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Communicating Piecewise Deterministic
Markov Processes

Stefan Strubbe1 and Arjan van der Schaft1

Department of Applied Mathematics, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands,
s.n.strubbe@math.utwente.nl, a.j.vanderschaft@math.utwente.nl

Summary. In this chapter we introduce the automata framework CPDP, which
stands for Communicating Piecewise Deterministic Markov Processes. CPDP is de-
veloped for compositional modelling and analysis for a class of stochastic hybrid
systems. We define a parallel composition operator, denoted as |PA|, for CPDPs,
which can be used to interconnect component-CPDPs, to form the composite sys-
tem (which consists of all components, interacting with each other). We show that
the result of composing CPDPs with |PA| is again a CPDP (i.e., the class of CPDPs is
closed under |PA|). Under certain conditions, the evolution of the state of a CPDP can
be modelled as a stochastic process. We show that for these CPDPs, this stochastic
process can always be modelled as a PDP (Piecewise Deterministic Markov Pro-
cess) and we present an algorithm that finds the corresponding PDP of a CPDP.
After that, we present an extended CPDP framework called value-passing CPDP.
This framework provides richer interaction possibilities, where components can com-
municate information about their continuous states to each other. We give an Air
Traffic Management example, modelled as a value-passing CPDP and we show that
according to the algorithm, this CPDP behavior can be modelled as a PDP. Finally,
we define bisimulation relations for CPDPs. We prove that bisimilar CPDPs exhibit
equal stochastic behavior. Bisimulation can be used as a state reduction technique by
substituting a CPDP (or a CPDP component) by a bisimulation-equivalent CPDP
(or CPDP component) with a smaller state space. This can be done because we
know that such a substitution will not change the stochastic behavior.

1 Introduction

Many real-life systems nowadays are complex hybrid systems. They consist
of multiple components ’running’ simultaneously, having both continuous and
discrete dynamics and interacting with each other. Also, many of these sys-
tems have a stochastic nature. An interesting class of stochastic hybrid sys-
tems is formed by the Piecewise Deterministic Markov Processes (PDPs),
which were introduced in 1984 by Davis (see [3, 4]). Motivation for consid-
ering PDP systems is two-fold. First, almost all stochastic hybrid processes
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that do not include diffusions can be modelled as a PDP, and second, PDP
processes have nice properties (such as the strong Markov property) when it
comes to stochastic analysis. (In [4] powerful analysis techniques for PDPs
have been developed). However, PDPs cannot communicate or interact with
other PDPs. In order to let PDPs communicate and interact with other PDP’s
the aim of this paper is to develop a way of opening the structure of PDPs
accordingly to this purpose.

In this chapter we present a theory of the automata framework Communi-
cating Piecewise Deterministic Markov Processes (CPDPs, introduced in [12]).
A CPDP automaton can be seen as a PDP type process enhanced with in-
teraction/communication possibilities (see [14] for the relation between PDPs
and CPDPs). Also, CPDPs can be seen as a generalization of Interactive
Markov Chains (IMCs, see [8]). To show the relation of CPDP with IMC, we
describe in Section 2 how the CPDP model originated from the IMC model.
This section ends with a formal definition of the CPDP model.

CPDPs are designed for communication/interaction with other CPDPs.
In Section 3 we describe how CPDPs can be interconnected by using so called
parallel composition operators. The use of these parallel composition opera-
tors is very common in the field of process algebra (see for example [11] and
[9]). We make use of the active/passive composition operators from [13]. We
show how composition of CPDPs originates from composition of IMCs. We
state the result that the result of composing two CPDPs is again a member of
the class of CPDPs. This means that the behavior of two (or more) simultane-
ously evolving CPDPs, which communicate with each other, can be expressed
as a single CPDP. In this way, a complex CPDP can be modelled in a com-
positional way by modelling its components (as CPDPs) and by selecting the
right composition operators to interconnect the component-CPDPs.

Section 4 concerns the relation between CPDPs and PDPs. A PDP is a
stochastic process. The behavior of a CPDP can in general not be described
by a stochastic process because 1. a CPDP can have multiple hybrid jumps
(i.e. the hybrid state discontinuously jumps to another hybrid state) at the
same time instant and 2. a CPDP can have nondeterminism, which means
that certain choices that influence the state evolution are unmodelled instead
of probabilistic as in PDPs. In order to guarantee that the state evolution of a
CPDP can be modelled by a stochastic process (and can then be stochastically
analyzed), we introduce the concept of scheduler. A scheduler can be seen as
a supervisor, which makes probabilistic choices to resolve non-determinism
of the CPDP). Then we give an algorithm to check whether a CPDP with
scheduler can be converted into a CPDP (with scheduler) that has only one
hybrid jump per time instant (i.e. hybrid jumps of multiplicity greater than
one are converted to hybrid jumps of multiplicity one). Finally we show that
the evolution of the state of a CPDP with scheduler, whose hybrid jumps all
have multiplicity one, can be modelled as a PDP. The contents of this section
are based on [5]).
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In Section 5, we enrich the communication mechanism of CPDPs with
so called value passing. With this notion of value passing, a CPDP can re-
ceive information about the output variables of other CPDPs. The enriched
framework is called value-passing CPDPs. Value-passing is a concept that is
successfully used for several process algebra models (see for example [1] and
[9] for application of value-passing to the specification language LOTOS).
In Section 6 we give an ATM (Air Traffic Management) example of a value
passing CPDP. We also apply the algorithm of Section 4 to show that this
value-passing CPDP can be converted to a PDP. The ATM-example was first
modelled as a Dynamically Coloured Petri Net (DCPN) (see the chapter at
pp. 325–350 of this book). DCPN is a Petri net formalism, which has also been
designed for compositional specification of PDP-type systems (see [6] and [7]
for the DCPN model).

Section 7 is about compositional state reduction by bisimulation. Bisim-
ulation, which we define for CPDP in this section, is a notion of external
equivalence. This means that two bisimilar CPDPs cannot be discriminated
by an external agent that observes the values of the output variables of the
CPDP and interacts with the CPDP. The bisimulation notion that we use is a
probabilistic bisimulation (see [10] and [2] for probabilistic bisimulation in the
contexts of probabilistic transition systems and probabilistic timed automata).
The main result in this section is the bisimulation-substitution-theorem which
states that replacing a component of a complex CPDP by another bisimilar
component does not change the complex system (up to bisimilarity). In this
way we can perform compositional state reduction by reducing the state space
of the individual components (via bisimulation). The contents of this section
are based on [15]).

The chapter ends in Section 8 with conclusions and a small discussion
on compositional modelling and analysis in the context of stochastic hybrid
systems.

2 The CPDP Model

In this section we describe how the CPDP model originates from the IMC
model. We start with describing the IMC model.

2.1 Interactive Markov Chains

An IMC (Interactive Markov Chain) is a quadruple (L, Σ,A, S), where L is
the set of locations (or discrete states), Σ is the set of actions (or events), A

is the set of interactive transitions and consists of triples (l, a, l ) with l, l ∈ L
and a ∈ Σ, and S is the set of Markovian (or spontaneous) transitions and
consists of triples (l, λ, l ) with l, l ∈ L and λ ∈ IR+.

In Figure 1 we see an IMC with two locations, l1 and l2, with two inter-
active transitions (pictured as solid arrows) labelled with event a and with
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a

a

2l1l

Fig. 1. Interactive Markov Chain

two Markovian transitions (pictured as solid arrows with a little box) labelled
with rates λ and µ.

The semantics of the IMC of Figure 1 is as follows: suppose that l1 in
Figure 1 is the initial location (at time t = 0). Two things can happen: either
the interactive transition labelled a from l1 to l2 is taken, or the interactive
transition labelled a from l1 to itself is taken. Note that the choice between
these two transitions is not modelled in the IMC, is not determined by the
IMC, therefore non-determinism is present at this point (later we will call this
form internal non-determinism). Also the time when one of the a-transitions
is taken is not modelled (and is therefore left non-deterministic). Suppose that
at some time t1 the a-transition to l2 is taken. Then at the same time t1 the
process arrives in l2 (i.e. transitions do not consume time). In l2 there are two
possibilities: either the Markovian transition from l2 to l1 with rate λ is taken
or the Markovian transition from l2 to itself with rate µ is taken. In this case
neither the choice between these two transitions nor the time of the transition
is non-deterministic. The choice and the time are determined probabilistically
by a race of Poisson processes: as soon as the process arrives in l2, two Poisson
processes are started with constant rates λ and µ. The process that generates
the first point then determines the time and the transition to be taken. Recall
that the probability density function of the time of the first point generated
by a Poisson process with constant rate λ is equal to λe−λt. Suppose that the
Poisson process of the λ-transition generates a point after one second and that
the Poisson process of the µ-transition generates a point after two seconds,
then at time t = t1 +1 the λ transition is taken which brings the process back
to l1.

2.2 From IMC to CPDP

The first step we could take for transforming the IMC model into the CPDP
model is assigning continuous dynamics to the locations. If, in Figure 1, we
assign the input/output system ẋ = f1(x),y = g1(x), with x and y taking
value in IR and f1 and g1 continuous mappings from IR to IR, to l1 and we
assign ẋ = f2(x),y = g2(x) (with x and y of the same dimensions as x and y
of l1) to l2, then the resulting process can be pictured as in Figure 2

Suppose that the input/output systems of l1 and l2 have given initial states
x1 and x2 respectively. Then the semantics of the process of Figure 2 would
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Fig. 2. Interactive Markov Chain enriched with continuous dynamics

be the same as the process of Figure 1, except that when the process is in
l1, then there are continuous variables x and y evolving according to f1 and
g1 and when the process jumps to l2, variable x is reset to x2 (the initial
continuous state of l2) and x and y will then evolve according to f2 and g2.

So far, there is little interaction between the discrete dynamics (i.e. the
transitions) and the continuous dynamics (i.e. the input/output systems).
The transitions are executed independently of the (values of the) continuous
variables. The evolution of the continuous variables depends on the transitions
as far as it concerns the reset: after every transition, the state variable x is
reset to a given value.

In the field of Hybrid Systems, the systems that are studied typically do
have (much) interaction between the discrete and the continuous dynamics.
In the next step towards the CPDP model, we add some of these interaction
possibilities to the model of Figure 2: we add guards, we add reset maps and
we allow that the (Poisson) rate of Markovian transitions depends on the value
of the continuous variables (and might therefore be non-constant in time).

11,, RGa

22 ,, RGa
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)(1 xfx
)(1 xgy
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Fig. 3. Interactive Markov Chain enriched with continuous dynamics and dis-
crete/continuous interaction

Guards

We add a guard to each interactive transition. In Figure 3, G1 and G2 are
the guards. We define a guard of a transition α as a subset of the continuous
state space of the origin location of α. In Figure 3 the origin location of the
a-transition from l1 to l2, is l1 and therefore G1 is a subset of IR, which is
the state space of x at location l1. The meaning of guard G1 is that the a-
transition to l2 may not be executed when the value of x (at location l1) does
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not lie in G1 and it may be executed when x ∈ G1. Via the guards, interactive
transitions depend on the continuous variables.

Reset maps

We add reset maps to each interactive and each Markovian transition. A reset
map of a transition α probabilistically resets the value of the state of the target
location of α, at the moment that α is executed. Therefore, a reset map is a
probability measure on the state space of the target location. We also allow
to have different (reset) probability measures for different values of the state
variables just before the transition is taken. Suppose that the a-transition to
l2 is taken at the moment that the variable x (at l1) equals x̂. Then R1(x̂) is
a probability measure that chooses the new value of x at l2.

