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Chapter 2

Generalized Schur functions
and Pontryagin spaces

2.1 Generalized Schur functions

Let n be an integer > 0. By an n×n matrix kernel we mean an n×n matrix
function K(z, w) defined on Ω × Ω for some open set Ω = Ω(K) ⊂ C. We
say that the kernel K(z, w) is Hermitian if

K(z, w)∗ = K(w, z), z, w ∈ Ω.

Let K(z, w) be a Hermitian kernel and let κ be an integer ≥ 0. We say
that K(z, w) has κ negative squares, and write sq−K(z, w) = κ, if for any
integer ` > 0, points w1, w2, . . . , w` ∈ Ω, and vectors α1,α2, . . . ,α` ∈ C

n,
the Hermitian matrix

(2.1.1) (〈K(wi, wj)αi,αj〉Cn)`i,j=1

has at most κ and at least one matrix of this form has exactly κ negative
eigenvalues, counting multiplicities. If sq−K(z, w) = 0 then all matrices of
the form (2.1.1) are nonnegative and in this case we say that the kernel
K(z, w) is nonnegative. That K(z, w) has κ positive squares is defined
similarly.

Let S(z) be a meromorphic n × n matrix function defined on the open
unit disk D in the complex plane and denote by hol (S) the set of points
z ∈ D at which S(z) is holomorphic. By KS(z, w), KS#(z, w), and DS(z, w)
we shall mean the kernels

(2.1.2) KS(z, w) :=
J − S(z)JS(w)∗

1 − zw∗
: C

n → C
n,

(2.1.3) KS#(z, w) :=
J − S#(z)JS#(w)∗

1 − zw∗
: C

n → C
n,

15
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and
(2.1.4)

DS(z, w) =




J − S(z)JS(w)∗

1 − zw∗

S(z) − S(w∗)

z − w∗

S#(z) − S#(w∗)

z − w∗

J − S#(z)JS#(w)∗

1 − zw∗


 :

(
C

n

C
n

)
→

(
C

n

C
n

)
,

where S#(z) = S(z∗)∗, z∗ ∈ hol (S) and J is an n×n signature matrix, that
is, J = J∗ = J−1. Note that Ω(KS) = hol (S), Ω(KS#) = {z ∈ C | z∗ ∈
hol (S)}, and Ω(DS) = Ω(KS) ∩ Ω(KS#). These kernels play a key role in
the sequel.

Theorem 2.1.1 If one of the kernels KS(z, w), KS#(z, w), or DS(z, w) has

κ negative squares then so do the other two.

In this case we write sq−(S) instead of sq−KS(z, w), sq−KS#(z, w), and
sq−DS(z, w). We shall prove this theorem in Subsection 2.3.2. Assuming it
holds we now present the definitions of Schur and generalized Schur func-
tions. First we consider the case J = I, the identity matrix. In this case the
functions S(z) for which the kernels KS(z, w), KS#(z, w), and DS(z, w) are
nonnegative are called Schur functions, and we denote the class of all such
functions by S(Cn). It is well known that S(z) ∈ S(Cn) if and only if S(z) is
holomorphic on D and for each z ∈ D, ||S(z)|| ≤ 1. In the scalar case, that
is, the case where n = 1, we write S instead of S(C). Hence s(z) ∈ S if and
only if s(z) is holomorphic on D and bounded by 1 there. Still for the case
J = I, the functions S(z) for which the kernels KS(z, w), KS#(z, w), and
DS(z, w) have κ negative squares are called generalized Schur functions with

κ negative squares. We denote the class of all such functions by Sκ(Cn). If
S(z) ∈ Sκ(Cn) then S(z) has κ poles in D. In the sequel we only consider
scalar generalized Schur functions. The class of such functions with κ neg-
ative squares will be denoted by Sκ instead of Sκ(C). It is well know that
s(z) ∈ Sκ if and only if it has one of the following equivalent properties (see,
for example, [10] and [30]):

1. s(z) is meromorphic on D, has κ poles (counting order), and

lim supr↑1|s(re
it)| ≤ 1 for almost all t ∈ [0, 2π].

2. s(z) admits the representation

(2.1.5) s(z) = B(z)−1s0(z), B(z) =
κ∏

j=1

z − zj

1 − zz∗j
,

where zj ∈ D and s0(z) is a Schur function with s0(zj) 6= 0, j =
1, 2, . . . , κ.
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The function B(z) is called a Blaschke product of order κ. Generalized Schur
functions were first considered and studied by H. Langer and M.G. Krein (see
[30]). The representation (2.1.5) is called the Krein-Langer factorization. A
similar representation holds in the matrix case but we shall not use this
in the sequel. Nonnegative kernels of the form (2.1.2), (2.1.3), and (2.1.4)
with an arbitrary signature matrix J have been studied by V.P. Potapov
(see [32]). Kernels of the form (2.1.2) and (2.1.3) with κ negative squares
appear in [11] and [12]. In the sequel we denote by Sκ(Cn, J) the class of
meromorphic functions S(z) on D for which these kernels have κ negative
squares. We call a function from this class a J-generalized Schur function

with κ negative squares. We are mainly interested in the case where n = 2
and

(2.1.6) J =

(
1 0
0 −1

)
.

In this special case we shall write Θ(z) instead of S(z).

