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3 Consistency of the Takens

estimator for the correlation

dimension

3.1 Examples

Recall that the Takens estimator for the correlation dimension is given by

�̂Tn = �
0
@ 2

n(n� 1)

X
1�i<j�n

log
k Xi �Xj k

r0

1
A
�1

: (3.1)

To establish its consistency for general sequences X1; :::;Xn, we have to

study the average

2

n(n� 1)

X
1�i<j�n

log k Xi �Xj k; (3.2)

which has the form of a U -statistic. The question of consistency of the

Takens estimator cannot be answered just by applying Theorem A, since

the kernel function h(Xi;Xj) = log k Xi � Xj k is not bounded for ob-

servations (Xi;Xj) which are close to each other. It turns out that the

Takens estimator is in general not consistent for stationary and ergodic se-

quences, in fact it is not even consistent for absolutely regular sequences.

This is con�rmed by the following counterexample by Aaronson et.al. ([1]):

Example 3.1 Let W1;W2; ::: be i.i.d. random variables with a con-

tinuous distribution F , satisfying

E(j log jW1 �W2j j) <1;
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48 Consistency of the Takens estimator for the correlation dimension

and let Y1; Y2; ::: be i.i.d. Bernoulli random variables, independent of

fWngn�1, with P(Yi = 1) = p; 0 � p � 1. De�ne the process fXngn2N by

X1 =W1 and

Xn =Wn(1� Yn) +Xn�1Yn for n > 1:

This process is stationary and absolutely regular with marginal distribution

F . Observe that Xn = Xn�1 whenever Yn = 1. As the latter occurs

in�nitely often, the U -statistics (3.2) diverges to �1 almost surely and

hence, the Takens estimator (3.1) is not consistent.

It is interesting to see what went wrong in this example. This has

something to do with the drastic di�erence between the product distribu-

tion F � F and the 2-dimensional joint distributions Pij induced by the

pairs (Xi;Xj). Note that for any n, Xn = Wi for some i = 1; 2; :::; n. So

the condition above implies that EF�F (j log jXi � Xj j j) < 1 still holds

for all i; j. However, there is positive probability that Xi = Xj . Thus, the

same expectation, but taken with respect to Pij , will be in�nite, i.e.

sup
i;j

EPij (j log jXi �Xj j j) =1: (3.3)

The previous example is quite crude, because there jXi � Xj j = 0 with

positive probability. In our next example we consider a stationary sequence

fXngn2Z for which pairs (Xi;Xj) have a density with respect to Lebesgue

measure and Ej log jXi �Xjj j <1, but

lim
n�!1

E(j log jXn �X1j j) =1;

and the Takens estimator is not consistent.

Example 3.2 Let f ~Xngn2Z be i.i.d. random variables, uniformly dis-

tributed on (0; 1), and fYngn2Z be i.i.d. Bernoulli random variables with

P[Yn = 0] = P[Yn = 1] = 1=2. Suppose, moreover, that f ~Xng and fYng
are independent of each other. De�ne a new sequence fXng by

Xn =

(
1

2
~Xn�k +

Zn
�(k)

if Yn = 1; Yn�1 = 0;
1

2
~Xn otherwise;

where k is the maximal index such that Yn�1 = ::: = Yn�k = 0, and choose

�(k) = exp(22k), fZng i.i.d. sequence of uniformly [0; 1]-distributed random

variables, independent of f ~Xng; fYng.
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Note that fXngn2Z is a stationary, absolutely regular sequence. For

this sequence

sup
r
Ej log jX0 �Xrj j =1;

since, due to the fact that jX0 �Xrj � 1 and so, � log jX0 �Xrj � 0,

E(� log jX0 �Xrj ) = E [E(� log jX0 �Xrj jfYng)] (3.4)

� E (� log jX0 �Xrj jYr = 1; Yr�1 = ::: = Y0 = 0; Y�1 = 1) � 2�r�2
= [E(� logZr) + log�(r)] � 2�r�2

and the supremum over r of (3.4) diverges to in�nity, because

sup
r
log �(r) � 2�r�2 = sup

r
2r�2 =1

for our choice of �(r).