Poisson jump rates

We let Poisson jump rates of a Markovian transition depend (continuously)
on the state value of the origin location. In Figure 3, λ, whose transition has
origin location l2, is thus a function from IR (the state space of l2) to IR.
If λ(x̂1) > λ(x̂2), then this can be interpreted as: the probability that the
Poisson process (corresponding to λ) generates a point within a small time
interval when x = x̂1 is bigger than the probability of the generation of a
point within the same small time interval when x = x̂2. Suppose that (for
example after the a-transition from l1) x in l2 is at time t1 reset to x̂. Let
x(t) (with x(t1) := x̂) be the value of variable x at time t when x evolves
along the vectorfield f2. Then, the probability density function of the time of
the first point generated by the Poisson process with rate λ(x(t)) is equal to
λ(x(t))e−

t
0 λ(x(s))ds.

2.3 Interaction Between Concurrent Processes

The generality of the model of Figure 3 is in fact the generality that we want
as far as it concerns the modelling of non-composite systems (i.e. systems
that consist of only one component). However, the main aim of the mod-
elling framework that we develop, is compositional modelling. A framework
is suitable for compositional modelling if it is possible to model each com-
ponent of the (composite) system separately and interconnect these separate
component-models such that the result describes the behavior of the com-
posite system. With components of a system we mean parts of the system
that are running/working simultaneously. For example an Air Traffic Man-
agement system that includes multiple (flying) aircraft, where each aircraft
forms one subsystem, consists (partly) of subsystems (or components) that
’run’ simultaneously. In many composite systems, the components are not
independent of each another, but are able to interact with each other and
consequently to influence each other. In an ATM system, one aircraft might
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send a message (via radio) to another aircraft, which might change the course
of the aircraft that receives the message. This is a broadcasting kind of inter-
action/communication, where there is a clear distinction between the active
partner (the one that sends the message) and the passive partner (the one
that receives the message). We want to add the possibility of broadcasting
communication to the model of Figure 3. In order to do so, we add another
type of transition to the model called passive transitions. This addition brings
us to the class of CPDPs (Communicating Piecewise Deterministic Markov
Processes), which will be formally defined after the next paragraph.

11,, RGa

22 ,, RGa

3, R

4, R

2l

)(1 xfx
)(1 xgy

)(2 xfx
)(2 xgy

1l

CPDP X

5, Ra

6, R

2l̂

)ˆ(ˆˆ
1 xfx

)ˆ(ˆˆ
1 xgy

1l̂

CPDP Y

)ˆ(ˆˆ
2 xfx

)ˆ(ˆˆ
2 xgy

Fig. 4. Two CPDP automata. CPDP Y has a passive transition with label ā.

In Figure 4 we see two CPDPs. CPDP X is the one from Figure 3 and
does not have passive transitions. CPDP Y has a passive transition from l̂1
to l̂2 and has a spontaneous transition from l̂2 to l̂1. The passive transition
is pictured as a solid arrow, the bar on top of the event label (ā in Figure 4)
denotes that the event is a passive event and that the transition is therefore a
passive transition. The passive transition with event ā reflects that the mes-
sage a is received. A message a can only be received if some other CPDP has
broadcast a message a. Now we can interpret the label a above an interactive
transition as: if this transition is executed, the message a is broadcast. We
assume that broadcasting and receiving of a message happens instantly (i.e.
does not consume time).

For CPDPs, we use the term active transition instead of the IMC term
interactive transition to stress the distinction between activeness and pas-
siveness of transitions. The CPDP terminology for Markovian transition is
spontaneous transition.



72 S. Strubbe and A. van der Schaft

2.4 Definition of CPDP

We now give the formal definition of CPDP as an automaton.

Definition 1. A CPDP is a tuple (L, V, ν, W, ω, F, G, Σ,A, P, S), where

• L is a set of locations
• V is a set of state variables. With d(v) for v ∈ V we denote the dimension

of variable v. v ∈ V takes its values in IRd(v).
• W is a set of output variables. With d(w) for w ∈ W we denote the

dimension of variable w. w ∈W takes its values in IRd(w).
• ν : L → 2V maps each location to a subset of V , which is the set of state

variables of the corresponding location.
• ω : L→ 2W maps each location to a subset of W , which is the set of output

variables of the corresponding location.
• F assigns to each location l and each v ∈ ν(l) a mapping from IRd(v) to

IRd(v), i.e. F (l, v) : IRd(v) → IRd(v). F (l, v) is the vector field that deter-
mines the evolution of v for location l (i.e. v̇ = F (l, v) for location l).

• G assigns to each location l and each w ∈ ω(l) a mapping from
IRd(v1)+···+d(vm) to IRd(w), where v1 till vm are the state variables of lo-
cation l. G(l, w) determines the output equation of w for location l (i.e.
w = G(l, w)).

• Σ is the set of communication labels. Σ̄ denotes the ’passive’ mirror of Σ
and is defined as Σ̄ = {ā|a ∈ Σ}.

• A is a finite set of active transitions and consists of five-tuples (l, a, l , G, R),
denoting a transition from location l ∈ L to location l ∈ L with commu-
nication label a ∈ Σ, guard G and reset map R. G is a closed subset of
the state space of l. The reset map R assigns to each point in G for each
variable v ∈ ν(l ) a probability measure on the state space (and its Borel
sets) of v for location l .

• P is a finite set of passive transitions of the form (l, ā, l , R). R is defined
on the state space of l (as the R of an active transition is defined on the
guard space).

• S is a finite set of spontaneous transitions and consists of four-tuples
(l, λ, l , R), denoting a transition from location l ∈ L to location l ∈ L
with jump-rate λ and reset map R. The jump rate λ (i.e. the Poisson rate
of the Poisson process of the spontaneous transition) is a mapping from
the state space of l to IR+. R is defined on the state space of l as it is done
for passive transitions.

Example 1. CPDP X of Figure 4 is defined as:
(LX , VX , νX , WX , ωX , FX , GX , Σ,AX , PX , SX) with LX = {l1, l2}, VX =

{x}, νX(l1) = νX(l2) = {x}, WX = {y}, ωX(l1) = ωX(l2) = {y},
FX(l1, x) = f1(x) and FX(l2, x) = f2(x), GX(l1, x) = g1(x) and GX(l2, x) =
g2(x), Σ = {a}, AX = {(l1, a, l2, G1, R1), (l1, a, l1, G2, R2)},PX = ∅, SX =
{(l2, λ, l1, R3), (l2, µ, l2, R4)}. CPDP Y of Figure 4 is defined as:



Communicating Piecewise Deterministic Markov Processes 73

(LY , VY , νY , WY , ωY , FY , GY , Σ,AY , PY , SY ) with LY = {l̂1, l̂2}, VY =
{x̂}, νY (l̂1) = νY (l̂2) = {x̂}, WY = {ŷ}, ωY (l̂1) = ωY (l̂2) = {ŷ}, FY (l̂1, x̂) =
f̂1(x̂) and FY (l̂2, x̂) = f̂2(x̂), GY (l̂1, x̂) = ĝ1(x̂) and GY (l̂2, x̂) = ĝ2(x̂), Σ =
{a}, AY = ∅,PY = {(l̂1, ā, l̂2, R5)}, SY = {(l̂2, κ, l̂1, R6)}.

For a CPDP X with v ∈ VX , where VX is the set of state variables of X, we
call IRd(v) the state space of state variable v. We call {(v = r)|r ∈ IRd(v)} the
valuation space of v and each (v = r) for r ∈ IRd(v) is called a valuation. We
call {(v1 = r1, v2 = r2, · · · , vm = rm)|ri ∈ IRd(vi)}, where v1 till vm are the
variables from ν(l), the valuation space or state space of location l and each
(v1 = r1, · · · , vm = rm) is called a valuation or state of l. A valuation (state)
is an unordered tuple (e.g. (v1 = 0, v2 = 1) is the same valuation as (v2 =
1, v1 = 0)). We denote the valuation space of l by val(l). We call {(l, x)|l ∈
L, x ∈ val(l)} the state space of a CPDP with location set L and valuation
spaces val(l). Each state of a CPDP consists of a location (which comes from
a discrete set) and a valuation (which comes from a continuum), therefore
we call the state (state space) of a CPDP also hybrid state (hybrid state
space). The state space of a location l with ν(l) = {v1, · · · , vm} can be seen
as IRd(v1)+···+d(vm), because the state space is (topologically) homeomorphic
to IRd(v1)+···+d(vm) with homeomorphism πl : val(l) → IRd(v1)+···+d(vm) with
πl((v1 = r1, · · · , vm = rm)) = (r1, · · · , rm). We use unordered tuples for the
valuations (states) because this will turn out to be helpful for the composition
operation and for some other definitions and proofs.

3 Composition of CPDPs

In the process algebra and concurrent processes literature it is common to
define a parallel composition operator , normally denoted by ||. || has as its
arguments two processes, say X and Y , of a certain class of processes. The
result of the composition operation, denoted by X||Y , is again a process that
falls within the same class of processes (i.e. the specific class of processes is
closed under ||). The main idea of using this kind of composition operator is
that the process X||Y describes the behavior of the composite system that
consists of components X and Y (which might interact with each other).

3.1 Composition for IMCs

The interaction-mechanism used for IMCs (see [8]) is not broadcasting in-
teraction but is interaction via shared events. This means that if X and Y
are two interacting IMCs and a is (by definition) a shared event, then an
interactive a-transition of X can only be executed when at the same time an
a-transition of Y is executed (and vice versa). In other words, an a-transition
of X has to synchronize with an a transition of Y (and vice versa). Markovian
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transitions, and interactive transitions with labels that are (by definition) not
shared events, can be executed independently of the other component. This
notion of interaction for IMC is formalized by a parallel composition operator.
If we define A as the set of shared events and we denote the corresponding
IMC composition operator by ||A, then ||A is defined as follows:

Definition 2. Let X = (LX , Σ,AX , SX) and Y = (LY , Σ,AY , SY ) be two
IMCs, having the same set of events. Let A ⊂ Σ be the set of shared events.
Then X||AY is the IMC (L, Σ,A, S), where L := {l1||Al2 | l1 ∈ LX , l2 ∈ LY }
and where A and S are the smallest sets that satisfy the following (structural
operational) composition rules:

1.
l1

a−→ l1, l2
a−→ l2

l1||Al2
a−→ l1||Al2

(a ∈ A), (1)

2a.
l1

a−→ l1

l1||Al2
a−→ l1||Al2

(a ∈ A), 2b.
l2

a−→ l2

l1||Al2
a−→ l1||Al2

(a ∈ A), (2)

3a.
l1

λ−→ l1

l1||Al2
λ−→ l1||Al2

, 3b.
l2

λ−→ l2

l1||Al2
λ−→ l1||Al2

. (3)

Here, l1
a−→ l1 means (l1, a, l1) ∈ AX , l2

a−→ l2 means (l2, a, l2) ∈ AY ,
l1

λ−→ l1 means (l1, λ, l1) ∈ SX , l2
λ−→ l2 means (l2, λ, l2) ∈ SY , l1||l2 a−→

l1||l2 means (l1||l2, a, l1||l2) ∈ A, l1||l2 λ−→ l1||l2 means (l1||l2, λ, l1||l2) ∈ S,
etc. Furthermore, B

C (A) should be read as ”If A and B, then C”, and B1,B2
C (A)

should be read as: if A and B1 and B2, then C.

