its diagonal entries are
invertible. For such matrices the assumptions of Theorem 4.2 are not satisfied. Take
N = 2, two distinct points z1 and z2 on T , k1 = k2 = 1, τ1;0 = 1, τ2;0 = −1, and
numbers τ1;1, τ2;1 such that z1τ1;1, z2τ2;1 ∈ R and z1z2τ1;1τ2;1 = 4/|1−z1z

∗
2 |2. Then

P1 and P2 are invertible, P satisfies the Stein equation (4.1) but is not invertible.
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5. J-unitary factorization

In this section z0 and z1 are two distinct points in T. By Uz1 we denote the set of
all rational J-unitary 2× 2-matrix functions Θ(z) with a pole only at z = z1, and
by Uz0

z1
the set of all matrix functions Θ(z) ∈ Uz1 which are normalized such that

Θ(z0) = I2. In particular, the matrix functions of Uz1 are bounded at ∞.

Lemma 5.1. If Θ(z) ∈ Uz1 then detΘ(z) ≡ c for some c ∈ T, and Θ(z)−1 ∈ Uz1 .

Proof. The J-unitarity of Θ(z) on T and the analyticity outside z = z1 imply the
identity

Θ(z)JΘ(1/z∗)∗ = J, z ∈ C \ {0, z1} .

For the rational function f(z) = detΘ(z) it follows that |f(z)| = 1, z ∈ T. There-
fore f cannot have a pole at z1, and since it is also bounded at ∞ it must be
constant. �

By the degree of a rational J-unitary matrix function Θ(z) we mean the
McMillan degree (see [13]) and we write it as deg Θ(z). If Θ(z) ∈ Uz1 and

Θ(z) =
n∑

i=0

Ti(z − z1)−i,

where the Ti’s are constant 2 × 2-matrices and Tn �= 0, then

deg Θ = rank

⎛⎜⎜⎜⎝
Tn 0 · · · 0

Tn−1 Tn · · · 0
...

...
...

T1 T2 · · · Tn

⎞⎟⎟⎟⎠ .

A product Θ1(z)Θ2(z) · · ·Θn(z) = Θ(z) of rational J-unitary matrix func-
tions is called minimal if the degrees add up, that is,

deg Θ1(z) + deg Θ2(z) + · · · + deg Θn(z) = deg Θ(z).

In this case the product on the left-hand side is also called a minimal factor-
ization of Θ(z). An example of a nonminimal product is given by the equality
Θ(z)Θ(z)−1 = I2 for any nonconstant Θ(z) ∈ Uz1 , since, because of Lemma 5.1,
the inverse Θ(z)−1 also belongs to Uz1 .

A matrix function Θ(z) ∈ Uz1 is called elementary if in any minimal factor-
ization Θ(z) = Θ1(z)Θ2(z) at least one of the factors is a J-unitary constant.

Theorem 5.2. Assume z0, z1 ∈ T and z0 �= z1. Then:
(i) The matrix function Θ(z) ∈ Uz0

z1
is elementary if and only if it is of the form

Θ(z) = I2 −
(1 − zz∗0)p(z)
(1 − zz∗1)k

uu∗J, J =
(

1 0
0 −1

)
, u =

(
1
ζ

)
, (5.1)

where k is an integer ≥ 1, ζ ∈ T, p(z) is a polynomial of degree ≤ k − 1
satisfying (3.20) and p(z1) �= 0.
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(ii) Every Θ(z) ∈ Uz0
z1

admits a unique minimal factorization

Θ(z) = Θ1(z) · · ·Θn(z), (5.2)

in which each Θj(z) is an elementary normalized factor of the form (5.1).

The theorem implies that the matrix function Θ(z) in (3.5) belongs to the
class Uz0

z1
and is elementary. The proof of Theorem 5.2 hinges on the fact that

the reproducing kernel space P(Θ) consists of one Jordan chain for the difference
quotient operator R0, which makes the elementary factors unique. In case of higher
dimensions this uniqueness does not hold.