The U -statistic (3.2) for this sequence is divergent a.s. To show that

we shall make use of the following lemma.

Lemma 3.1 If Y1; Y2; ::: are non-negative i.i.d. random variables with

E[Y1]
1=2 =1, then a.s.

lim sup
n�!1

1

n2

nX
i=1

Yi =1:

Proof Since all Yi's are positive,

lim sup
n�!1

1

n2

nX
i=1

Yi � lim sup
n�!1

Yn

n2
;

and the fact that the r.h.s. of this inequality is in�nite is the consequence

of the following line of equivalent statements:

E[Y1]
1=2 =1()

1X
n=1

P(Yn > �n2) =1() PfYn > �n2 i.o.g = 1 8� > 0;

which follow from the Borel-Cantelli lemma. 2.

Note that

� 2

n(n� 1)

X
1�i<j�n

log jXi �Xj j (3.5)
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� 2

n(n� 1)
[

X
Xi=

1
2
~Xi; Xj=

1
2
~Xj

� log jXi �Xj j

+
X

i;j: Xi=
1
2
~Xi; Xj=

1
2
~Xi+Zj=�(j�i)

� log jXi �Xj j]

=
2

n(n� 1)
[

X
Xi=

1
2
~Xi; Xj=

1
2
~Xj

� log jXi �Xj j

+
X

i;j: Xi=
1
2
~Xi; Xj=

1
2
~Xi+Zj=�(j�i)

� logZj +
MX
m=1

log �(Rm)];

where R1; :::; RM are lengths of full zero-blocks of Yi contained in the sample

of size n. An application of the ergodic theorem yields that M
n �! 1

4
as

n �! 1. The last term in (3.5) is divergent a.s., according to Lemma 3.1,

because
1

n2

MX
m=1

log�(Rm) =

�
M

n

�2 1

M2

MX
m=1

log �(Rm)

and

E[log�(Rm)]
1=2 =

X
r

log(�(r))1=22�r�2 =
X
r

2�2 =1:

So the Takens estimator not consistent for this example as well.

In the last section of this chapter we shall give a numerical example

which illustrates the divergence of the Takens estimator in the case of in-

�nite expectation in (3.3), while the Grassberger-Procaccia approach gives

a reasonable estimate of the correlation dimension. However, in general

the Takens estimator has its advantages over the Grassberger-Procaccia

method, such as computational e�ciency. And it turns out that additional

conditions on the expectations in (3.3) lead to the weak consistency of the

Takens estimator in the case of absolutely regular and stationary ergodic

processes. This is the consequence of more general results on the weak

consistency of U -statistics with unbounded kernel, which we present in the

next section.

3.2 Weak consistency of U-statistics

This section contains the main theoretical results of the present chapter. We

prove two consistency results for U-statistics of stationary ergodic, respec-
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tively absolutely regular sequences. Compared with the results of Aaronson

et al. [1], we replace their condition that the kernel h(x; y) be bounded by

a uniform integrability requirement on h(Xi;Xj), i; j � 1. For simplicity

we formulate and prove our theorems here only for U-statistics of degree

m = 2 and with one-dimensional inputs Xi, i.e. k = 1. We note however

that the results continue to hold for general m and k.

Theorem 3.1 Let fXngn�1 be a stationary ergodic process with marginal

distribution F , and let h : R � R �! R be measurable and (F � F ) -

a.e. continuous. Suppose moreover that the family of random variables

fh(Xi;Xj) : i; j � 1g is uniformly integrable. Then, as n!1,

Un �! �(F ) in probability. (3.6)

In particular this holds, if supi;j Ejh(Xi;Xj)j1+� <1 for some � > 0.