a

a

2l

a

2l̂

12
ˆ|| ll

11
ˆ|| ll

22
ˆ|| ll

21
ˆ|| ll

aa

IMC X

IMC Y

IMC X||Y

1l

1l̂

Fig. 5. Composition of two IMCs

In Figure 5, we see on the left two IMCs, X and Y , and we see on the
right the IMC X||Y , where || is used as shorthand notation for ||{a}. We now
check that indeed X||Y expresses the combined behavior of IMCs X and Y
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interacting on shared event a: suppose that X and Y initially start in loca-
tions l1 and l̂1 respectively. In X||Y , this joint initial location is represented
by the location named l1||l̂1. For a transition to be executed, there are two
possibilities: 1. X takes the a transition to l1 while Y at the same time takes
the a-transition to l̂2, 2. X takes the a transition to l2 while Y at the same
time takes the a-transition to l̂2. Note that, since a is a shared event, it is
not possible that X takes an a-transition, while Y idles (i.e. stays in location
l̂1). Case 1 and 2 are in X||Y represented by the a-transitions to locations
l1||l̂2 and l2||l̂2 respectively. Note that in cases 1 and 2 one a-transition in
X||Y reflect two combined (or synchronized) transitions, one in X and one
in Y . If case 2 is executed, then right after the synchronized a-transitions (of
X and Y ) three Poisson processes are started. Two from X (with parameters
λ and µ) and one from Y (with parameter κ). In X||Y this is reflected by
the three Markovian transitions at location l2||l̂2. Suppose that the λ-process
generates the first jump. Then X jumps to location l1 and Y stays in loca-
tion l̂2, waiting for the κ-process to generate a jump to location l̂1. In X||Y
this is reflected by taking the λ-transition to location l1||l̂2. Then in location
l1||l̂2 again a Poisson process with parameter κ is started. One could question
whether this correctly reflects the behavior of the composite system, because
when X jumps to l1, Y stays in l̂2 and the κ-Poisson process keeps running
and is not started again as happens in location l1||l̂2. That indeed starting
the κ-process again reflects correctly the composite behavior is due to the fact
that the exponential probability distribution (of the Poisson process) is mem-
oryless, which means that, if Rκ denotes a random variable with exponential
distribution function −eκt, then

Pr(Rκ > t̂ + t|Rκ > t̂) = Pr(Rκ > t),

where Pr(A|B) denotes the conditional probability of A given B. We know
that when X takes the λ-transition after having spent t̂ time units in location
l2, then the κ-process did not generate a jump before t̂ time units, i.e. Rκ > t̂.
Therefore it is correct to start the κ process again in location l1||l̂2. (We will
see that the situation for composition of CPDPs will be similar when it comes
to restarting Poisson processes after an executed transition). The reader can
check that the part of X||Y we did not explain here also correctly reflects the
composite behavior of X and Y .

3.2 Composition of CPDPs

We have distinguished two kinds of communication: communication via shared
events and communication via active/passive events. For CPDP we want to
allow both types of interaction. Some interactions of communicating systems
can better be modelled through shared events and some interactions can better
be modelled through active/passive events. We refer to [13] for a discussion
on this issue. This means that also for two interacting CPDPs, we use a set
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A (which is a subset of the set of active events Σ) which contains the events
that are used as shared events. Then the active events not in A together
with the passive events (i.e. the ones in Σ̄) can be used for active/passive
communication. In Figure 6 we see the CPDP X||Y , with || shorthand for ||∅
(i.e. we choose to have no shared events for this composition), which reflects
the composite behavior of X and Y of Figure 4.
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Fig. 6. Composition of two CPDPs (Most guards and reset maps are not drawn)

The communication, reflected by CPDP X||Y of Figure 6, is only through
active/passive events (and not through shared events). We will now argue
that X||Y of Figure 6 indeed reflects the composite behavior of X and Y
interacting via active a and passive ā events and should therefore be the
result of composing X with Y for A = ∅: suppose X and Y initially start
in l1 and l̂1 respectively, which is reflected by location l1||l̂1 of X||Y . Note
that l1||l̂1 contains the continuous dynamics of both l1 and l̂1. One possibility
is that X executes the a-transition to l2. Since a is an active event and is
not a shared event, X can execute this transition independently of Y . By
executing this transition, the message a is send by X. Y has a ā-transition
at location l̂1, which means that at l̂1, Y is able to receive the message a.
This means that when x executes the a-transition to l2, Y receives the signal
a and synchronizes its ā transition on the a-transition of X. In Figure 6 this
synchronized transition is reflected by the a-transition from l1||l̂1 to l2||l̂2.
This transition broadcasts signal a which reflects the broadcasting of a by X.
l1||l̂1 a,G,R−→ l2||l̂2 (i.e. the a-transition from l1||l̂1 to l2||l̂2) can be executed when
x ∈ G1, with G1 from Figure 4. There is no condition for x̂ (i.e. the passive
transition can always be taken as soon as an active a-message is broadcast).
Therefore G should be equal to G1 × IRd(x̂). The reset map R should reset x
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via R1 (of Figure 4) and should reset x̂ via R6 (of Figure 4). The probability
measures of R1 and R6 are independent therefore we can use the product
probability measure for R(x, x̂) = R1(x)×R6(x̂), where x and x̂ are elements
from the state spaces of l1 and l̂1 respectively.

We discuss a few more transitions of X||Y :

• l1||l̂2 a,G̃,R̃−→ l2||l̂2: this transition reflects that X executes the active a-
transition to l2 while Y does not receive the a-message because Y has
no ā-transition at location l̂2. Again G̃ should be equal to G1 × IRd(x̂). R̃
should reset x according to R1 and should leave x̂ unaltered. Therefore
R̃(x, x̂) = R1(x) × Idx̂, where Idx̂ is the identity probability measure for
which the set {x̂} has probability one (i.e. the probability that x̂ stays
unaltered after the reset is one).

• l1||l̂2 a−→ l1||l̂2: this transition reflects that X executes l1
a,G2,R2−→ l1 while

Y receives no message a. (We do not specify guard and reset map of this
transition here).

• l2||l̂2 λ,R̃−→ l1||l̂2 (reset map R̃ is not drawn in Figure 6): this transition
reflects that X executes the spontaneous λ-transition from l2 to l1, while
Y stays unaltered. R̃ (x, x̂) should be equal to R3(x)× Idx̂, with R3 from
Figure 4. Here we have a similar situation as with IMC: after this λ-
transition, the κ-process of Y is restarted. As for the IMC case, this is
correct because the Poisson process is memoryless. Note that the random
variable that belongs to this CPDP κ-process depends on the state where
the κ-process is started: if at t0 the κ-process is activated at state x(t0)
(i.e. a hybrid jump to state x(t0) took place at time t0), then the random
variable Rκ(x(t0)), which denotes the amount of time t after t0 until κ
generates a jump, given that κ is activated at x(t0), has probability density
function κ(x(t0 + t))e−

t
0 λ(x(t0+s))ds, which is different for different values

of t0. For this situation we get

Pr(Rκ(x(t0)) > t̂ + t|Rκ(x(t0)) > t̂) = Pr(Rκ(x(t0 + t̂)) > t),

from which we see that it is correct to (re)activate the κ-process after the
transition at state x(t0 + t̂) when it is given that the κ-process that was
activated at state x(t0) did not generate a jump within t̂ time units.

• l1||l̂1 ā−→ l1||l̂2: this transition reflects that Y can also receive a-messages
that are not broadcast by X but by some other component Z that we
might want to add to the composition X||Y . (Then we get the composite
model (X||Y )||Z).

Because from Figures 4 and 6 we now have an understanding how a CPDP
composition operator || should map two CPDPs (X and Y ) to a new CPDP
(X||Y ), we are ready to formalize the composition operation. We give a def-
inition of the operator denoted by |PA|, where A is the set of shared active
events and P is the set of shared passive events. So far we did not see the
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distinction between shared and non-shared passive events. This distinction is
only useful when there are more than two components involved. Suppose we
have a composite system with three components. Component one has an ac-
tive transition with label a and can therefore potentially send the message a.
Components two and three both have passive transitions with label ā, there-
fore they both can potentially receive the message a. Now, if ā is a shared
event of components two and three, then it is possible that both can at the
same time receive the signal a of component one (which results into three
synchronizing transitions, one active and two passive transitions). If ā is not
a shared event of components two and three, then this means that only one of
the components two and three may receive the signal a of component one (i.e.
it is not allowed that the three transitions synchronize, only synchronization
of one active with one passive transition is allowed). For a discussion on the
use of this distinction between shared and non-shared passive events, we refer
to [13]. Before we give the definition of composition of CPDPs, we first look
at the composition rules (i.e. the operational semantics) of the operator |PA|.

Suppose we have two CPDPs, X and Y , which interact under the set of
shared active events A and the set of shared passive events P . If a ∈ A, then an
a-transition in X can be executed only when at the same time an a-transition
in Y can be executed. This is expressed by the following composition rule,
which is the analogy of the IMC composition rule 1 in (1).

r1.
l1

a,G1,R1−→ l1, l2
a,G2,R2−→ l2

l1|PA|l2
a,G1×G2,R1×R2−→ l1|PA|l2

(a ∈ A).

The synchronized transition, in the CPDP X|PA|Y , has guard G1×G2, which
expresses that if one of the two guards G1 and G2 is not satisfied, then the
synchronized transition can not be executed. The reset map is constructed via
the product probability measures R1 ×R2, which expresses that R1 indepen-
dently resets the state variables of l1 of X and R2 independently resets the
state variables of l2 of Y .

If a ∈ A, then active a-transitions can be executed independently and
passive ā-transitions can synchronize on a-transitions of other components.
This is expressed by the following composition rule.

r2.
l1

a,G1,R1−→ l1, l2
ā,R2−→ l2

l1|PA|l2
a,G1×val(l2),R1×R2−→ l1|PA|l2

(a ∈ A).

The guard of the synchronized transition equals G1×val(l2), where val(l2)
denotes the state space of location l2. This expresses that there is no guard
condition on the passive transition (i.e. it may always synchronize when an
active a-partner is available). We also need the mirror rule r2 :

r2 .
l1

ā,R1−→ l1, l2
a,G2,R2−→ l2

l1|PA|l2
a,val(l1)×G2,R1×R2−→ l1|PA|l2

(a ∈ A).



Communicating Piecewise Deterministic Markov Processes 79

If a ∈ A, then an a-transition can be executed also when there is no passive
ā-transition available in the other component (A signal can be broadcast also
when there is no receiver to receive the message). This is expressed by the
following rule r3 and its mirror r3 which we will not explicitly state. The
IMC analogy are rules 2a and 2b in (2).

r3.
l1

a,G1,R1−→ l1, l2
ā−→

l1|PA|l2
a,G1×val(l2),R1×Id−→ l1|PA|l2

(a ∈ A).

Here Id is the identity probability measure, which does not change the state
value of l2 with probability one.

The following three rules r4,r5 and r6 concern the passive transitions
of X|PA|Y . A passive ā-transition of X|PA|Y reflects that either X or Y can
receive an a-message from a component Z that we might want to add to the
composition. If ā ∈ P and X can execute a ā-transition from location l1 and
Y can execute a ā-transition from location l2. Then if X is in l1 and Y is in
l2 and an a-message is broadcast (by the other component Z), then the two
passive transitions will be executed at the same time (of the a-message) and
will therefore synchronize. This is expressed by the following rule.

r5.
l1

ā,R1−→ l1, l2
ā,R2−→ l2

l1|PA|l2
ā,R1×R2−→ l1|PA|l2

(ā ∈ P ).

If ā ∈ P , but only one component has a ā-transition to receive the mes-
sage a from Z, then this component will receive the message while the other
component stays unchanged. This is expressed by the following rule r6 (and
its mirror r6 which we do not explicitly state here).

r6.
l1

ā,R1−→ l1, l2
ā−→

l1|PA|l2
ā,R1×Id−→ l1|PA|l2

(ā ∈ P )

If ā ∈ P , then two passive ā-transitions cannot synchronize because only
one is allowed to receive the message a from Z. Therefore these passive ā-
transitions of X and Y remain in the composition (to potentially receive an
a-message from Z) but will not synchronize. This is expressed by the following
rules r4 and r4 .

r4.
l1

ā,R1−→ l1

l1|PA|l2
ā,R1×Id−→ l1|PA|l2

(ā ∈ P ), r4 .
l2

ā,R2−→ l2

l1|PA|l2
ā,Id×R2−→ l1|PA|l2

(ā ∈ P )

Finally we need one more composition rule r7 (and its mirror r7 ) to
express that spontaneous transitions of X and Y remain in the composition
X|PA|Y (as we have seen in the discussion on Figure 6). The IMC analogy of
these rules are rules 3a and 3b in (3).
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r7.
l1

λ1,R1−→ l1

l1|PA|l2
λ̂1,R1×Id−→ l1|PA|l2

, r7 .
l2

λ2,R2−→ l2

l1|PA|l2
λ̂2,Id×R2−→ l1|PA|l2

.