Proof of Theorem 5.2. Let Θ(z) ∈ Uz0
z1

. We claim that P(Θ) is spanned by a single
chain for R0 at the eigenvalue λ = z∗1 . To see this, let λ be an eigenvalue of R0

with eigenelement f0(z): R0f0(z) = λf0(z). Then

f0(z) =
c0

1 − λz
, c0 = f0(0) �= 0,

and since the elements of P(Θ) have a pole only at z = z1, we conclude that
λ = z∗1 . The identity (1.10) and |z1| = 1 imply that c0 is J-neutral:

c∗0Jc0 = 〈f0, f0〉P(Θ) − 〈z∗1f0, z∗1f0〉P(Θ) = 0.

If
g0(z) =

d0

1 − zz∗1
, d0 ∈ C

2,

is another eigenfunction, then also d0 is J-neutral and (1.10) yields c∗0Jd0 = 0.
Since J is invertible, this implies that d0 is a multiple of c0 and hence the geometric
multiplicity of the eigenvalue λ = z∗1 is 1. This proves the claim. It follows that
there are vectors cj ∈ C2, c0 being J-neutral, such that P(Θ) is spanned by

fj(z) =
zfj−1(z) + cj

1 − zz∗1
, j = 0, . . . , N − 1, f−1(z) ≡ 0.

Since c0 is nonzero and J-neutral, its components have the same nonzero abso-
lute value and hence we may suppose without loss of generality that for some
unimodular number ζ0,

c0 =
(

1
ζ0

)
.

Let k be the smallest integer ≥ 1 such that 〈f0, fk−1〉P(Θ) �= 0, hence, if k ≥ 2,

〈f0, fj〉P(Θ) = 0, j = 0, . . . , k − 2.

Then the subspace
M = span {f0, f1, . . . , fk−1}

is the smallest R0-invariant subspace of P(Θ) which is non-degenerate and hence,
by Theorem 1.2, it is a P(Θ1)-space for some rational J-unitary 2 × 2-matrix
function Θ1(z). We prove that Θ1(z) is of the form described by (5.1).

To this end we first show that without loss of generality we may assume that

c1 = · · · = ck−1 = 0. (5.3)
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By the identity (1.10) we have

c∗0Jcj = 〈fj , f0〉P(Θ) − 〈z∗1fj + fj−1, z
∗
1f0〉P(Θ) = 0

and, since c∗0Jc0 = 0 and J is invertible, cj is a multiple of c0. Successively for
j = 1, . . . , k − 1, we may replace cj in fj(z) by zero by subtracting from fj(z) a
suitable multiple of the eigenfunction f0(z). Thus we obtain a chain which satisfies
(5.3) and still spans M. By (5.3), this new chain coincides with the columns of
the matrix C(Ik − zA)−1 with C and A as in (3.11) and τ∗

0 = ζ. Denote by P the
corresponding Gram matrix:

P = (pij)
k−1
i,j=0 , pij = 〈fj , fi〉P(Θ), i, j = 0, 1, . . . , k − 1.

For the reproducing kernel Θ1(z) of the space M we obtain

J − Θ1(z)JΘ1(w)∗

1 − zw∗ = C(Ik − zA)−1
P
−1(Ik − wA)−∗C∗,

and hence

Θ1(z) = I2 − (1 − z∗0z)C(Ik − zA)−1
P
−1(Ik − z0A)−∗C∗J.

As in the proof of Theorem 3.2 one can show that Θ1(z) is of the form (5.1). From
its construction it follows that Θ1(z) is elementary: Assume on the contrary, that
Θ1(z) = Θ′(z)Θ′′(z) is a minimal factorization with nonconstant factors. Then
P(Θ1) = P(Θ′) ⊕ Θ′P(Θ′′) and P(Θ′) is a proper non-degenerate R0-invariant
subspace of P(Θ1) and hence also a subspace of P(Θ). The construction above
and the minimality of k imply that P(Θ′) is spanned by the same chain as P(Θ1),
that is, P(Θ′) = P(Θ1). The normalization implies Θ′(z) = Θ1(z) and Θ′′(z) = I2.

Now we prove (i) and (ii).
(i) The arguments above imply that if Θ(z) is elementary, then Θ(z) = Θ1(z).