2.2 Pontryagin spaces

By an inner product space (H, 〈 · , · 〉H) we shall mean a complex linear
space H with an inner product 〈 · , · 〉H defined on it. By an inner product

here we mean a complex valued function 〈 · , · 〉H on H×H which satisfies
the following axioms:

(i) 〈ax + by, z〉H = a〈x, z〉H + b〈y, z〉H, x, y, z ∈ H and a, b ∈ C.

(ii) 〈x, y〉H = 〈y, x〉∗H.

In Section 1.3 we encountered the positive definite inner product on C
n.

According to the above definition an inner product need not be positive
definite. If (H, 〈 · , · 〉H) is an inner product space, its anti-space is the
space (H,−〈 · , · 〉H), which as a linear space coincides with H but with the
sign of the inner product reversed.

By a Krein space we mean an inner product space (K, 〈 · , · 〉K ) which
can be expressed as an orthogonal direct sum

(2.2.1) K = K+ ⊕K−,

in which (K+, 〈 · , · 〉K) and (K−,−〈 · , · 〉K) are Hilbert spaces. The
representation (2.2.1) is called a fundamental decomposition of the Krein
space K. The linear operator JK : K → K defined by

JK(k+ + k−) = k+ − k−, k± ∈ K±,

is called the fundamental symmetry associated with decomposition (2.2.1).
In general a decomposition of the form (2.2.1) is not unique. The numbers
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ind±K = dimK±, which are either finite or ∞ are called the positive and
negative indices of K and are independent of the decompositions. By a
regular subspace of a Krein space K we mean a closed subspace M of K
which is a Krein space in the inner product of K. In this thesis, a Pontryagin

space P is a Krein space with ind−P < ∞.
A fundamental decomposition (2.2.1) induces a topology on the Krein

space K. First, one forms the associated Hilbert space |K| = K+ ⊕ |K−|
by replacing K− by its anti-space |K−|, which is a Hilbert space. The
Hilbert space |K| has an associated norm || · || and it can be shown that
two norms arising from different fundamental decompositions are equivalent
and therefore define the same norm topology. The notions of continuity and
convergence in Krein spaces are understood to be with respect to this norm
topology.

By B(K,H) we denote the set of all bounded linear operators from K
into H. If A ∈ B(K,H), its adjoint is the unique operator A∗ ∈ B(H,K)
such that

〈Ak, h〉H = 〈k,A∗h〉K, k ∈ K, h ∈ H.

The existence of the adjoint follows from the Riesz representation theorem
(see [28, Chapter 2 ]). The Krein space and Hilbert space concepts of the
adjoint operator are related. If we view A ∈ B(K,H) as an element of
B(|K|, |H|) and write A× ∈ B(|H|, |K|) for its Hilbert space adjoint, then

(2.2.2) A∗ = JHA×JK.

Let H and K be Krein spaces. By a linear relation R in H×K we mean
a subspace R of H×K. The domain of R is defined by

dom R = {h ∈ H | (h, k) ∈ R for some k ∈ K}

and the range of R by

ran R = {k ∈ K | (h, k) ∈ R for some h ∈ H}.

If

(2.2.3) 〈k, k〉K ≤ 〈h, h〉H, (h, k) ∈ R,

we say that the relation R is contractive. If equality holds in (2.2.3) we say
that R is isometric.

The following theorem is due to Shmul’yan [35]; for a proof see [10].

Theorem 2.2.1 Let R be a linear relation on H×K, where H and K are

Pontryagin spaces having the same negative index.

(i) If R is a densely defined contraction, then its closure is the graph of

a contraction in B(H,K).
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(ii) If R is a densely defined isometry, then its closure is the graph of an

isometry in B(H,K).

(iii) If R is a densely defined isometry which has dense range, then its

closure is the graph of a unitary operator in B(H,K).

2.3 Reproducing kernel Pontryagin spaces

2.3.1 General Facts

Let P be a Pontryagin space whose elements are n−vector functions defined
on some open subset Ω of C. The space P is said to be a reproducing kernel

Pontryagin space if there exists an n × n matrix kernel K(z, w) on Ω × Ω
such that for every fixed choice of w ∈ Ω and ξ ∈ C

n,

(1) the function z 7→ K(z, w)ξ belongs to P and

(2) 〈f,K( · , w)ξ〉P = 〈f(w), ξ〉
Cn , for every f ∈ P.

We refer to the kernel K(z, w) as the reproducing kernel for P. In this case
we write P(K) instead of P. It turns out that the set of functions K( · , w)ξ,
w ∈ Ω and ξ ∈ C

n, is total in P(K), that is,

span { K( · , w)ξ | w ∈ Ω, ξ ∈ C
n } = P(K).

Indeed, if f ∈ P(K) is orthogonal to all such elements, then (2) implies

〈f(w), ξ〉
Cn = 0, w ∈ Ω, ξ ∈ C

n,

and hence f = 0.
If P(K) is a reproducing kernel Pontryagin space, then its reproducing

kernel K(z, w) is unique and is such that sq−K(z, w) = ind−P(K) (see
[10, Theorem 1.1.2]). On the other hand, if K(z, w) is a Hermitian kernel
with κ negative squares then there exists a unique Pontryagin space P(K) of
negative index κ with reproducing kernel K(z, w) (see [10, Theorem 1.1.3]).