Here λ̂1 and λ̂2 are defined on the combined state space of locations l1 and
l2 and equal λ̂1(x1, x2) = λ1(x1) and λ̂2(x1, x2) = λ2(x2), where x1 and x2

are states of l1 and l2 respectively.

Definition 3. If X = (LX , VX , νX , WX , ωX , FX , GX , Σ,AX , PX , SX) and
Y = (LY , VY , νY , WY , ωY , FY , GY , Σ,AY , PY , SY ) are two CPDPs that have
the same set of events Σ and if we have VX ∩ VY = WX ∩ WY = ∅, then
X|PA|Y is defined as the CPDP (L, V, ν, W, ω, F, G, Σ,A, P, S), where

• L = {l1|PA|l2 | l1 ∈ LX , l2 ∈ LY },
• V = VX ∪ VY , W = WX ∪WY ,
• ν(l1|PA|l2) = ν(l1) ∪ ν(l2), ω(l1|PA|l2) = ω(l1) ∪ ω(l2),
• F (l1|PA|l2, v) equals FX(l1, v) if v ∈ νX(l1) and equals FY (l2, v) if v ∈

νY (l2).
• G(l1|PA|l2, w) equals GX(l1, w) if w ∈ ωX(l1) and equals GY (l2, w) if w ∈

ωY (l2).
• A, P and S contain and only contain the transitions that are the result of

applying one of the rules r1,r2,r2’,r3,r3’,r4,r4’,r5,r6,r6’,r7 and r7’, defined
above.

Example 2. It can be checked that, according to Definition 3, CPDP X||Y
from Figure 6 is indeed the resulting CPDP of composing X and Y from
Figure 4 with composition operator |PA|, where A = ∅ and P = Σ̄. Note
that any other P ⊂ Σ̄ would give the same result because X has no passive
transitions and therefore it is not relevant for the composition of X and Y
whether passive transitions synchronize or not (which is determined by P ).

In order to prove that, for certain A and P , the composition operator |PA| is
commutative and associative, we need to introduce an equivalence notion, that
equates CPDPs that are exactly the same except that the locations may have
different names. We call this equivalence notion, in the line of [2], isomorphism
and we define it as follows.

Definition 4. Two CPDPs X = (LX , V, νX , W, ωX , FX , GX , Σ,AX , PX , SX)
and Y = (LY , V, νY , W, ωY , FY , GY , Σ,AY , PY , SY ), with shared V ,W and
Σ, are isomorphic if there exists a bijection π : LX → LY such that, for all
l ∈ LX , νX(l) = νY (π(l)), ωX(l) = ωY (π(l)), FX(l, v) = FY (π(l), v) for all
v ∈ ν(l), GX(l, w) = GY (π(l), w) for all w ∈ ω(l), for any a,ā,λ,l , G and
R we have that: (l, a, l , G, R) ∈ AX if and only if (π(l), a, π(l ), G, R) ∈ AY ,
(l, ā, l , R) ∈ PX if and only if (π(l), ā, π(l ), R) ∈ AY , (l, λ, l , R) ∈ SX if and
only if (π(l), λ, π(l ), R) ∈ SY .
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We now state a result on the commutativity and associativity of the com-
position operators |PA|. The operator |PA| is called commutative if for all CPDPs
X and Y we have that X|PA|Y is isomorphic to Y |PA|X. The operator |PA| is
called associative if for all CPDPs X,Y and Z we have that (X|PA|Y )|PA|Z is
isomorphic to X|PA|(Y |PA|Z).

Theorem 1. The composition operator |PA| is commutative for all A and P .
|PA| is associative if and only if for all a ∈ Σ we have: if ā ∈ P then a ∈ A.

Proof. The proof of this theorem in the context of active/passive labelled
transition systems can be found on www.cs.utwente.nl/~strubbesn. The proof
can easily be generalized to the context of CPDPs.

If we have n CPDPs Xi (i = 1 · · ·n) with events-set Σ that are composed
via an associative operator |PA|, then the order of composition does not influ-
ence the resulting CPDP and therefore we can write X1|PA|X2|PA| · · ·Xn−1|PA|Xn

to unambiguously (up to isomorphism) denote the resulting composite CPDP.

4 PDP-Semantics of CPDPs

Under certain conditions, the state evolution of a CPDP can be modelled as
a stochastic process. In this section we give the exact conditions under which
this is true. We also prove that the stochastic process may always be chosen
of the PDP-type. In order to achieve this result, we first need to make a
distinction between guarded CPDP states and unguarded CPDP states.

Definition 5. A state (l, x) of a CPDP X is called guarded, if there exists an
active transition with origin location l such that x is an element of the guard
of this transition. A CPDP state is unguarded if it is not guarded.

If we execute a CPDP X from some initial hybrid state (l0, x0) then the
first part of the state trajectory (i.e. the evolution of the state variables in
time) and of the output trajectory (i.e. the evolution of the output variables
in time) is determined by FX and GX respectively. This is the case until the
first transition is executed, which might cause a jump (i.e. discontinuity) in
the state/output trajectories. We choose that at these points of discontinuity,
the state/output trajectories have the cadlag property, which means that at
these points the trajectories are continuous from the right and have limits
from the left. If then at t = t1, X executes a transition which resets the state
to a unguarded state x1, then the value of the state trajectory at t = t1 equals
x1 (and the value of the output trajectory equals the output value of x1). If
the state after reset x1 is guarded, then it is possible that at the same time
t1 from state x1 another active transition is executed. If this transition resets
the state to a unguarded state x1, then the value of the state trajectory at
t1 equals x1. If this transition resets the state to an guarded state x1, then



82 S. Strubbe and A. van der Schaft

another active transition can be executed, etc. We see that the CPDP model
allows multiple transitions at the same time instant.

Formally, let E := {(l, x)|l ∈ LX , x ∈ val(l)} be the state space of CPDP
X, where val(l) denotes the space of all valuations for the state variables of
location l. The trajectories of X are elements of the space DE [0,∞[ which is
the space of right-continuous E-valued functions on IR+ with left-hand limits.
According to [4], a metric can be defined on E such that (E, B(E)), with B(E)
the set of Borel sets of E under this metric, is a Borel space (i.e. a subset of a
complete separable metric space) and each Borel set B is such that for each
l ∈ LX , {x|(l, x) ∈ B} (i.e. the restriction of B to l) is a Borel set of the
Euclidean state space val(l) of location l. Therefore, the concept of continuity
within a location (i.e. for sets {(l, x)|x ∈ val(l)}) coincides with the standard
(Euclidean) concept of continuity.

The CPDP model exhibits non-determinism. This means that at certain
time instants of the execution of a CPDP (from some initial state) choices
have to be made which are neither deterministic (like a differential equation
deterministically determines (a part of) the state trajectory) nor stochas-
tic (i.e. a probability measure can be used to make a probabilistic choice).
These non-deterministic choices are simply unmodelled. We distinguish two
sources of non-determinism for the CPDP: 1. The choice when an active tran-
sition is taken. 2. The choice which active transition is taken. To resolve
non-determinism of type 1, we use, in the line of [8], the maximal progress
strategy, which means that as soon as the state enters a guard area (i.e. at
the first time instant that the state is guarded), an active transition has to be
executed. To resolve non-determinism of type 2, we use a socalled scheduler
S which

1. assigns to each guarded state x a probability measure on the set of all
active transitions that have x as an element of their guard (i.e. the set of
all active transitions that are allowed to be executed from state x) and

2. assigns to each pair (x, ā), with x any state and ā ∈ Σ̄ such that there is
a ā-transition at the location of x, a probability measure on the set of all
ā-transitions at the location of x.

In other words, if an active transition has to be executed from state x, S
probabilistically chooses which active transition is executed and if an active
a triggers a ā-transition, then S probabilistically chooses which ā-transition
is executed.

For identifying the stochastic process of a CPDP, we only look at closed
CPDPs, which are CPDPs that have no passive transitions. Closed CPDPs are
called closed because we assume that they represent the whole system (i.e.
no more other component-CPDPs will be added). Therefore closed CPDPs
should have no passive transitions because passive transitions can only be
executed when another component triggers it (via an active transition). The
order of finding the stochastic behavior of the composite system is therefore:
first compose the different components. Then remove all passive transitions
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of the resulting CPDP. This results in a closed CPDP where, under maximal
progress and scheduler S, all choices for the execution of the CPDP are made
probabilistically. One could question whether the evolution of the state can, for
closed CPDPs, be modelled as a stochastic process. We can state a condition
on the CPDP under which this is not possible: if with non-zero probability
we can reach an guarded state x where with non-zero probability an infinite
sequence of active transitions can be chosen such that each transition resets
the state within the guard of the next transition, then the trajectory of this
execution deadlocks (i.e. time does not progress anymore after reaching x at
some time t̂ and therefore the trajectory is not defined for time instants after
time t̂). Trajectories of stochastic processes do not deadlock like this, therefore
this state evolution cannot be modelled by a stochastic process.

In order to find the stochastic process of a closed CPDP, we would first like
to state decidable conditions on a CPDP, which guarantee that the probability
that an execution deadlocks (i.e. comes at a point where time does not progress
anymore) is zero.

4.1 The Stochastic Process of a Closed CPDP

Suppose we have a closed CPDP X with location set LX and active transition
set AX . The CPDP operates under maximal progress and under scheduler S.
We write Sx(α) for the probability that active transition α is taken when an
active transition is executed at state x. We assume that the CPDP has no
spontaneous transitions. The case ’with spontaneous transitions’ is treated at
the end of this section.

We call the jump of a CPDP from the current state to another unguarded
state via a sequence of active transitions a hybrid jump. We call the number
of active transitions involved in a hybrid jump the multiplicity of the hybrid
jump. For example, if at state x1 a transition α is taken to x1, which lies in the
guard of transition β, and immediately transition β is taken to a unguarded
state x1 , then this hybrid jump from x1 to x1 has multiplicity two.

We need to introduce the concept of total reset map. Rtot(B, x) denotes
the probability of jumping into B ∈ B(E) when an active jump takes place
at state x. We have that

Rtot(B, x) =
α∈Alx→

[Sx(α)Rα(B ∩ val(lα), x)],

where Alx→ is the set of all active transitions that leave the location of x.
We define the total guard Gtot,l of location l as the union of the guards of
all active transitions with origin location l. It can be seen now that for the
stochastic executions (i.e. generating trajectories during simulation) of X it
is enough to know Rtot and Gtot,l (for all l ∈ LX) instead of AX : a trajectory
that starts in (l0, x0) evolves until it hits Gtot,l0 at some state (l0, x1). From
x1 we determine the target state (l1, x1) of the (first step of the) hybrid jump
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by drawing a sample from Rtot(·, x1). If x1 is unguarded, the next piecewise
deterministic part of the trajectory is determined by the differential equations
of the state variables of location l1 until Gtot,l1 is hit. If x1 is guarded, we
directly draw a new target state (l1, x1) from Rtot(·, x1), etc. Therefore, if
two closed CPDPs that are isomorphic except for the active transition set,
and they have the same total reset map and the same total guards, then the
stochastic behaviors (concerning the state trajectories) of the two CPDPs
are the same and consequently if some stochastic process models the state
evolution of one CPDP, then it also models the state evolution of the other
CPDP.

Finding the stable and unstable parts of an active transition

Take any α ∈ AX . We now show how to split up α in a stable part αs and an
unstable part αu such that the stochastic behavior of X does not change.

We define Gαs
as the set of all x ∈ Gα (i.e. all x in the guard of α) such

that Rα(vals(lα), x) = 0, where vals(lα) is the unguarded part of the state
space of the target location of α. Then for all x ∈ Gαs

we define

Rαs
(B, x) :=

Rα(B ∩ vals(lα), x)
Rα(vals(lα), x)

,

Sx(αs) := Sx(α)Rα(vals(lα), x).