Proof A well-known result in ergodic theory states that, given a station-

ary ergodic process fXngn�1 with marginal distribution F , one has for all

measurable sets A;B that

1

n

nX
k=1

P (X1 2 A;Xk 2 B)! F (A) � F (B)

as n!1. Denoting by �k the joint distribution of (X1;Xk), this implies

that 1

n

Pn
k=1 �k converges weakly to the product measure F � F .

We now de�ne the truncated kernel hK(x; y) = h(x; y)1fjh(x; y)j � Kg,
where K is such that (F � F )f(x; y) : jh(x; y)j = Kg = 0. As hK(x; y) is

bounded and F � F -a.e. continuous, we getZ
jhK(x; y)jd( 1

n

nX
k=1

�k)(x; y)!
Z
jhK(x; y))dF (x)dF (y)

and thusZ
jhK(x; y)jdF (x)dF (y) = lim

n!1

Z
jhK(x; y)jd( 1

n

nX
k=1

�k)(x; y)

= lim
n!1

1

n

nX
k=1

EjhK(X1;Xk)j

� lim sup
n!1

1

n

nX
k=1

Ejh(X1;Xk)j

� sup
k

Ejh(X1;Xk)j
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By uniform integrability of fh(Xi;Xj) : i; j � 1g, the right hand side is

�nite. Hence we may conclude that
R jh(x; y)jdF (x)dF (y) < 1, i.e. that

h is F � F -integrable.

Moreover, hK(x; y) satis�es all the conditions of Theorem A1 of Aaronson

et al., and hence

1

n(n� 1)

X
1�i6=j�n

hK(Xi;Xj)
a:s:�!

Z Z
hK(x; y)dF (x)dF (y) as n �! 1:

(3.7)

By F � F -integrability of h we obtain

j
Z Z

h(x; y)dF (x)dF (y) �
Z Z

hK(x; y)dF (x)dF (y)j ! 0 (3.8)

as K �!1. Uniform integrability of fh(Xi;Xj); i; j � 1g implies

sup
i;j

EjhK(Xi;Xj)� h(Xi;Xj)j = sup
i;j

Ejh(Xi;Xj)1fjh(Xi;Xj)j > Kgj ! 0

as K �!1. This implies that

E

������
1

n(n� 1)

X
1�i6=j�n

hK(Xi;Xj)� 1

n(n� 1)

X
1�i6=j�n

h(Xi;Xj)

������ �! 0;

(3.9)

as K �! 1. Combining now (3.7), (3.8) and (3.9), the statement of the

theorem follows. 2

In case of an absolutely regular process we can drop the continuity

condition on the kernel, as the next theorem shows. The absolute regularity

of a process implies that the sequence of long segments of this process,

separated by short ones, can be perfectly coupled with another sequence of

long segments, which are independent and have the same distribution as

those of the original process. This is stated precisely in the following result

of Philipp [58].

Lemma 3.2 (Theorem 3.4 in Philipp [58]) If fXngn2N is stationary and

absolutely regular with mixing coe�cients �k, then for every m;N > 0 there

exists an i.i.d. sequence of N -dimensional random vectors �01; �
0
2; ::: , such

that for all k = 1; 2; :::

P(�k = �0k) = 1� �m; (3.10)
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where �k = (X(k�1)(N+m)+1; :::;XkN+(k�1)m), and the vectors �k and �0k
have the same marginal distributions.

Theorem 3.2 Let fXngn2N be a stationary and absolutely regular process

with marginal distribution F , and let h : R2 �! R be measurable. Suppose

moreover that the family of random variables fh(Xi;Xj) : i; j � 1g is

uniformly integrable. Then

Un �! �(F ) in L1;

and hence also in probability.

Proof Let � > 0 be given. By uniform integrability of fh(Xi;Xj) : i; j �
1g there exists a � > 0 such that

Ejh(Xi;Xj)j1B � � (3.11)

holds for all measurable sets B with P (B) < �. Then choose m;N so big

that 2�m < � and m
N < �. De�ne integers nk = (k�1)(m+N) and consider

the blocks

�k = (Xnk+1; : : : ;Xnk+N ):

Observe that given the sample size n, the index of the last block �k fully

contained in (X1; : : : ;Xn) is p = [ n
N+m

]. By Lemma 3.2 there exists a

sequence of independent N -dimensional vectors �01; �
0
2; : : : with the same

marginal distribution as (�k) such that (3.10) holds.