We shall frequently apply the following two theorems. For more details
and more general statements we refer to [10, Section 1.5].

Theorem 2.3.1 Let K(z, w), K1(z, w), and K2(z, w) be n × n matrix ker-

nels on Ω having a finite number of negative squares such that

K(z, w) = K1(z, w) + K2(z, w).

Then

(i) sq−K(z, w) ≤ sq−K1(z, w) + sq−K2(z, w).

(ii) The following statements are equivalent:
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(a) P(K) = P(K1) ⊕P(K2).

(b) P(K1) ⊂ P(K) and the inclusion mapping P(K1) ↪→ P(K) is

isometric.

(c) P(K1) ∩ P(K2) = {0}.

(iii) If (a), (b), and (c) in (ii) hold then sq−K(z, w) = sq−K1(z, w) +
sq−K2(z, w).

Theorem 2.3.2 Let K(z, w) and K1(z, w) be such that

K(z, w) = A(z)K1(z, w)A(w)∗ ,

where K1(z, w) is an n × n matrix kernel on Ω having a finite number of

negative squares and A(z) is an m × n matrix function on Ω. Then

(i) sq−K(z, w) ≤ sq−K1(z, w),

(ii) P(K) = AP(K1),

(iii) the operator of multiplication by A(z):

P(K1) 3 f(z) 7→ A(z)f(z) ∈ P(K)

is a unitary mapping if and only if the set

{f(z) ∈ P(K1) | A(z)f(z) = 0, z ∈ Ω} = {0}.

In this case sq−K(z, w) = sq−K1(z, w).

We use a different notation for the reproducing kernel spaces associated with
a function S(z) from the class Sκ(Cn, J). By definition the kernels KS(z, w),
KS#(z, w), and DS(z, w) have κ negative squares and we write P(S), P(S#),
and D(S) instead of P(KS), P(KS#), and P(DS), respectively. Which
signature matrix J is considered here will be clear from the context. For
generalized Schur functions S(z) we have J = I, and when n = 2 and J
is given by (2.1.6) we write Θ(z) instead of S(z) and then the spaces are
denoted by P(Θ), P(Θ#), and D(Θ). In Section 2.4 we give examples of
such Θ’s for which the corresponding reproducing kernel Pontryagin spaces
are finite dimensional. Recall that a rational n × n matrix function S(z) is
said to be J -unitary on the unit circle T if

S(z)JS(z)∗ = J, |z| = 1, z ∈ hol(S).

Theorem 2.3.3 Let S(z) be a meromorphic n × n matrix function. The

following three statements are equivalent:

(1) S(z) is rational and J-unitary on the unit circle T.
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(2) The kernel KS(z, w) has a finite number of negative squares and the

space P(S) is finite dimensional.

(3) The kernel KS#(z, w) has a finite number of negative squares and the

space P(S#) is finite dimensional.

(4) The kernel DS(z, w) has a finite number of negative squares and the

space D(S) is finite dimensional.

The equivalence of statements (1) and (2) is proved in [11, Theorem
8.1]. In view of Theorem 2.1.1, statements (1) and (2) are equivalent to
statements (3) and (4).

2.3.2 Kernels on C
n
J

Theorem 2.1.1 can be proved along the lines of the proof of a similar theorem
in [9], see [9, Theorem 0.2 ]. Instead we shall prove Theorem 2.1.1 using
this theorem. Let J be an n × n signature matrix and denote by C

n
J the

space C
n equipped with the indefinite inner product

〈α,β〉Cn
J

= β∗Jα, α,β ∈ C
n.

Let S(z) be a meromorphic n × n matrix function on D and for each z ∈
hol (S) consider S(z) as a mapping from C

n
J to C

n
J . Then its adjoint S(z)∗

is given by
S(z)∗ = JS(z)×J,

where S(z)× is the adjoint of S(z) considered as a mapping from |Cn
J | = C

n

to itself, see (2.2.2). We define the following kernels.

(2.3.1) HS(z, w) :=
I − S(z)S(w)∗

1 − zw∗
: C

n
J → C

n
J ,

HS#(z, w) :=
I − S#(z)S#(w)∗

1 − zw∗
: C

n
J → C

n
J ,

and
(2.3.2)

BS(z, w) :=




I − S(z)S(w)∗

1 − zw∗

S(z) − S(w∗)

z − w∗

S#(z) − S#(w∗)

z − w∗

I − S#(z)S#(w)∗

1 − zw∗


 :

(
C

n
J

C
n
J

)
→

(
C

n
J

C
n
J

)
.

We say the kernel HS(z, w) has κ negative squares if for any integer ` >
0, points w1, w2, . . . , w` ∈ hol (S), and vectors α1,α2, . . . ,α` ∈ C

n
J , the

Hermitian matrix (
〈H(wi, wj)αi,αj〉Cn

J

)`
i,j=1



22 Chapter 2. Generalized Schur functions and Pontryagin spaces

has at most κ and at least one matrix of this form has exactly κ nega-
tive eigenvalues, counting multiplicities. That the kernels HS#(z, w) and
BS(z, w) have κ negative squares is defined in a similar way. Theorem 0.2
in [9] can now be stated as follows.