The scheduler works on αs as Sx(αs) (as defined above).
We define Gαu

as the set of all x ∈ Gα such that Rα(valu(lα), x) = 0. For
all x ∈ Gαu

we define

Rαu
(B, x) :=

Rα(B ∩ valu(lα), x)
Rα(valu(lα), x)

,

Sx(αs) := Sx(α)Rα(valu(lα), x).

The scheduler works on αu as Sx(αu) (as defined above).
It can be seen that replacing α by αs and αu does not change the total

reset map.

Resolving hybrid jumps of multiplicity greater than one

For any n ∈ IN we will now define Tn
s and Tn

u . Tn
s is a set of stable transi-

tions representing hybrid jumps of multiplicity n and Tn
u is a set of unstable

transitions representing hybrid jumps of multiplicity n. A stable transition
is a transition that always jumps to the unguarded state space of the target
location. An unstable transition always jumps to the guarded state space. A
stable transition is stable in the sense that after the hybrid jump caused by
the transition, no other hybrid jump will happen immediately and therefore
we are sure that a stable transition will not cause an explosion of hybrid jumps
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(i.e. a hybrid jump of multiplicity infinity). An unstable transition does not
need to induce such a blow up of hybrid jumps, but potentially it can.

We define T 1
s as the set of all active transitions αs (with α ∈ AX) such

that Gαs
= ∅ and we define T 1

u as the set of all active transitions αu (with
α ∈ AX) such that Gαu

= ∅.
We introduce the following notations. Px(B◦β◦α) denotes the probability

that, given that an active jump takes place at state x, transition α is executed
followed directly by transition β jumping into the set B ∈ B(val(lβ)). It can
be seen that

Px(B ◦ β ◦ α) = Sx(α)
x̂∈Gβ

Sx̂(β)Rβ(B, x̂)dRα(x̂, x).

We will now inductively determine the sets Tn
s and Tn

u . Suppose the sets
Tn−1

s and Tn−1
u and T 1

s and T 1
u are given. Now, for any α ∈ Tn−1

u , β ∈ T 1
s ∪T 1

u

such that lα = lβ , we define Gβ◦α as all x ∈ Gα such that Rα(Gβ , x) = 0.
Then, for all x ∈ Gβ◦α we define

Sx(β ◦ α) := Px(val(lβ) ◦ β ◦ α),

Rβ◦α(B, x) :=
Px(B ◦ β ◦ α)

Sx(β ◦ α)
.

If Gβ◦α = ∅ and β ∈ T 1
s then we add transition β ◦ α, with guard, reset map

and scheduler as above, to Tn
s . If Gβ◦α = ∅ and β ∈ T 1

u then we add transition
β ◦ α, with guard, reset map and scheduler as above, to Tn

u .

Finding the PDP that models the state evolution of the CPDP

If we define, for z ∈ {s, u} and B ∈ B(E),

Rn
tot,z(B, x) :=

{α∈T n
z |lα=lx}

[Sx(α)Rα(B ∩ val(lα), x)],

with B ∩ val(lα) sloppy notation for {x|x ∈ val(lα), (lα, x) ∈ B}, then it can
be seen that for any n ∈ IN we have

Rtot(B, x) =
n

i=1

[Ri
tot,s(B, x)] + Rn

u(B, x),

with other words, if Xn is isomorphic to CPDP X, except that the active
transition set of Xn equals T 1

s ∪ T 2
s ∪ · · · ∪ Tn

s ∪ Tn
u (which need not be

isomorphic to AX), then the total reset maps of X and Xn are the same for
all n.

We are now ready to state the theorem which gives necessary and sufficient
conditions on the CPDP such that the state evolution can be modelled by a
stochastic process. Also, the theorem says that if the state evolution can be
modelled by a stochastic process, then it can be modelled by a stochastic
process from the class of PDPs. The proof of the theorem makes use of the
results from [14].
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Theorem 2. Let Xn be derived from X as above. Let Rn
tot,s denote the to-

tal stable reset map of Xn. The state evolution of X can be modelled by a
stochastic process if and only if R(E, x) := limn→∞ Rn

tot,s(E, x) = 1 for all
x ∈ Eu, with Eu the guarded part of E. If this condition is satisfied, then the
PDP with the same state space as X, with invariants E0

l = val(l)\Gtot,l and
with transition measure Q(B, x) = R(B, x), models the state evolution of X.

Proof. From the text above and from the results of [14], it is clear that if
R(E, x) = 1 for all x, then the PDP suggested by the theorem models the
state evolution of X. If for some x ∈ E, R(E, x) < 1, then it can be seen
that this must mean that there exists a hybrid jump with multiplicity infinity
such that the probability of this hybrid jump at x is greater than zero. This
means that (from x) there is a deadlock probability (i.e. time does not progress
anymore) greater than zero, which means that the state evolution of X cannot
be modelled by a stochastic process (as we saw before).

Corollary 1. If for some n ∈ N we have that Tn
u = ∅, then the multiplicity

of the hybrid jumps of X is bounded by n and the state of X exhibits a PDP
behavior, with the same PDP as the corresponding PDP of Xn (which can be
constructed according to [14] because all hybrid jumps of Xn have multiplicity
one).

The case including spontaneous transitions

Now we treat the case where there are also spontaneous transitions present.
Let X be a CPDP without passive and spontaneous transitions and let X̂
be an isomorphic copy of X together with a set of spontaneous transitions
SX̂ . Suppose that the multiplicity of the hybrid jumps of X is bounded by n.
Let X̂n be an isomorphic copy of Xn together with the following spontaneous
transitions: for any spontaneous transition (l, λ, l , R) ∈ SX̂ we add to Ŝ, which
denotes the set of spontaneous transitions of X̂n, the transition (l, λ, L, R̂),
where, for B ∈ B(E), R̂(B, x) :=

R(B ∩ Invs(l ), x) +
{α∈AXn |lα=l} x̂∈Gα

Sx̂(α)Rα(B ∩ val(lα))dR(x̂, x).

Note that all transitions from AXn are stable. Also note that (l, λ, L, R̂) is
not a standard CPDP transition, but a transition that represents a Poisson
process in location l with jump-rate λ and with reset map R̂, which can jump
to multiple locations. Therefore we write L instead of l in the tuple of the
transition.

It is known that the superposition of two (or more) Poisson processes is
again a Poisson process (see, in the context of CPDP, [14] for a proof of this
result). This means that if we combine all spontaneous transitions of X̂n with
origin location l to one spontaneous transition (l, λl, L, R̂tot,l), with



Communicating Piecewise Deterministic Markov Processes 87

λl(x) =
α∈Ŝl→

λα(x),

and

R̂tot,l(B, x) =
α∈Ŝl→

[
λα(x)
λl(x)

Rα(B, x)],

and if we replace all spontaneous transitions by these combined spontaneous
transitions, then the stochastic behavior (concerning the evolution of the
state) will not change. Now it can be easily seen that if we add jump rate
λ(l, x) = λl(x) to the PDP that models the state evolution of X and we let,
for unguarded states (l, x), the transition measure Q(B, (l, x)) = R̂tot,l(B, x),
then this PDP will model the state evolution of X̂.

5 Value-Passing CPDPs

In the CPDP-model as it is defined so far, it is not possible that one com-
ponent can inform another component about the value of its state or output
variables. In Dynamically Colored Petri Nets (see [6]), this is possible. In this
section we introduce an addition to the CPDP model, which adds this fea-
ture of communicating state data. We chose to follow a standard method of
data communication, called value-passing. Value-passing has been defined for
different models like LOTOS ([9]). Value-passing can be seen as a natural
extension to (the standard) communication through shared events because it
is also expressed through ”shared events”/”synchronization of active transi-
tions”.

5.1 Definition of Value-Passing CPDP

We introduce a new definition for CPDP, which makes communication of state
data possible.

Definition 6. A value-passing CPDP is a tuple (L, V, W, ν, ω, F, G, Σ,A, P,
S), where all elements except A are defined as in Definition 1 and where A is
a finite set of active transitions that consists six-tuples (l, a, l , G, R, vp), de-
noting a transition from location l ∈ L to location l ∈ L with communication
label a ∈ Σ, guard G, reset map R and value-passing element vp. G is a sub-
set of the state space of l. vp can be equal to either !Y , ?U or ∅. For the case
!Y , Y is an ordered tuple (w1, w2, · · · , wm) where wi ∈ w(l) for i = 1 · · ·m,
meaning that this transition can pass the values of the variables from Y (in
this specific order) to other transitions in other components. For the case ?U ,
we have U ⊂ IRn for some n ∈ IN, meaning that this transition asks for input
a tuple of the form of Y with total dimension n (i.e. i=1..m d(wi) = n) such
that the valuation of Y lies in U . The reset map R assigns to each point in
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G×U (for the case vp =?U) or to each point in G (for the cases vp =!Y and
vp = ∅) for each state variable v ∈ ν(l ) a probability measure on the state
space of v at location l .

We formalize the notion of state data communication by adding three
composition rules to |PA| called r1data,r2data and r2data :

r1data.
l1

a,G1,R1,v1−→ l1, l2
a,G2,R2,v2−→ l2

l1|PA|l2
a,G1|G2,R1×R2,v1|v2−→ l1|PA|l2

(a ∈ A, v1|v2 = ⊥).

Here, l1
a,G1,R1,v1−→ l1 means (l1, a, l1, G1, R1, v1) ∈ AX with v1 = ∅. Active

transitions with value passing identifier equal to ∅ will be denoted as before
(like l1

a,G1,R1−→ l1 for example). Furthermore, v1|v2 is defined as: v1|v2 :=
!Y if v1 =!Y and v2 :=?U and dim(U)=dim(Y ) or if v2 =!Y and v1 :=
?U and dim(U)=dim(Y ); v1|v2 :=?(U1 ∩ U2) if v1 =?U1 and v2 =?U2 and
dim(U1)=dim(U2); v1|v2 := ⊥ otherwise. Here ⊥ means that v1 and v2 are
not compatible.

G1|G2 is, only when v1|v2 = ⊥, defined as follows: G1|G2 := (G1∩U)×G2

if v1 =!Y and v2 =?U ; G1|G2 := G1 × (G2 ∩ U) if v1 =?U and v2 =!Y ;
G1|G2 := G1 × G2 if v1 =?U1 and v2 =?U2. Here, G ∩ U , which is abuse of
notation, contains all state valuations x such that x ∈ G and Y (x) ∈ U , where
Y (x) is the value of the ordered tuple Y according to valuation x.

In these definitions of v1|v2 and G1|G2 we see an interplay between the
state guards G1,G2 and the input guards U1,U2: in the synchronization of
an (l1, a, l1, G1, R1, !Y ) transition with a (l2, a, l2, G2, R2, ?U) transition, U
restricts the guard G1 such that the Y -part of G1 lies in U . This restriction
can not be coded in v1|v2 (as it is done in the ?U1-?U2-case), therefore we
need to code it in the state guards.

Composition rules r2data and r2data are defined as follows.

r2data.
l1

a,G1,R1,v1−→ l1

l1|PA|l2
a,G1×val(l2),R1×Id,v1−→ l1|PA|l2

(a ∈ A).

The mirror of r2data is then defined as:

r2data .
l2

a,G2,R2,v2−→ l2

l1|PA|l2
a,val(l1)×G2,Id×R2,v2−→ l1|PA|l2

(a ∈ A).