In the rest of the proof we will show that the random variables in the

small separating blocks of length m can be neglected and that the error

introduced by replacing �i by �
0
i is negligible. The main term will then be a

U -statistic with independent vector valued inputs (�0i) that can be treated

by Hoe�ding's classical U -statistic law of large numbers. To this end we

de�ne a new kernel H : RN �RN ! R by

H(�; �) :=
1

N2

X
1�i;j�N

h(xi; yj)

where � = (x1; : : : ; xN ) and � = (y1; : : : ; yN ). From (3.11) we can infer that

EjH(�k; �l)j1B � � (3.12)
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for all sets B with P (B) < �. The same holds if (�k)k is replaced by (�0k),

by F � F -integrability of H.

Independence of �0k and �
0
l implies that EH(�0k; �

0
l) =

R R
h(x; y)dF (x)dF (y) =

�(F ) for all k 6= l. Thus by the U -statistics law of large numbers for inde-

pendent observations

1

p(p� 1)

X
1�k 6=l�p

H(�0k; �
0
l)! �(F ) (3.13)

almost surely and in L1. By construction of (�
0
k), we have P (�k 6= �0k or �l 6=

�0l) � 2�m < � and thus by (3.12)

EjH(�k; �l)�H(�0k; �
0
l)j = EjH(�k; �l)�H(�0k; �

0
l)j1f�k 6=�0k or �l 6=�

0

l
g � 2�

Hence

E

������
1

p(p� 1)

X
1�k 6=l�p

H(�k; �l)�
1

p(p� 1)

X
1�k 6=l�p

H(�0k; �
0
l)

������ � 2�: (3.14)

Moreover j 1

p(p�1) � N2

n(n�1) j � 2�
p(p�1) for p large enough, and thus

E

������
1

p(p� 1)

X
1�k 6=l�p

H(�k; �l)�
N2

n(n� 1)

X
1�k 6=l�p

H(�k; �l)

������ � 2C0�;

where C0 = supi;j Ejh(�i; �j)j. This last estimate together with (3.13) and

(3.14) show that for n large enough

E

������
N2

n(n� 1)

X
1�k 6=l�p

H(�k; �l)� �(F )

������ � C� (3.15)

Now, decompose the original U -statistics as follows:

X
1�i6=j�n

h(Xi;Xj) =
X

1�k 6=l�p

nk+NX
i=nk+1

nl+NX
j=nl+1

h(Xi;Xj)

+

pX
k=1

X
nk+1�i6=j�nk+N

h(Xi;Xj)

+2
X

1�k;l�p

nk+1X
i=nk+N+1

nl+NX
j=nl+1

h(Xi;Xj)
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+
X

1�k 6=l�p

nk+1X
i=nk+N+1

nl+NX
j=nl+1

h(Xi;Xj)

+

pX
k=1

X
nk+N+1�i6=j�nk+1

h(Xi;Xj)

+
nX

i=np+N+1

nX
j=1

h(Xi;Xj)

+

np+NX
i=1

nX
j=np+N+1

h(Xi;Xj)

A careful study of the index set shows that

E

������
X

1�i6=j�n

h(Xi;Xj)�
X

1�k 6=l�p

nk+NX
i=nk+1

nl+NX
j=nl+1

h(Xi;Xj)

������
� C0(pN

2 + 2p2mN + p2mN + p2m+2n(m+N)))

where C0 = supi;j Ejh(Xi;Xj)j. As p � n=N and m � �N , the r.h.s. of the

above inequality is bounded by C(�+N=n)n2 and hence

E

������
1

n(n� 1)

X
1�i6=j�n

h(Xi;Xj)� 1

n(n� 1)

X
1�k�l�p

N2H(�k; �l)

������ � C�

for n large enough. This, together with (3.15), proves the theorem. 2

3.3 Application to the Takens estimator

From Theorem 3.2 the consistency of the Takens estimator for absolutely

regular sequence X1;X2; :::, Xi 2 Rk, follows if for some � > 0

sup
i;j

Ej log k Xi �Xj k j1+� <1: (3.16)

This condition can be translated into the distributional properties of the

sequence.