Theorem 2.3.4 If one of the kernels HS(z, w), HS#(z, w), or BS(z, w) has

κ negative squares so do the other two.

We are now in a position to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. We use the following relations:

(2.3.3)





KS(z, w) = HS(z, w)J,
KS#(z, w) = JHS#(z, w),

DS(z, w) = B̂S(z, w)

(
J 0
0 J

)
,

where

(2.3.4) B̂S(z, w) =

(
I 0
0 J

)
BS(z, w)

(
I 0
0 J

)
.

That sq−KS(z, w) = sq−HS(z, w) follows from the first equality in (2.3.3),
as it implies

(2.3.5) 〈KS(wi, wj)αi,αj〉Cn = 〈HS(wi, wj)Jαi,Jαj〉Cn
J
.

The other equalities in (2.3.3) imply in the same way that

sq−KS#(z, w) = sq−HS#(z, w), sq−DS(z, w) = sq−B̂S(z, w).

Since

(
I 0
0 J

)
is invertible, Theorem 2.3.2 with A(z) =

(
I 0
0 J

)
implies

sq−BS(z, w) = ind−B̂S(z, w) and hence sq−DS(z, w) = sq−BS(z, w). The
theorem now follows from Theorem 2.3.4 above.

From the proof of Theorem 2.1.1 we see that if one of the kernels
HS(z, w), BS(z, w), B̂S(z, w), KS(z, w), and DS(z, w), has κ negative squares
then all the others have κ negative squares also. If S(z) ∈ Sκ(Cn, J), we
denote the reproducing kernel Pontryagin spaces corresponding to these ker-
nels by H(S), K(S), K̂(S), P(S), and D(S) respectively.

Theorem 2.3.5 For S(z) ∈ Sκ(Cn, J) we have:

(i) H(S) = P(S) and the inclusion mapping ι : H(S) ↪→ P(S) is unitary.

In particular, ιHS(z, w)α = KS(z, w)Jα, α ∈ C
n.
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(ii) The mapping

ω

(
h
k

)
=

(
h
Jk

)
,

(
h
k

)
∈ K(S),

is a unitary mapping from K(S) onto D(S). In particular,

ωBS(z, w)

(
β1

β2

)
= DS(z, w)

(
Jβ1

β2

)
,

(
β1

β2

)
∈ C

2n.

Proof We use the same notation as in the proof of Theorem 2.1.1.
(i) From the first equality in (2.3.3) we have that for v, w ∈ hol (S) and
α,β ∈ C

n,

〈HS( · , w)α, HS( · , v)β〉H(S) = 〈HS(v, w)α, β〉
Cn

J
= 〈JKS(v, w)Jα, β〉

Cn

= 〈KS(v, w)Jα, Jβ〉
Cn = 〈KS( · , w)Jα, KS( · , v)Jβ〉P(S) .

It follows that the relation

R = span {{HS(z, w)α, KS(z, w)Jα} | w ∈ hol (S),α ∈ C
n}

in H(S)×P(S) is isometric. Since it is densely defined and has dense range,
we conclude by Theorem (2.2.1) (iii) that its closure defines the graph of
a unitary operator ι ∈ B(H(S),P(S)). Since the restriction ι|dom R is the
identity operator on domR, ι itself is the identity operator.
(ii) The arguments in (i) can be repeated to show that the third equality
in (2.3.3) implies that K̂(S) = D(S) and that the inclusion mapping ι2 :
K̂(S) ↪→ D(S) is unitary. Formula (2.3.4) and Theorem 2.3.2 imply that the

operator of multiplication by

(
I 0
0 J

)
is a unitary mapping from K(S) onto

K̂(S). Since ω is the composition of these two unitary mappings:

ω = ι2

(
I 0
0 J

)
,

ω is unitary also. The last equality in the theorem follows from (2.3.3) and
(2.3.4).

2.3.3 The projections from D(S) onto P(S) and P(S#)

In this subsection we describe the projection mappings πS : D(S) → P(S)
and πS# : D(S) → P(S#).

Theorem 2.3.6 For S(z) ∈ Sκ(Cn, J), the operators πS and πS# defined

by

πS

(
h
k

)
= h and πS#

(
h
k

)
= k
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are coisometries from D(S) onto P(S) and P(S#) respectively. Moreover,

if Λ = πS#π∗
S then we have for α ∈ C

n, h ∈ P(S), and k ∈ P(S#),
(2.3.6)

ΛKS(z, w)α =
S#(z) − S#(w)

z − w∗
α, π∗

Sh =

(
h

Λh

)
, π∗

S#k =

(
Λ∗k
k

)
.

Proof By Theorem 2.1.1, the spaces P(S), P(S#) and D(S) have the same
negative index κ. Let 0 be the zero vector in C

n. With α,γ ∈ C
n we define

the relations R in P(S) ×D(S) and T in P(S#) ×D(S) by

R = span{{
KS(z, w)α, DS(z, w)

(
α

0

)}
| w ∈ hol (S) ∩ hol (S#),α ∈ C

n

}

and

T = span{{
KS#(z, w)γ, DS(z, w)

(
0

γ

)}
| w ∈ hol (S) ∩ hol (S#),γ ∈ C

n

}
.