Definition 7. If X = (LX , VX , νX , WX , ωX , FX , GX , Σ,AX , PX , SX) and
Y = (LY , VY , νY , WY , ωY , FY , GY , Σ,AY , PY , SY ) are two value passing
CPDPs that have the same set of events Σ and if we have VX ∩ VY =
WX ∩ WY = ∅, then X|PA|Y is defined as in Definition 3 except that be-
sides the rules r1,r2,r2’,r3,r3’,r4,r4’,r5,r6,r6’,r7 and r7’ for the operator |PA|
we also have the rules r1data,r2data and r2data .
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6 Value Passing CPDP and CPDP-to-PDP Conversion:
An ATM Example

6.1 ATM Example of Value Passing CPDP

In Figure 7 we see five value-passing CPDPs: CurrentGoal, AudioAlert,
Memory, HMI−PF and TaskPerformance. Together, these five compo-
nents form a part of a system that models the behavior of a pilot which is
controlling a flying aircraft. This pilot is called the pilot-flying. (Normally,
there is also another pilot in the cockpit called the pilot-not-flying who is not
directly controlling the aircraft). This example comes from Chapter 16 of this
book, where it is modelled as a Dynamically Coloured Petri Net (DCPN). In
this section we model an abstract version of this system as a value-passing
CPDP. We first give a global description of the system. After that we give a
more detailed description of each CPDP component.

There are seven distinct goals defined for the pilot-flying, C1 till C7. Which
goal should be achieved by the pilot at which time depends on the situation. If
at some time t1, the pilot is working on goal C1 (which is: collision avoidance)
then CPDP CurrentGoal is in location l1 with k = 1 (the value of k equals
the number of the goal) and CPDP TaskPerformance is in the top location
(meaning that the pilot is performing tasks for some goal while the bottom
loction means that the pilot is not working an a goal). If the pilot is working
on goal C2 (which is: emergency actions), then k = 2 and then the value q
denotes which specific emergency action is executed (if k = 2 then q, which
is not relevant then, equals zero). The pilot can switch to another goal in two
ways:

1. He achieved a goal and is ready for a new goal. He ’looks’ at the memory-
unit whether there is another goal that needs to be achieved. In that
case the pilot starts working on the goal in the memory-unit with the
highest priority (C1 has priority over C2, C2 over C3 etc.), unless he sees
on the display of HMI−PF , which is a failure indicator device, that
certain aircraft-systems are not working properly. In the latter case the
pilot should switch to goal C2 (emergency action).

2. The pilot is working on a goal, while CPDP AudioAlert, which is a com-
munication device that can communicate alert messages, sends an alert-
message. This message contains a value (communicated via value-passing
communication) which denotes the interrupt-goal. CPDP CurrentGoal
receives this message and if the interrupt goal has higher priority than
the goal that is worked on, the pilot switches to the interrupt-goal. If the
interrupt-goal has lower priority, the goal is stored into the memory-unit.

We now briefly say how the interactions between the five components are
modelled: CPDP CurrentGoal reads the memory and the failure-indicators
via value-passing-synchronization on events getmem and getHMI respec-
tively (see Figure 7). CurrentGoal receives alert-messages via value-passing-
synchronization on event alert. TaskPerformance sends the active signal
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Fig. 7. CPDP pilot flying model

endtask as soon as the pilot finished the last task of the goal he was working
on, this signal is received by CurrentGoal via a passive endtask-transition.
CurrentGoal stores a value in the memory-unit Memory via a value-passing-
synchronization on event storemem. Finally, CurrentGoal communicates to
TaskPerformance that a new goal is started because of an alert-message
or because a new goal was retrieved from the memory, via value-passing-
synchronization on events alertchng and memchng respectively.
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The five CPDPs are interconnected via composition operators of the |PA|
type as

(((CurrentGoal|A1 |AudioAlert)|A2 |Memory)

|A3 |TaskPerformance)|A4 |HMI−PF, (4)

with A1 := {alert}, A2 := {getmem, storemem}, A3 := {alertchng,
memchng} and A4 = {getHMI}. We now describe each of the five CPDPs
in more detail.

CPDP HMI-PF has one location with one variable named CHMI . The
value of this variable indicates whether there is a failure in one of the five
systems (indicated by HMI-PF ). CHMI consists of five components Ci

HMI

(i = 1, 2, 3, 4, 5) which all have either value true or false (with true indicating
a failure for the corresponding system). There is only one transition, which
is an unguarded active transition from the only location to itself with label
getHMI and with output CHMI . This transition is used only to send the
state information to the component CurrentGoal, therefore the reset map of
this transition does not change the state CHMI . Note that for the CPDPs
in this ATM-example, we do not define output variables. We assume that for
every state variable used in active transitions we have an output variable copy
defined.

CPDP AudioAlert has one location with two variables named k and q. k ∈
{1, 2, 3, 4, 5, 6, 7} and q ∈ {1, 2, 3, 4, 5, 6}. These values represent the interrupt
goal (and failure in case k = 2). There is one active transition with label alert
and with outputs k and q. This transition should normally be guarded (where
the guard is satisfied as soon as an alert signal should be sent), but at the
abstraction level of our model we do not model this. Also the reset map of
this transition is not specified here.

CPDP Memory has one location with two variables named m and qmem. m
is a variable with seven components (m1 till m7 for the goals C1 till C7) which
can have value ON and OFF . (In the DCPN model of this system there is also
the value LATER for m4 and m5 which we do not consider in the CPDP).
qmem is a variable with six components (for the six failures) taking values in
{0, 1}. There are two active transitions. The unguarded transition with label
getmem and output m and qmem is used to send information to CurrentGoal,
therefore the reset map leaves the state unaltered. The unguarded transition
with label storemem and input k and q is used by CurrentGoal to change the
memory state. (Note that we write ?(k, q) to denote inputs of the combined
state-space of k and q which is ?IR2 because k, q ∈ IR). The reset map Rstmem

of this transition changes mk (with k the received input) to ON and changes
qq
mem (with q the received input) to 1.

CPDP TaskPerformance has two locations, Idle and Busy, both without
variables. When the system switches from Busy to Idle, the active transition
with label endtask is executed. The system can switch from Idle to Busy via
two transitions: 1. Via the active input transition with label alertchng and in-
puts k and q. This happens when CurrentGoal executes an active output tran-
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sition with label alertchng due to having received a signal from AudioAlert.
(Normally TaskPerformance should use the information from the inputs k and
q via the reset map of the transition, but we do not model that at our level
of abstraction). 2. Via the active input transition with label memchng and
inputs k and q. This happens when CurrentGoal executes an active output
transition with label memchng due to the situation where the pilot is idling
and a new goal is retrieved by CurrentGoal from the memory.

CPDP CurrentGoal is the only CPDP that we have modelled in detail.
CurrentGoal has six locations, named l1 till l6. We will now describe each
location:

• Location l1 has two variables named kc and qc. The process is in this
location when one of the goals is being achieved (i.e. TaskPerformance is
in location Busy) and the values of kc and qc represent the current goal
and (in case kc = 2) current failure. There are two outgoing transitions:
1. An unguarded active input transition to l2 labelled alert with inputs k
and q, synchronizing on an alert signal from AudioAlert, with reset map

R1 :=
kc := k, qc := q, switch := true if k < kc

kc := kc, qc := qc.switch := false else.

2. A passive transition to l3 labelled endtask, synchronizing on an endtask
signal from TaskPerformance.

• The process is in location l2 when (1) after having received the alert
signal the current goal needs to be changed (according to the alert signal)
or when (2) the interrupt goal (from the alert signal) needs to be stored
in memory. (1) is the case when switch = true, (2) is the case when
switch = false. Therefore, G1 := {(kc, qc, switch)|switch = true}, G2 :=
{(kc, qc, switch)|switch = false}, with G1 the guard of the active output
transition labelled alertchng with outputs kc and qc and reset map R2 and
with G2 the guard of the active output transition labelled storemem with
outputs kc and qc and reset map R3. R2 and R3 are the same and do the
following reset: kc := kc, qc := qc. Note that, under maximal progress, the
process jumps immediately to location l1 as soon as it arrives in location l2,
causing also a synchronizing transition in either TaskPerformance (with
label alertchng) or Memory (with label storemem).

• The process arrives in location l3 after the endtask signal. Then the pilot
should check the memory whether there are other goals that need to be
achieved. With the unguarded active input transition with label getmem
and inputs m and q and reset map R4, the process jumps to location l4
while retrieving the memory state (m, q). The reset map R4 stores this
(m, q) in (m̃, q̃).

• Before executing a goal from the memory, the pilot should first check HMI-
PF to see whether there are indications for failing devices. This happens
in the transition to l5 on the label getHMI while retrieving the HMI-PF
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state CHMI . The reset R5 stores CHMI together with m̃ and q̃ in the state
of l5.

• From location l5 there is an active transition to l6 with label τ and guard
G12 := {(m̃, q̃, C̃HMI)| C̃i

HMI = true for some i = 1, 2, 3, 4, 5 or m̃i =
ON for some i < 7}. Under maximal progress, this τ -transition is taken
immediately after arriving in l5 when the Memory and HMI-PF states give
reason to work on a new goal. The reset map R10 resets kc := 2, qc := r
if S := {i|i ≤ 5, C̃i

HMI = true} = ∅, where r is randomly chosen from
the set S, otherwise R10 resets kc := min{i|mi = ON}, qc := 0. If the
guard G12 is not satisfied in l5, then this means that the pilot should wait
until an alert signal is received or until either the Memory state or the
HMI-PF state changes such that the pilot should work on a new goal. On
an alert signal from AudioAlert the transition to l2 is taken where R9 is
equal to R1. The active input transition to l6 labelled getmem waits till
the Memory state has changed such that the input-guard G4 is satisfied,
where G4 := {(m, q)|mi = ON for some 2 = i < 7}. The reset map R7

resets kc := min{i|mi = ON}, qc := 0. The active input transition to l6
labelled getHMI waits till the HMI-PF state has changed such that the
input-guard G3 is satisfied, where G3 := {CHMI |Ci

HMI = true for some
i = 1, 2, 3, 4, 5}. The reset map R6 resets kc := 2, qc := r with r randomly
chosen from S := {i|i ≤ 5, C̃i

HMI = true} = ∅.
• If the process arrives in location l6, then this means that the state of

l6 represents the goal that should immediately be worked on by the pilot.
Therefore, the unguarded active transition to l1 labelled memchng is taken
immediately (under maximal progress). The outputs kc and qc are accepted
by the memchng transition in TaskPerformance. The reset map of the
output memchng transition copies the state of l6 to the state of l1.

6.2 Examples of Value-Passing-CPDP to PDP Conversion

We follow the algorithm from Section 4.1 to check whether the CPDP ATM-
example of Section 6, which has no spontaneous transitions, can be converted
to a PDP.

Example 3 (ATM). We assume that the system modelled by (4) is closed (i.e.
no more components will be connected). This means that we remove the
passive transitions in the composite CPDP (which are some endtask transi-
tions). It can be seen that the composite CPDP does not have active input-
transitions. We assume that time will elapse in the locations of AudioAlert
and TaskPerformance. Both may have (different) extra dynamics of the form
ẋ = f(x), then the guards of transitions alert and endtask depend on x. We
assume that the transitions alert, alertchng and memchng are stable. Note
that location l1 is unguarded, that locations l2,l3,l4 and l6 are guarded and
that location l5 has both an unguarded and a guarded state space.