We now prove that if Θ(z) is given by (5.1), then it is elementary. The formula
(5.1) implies that Θ(z) is J-unitary, rational with only one pole of order k at
z = z1 and normalized by Θ(z0) = I2. The space P(Θ) is spanned by the elements
Rn

0 Θ(z)c, n = 0, 1, . . . , and these are 2-vector functions of the form x(z)u, where
x(z) is a rational function with at most one pole at z = z1. The chain argument
above shows that the space P(Θ) is spanned by the following chain of R0 at z1

g0(z) =
1

(1 − zz∗1)1
u, g1(z) =

z

(1 − zz∗1)2
u, . . . , gk−1(z) =

zk−1

(1 − zz∗1)k
u.

We claim that the Gram matrix G associated with this chain is right lower tri-
angular. Then, since the space P(Θ) is non-degenerate, the entries on the second
diagonal of G are nonzero. The triangular form of G implies that the span of any
sub-chain of the given chain is degenerate and hence Θ(z) is elementary.

It remains to prove the claim. For this we use the matrix representation of
the operator R0 relative to the basis gj(z): it is the matrix A = z∗1Ik + Sk from
(2.15). From (1.10) and since u is J-neutral, we have that

G − (z∗1Ik + Sk)∗G(z∗1Ik + Sk) = 0,
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and hence
S∗

kG = G
(
−z2

1Sk + z3
1Sk + · · · (−1)k−1zk

1Sk−1
k

)
.

The triangular form of G can be deduced from this equality by comparing the
entries of the matrices on both sides.

(ii) If Θ(z) and Θ1(z) are as in the beginning of this proof, then by Lemma
5.1, Θ2(z) = Θ1(z)−1Θ(z) ∈ Uz0

z1
. From the orthogonal decomposition

P(Θ) = P(Θ1) ⊕ Θ1P(Θ2)

it follows that deg Θ2 = deg Θ − k. The minimal factorization mentioned in part
(ii) of the theorem now follows by repeating the foregoing arguments. �

Since rankuu∗J = 1, the elementary factor Θ(z) in Theorem 5.2 (i) has
McMillan degree k, which, evidently, is the order of the pole of Θ(z) at z = z1.
The function Θ(z) in (5.1) is a generalization of a Brune section in the positive
definite case where it is of the form

(I +
1
γ

z + a

z − a
uu∗J)V,

with a normalizing constant J-unitary factor V , a ∈ T , u ∈ C
2 with u∗Ju = 0,

and γ > 0.

6. A factorization algorithm

In this section we show how the factorization of a matrix function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
∈ Uz0

z1

with z1, z0 ∈ T, z0 �= z1, can be derived from the Schur algorithm described at
the end of Section 3. Similar arguments were presented in our previous papers [2]
and [7] for polynomial matrix functions which are J-unitary on the unit circle or
on the real line. We proceed in a number of steps.

Step 1: Choose a number τ ∈ T such that (i)

s(z) = sτ (z) =
a(z)τ + b(z)
c(z)τ + d(z)

(6.1)

is not a constant, (ii) c(0)τ + d(0) �= 0, and (iii)

Oaτ+b = max {Oa, Ob}, Ocτ+d = max {Oc, Od},

where, for example, Oa stands for the order of the pole of the function a(z) at
z = z1. Then s(z) ∈ S, it is a rational function holomorphic and of modulus one
on T and hence the quotient of two Blaschke factors.
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There are at most five distinct points τ ∈ T for which (i)–(iii) do not hold:
Assume that for three distinct points τ1, τ2, τ3 ∈ T the function s(z) is a constant.
Then, since Θ(z0) = I2,

a(z)τj + b(z)
c(z)τj + d(z)

= τj , j = 1, 2, 3, z ∈ C,

and we obtain that c(z) ≡ 0, b(z) ≡ 0, a(z) ≡ d(z). Hence Θ(z) = a(z)I2. Since
detΘ(z) is a constant, we have that a(z) is a constant, and so that Θ(z) is a
constant matrix, which is a contradiction. Hence (i) holds with the exception of at
most two different values of τ ∈ T. The condition in (ii) holds with the exception
of at most one τ ∈ T, since |detΘ(0)| = 1. Finally, the conditions in (iii) hold,
each with the exception at most one point τ ∈ T.