We show that the relation R is isometric and since it is densely defined we
conclude by Theorem 2.2.1 (ii) that its closure defines a graph of an isometry
in B (P(S),D(S)). Let

(
KS(z, w)α, DS(z, w)

(
α

0

))
,

(
KS(z, v)β, DS(z, v)

(
β

0

))

be two pairs in the relation R. Then
〈

DS(z, w)

(
α

0

)
, DS(z, v)

(
β

0

)〉

D(S)

=

〈
DS(v, w)

(
α

0

)
,

(
β

0

)〉

Cn

=
(
β∗ 0

)



J − S(v)JS(w)∗

1 − vw∗

S(v) − S(w∗)

v − w∗

S#(v) − S#(w∗)

v − w∗

J − S#(v)JS#(w)∗

1 − vw∗



(
α

0

)

= β∗J − S(v)JS(w)∗

1 − vw∗
α = 〈KS(z, w)α,KS(z, v)β〉P(S) .

Hence the closure of R is the graph of an isometry V from P(S) into D(S).
Setting πS = V ∗, we see that πS is a coisometry from D(S) onto P(S), and
from〈

πS

(
h
k

)
(w), α

〉

Cn

=

〈
πS

(
h
k

)
,KS(z, w)α

〉

P(S)

=

〈(
h
k

)
, V KS(z, w)α

〉

D(S)

=

〈(
h
k

)
, DS(z, w)

(
α

0

)〉

D(S)

=

〈(
h(w)
k(w)

)
,

(
α

0

)〉

C2n

= 〈h(w),α〉
Cn ,
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it follows that πS

(
h
k

)
= h. Similar calculations show that the closure of T

is the graph of an isometric operator from D(S) to P(S#), whose adjoint
coincides with the operator πS# defined in the theorem. From

π∗
SKS(z, w)α = DS(z, w)

(
α

0

)
=




J − S(z)JS(w)∗

1 − zw∗
α

S#(z) − S#(w∗)

z − w∗
α


 ,

it follows that the first equality in (2.3.6) holds and that

π∗
SKS(z, w)α =

(
KS(z, w)α

ΛKS(z, w)α

)
.

By continuity this last equality implies the second equality in (2.3.6). The
third equality in (2.3.6) can be proved in a similar way.

2.4 Examples of spaces P(Θ) and D(Θ)

We now consider the special case when n = 2 and

J =

(
1 0
0 −1

)

mentioned in Section 2.1. As stated there, we write Θ(z) for the elements in
Sκ(C2, J) instead of S(z) and denote the corresponding kernels by KΘ(z, w)
and DΘ(z, w). P(Θ) and D(Θ) stand for the corresponding reproducing
kernel Pontryagin spaces. In the next three subsections we give a detailed
description of some functions Θ(z) and the spaces P(Θ) and D(Θ) they
generate. These are important in later chapters.

2.4.1 The J-unitary functions Θ1(z), Θ2(z), Θ∞(z), Θ3(z), and
Θ4(z)

Throughout the sequel we use the following notation. Here σ0 is an arbitrary
complex number and k and q are integers with k ≥ 1 and q ≥ 0.

(2.4.1) Θ1(z) =
1√

1 − |σ0|2

(
1 σ0

σ∗
0 1

)(
zk 0
0 1

)
if |σ0| < 1,

(2.4.2) Θ2(z) =
1√

|σ0|2 − 1

(
σ0 1
1 σ∗

0

)(
1 0
0 zk

)
if |σ0| > 1,
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and

(2.4.3) Θ∞(z) =

(
1 0
0 zq

)
.

We note here that Θ∞(z) is a limiting case of Θ2(z) when we let σ0 go to
infinity (and replace k by q). The definition of Θ3(z) is more involved. Let
s0 6= 0, s1, . . . , sk−1 be k given complex numbers and define the polynomial
Q(z) = Q(z; s0, s1, · · · , sk−1) by

Q(z) = Q(z; s0, s1, · · · , sk−1)

= c0 + c1z + · · · + ck−1z
k−1 − (c∗k−1z

k+1 + · · · + c∗0z
2k)(2.4.4)

in which the complex numbers c0, . . . , ck−1 are determined by the relation




c0 0 · · · 0

c1 c0
. . .

...
...

. . .
. . . 0

ck−1 · · · c1 c0







s0 0 · · · 0

s1 s0
. . .

...
...

. . .
. . . 0

sk−1 · · · s1 s0




= σ0Ik.

From the definition one can check that

(2.4.5) z∗kQ(z) + zkQ(z)∗ = 0 for |z| = 1,

and if we set

(2.4.6) p(z) = c0 + c1z + · · · + ck−1z
k−1

then

(2.4.7) Q(z) = p(z) − z2kp(
1

z∗
)∗.

We define Θ3(z) and Θ4(z) by

(2.4.8) Θ3(z) =

(
Q(z) + zk −σ0Q(z)
σ∗

0Q(z) −Q(z) + zk

)
if |σ0| = 1,

(2.4.9) Θ4(z) = Θ3(z)Θ∞(z).