Let Xi 2 A for all i, where A is some bounded subset of Rk. Note that,

if the joint distribution of (Xi;Xj) has a density fij which is bounded (by
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C, say), then

Ej log k Xi �Xj k j1+� =

Z
A2

Z
j log k x� y k j1+�fij(x; y)dxdy

� C

Z
A2

Z
j log k x� y k j1+�dxdy <1;

and the condition (3.16) is satis�ed.

On the other hand, if the distribution of the distances �i;j =k Xi�Xj k
has a density p(x) then the expectation in (3.16) can also be expressed as

Ej log k Xi �Xj k j =
Z r0

0

j log rj1+�p(r)dr:

This integral is �nite if p(x) is of the order O(x��) for some � < 1 in the

neighbourhood of zero, and the condition (3.16) is ful�lled in this case as

well.

3.4 Numerical example

In this section we apply the Takens estimator and the Grassberger-Procaccica

method to the stationary ergodic process fXngn2N, de�ned by

Xn+1 =

(
(Xn + e�1=Yn+1) mod 1 if Yn+1 < 1=2
~Xn otherwise;

where fYngn2N; f ~Xngn2N are i.i.d. sequences of uniformly [0; 1]-distributed

random variables and X0 is uniform [0; 1].

This process is absolutely regular and has the Lebesgue measure as its

marginal distribution, so the correlation dimension in this case is � =1.

We generated a sample of the size 1000 of this process. In Fig.1 the

delay map Xn+1 vs. Xn is shown.

Note that for this process

Ej log jXn �Xn+1j j �
1

2

Z
1=2

0

dy

y
=1;

and, according to the results above, we expect the Takens estimator to

diverge. And, indeed, computing �̂T , as in (3.1), gives us extremely low

values of the estimate, such as

�̂T = 8 � 10�3;



3.4. Numerical example 57

i.e. the reciprocal of �̂T indeed diverges due to the pairs (Xn;Xn+1) which

are close to the diagonal.

On the other hand, this is no danger for the Grassberger-Procaccia

estimator (2.4). In Fig.2 we plotted logCn(r) vs. log r for a number of small

r, together with estimated con�dence bounds for logCn(r). The straight

line �t is good and it gives the value of the estimate for the correlation

dimension:

�̂GP = 0:89:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x_n

x_
{n

+
1}

Figure 3.1: Delay map xn+1 vs. xn
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_

n
(r

)

Figure 3.2: Linear regression

logCn(r) vs. log r

The problem of small distances in the Takens estimator can be attacked

by introducing not only an upper (r0), but also a lower cut-o� distance

r1 > 0, which still can be very close to 0, and consider only those distances

between points in the orbit which lie between r1 and r0. This certainly

brings a bias into the estimate, but it keeps the estimator from diverging.

(Note that this is the Ellner estimator, considered in Chapter 2). For our

numerical example it gives the values of the estimate (when the lower cut-o�

distances were taken r
(1)

1
= 10�3; r

(2)

1
= 10�4; r

(3)

1
= 10�5):

�̂T;r
(1)

1 = 0:98;

�̂T;r
(2)

1 = 0:96;

�̂T;r
(3)

1 = 0:95;



58 Consistency of the Takens estimator for the correlation dimension

which is closer to the real value than Grassberger-Proccacia estimate. More-

over, this \cut-o�"-Takens estimator has the same advantage over least-

squares as the original Takens estimator, i.e. it is computationally more

e�cient.