Step 2: Let s1(z) = ŝ(z) be the Schur transform of s(z) (see the end of Section 3).
Then s1(z) = TΘ1(z)−1(s(z)) and Θ1(z) is an elementary factor of Θ(z).

From the proof of Theorem 3.2 we know that the map T : f(z) �→
(
1 −s(z)

)
f(z)

is an isometry from P(Θ1) into P(s). We first show that T is a unitary mapping
from P(Θ) onto P(s). The fact that τ in (6.1) is a constant of modulus one implies
the identity

1 − s(z)s(w)∗

1 − zw∗ =
(
1 −s(z)

) J − Θ(z)JΘ(w)∗

1 − zw∗

(
1

−s(w)∗

)
. (6.2)

This in turn implies that T is a partial isometry from P(Θ) onto P(s), which is
unitary if its kernel kerT is trivial, see [8, Theorem 1.5.7]. Suppose

0 �= f =
(

f
g

)
∈ kerT ,

that is,
(
1 −s

)
f = 0, then

f =
(

s
1

)
g = Θ

(
τ
1

)
x ∈ P(Θ), x =

g

cτ + d
.

Note that since detΘ �= 0, we have that Θ
(

τ
1

)
�= 0. Apply R0 to Θ

(
τ
1

)
x to

obtain

(R0Θ)
(

τ
1

)
x(0) + Θ

(
τ
1

)
R0x ∈ P(Θ).

The first summand belongs to P(Θ) and hence the second summand also belongs
to P(Θ). By repeatedly applying R0, we find that

Θ
(

τ
1

)
Rj

0x ∈ P(Θ), j = 0, 1, 2, . . . .

Since x is a rational function there is an integer n ≥ 0 such that the span of the
functions Rj

0x, j = 0, 1, . . . , n, is finite-dimensional and R0-invariant. It follows
that R0 has an eigenvector v which has one of three possible forms: either v ≡ 1
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or v(z) = 1/(z− z2) with z2 �= z1 or v(z) = 1/(1− zz∗1). All three possibilities lead
to a contradiction:

v ≡ 1: This implies that Θ
(

τ
1

)
∈ P(Θ), and hence, since the elements in P(Θ)

all tend to 0 as z → ∞, we see that Θ(∞)
(

τ
1

)
= 0, but this cannot hold since

detΘ(∞) �= 0.

v(z) = 1/(z − z2): This implies that Θ
(

τ
1

)
1

z − z2
∈ P(Θ), and hence, since the

elements in P(Θ) are all holomorphic at z = z2, we see that Θ(z2)
(

τ
1

)
= 0, and

again this cannot hold since detΘ(z2) �= 0.

v(z) = 1/(1 − zz∗1): This implies that

Θ
(

τ
1

)
1

1 − zz∗1
=

⎛⎜⎜⎝
a(z)τ + b(z)

1 − zz∗1
c(z)τ + d(z)

1 − zz∗1

⎞⎟⎟⎠ ∈ P(Θ),

but this cannot hold because of conditions (iii) in Step 1 and because, according

to the last statement in Theorem 1.2, if
(

f
g

)
∈ P(Θ) then Of ≤ max {Oa, Ob}

and Og ≤ max {Oc, Od}.
These contradictions imply that T has a trivial kernel and hence T is unitary.
We now claim that P(Θ1) ⊂ P(Θ) and that the inclusion map is isometric.

Let N1 = dim P(Θ1) and g0, . . . ,gN1−1 be a basis of P(Θ1) such that R0gj =
z1gj + gj−1. One can choose gj = fj for j = 1, . . . , N1 − 1. Indeed, let

g0(z) =
1

1 − zz∗1

(
1
η

)
,

then the function (
1 −s(z)

)
(f0(z) − g0(z)) = −s(z)(ζ0 − η)

1 − zz∗1
belongs to P(s), and thus ζ0 = η since the elements of P(s) are holomorphic in
z1. Hence f0(z) = g0(z). Moreover,

〈f0, f0〉P(Θ) = 〈T f0, T f0〉P(s) = 〈f0, f0〉P(Θ1).