Lemma 2.4.1 The polynomial matrix functions Θ1(z), Θ2(z), Θ∞(z), Θ3(z),
and Θ4(z) defined above are J-unitary on the unit circle T.
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Proof For |z| = 1,

Θ1(z)JΘ1(z)∗ =
1

1 − |σ0|2

(
zk −σ0

σ∗
0z

k −1

)(
z∗k σ0z

∗k

σ∗
0 1

)

=
1

1 − |σ0|2

(
|z|2k − |σ0|

2 σ0(|z|
2k − 1)

σ∗
0(|z|

2k − 1) |σ0|
2|z|2k − 1

)
= J,

Θ2(z)JΘ2(z)∗ =
1

|σ0|2 − 1

(
σ0 −zk

1 −σ∗
0z

k

)(
σ∗

0 1
z∗k σ0z

∗k

)

=
1

|σ0|2 − 1

(
|σ0|

2 − |z|2k σ0(1 − |z|2k)

σ∗
0(1 − |z|2k) 1 − |σ0|

2|z|2k

)
= J,

Θ∞(z)JΘ∞(z)∗ =

(
1 0
0 −zq

)(
1 0
0 z∗q

)

=

(
1 0

0 −|z|2q

)
= J,

and by (2.4.5),

Θ3(z)JΘ3(z)∗ =

(
Q(z) + zk σ0Q(z)
σ∗

0Q(z) Q(z) − zk

)(
Q(z)∗ + z∗k σ0Q(z)∗

−σ∗
0Q(z)∗ −Q(z)∗ + z∗k

)

=

(
zkQ(z)∗ + z∗kQ(z) + |z|2k σ0(z

kQ(z)∗ + z∗kQ(z))
σ∗

0(z
kQ(z)∗ + z∗kQ(z) zkQ(z)∗ + z∗kQ(z) − |z|2k

)
= J.

That Θ4(z) is J -unitary follows from the fact that both Θ∞(z) and Θ3(z)
are J -unitary.

Lemma 2.4.1 and Theorem 2.3.3 imply that the spaces P(Θj) and D(Θj)
for j = 1, 2, 3, 4,∞ are finite dimensional.

2.4.2 The spaces P(Θ1), P(Θ2), P(Θ∞), P(Θ3), and P(Θ4)

In this subsection we describe the finite dimensional reproducing kernel
Pontryagin spaces associated with the matrix functions Θ1(z), Θ2(z), Θ∞,
Θ3(z), and Θ4 defined by (2.4.1)–(2.4.8) and (2.4.9). The symbols o, u, e1,
e2 will stand for the vectors

(2.4.10) o =

(
0
0

)
, u =

(
1
σ∗

0

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
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and Ĉ will be the k × k matrix

(2.4.11) Ĉ =




0 0 0 0 · · · 0

ck−1 0 0 0 · · · 0
ck−2 ck−1 0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

c2 · · · ck−2 ck−1 0 0

c1 c2 · · · ck−2 ck−1 0




.

Theorem 2.4.2 The space P(Θ1) is the Hilbert space spanned by the or-

thonormal basis {
rzn−1u

}k

n=1
, r =

1√
1 − |σ0|2

,

with Gram matrix Ik×k.

Theorem 2.4.3 The space P(Θ2) is the anti-Hilbert space spanned by the

basis {
rzn−1u

}k

n=1
, r =

1√
|σ0|2 − 1

,

with Gram matrix −Ik×k.

Theorem 2.4.4 The space P(Θ∞) is the anti-Hilbert space with basis

{
zn−1e2

}q

n=1
,

whose Gram matrix equals −Iq×q.

Theorem 2.4.5 The space P(Θ3) is the Pontryagin space spanned by the

basis {
zn−1u

}k

n=1
,
{

zn−1(Ju − 2zkp(z−∗)∗u)
}k

n=1

with Gram matrix 2

(
0 Ik×k

Ik×k −2(Ĉ + Ĉ∗)

)
, where Ĉ is given by (2.4.11). In

particular, the elements of the space P(Θ3) are of the form

t1(z)u + t2(z)(Ju − 2zkp(z−∗)∗u),

where t1(z) and t2(z) are polynomials of degree ≤ k − 1 .

Theorem 2.4.6 With Θ4(z) = Θ3(z)Θ∞(z), the space P(Θ4) can be de-

composed as the orthogonal direct sum

(2.4.12) P(Θ4) = P(Θ3) ⊕ Θ3P(Θ∞).
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Moreover, the map

(2.4.13) W : P(Θ4) 3 f 7→

(
f1

f2

)
∈

(
P(Θ3)
P(Θ∞)

)

determined by the decomposition

f = f1 + Θ3f2,

in accordance with (2.4.12), is unitary.

Theorems 2.4.2 – 2.4.6 can be obtained from Theorems 2.4.8 – 2.4.12 below
by use of the mapping πΘ defined in Theorem 2.3.6, see Subsection 2.4.4.

Corollary 2.4.7 We have

ind−P(Θj) =





0 if j = 1,
k if j = 2, 3,
k + q if j = 4.

Proof Since P(Θj) is a Hilbert space for j = 1 and an anti-Hilbert space
for j = 2, the formula for its index in these cases is clear. For the case
j = 3, the formula follows from the Gram matrix in Theorem 2.4.5: it has k
negative (and k positive) eigenvalues. The result for the case j = 4 follows
from the orthogonal decomposition in (2.4.12) and Theorems 2.4.4.