First we look at T 1
s : the stable parts of the transitions that represent hybrid

jumps of multiplicity one. For this example we have
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T 1
s = {storemem, alertchng, memchng, getHMIs,45},

where these names correspond to the transitions with the same label in Fig-
ure 7: storemem represents the transition from l2 to l1 synchronized with
the transition with the same label in component memory. getHMIs,45 cor-
responds to the stable part, which is the part that does not jump into guard
G12, of the transition between l4 and l5 synchronizing with the transition in
HMI-PF, etc. Because R5 makes a copy of CHMI ,m and q, we get that the
guard of getHMIs,45 equals val(l4)\G12 and the guard of getHMIu,45, the
unstable part, equals G12. Furthermore, we have for this example

T 1
u = {alert12, alert52, getmem34, getmem56, getHMIu,45, getHMI56,

endtask}, T 2
s = {alertchng ◦alert12, alertchng ◦alert52, storemem◦alert12,

storemem ◦ alert52, memchng ◦ τ, memchng ◦ getHMI, memchng ◦ getmem,

getHMIs ◦ getmem},
where getHMIs ◦ getmem denotes the transition that represents the hybrid
jump of multiplicity two that consists of getmem from l3 to l4 followed directly
by the stable part of getHMI from l4 to l5, etc. Then,

T 2
u = {getmem ◦ endtask, getHMIu ◦ getmem, τ ◦ getHMI},

T 3
s = {memchng ◦ τ ◦ getHMIu, getHMIs ◦ getmem ◦ endtask},
T 3

u = {getHMIu ◦ getmem ◦ endtask, τ ◦ getHMIu ◦ getmem},
T 4

s = {memchng ◦ τ ◦ getHMIu ◦ getmem},
T 4

u = {τ ◦ getHMIu ◦ getmem ◦ endtask}.
T 5

s = {memchng ◦ τ ◦ getHMIu ◦ getmem ◦ endtask},
T 5

u = ∅.
We see, when X denotes the composite CPDP, that X5 (i.e. the CPDP that

has active transitions (∪5
i=1T

i
s)∪ T 5

u) has no unstable transitions. This means
that X5 can directly be converted to a PDP, which then is the corresponding
PDP of X.

To prove that the composite CPDP of this ATM example can be converted
to a PDP, it would also have been enough to show that the CPDP does not
have cycles such that the locations of the cycle all have guarded parts. It is
clear that a cycle in component Current goal should include location l1, which
is an unguarded location. It can easily be seen that in the composite CPDP the
two (product)locations that contain l1 are both unguarded and that any cycle
in the composite CPDP should contain one of these two locations. Therefore
this composite CPDP does not have transitions with multiplicity infinity and
should therefore be convertable to a PDP. (However, if we want to specify
this PDP, we still have to do the algorithm or something similar).
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Because the algorithm terminates on the ATM-example above, we know
that the ATM-example has a PDP behavior. However, it is possible that the
algorithm does not terminate, while the CPDP does exhibit a PDP behavior.
We now give an example of this.

Example 4. Let CPDP X have one location, l1. The state-space of l1 is [0, 1],
the continuous dynamics of l1 is the clock dynamics ẋ = 1. From l1 to l1
there is one active transition with guard G and reset map R. G = [ 12 , 1].
For x ∈ G, R({0}, x) = 1

2 and R(A, x) = |A ∩ [ 12 , 1]| for A ∈ B([0, 1]\{0}).
This means that from an x in G, the reset map jumps to 0 with probabil-
ity 1

2 and jumps uniformly into [12 , 1] with probability 1
2 . It can easily be

seen that for X we have that Tn
u = ∅ for all n ∈ IN. This means that the

algorithm explained above does not terminate for this example. Still, ac-
cording to Theorem 2, X expresses a PDP behavior, because for x ∈ G,
R([0, 1], x) = limn→∞ Rn

tot,s([0, 1], x) = 1
2 + 1

2 · 1
2 + 1

2 · 1
2 · 1

2 + · · · = 1.

7 Bisimulation for CPDPs

In this section we define bisimulation relations for CPDPs. Bisimulation is
an equivalence relation. The idea of bisimulation is that two CPDPs are
bisimulation-equivalent if for an external agent the CPDPs cannot be dis-
tinguished from each other. We assume here that an external agent cannot
see the state-value of a CPDP but it does see the output-value of a CPDP
and it does also see the events (including possible value passing information)
of active transitions. We assume that the behavior of the external agent can
be modelled as another CPDP. Thus, if CPDPs X1 and X2 are bisimilar (i.e.
bisimulation-equivalent), then X1|PA|Y and X2|PA|Y behave externally equiv-
alently for each external-agent-CPDP Y and each operator of the form |PA|.
External equivalent behavior will be defined later in this section, but for the
intuitive understanding, we will already give two examples here.

1. Suppose the initial states of CPDPs X1, X2 are given. If then, for some
CPDP Y (with some initial state) and some |PA|, the probability that the
output-value of X1|PA|Y equals ŵ at time t̂, is different from the probability
that the output-value of X2|PA|Y equals ŵ at time t̂, then X1 and X2 are not
bisimilar.

2. As an example of two bisimilar CPDPs, we compare CPDP X from
Figure 4 to CPDP X̃ from Figure 8. We let λ̃, µ̃, all G̃i and all R̃i be copies
of λ,µ,Gi and Ri from Figure 4, i.e. λ̃, µ̃, G̃i and the x̃-resets of R̃i do not
depend on x̄. The x̄ resets of R̃i are not relevant here and may therefore be
chosen arbitrarily (like x̄ := 0 for each R̃i). Thus, we get λ̃(x̃, x̄) = λ(x̃),
G̃i = {(x̃, x̄)|x̃ ∈ Gi}, etc. Then, the only difference between X and X̃, if
we regard x̃ as a copy of x, is that the locations of X̃ have another state
variable x̄ (evolving along vectorfields f̄1 and f̄2). But this extra variable x̄
does not influence the output y, which only depends on x (or x̃), and it also
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Fig. 8. CPDP X̃ (bisimulation equivalent to CPDP X of Figure 4)

does not influence hybrid jumps because it does not influence the guards of the
transitions, the Poisson processes and the resets of x (or x̃). It is intuitively
clear then that CPDPs X and X̃ cannot be distinguished by an external agent.
After the formal definition of bisimulation for CPDPs, we will show that X
and X̃ are indeed bisimilar.

X can be seen as a state reduced equivalent of X̃ because the state space
of X is smaller (i.e. the variable x̄ is not present in X). More formally, we
could say that we have state reduction because each state x of X represents a
whole set of states {(x̃, x̄)|x̃ = x} of X̃ (i.e. the state valuation (x = 1) of X
for example, represents the set of state valuations {(x̃ = 1, x̄ = r)|r ∈ IR} of
X̃). State valuation (x̃ = 1, x̄ = 0) is for example equivalent to state valuation
(x̃ = 1, x̄ = 1) because the external behavior of X̃ that starts/continues from
(x̃ = 1, x̄ = 0) is the same as the external behavior of X̃ that starts/continues
from (x̃ = 1, x̄ = 1). We could say therefore that {(x̃ = 0, x̄ = r)|r ∈ IR}
forms an equivalence class of states. In the formal definition of bisimulation for
CPDPs, we will see that we can indeed use this concept of equivalence classes
of states. Before we do that, we need to introduce the technical concepts of
induced equivalence relation, measurable relation and equivalent (probability)
measure.

We define the equivalence relation on X that is induced by a relation
R ⊂ X × Y with the property that π1(R) = X and π2(R) = Y , where πi(R)
denotes the projection of R on the i-th component, as the transitive closure of
{(x, x )|∃y s.t. (x, y) ∈ R and (x , y) ∈ R}. We write X/R and Y/R for the sets
of equivalence classes of X and Y induced by R. We denote the equivalence
class of x ∈ X by [x]. We will now define the notions of measurable relation
and of equivalent measure.

Definition 8. Let (X, X) and (Y,Y) be Borel spaces and let R ⊂ X × Y be a
relation such that π1(R) = X and π2(R) = Y . Let X∗ be the collection of all
R-saturated Borel sets of X, i.e. all B ∈ X such that any equivalence class of
X is either totally contained or totally not contained in B. It can be checked
that X∗ is a σ-algebra. Let

X∗/R = {[A]|A ∈ X∗},
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where [A] := {[a]|a ∈ A}. Then (X/R, X∗/R), which is a measurable space, is
called the quotient space of X with respect to R. A unique bijective mapping
f : X/R → Y/R exists, such that f([x]) = [y] if (x, y) ∈ R. We say that the
relation R is measurable if for all A ∈ X∗/R we have f(A) ∈ Y∗/R and vice
versa.

If a relation on X × Y is measurable, then the quotient spaces of X and
Y are homeomorphic (under bijection f from Definition 8). We could say
therefore that under a measurable relation X and Y have a shared quotient
space. In the field of descriptive set theory, a relation R ⊂ X × Y is called
measurable if R ∈ B(X × Y ) (i.e. R is a Borel set of the space X × Y ). This
definition does not coincide with our definition of measurable relation. In fact,
many interesting measurable relations are not Borel sets of the product space
X × Y .

Definition 9. Suppose we have measures PX and PY on Borel spaces (X, X)
and (Y,Y) respectively. Suppose that we have a measurable relation R ⊂ X×Y .
The measures PX and PY are called equivalent with respect to R if we have
PX(f−1

X (A)) = PY (f−1
Y (f(A))) for all A ∈ X∗/R (with f as in Definition

8 and with fX and fY the mappings that map X and Y to X/R and Y/R

respectively).

As an example, we show that relation R = {(x, (x̃, x̄))|x = x̃} on val(X)×
val(X̃), where val(X) and val(X̃) denote the state spaces of CPDPs X and
X̃ of Figures 4 and 8, is a measurable relation and that the reset maps Ri(x)
and R̃i(x̃, x̄) are equivalent measures under this relation if f([x]) = ([x̃, x̄]):
the induced equivalence relation of R on X equals {{x}|x ∈ val(X)}, i.e. each
single valuation forms an equivalence class of X. The induced equivalence
relation of R on X̃ equals {{(x̃ = q, x̄ = r)|r ∈ IR}|q ∈ IR}. The saturated
Borel sets of X are all Borel sets of X, the saturated Borel sets X̃ are all sets
of the form B × IR with B a Borel set for the state x̃ (i.e. a Borel set of IR).
The bijective mapping f from Definition 8 maps each saturated Borel set B
of X to the saturated Borel set B× IR of Y , from which follows, according to
Definition 8, that R is measurable.

If states x and (x̃, x̄) are equivalent (i.e. f([x]) = [(x̃, x̄)]), then the
measures Ri(·, x) and R̃i(·, (x̃, x̄)) are equivalent because Ri and R̃i are de-
fined such that for each (saturated borel set of X) B ∈ B(IR) we have
Ri(B, x) = R̃i(B × IR, (x̃, x̄)).

In order to define bisimulation for CPDPs we also need to introduce the
notions of combined reset map and combined jump rate function: we consider
CPDP (without value passing) X = (L, V, W, v, w, F, G, Σ,A, P, S), with hy-
brid state space E = Es ∪Eu, together with scheduler S. We define R, which
we call the combined reset map, as follows. R assigns to each triplet (l, x, a)
with (l, x) ∈ Eu and with a ∈ Σ such that l

a−→ (i.e. there exists an active
transition labelled a leaving l), a measure on E. This measure R(l, x, a) is for
any l and any Borel set A ⊂ val(l ) defined as:



98 S. Strubbe and A. van der Schaft

R(l, x, a)(l , A) =
α∈Al,a,l

S(l, x)(α)Rα(A, x),

where Al,a,l denotes the set of active transitions from l to l with label a and
(l , A) denotes the set {(l , x)|x ∈ A}. (This measure is uniquely extended to
all Borel sets of E). Now, for A ∈ B(E), R(l, x, a)(A) equals the probability
of jumping into A via an active transition with label a given that the jump
takes place at (l, x).

Furthermore, R assigns to each triplet (l, x, ā) with (l, x) ∈ E and with
ā ∈ Σ̄ such that l

ā−→, a measure on E, which for any l and any Borel set
A ⊂ val(l ) is defined as:

R(l, x, ā)(l1, A) =
α∈Pl,ā,l

S(l, x)(α)Rα(A, x).

(This measure is uniquely extended to all Borel sets of E). Now, R(l, x, ā)(A),
with A ∈ B(E), equals the probability of jumping into A if a passive transition
with label ā takes place at (l, x).

We define the combined jump rate function λ for CPDP X as

λ(l, x) =
α∈Sl→

λα(l, x),

with (l, x) ∈ E.
Finally, for spontaneous jumps, R assigns to each (l, x) ∈ E such that

λ(l, x) = 0, a probability measure on E, which for any l and any Borel set
A ⊂ val(l ) is defined as:

R(l, x)(l1, A) =
α∈Sl→l

λα(l, x)
λ(l, x)

Rα(A, x).