In the same way it follows that f�(z) = g�(z), � = 1, . . . , N1 − 1, and that for
i, j = 0, . . . , N1 − 1 the inner products satisfy

〈fi, fj〉P(Θ) = 〈T fi, T fj〉P(s) = 〈fi, fj〉P(Θ1).

We conclude that P(Θ1) is isometrically included in P(Θ), and the claim is proved.
According to [9], Θ1(z) is an elementary factor of Θ(z).
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Step 3: If s1(z) is a constant, then Θ(z) = Θ1(z). If s1(z) is not a constant,
let s2(z) = ŝ1(z) be the Schur transform of s1(z) and denote the corresponding
coefficient matrix by Θ2(z). Then Θ2(z) is an elementary factor of Θ1(z)−1Θ(z).
We iterate n times until sn(z) = ŝn−1(z) is a unitary constant and conclude that
Θ(z) = Θ1(z) · · ·Θn(z).

Because of (6.2) and the relation

1 − s(z)s(w)∗

1 − zw∗ =
(
1 −s(z)

) J − Θ(z)JΘ(w)∗

1 − zw∗

(
1

−s(w)∗

)
+(a1(z) − c1(z)s(z))

1 − s1(z)s(w)∗

1 − zw∗ (a1(w) − c1(w)s(w))∗

we have the following equalities:

P(s) =
(
1 −s

)
P(Θ),

P(s) =
(
1 −s

)
P(Θ1) ⊕ (a1 − c1s)P(s1).

(6.3)

In particular, the map
f �→ (a1 − c1s) f (6.4)

is an isometry from P(s1) into P(s).
If s1(z) is a constant then P(s1) = {0} and (6.3) implies that P(Θ) = P(Θ1).

Since Θ(z) and Θ1(z) are normalized they must be equal.
If s1(z) is not a constant, we define Θ2(z) via s1(z) = TΘ2(z)(s2(z)). Then

Θ2(z) ∈ Uz0
z1

and we have the decomposition

P(s1) =
(
1 −s1

)
P(Θ2) ⊕ (a2 − c2s1)P(s2).

Since (6.4) is an isometry and

(a1(z) − c1(z)s(z))
(
1 −s1(z)

)
=

(
1 −s(z)

)
Θ1(z)

we obtain that

(a1 − c1s)P(s1) =
(
1 −s

)
Θ1P(Θ2) ⊕ (a1 − c1s)(a2 − c2s1)P(s2).

Thus
P(s) =

(
1 −s

)
P(Θ1) ⊕

(
1 −s

)
Θ1P(Θ2) ⊕ (a1 − c1s)(a2 − c2s1)P(s2)

=
(
1 −s

)
(P(Θ1) ⊕ Θ1P(Θ2)) ⊕ (a1 − c1s)(a2 − c2s1)P(s2)

=
(
1 −s

)
P(Θ1Θ2) ⊕ (a1 − c1s)(a2 − c2s1)P(s2).

It follows as above that P(Θ1Θ2) is isometrically included in P(Θ), and, if s2(z)
is constant, that Θ(z) = Θ1(z)Θ2(z). If s2(z) is not constant, we observe that

(a1 − c1s)(a2 − c2s1)
(
1 −s2

)
= (a1 − c1s)

(
1 −s1

)
Θ2 =

(
1 −s

)
Θ1Θ2.

and define Θ3(z) via s2(z) = TΘ3(z)(s3(z)). Then we have

(a1 − c1s)(a2 − c2s1)P(s2)
=

(
1 − s

)
Θ1Θ2P(Θ3) ⊕ (a1 − c1s)(a2 − c2s1)(a3 − c3s2)P(s3).

and the factorization (5.2) follows by repeating the arguments.
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[25] M.G. Krein and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der The-
orie hermitescher Operatoren im Raume πk zusammenhängen, Teil I: Einige Funk-
tionenklassen und ihre Darstellungen, Math. Nachr., 77 (1977), 187–236.
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