2.4.3 The spaces D(Θ1), D(Θ2), D(Θ∞), D(Θ3), and D(Θ4)

In the following theorems the matrix functions Θ1(z), Θ2(z), Θ∞(z), Θ3(z),
and Θ4(z) are as defined by (2.4.1)–(2.4.8) and (2.4.9).

Theorem 2.4.8 The space D(Θ1) is the Hilbert space spanned by the or-

thonormal basis

{(
rzn−1u

zk−ne1

)}k

n=1

, r =
1√

1 − |σ0|2
,

with Gram matrix Ik×k. In particular, the elements of the space D(Θ1) are

of the form (
rt(z)u

zk−1t(z−1)e1

)
,

where t(z) is a polynomial of degree ≤ k − 1.
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Theorem 2.4.9 The space D(Θ2) is the anti-Hilbert space spanned by the

basis {(
−rzn−1u

zk−ne2

)}k

n=1

, r =
1√

|σ0|2 − 1
,

with Gram matrix −Ik×k. In particular, the elements of the space D(Θ2)
are of the form (

−rt(z)u

zk−1t(z−1)e2

)
,

where t(z) is a polynomial of degree ≤ k − 1.

Theorem 2.4.10 The space D(Θ∞) is the anti-Hilbert space with basis

{(
−zn−1e2

zq−ne2

)}q

n=1

,

whose Gram matrix equals −Iq×q. In particular, the elements of the space

D(Θ∞) are of the form (
−t(z)e2

zq−1t(z−1)e2

)
,

where t(z) is a polynomial of degree ≤ q − 1.

For the next theorem we recall that p(z) is the polynomial defined by (2.4.6).

Theorem 2.4.11 The space D(Θ3) is the Pontryagin space spanned by the

basis

{(
zn−1u

zk−nJu

)}k

n=1

,

{(
zn−1(Ju− 2zkp(z−∗)∗u)

zk−n(u − 2zkp(z−1)Ju)

)}k

n=1

with Gram matrix 2

(
0 Ik×k

Ik×k −2(Ĉ + Ĉ∗)

)
. In particular, the elements of

the space D(Θ3) are of the form

(
t1(z)u

zk−1t1(z
−1)Ju

)
+

(
t2(z)(Ju − 2zkp(z−∗)∗u)

zk−1t2(z
−1)(u − 2zkp(z−1)Ju)

)
,

where t1(z) and t2(z) are polynomials of degree ≤ k − 1 .

Theorem 2.4.12 The space D(Θ4) can be decomposed as the orthogonal

direct sum

(2.4.14) D(Θ4) =

(
1 0
0 Θ∞

)
D(Θ3) ⊕

(
Θ3 0
0 1

)
D(Θ∞).
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Moreover, the map

(2.4.15) W : D(Θ4) 3 f 7→

(
f1

f2

)
∈

(
D(Θ3)
D(Θ∞)

)

determined by the decomposition

f =

(
1 0
0 Θ∞

)
f1 +

(
Θ3 0
0 1

)
f2,

in accordance with (2.4.14), is unitary.

2.4.4 Proofs of Theorems 2.4.2–2.4.6

Theorems 2.4.2–2.4.6 can be obtained from Theorems 2.4.8–2.4.12 by means
of the projection mapping πΘ : D(Θ) → P(Θ) defined in Theorem 2.3.6. In
all the cases it can be shown that πΘ is injective and since it is a coisometry,
we conclude that it is unitary. The unitarity of πΘ implies that it maps
a basis of D(Θ) onto a basis of P(Θ) and since the inner products are
preserved, the Gram matrices associated with the two bases are the same.
We show the injectivity of πΘ for the case Θ(z) = Θ3(z). The remaining
cases can be shown in a similar way. To do this we let

X(z) =

(
t1(z)u

zk−1t1(z
−1)Ju

)
+

(
t2(z)(Ju − 2zkp(z−∗)∗u)

zk−1t2(z
−1)(u − 2zkp(z−1)Ju)

)

be an element of D(Θ3) where t1(z) and t2(z) are polynomials of degree
≤ k − 1 and assume that πΘ3X(z) = o. This implies that

[t1(z) − 2zkt2(z)p(z−∗)∗]u + t2(z)Ju = o.

Since u and Ju are linearly independent it follows that t1(z) = t2(z) = 0.

Hence X(z) =

(
o

o

)
and πΘ3 is injective.

2.4.5 Proofs of Theorems 2.4.8–2.4.12

Since Theorems 2.4.8, 2.4.9, and 2.4.10 can be proved in a similar way , we
give the proofs of Theorems 2.4.8, 2.4.11, and 2.4.12 only.

Proof of Theorem 2.4.8. We have that

DΘ1(z, w) =




r2 1 − zkw∗k

1 − zw∗

(
1 σ0

σ∗
0 |σ0|

2

)
r
zk − w∗k

z − w∗

(
1 0
σ∗

0 0

)

r
zk − w∗k

z − w∗

(
1 σ0

0 0

)
1 − zkw∗k

1 − zw∗

(
1 0
0 0

)


 ,
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from which we derive the equality

DΘ1(z, w)




a
b
o


 = rw∗(k−1)DΘ1(z, w−1)




o

a + σ0b
d


 , a, b, d ∈ C.