(This measure is uniquely extended to all Borel sets of E). Now we are ready
to give the definition of bisimulation for CPDPs.

Definition 10. Suppose we have CPDPs X = (LX , VX , W, vX , wX , FX , GX ,
Σ, AX , PX , SX) and Y = (LY , VY , W, vY , wY , FY , GY , Σ, AY , PY , SY ) with
shared W and Σ and with schedulers SX and SY . A measurable relation
R ⊂ val(X)× val(Y ) is a bisimulation if ((l1, x), (l2, y)) ∈ R implies that

1. ωX(l1) = ωY (l2), for all w ∈ ωX(l1) we have GX(l1, x, w) = GY (l2, y, w),
λ(l1, x) = λ(l2, y) (with λ the combined jump rate function defined on both
val(X) and val(Y )).

2. (φl1(t, x), φl2(t, y)) ∈ R (with φl(t, z) the state at time t when the state
equals z at time zero).

3. If λ(l1, x) = λ(l2, y) = 0, then R(l1, x) and R(l2, y) are equivalent proba-
bility measures with respect to R.
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4. For any ā ∈ Σ̄ we have that either both l1
ā−→ and l2

ā−→ or else R(l1, x, ā)
and R(l2, y, ā) are equivalent probability measures.

5. For any a ∈ Σ we have that either both l1
a−→ and l2

a−→ or else R(l1, x, a)
and R(l2, y, a) are equivalent measures.

X with initial state (l1, x) and Y with initial state (l2, y) are bisimilar if
((l1, x), (l2, y)) is contained in some bisimulation.

Definition 10 formalizes what we mean by equivalent external behavior.
It can now be seen that, according to Definition 10, CPDP X (from Figure
4) with initial state (lx, x) (for some lx and some x ∈ val(lx)) together with
some scheduler SX , and CPDP X̃ (from Figure 8) with initial state (lx̃, (x̃, x̄))
(with lx̃ = lx and x̃ = x and x̄ ∈ IR) together with scheduler SX̃(l̃, (x̃ = q, x̄ =
r))(α̃) := SX(l, x = q)(α) (where α̃ is the transition of X̃ that corresponds
according to Figures 4 and 8 to transition α of X) are bisimilar under the
relation R = {(x, (x̃, x̄))|x = x̃} on val(X)×val(X̃) (which was already shown
to be a measurable relation).

We now state a theorem which justifies our notion of bisimulation when
it concerns the stochastic behavior. It says that if two closed CPDPs are
bisimilar, then the stochastic processes that model the output evolution of
the CPDPs are equivalent (in the sense of indistinguishability).

Theorem 3. The stochastic processes of the outputs of two bisimilar closed
CPDPs (with their schedulers), whose quotient spaces are Borel spaces, can
be realized such that they are indistinguishable.

Proof. The proof can be found in [15]. There, invariants are used instead of
guards. It can be seen that the proof is still valid if the invariant of a location
is defined as the unguarded state space of that location.

It can easily be seen that if two non-closed CPDPs are bisimilar, then if we
close both CPDPs (i.e. if we remove all passive transitions), then the closed
CPDPs are still bisimilar and, by Theorem 3, the stochastic processes that
model the output evolution of the CPDPs are equivalent.

We now state a theorem which justifies our notion of bisimulation when it
concerns the interaction behavior. It says that two bisimilar CPDPs interact
in an equivalent way (with any other CPDP) by stating that substituting
a CPDP-component (in a composition context with multiple components)
by another, but bisimilar, component, results in a composite CPDP that is
bisimilar to the original composite CPDP. Checking bisimilarity between two
composite CPDPs can only be done if both composite CPDPs have their
own schedulers. Therefore we first have to investigate how a scheduler of a
composite CPDP can be composed from the schedulers of the components.

It appears that the schedulers of the components do not contain enough
information to define the scheduler of the composite CPDP. We illustrate this
with Figure 9, where we see two CPDPs, X and Y , with schedulers SX and
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Fig. 9. Example concerning internal/external scheduling

SY . Suppose we connect X and Y via composition operator |Σ̄∅ |. If x ∈ G1 and
x ∈ G2 and y ∈ G3, then the scheduler S of X|Σ̄∅ |Y is at (x, y) determined
because (a, G1, R1) is the only transition that is enabled at (x, y), therefore the
scheduler has to choose this transition. However, this a-transition will trigger
one of the two ā-transitions of Y . Thus, the scheduler still has to choose
between the transitions (a, G1 × val(Y ), R1 × R̄4) (i.e. the synchronization of
(a, G1, R1) with (ā, R̄4)) and (a, G1×val(Y ), R1×R̄5). Here we should respect
SY which is defined to make a choice between the two passive transitions. Thus
we get,

S(x, y)(a, G1 × val(Y ), R1 × R̄i) = SY (y, ā)(ā, R̄i), i ∈ {4, 5}.
If x ∈ G1 and x ∈ G2 and y ∈ G3, then at state (x, y), two active transitions
of X|Σ̄∅ |Y are enabled: (b, G2×val(Y ), R2×Id) and (a, val(X)×G3, Id×R3).
SX and SY give no information how to choose between the b-transition and
the a-transition. We call this case a case of external scheduling (i.e. the choice
cannot be made by the internal schedulers, the schedulers of the individual
components). Thus, besides the internal schedulers SX and SY , we need a
strategy for external scheduling. We define this as follows.

Definition 11. ESS is an external scheduling strategy for X|PA|Y with inter-
nal schedulers SX and SY if ESS assigns to each state (x, y) a mapping from
the set of event pairs EP to [0, 1], where

EP := {[α, β]|α = β ∈ Σ, α ∈ Σ ∧ β = ∗, α = ∗ ∧ β ∈ Σ,

α ∈ Σ ∧ β = ᾱ, α = β̄ ∧ β ∈ Σ, α = β ∈ Σ̄, α ∈ Σ̄ ∧ β = ∗, α = ∗ ∧ β ∈ Σ̄},
which respects the transition structure of X|PA|Y .

We explain the meaning of external scheduling strategy by using the ex-
ample of Figure 9: if ESS is an external scheduling strategy for X|Σ̄∅ |Y
and ESS(x, y)([a, ā]) = 1, then the set of transitions of the form (a, Gx ×
val(Y ), Rx × R̄y) (with (a, Gx, Rx) an a-transition of X and (ā, R̄y) a ā-
transition of Y ) at state (x, y) get probability one. The probabilities of the
individual transitions of this form are determined by the internal schedulers.
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If we have ESS(x, y)([a, ā]) > 0 with x ∈ G1, then ESS does not respect
the transition structure, because for x ∈ G1 no a-transition of X can be
executed, and is therefore not a valid external scheduling strategy, etc. In
general, an external scheduling strategy does not have to respect the internal
schedulers where it concerns the choice between active transitions (within one
component) labelled with different events, but it has to respect the internal
schedulers where it concerns the passive transitions and the choice between
active transitions (in one component) with the same event-label. The choice
to allow to ignore internal schedulers where it concerns active transitions with
different event-labels, has been made because first, in some cases it is not clear
what it means to respect the internal schedulers and second, this freedom does
not influence the result of the bisimulation-substitution-theorem that we state
after the following example about a scheduler that does respect the internal
schedulers as much as possible.

Example 5. Suppose we have two CPDPs X and Y with schedulers SX and
SY , which we interconnect with composition operator |Σ̄∅ |. A valid external
scheduling strategy would be:

• For states (x, y) with x ∈ valu(X) (i.e. the guarded states of X) and
y ∈ vals(Y ) the choice for the active transition of X is made by SX .
(Which passive transitions synchronize depends on Y and SY )

• For states (x, y) with x ∈ vals(X) and y ∈ valu(Y ) the choice for the active
transition of Y is made by SY . (Which passive transitions synchronize
depends on X and SX)

• For states (x, y) with x ∈ valu(X) and y ∈ valu(Y ), the choice for the
active transition (of X or Y ) is determined with probability half by SX

and with probability half by SY . (Which passive transitions synchronize
depends on X,Y , SX and SY ).

Note that the strategy of Example 5 will not work in case A = ∅. Also,
in general, the composition of two schedulers under an external scheduling
strategy, which results in a internal schedular for the composite system (as in
Example 5), is not commutative and not associative.

Theorem 4. Suppose we have three CPDPs, X1,X2 and Y , with schedulers
SX1 , SX2 and SY . Suppose R ⊂ val(X1) × val(X2) is a bisimulation and
val(X1)/R and val(X2)/R (i.e. the quotient spaces of X1 and X2 under R)
are Borel spaces. Then,

R := {((x1, y), (x2, y))|(x1, x2) ∈ R, y ∈ val(Y )}

is a bisimulation on (val(X1)× val(Y ))× (val(X2)× val(Y )) for the CPDPs
X1|PA|Y and X2|PA|Y with external scheduling strategies ESS1 and ESS2 such
that ESS1(x1, y) = ESS1(x2, y) if (x1, x2) ∈ R. Furthermore, (val(X1) ×
val(Y ))/R and (val(X2)× val(Y ))/R are Borel spaces.
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Proof. The proof can be found, mutatis mutandis, in [15].

With Theorem 4, we can use bisimulation as a compositional reduction
technique: suppose we want to perform stochastic analysis on a (closed) com-
posite CPDP that consists of multiple components. To reduce the state space
of this complex system, we can reduce (by bisimulation) each component in-
dividually and put the reduced state component back in the composition. In
this way the state of the composite CPDP will be reduced as soon as one
or more of the components are state reduced. We know that the stochastic
behavior of the output evolution is not changed by bisimulation, therefore we
can perform the stochastic analysis on the (closed) state reduced composite
CPDP.

Bisimulation for value-passing CPDPs

The definition of bisimulation can also be defined for value-passing CPDPs.
We will not do that here, but we are convinced that it can be shown that with
small extensions to the operation of schedulers (such that they can handle
value-passing), and to the definitions of combined reset map and external
scheduling strategies, the Theorems 3 and 4 also apply to the case of value-
passing CPDPs. However, this result still has to be achieved.

8 Conclusions and Discussion

In this chapter we introduced the CPDP automata framework. CPDPs are au-
tomata with labelled transitions and spontaneous (stochastic) transitions. The
locations of a CPDP are enriched with state and output variables. Each state
variable (of a specific location) evolves according to a specified differential
equation. State variables are probabilistically reset after a transition has been
executed. CPDPs can interact/communicate with each other via the event-
labels of the labelled transitions. For the extended framework value-passing-
CPDP, event labels may even hold information about the output variables.
We defined a bisimulation notion for CPDP. We proved that bisimilar CPDPs
exhibit equivalent stochastic and interaction behavior. Therefore, bisimulation
can be used as a compositional state reduction technique.

This means that we can take a component from a complex CPDP, find
a state reduced bisimilar component and put the state reduced component
back in the composition. The problem however is: how to find a state reduced
bisimilar component? For certain classes of systems, like for IMC (see [8])
and for linear input/output systems (see [16]), (decidable) algorithms have
been developed to find maximal (i.e. maximally state reduced) bisimulations.
Since CPDPs are very general in the stochastics and the continuous dynam-
ics, we can not expect that similar algorithms can be developed for CPDPs
also. However, we can try to find subclasses of CPDPs that do allow auto-
matic generation of maximal bisimulations. Any complex CPDP can then in
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principle be state reduced by finding the components that allow automatic
generation of bisimulations and replace these components with their maximal
bisimilar equivalents.

Bisimulation can be seen as a compositional analysis technique, i.e. it uses
the composition structure in order to make analysis easier. Other composi-
tional analysis techniques should benefit from the composition structure in
their specific ways. In our CPDP model there is a clear distinction between
the different components of a complex system and it is formalized how the
composite behavior is constituted from the components and from the interac-
tion mechanisms (i.e. the composition operators) that interconnect the com-
ponents. Since we have this clear and formal composition structure (including
a clear operational semantics for the composition operation), we think our
model might be suitable for developing compositional analysis techniques.
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