Since D(Θ1) is spanned by the columns of DΘ1(z, w), this means that in
fact it is spanned by

1

r
DΘ1(z, w)

(
e1

o

)
=




r(1 + zw∗ + · · · + zk−1w∗(k−1))u

(zk−1 + zk−2w∗ + · · · + zw∗(k−2) + w∗(k−1))e1


 .

We divide this element by 2πiw∗n, integrate with respect to w∗ over a cir-
cle around w∗ = 0 and, by Cauchy’s theorem, obtain the basis elements
described in part (i) of the theorem. By the reproducing property of the
kernel we have
〈

1

r
DΘ1(z, w)

(
e1

o

)
,
1

r
DΘ1(z, v)

(
e1

o

)〉

D(Θ1)

= 1+vw∗ + · · ·+vk−1w∗(k−1).

Dividing both sides by −4π2vmw∗n, 1 ≤ m,n ≤ k, and integrating with
respect to v and w∗ over circles around the origin, we see that the Gram
matrix associated with this basis is equal to Ik×k.

Proof of Theorem 2.4.11. For this case we have that

DΘ3
(z, w) =




1 − zkw∗k

1 − zw∗
J

zk − w∗k

z − w∗
I

zk − w∗k

z − w∗
I

1 − zkw∗k

1 − zw∗
J




−




zkQ(w)∗ + w∗kQ(z)

1 − zw∗

(
1 σ0

σ∗
0 1

)
Q(z) − Q(w∗)

z − w∗

(
−1 σ0

−σ∗
0 1

)

Q(z∗)∗ − Q(w)∗

z − w∗

(
−1 −σ0

σ∗
0 1

)
zkQ(w∗) + w∗kQ(z∗)∗

1 − zw∗

(
1 −σ0

−σ∗
0 1

)


 .

From this it can be shown that

DΘ3(z, w)

(
Ju

o

)
= w∗(k−1)DΘ3(z, w−1)

(
o

u

)
,

and

w∗(k−1)DΘ3(z, w−1)

(
u

o

)
− DΘ3(z, w)

(
o

Ju

)
= −2

Q(w∗)

w∗k
DΘ3(z, w)

(
o

u

)
.

These equalities imply that

(2.4.16) D(Θ3) = span {DΘ3(z, w)

(
Ju

o

)
, DΘ3(z, w)

(
u

o

)
}.
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Since

DΘ3(z, w)

(
Ju

o

)
=




1 − zkw∗k

1 − zw∗
u

zk − w∗k

z − w∗
Ju


 ,

we obtain, using integration as in the proof of Theorem 2.4.8, that

(2.4.17) span {DΘ3(z, w)

(
Ju

o

)
} = span

(
zj−1u

zk−jJu

)k

j=1

is a neutral space which accounts for the 0 entry in the left upper corner of
the Gram matrix. The elements on the right-hand side are linearly indepen-
dent and their span coincides with the space of functions of the form

(
t(z)u

zk−1t(z−1)Ju

)
,

where t(z) is a polynomial of degree ≤ k − 1. From

DΘ3(z, w)

(
u

o

)
=




1 − zkw∗k

1 − zw∗
Ju− 2

zkQ(w)∗ + w∗kQ(z)

1 − zw∗
u

zk − w∗k

z − w∗
u + 2

Q(z∗)∗ − Q(w)∗

z − w∗
Ju




and Q(z) = p(z) − z2kp(
1

z∗
)∗ (see (2.4.7)), we get

DΘ3(z, w)

(
u

o

)
=




1 − zkw∗k

1 − zw∗
Ju − 2zk 1 − zkw∗k

1 − zw∗
p(z−∗)∗u

zk − w∗k

z − w∗
u− 2zk zk − w∗k

z − w∗
p(

1

z
)Ju


−

(
tw(z)u

zk−1tw(z−1)Ju

)
,

where

tw(z) = 2
zkp(w)∗ − zkp(z−∗)∗ + w∗kp(z) − zkw∗2kp(w−∗)

1 − zw∗

is a polynomial of degree ≤ k − 1 in z. The span of the second summand
is contained in the neutral subspace (2.4.17) and can be dropped from the
formula when calculating the span on the right-hand side of (2.4.16). The
remainder of the proof can be given by integration and using the reproducing
property of the kernel as in the proof of Theorem 2.4.8 and is omitted.

Proof of Theorem 2.4.12. The orthogonal decomposition of D(Θ4) and
the unitarity of the map follow from
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(a) the equality

DΘ4(z, w) =

(
1 0
0 Θ∞(z)

)
DΘ3(z, w)

(
1 0
0 Θ∞(w)∗

)

+

(
Θ3(z) 0

0 1

)
DΘ∞

(z, w)

(
Θ3(w)∗ 0

0 1

)
,(2.4.18)

(b) the implication that if f1 ∈ D(Θ3) and f2 ∈ D(Θ∞) then the identity

(
1 0
0 Θ∞

)
f1 +

(
Θ3 0
0 1

)
f2 = 0

implies f1 = 0 and f2 = 0, and
(c) reproducing kernel methods as in Theorems 2.3.1 and 2.3.2.

The implication in (b) follows from




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 zq


D(Θ3) ∩




Q(z) + zk −σ0 0 0
σ∗

0Q(z) −Q(z) + zk 0 0
0 0 1 0
0 0 0 1


D(Ψq) = {0} ,

which can be verified by comparing the degrees of the elements in the two
sets.


